CSCF , используя протокол SIP, выполняет функции, обеспечивающие доставку множества услуг реального времени посредством транспорта IP. Функция CSCF использует динамическую информацию для эффективного управления сетевыми ресурсами (граничные устройства, шлюзы и серверы приложений) в зависимости от профиля пользователей и приложений. Модуль CSCF включает три основных функции:
  • Serving CSCF (S- CSCF ) – обслуживающая CSCF . Обрабатывает все SIP-coобщения, которыми обмениваются оконечные устройства;
  • Proxy CSCF (P- CSCF ) – через нее в систему IMS поступает весь пользовательский трафик;
  • Interrogating CSCF (I- CSCF ) – запрашивающая CSCF . Представляет собой точку соединения с домашней сетью. I- CSCF обращается к HSS, чтобы найти S- CSCF для конкретного абонента;
  • S-CSCF обеспечивает управление сеансами доставки мультимедийных сообщений транспорта IP, включая регистрацию терминалов, двустороннее взаимодействие с сервером HSS (получение от него пользовательских данных), анализ сообщения, маршрутизацию, управление сетевыми ресурсами (шлюзами, серверами, пограничными устройствами) в зависимости от приложений и профиля пользователя;
  • P-CSCF создает первую контактную точку на сигнальном уровне внутри ядра IMS для терминалов IMS данной сети. Функция P- CSCF принимает запрос от или к терминалу и маршрутизирует его к элементам ядра IMS . Обслуживаемый терминал пользователя закрепляется за функцией P- CSCF при регистрации в сети на все время регистрации. Модуль P- CSCF реализует функции, связанные с аутентификацией пользователя, формирует учетные записи и передает их в сервер начисления платы. Одним из элементов модуля P- CSCF является Policy Decision Function (PDF) – функция выбора политики, оперирующая с характеристиками информационного трафика (например, требуемая пропускная способность) и определяющая возможность организации сеанса или его запрета, необходимость изменения параметров сеанса и т. д.;
  • I-CSCF создает первую контактную точку на сигнальном уровне внутри ядра IMS для всех внешних соединений с абонентами данной сети или визитными абонентами, временно находящимися в сети. Основная задача модуля I- CSCF – идентификация привилегий внешнего абонента по доступу к услугам, выбор соответствующего сервера приложений и обеспечение доступа к нему;
  • BGCF (Breakout Gateway Control Function) – функция управления шлюзами, управляет пересылкой вызовов между доменом коммутации каналов (ТфОП или GSM) и сетью IMS . Данный модуль осуществляет маршрутизацию на основе телефонных номеров и выбирает шлюз в домене коммутации каналов (КК), через который сеть IMS (где расположен сервер BGCF) будет взаимодействовать с ТфОП или GSM. Здесь также производится генерация соответствующих учетных записей для начисления платы абонентам сетей КК;
  • MGCF (Media GatewaysControl Function) – функция управления шлюзами (Media Gateways) – управляет соединениями в транспортных шлюзах IMS , используя Н.248/MEGACO;
  • SGW (Signaling Gateway) – сигнальный шлюз – обеспечивает преобразование сигнализации ТфОП в вид, понятный MGCF. Связан с ядром IMS через интерфейсы группы протоколов SIGTRAN;
  • RACS (The Resource and Access Control) – подсистема управления ресурсами и доступом – обеспечивает функции управления доступом (на основании имеющихся в распоряжении ресурсов, местной политики и авторизации на основании профилей пользователей) и входа в сеть с помощью управления шлюзом (gate control), включая управление преобразованием сетевых адресов и портов, и присвоение приоритета;
  • PDF (Policy Decision Function) – функция выбора политики, оперирующая с характеристиками информационного трафика (например требуемая пропускная способность) и определяющая возможность организации сеанса или его запрета, необходимость изменения параметров сеанса и т. д.;
  • NASS (Network Attachment Subsystem ) – подсистема подключения сети – в ее основные задачи входит динамическое назначение IP-адресов (используя DHCP – Dynamic Host Configuration Protocol), аутентификация на уровне IP, авторизация доступа к сети, управление местонахождением на уровне IP.
  • Уровень приложений

    Верхний уровень эталонной архитектуры IMS содержит набор серверов приложений, которые, в принципе, не являются элементами IMS . Эти элементы верхней плоскости включают в свой состав как мультимедийные IP-приложения, базирующиеся на протоколе SIP, так и приложения, реализуемые в мобильных сетях на базе виртуальной домашней среды.

    Архитектура приложений IMS достаточно сложна, но ключевым моментом здесь является высокая гибкость при создании новых и интеграции с традиционными приложениями. Например, среда пересылки сообщений может интегрировать традиционные свойства телефонного вызова, например обратный вызов и ожидание вызова, с вызовом Интернет. Чтобы сделать это, архитектура IMS позволяет запустить множество услуг и управлять транзакциями между ними.

    • SCIM (Service Capability Interaction Manager) – обеспечивает управление взаимодействием плоскости приложений и ядра IMS ;
    • SIP AS (SIP Application Server) – сервер приложений, служащий для выполнения услуг, базирующихся на протоколе SIP. Ожидается, что все новые услуги в IMS будут находиться именно в сервере SIP AS;
    • OSA-SCS (Open Service Access – Service Capability Server) – сервер возможных услуг, который обеспечивает интерфейс к услугам, базирующимся на открытом доступе услугам (OSA – Open Service Access). Целью является обеспечение услугам возможности доступа к сетевым функциям посредством стандартного программного интерфейса приложений;
    • IM-SSF (IP Multimedia – Service Switching Function) – сервер коммутации услуги, служит для соединения подсистемы IMS с услугами в системе приспособленных к пользователю приложений для улучшения логики мобильной сети (CAMEL – Customized Applications for Mobile network Enhanced Logic). Речь идет об услугах, разработанных для глобальной системы мобильной связи GSM, а с помощью функции IM-SSF (функция коммутации услуг) использование данных услуг возможно и в IMS ;
    • TAS (Telephony Application Server) – сервер телефонных приложений принимает и обрабатывает сообщения протокола SIP, а также определяет, каким образом должен быть инициирован исходящий вызов. Сервисная логика TAS обеспечивает базовые сервисы обработки вызовов, включая анализ цифр, маршрутизацию, установление, ожидание и перенаправление вызовов, конференц-связь и т. д. TAS также обеспечивает сервисную логику для обращения к медиасерверам при необходимости воспроизведения оповещений и сигналов прохождения вызова. Если вызов инициирован или терминирован в ТфОП, сервер TAS отвечает за сигнализацию SIP к функции MGCF для выдачи команды медиашлюзам на преобразование битов речевого потока TDM (ТфОП) в поток IP RTP и направление его на IP-адрес соответствующего IP-телефона. В одном сообщении IMS могут содержаться данные о нескольких TAS, предоставляющих определенные услуги различным типам абонентских устройств. Например, один сервер TAS оказывает услуги IP Centrex (частные планы нумерации, общие справочники, автоматическое распределение вызовов и т. д.), другой сервер поддерживает УАТС и предоставляет услуги VPN. Взаимодействие нескольких серверов приложений осуществляется посредством сигнализации SIP-I для завершения вызовов между абонентскими устройствами различных классов;
    • HSS (Home Subscriber Server) – сервер домашних абонентов – аналогичен элементу сетей GSM – серверу HLR (Home Location Register) – является базой пользовательских данных. Сервер HSS обеспечивает открытый доступ в режиме чтения/записи к индивидуальным данным пользователя, связанным с услугами. Доступ осуществляется из различных точек окончания – таких как телефон, приложения Web и SMS, телевизионные приставки типа set-top box и т. д. В HSS реализуется также функции SLF (Subscription Locator Function), которая определяет положение базы данных, содержащей данные конкретного абонента, в ответ на запрос от модуля I- CSCF или от сервера приложений.

    Наконец, в состав сервера HSS входят модули HLR и AuC (Authentication Center) для работы с сетями 2G.

    В среде IMS сервер HSS действует как открытая база данных о каждом пользователе и об услугах, задействованных абонентом: на какие услуги подписан пользователь, активизированы ли эти услуги, какие параметры управления были установлены пользователем.

    IMS (IP Multimedia Subsystem) – спецификация передачи мультимедийного содержимого в сетях электросвязи на основе протокола IP. Ее авторство принадлежит международному партнерству 3-d Generation Partnership Project (3GPP), объединившему European Telecommunications Standardization Institute (ETSI) и несколько национальных организаций стандартизации. IMS изначально разрабатывалась применительно к построению мобильных сетей 3-го поколения на базе протокола IP. В дальнейшем концепция была принята комитетом ETSI-TISPAN, усилия которого были направлены на спецификацию протоколов и интерфейсов, необходимых для поддержки и реализации широкого спектра услуг в стационарных сетях с использованием стека протоколов IP.
    В настоящее время архитектура IMS рассматривается многими операторами и сервис-провайдерами, а также поставщиками оборудования как возможное решение для построения сетей следующего поколения и как основа конвергенции мобильных и стационарных сетей на платформе IP.
    Принцип, на котором строится концепция IMS, состоит в том, что доставка любой услуги никаким образом не соотносится с коммуникационной инфраструктурой (за исключением ограничений по пропускной способности). Воплощением этого принципа является многоуровневый подход, используемый при построении IMS. Он позволяет реализовать независимый от технологии доступа открытый механизм доставки услуг, который дает возможность задействовать в сети приложения сторонних поставщиков услуг.
    В Табл. 1 приведен перечень всех интерфейсов подсистемы IMS (включая интерфейсы взаимодействия с сетью доступа LTE), а на Рис. 1 показана общая архитектура сети.

    Наименование

    Объекты

    Протокол

    LTE user/control plane

    HSS – S-CSCF/I-CSCF

    SLF – S-CSCF/I-CSCF

    eMSS – S-CSCF/I-CSCF

    P-GW – IMS-AGW / MRFP /

    CSCF/BGCF – IBCF

    Interface to OCS

    Interface to CDF

    CGF – billing system

    Рис.1 (архитектура сети IMS):

    Рассмотрим базовые элементы более подробно.

    1. Call Session Control Function (CSCF) – функция управления сеансом связи

    Существуют 4 различных типа CSCF – прокси CSCF (proxy CSCF – P-CSCF), обслуживающий CSCF (serving CSCF – S-CSCF), запрашивающий CSCF (interrogating CSCF – I-CSCF) и CSCF экстренных служб (emergency CSCF – E-CSCF).

    Каждый CSCF выполняет свои специализированные задачи. Общая их роль заключается в участии в процессах регистрации абонентского терминала в сети, установления сессии и обеспечении механизм SIP маршрутизации.

    Кроме того, все CSCF могут генерировать тарификационные данные и направлять их в функции offline тарификации.

    a) Proxy Call Session Control Function (P-CSCF)

    P-CSCF – является точкой входа пользователей в IMS. Весь сигнальный IMS трафик абонентский терминал (UE) направляет на P-CSCF. Аналогично весь сигнальный трафик, генерируемый сетью в направлении к UE – посылается через P-CSCF.

    Существуют 5 уникальных задач, выполняемых P-CSCF:

    • SIP компрессия,

    SIP протокол является текстовым протоколом и включает большое кол-во заголовков, параметров, расширений и т.д. Учитывая текстовую основу протокола, размер SIP сообщений существенно превышает размер сообщений бинарных протоколов. Соответственно, для ускорения процедуры установления сессий необходима обязательная поддержка SIP компрессии между UE и P-CSCF. Режим компрессии включается P-CSCF в случае если UE индицирует необходимость этого.

    • Контроль целостности и защита конфиденциальности SIP сигнализации посредством использования IPSec или TLS.
    • Взаимодействие с PCRF.
    • Управление NAT (функционал SIP ALG – application level gateway).

    Учитывая, что во многих сетях связи абонентские терминалы (UE) располагаются за NAT-ом, который модифицирует на сетевом уровне IP/port информацию всех пакетов, проходящих через него, возникает проблема, обусловленная тем, что классический тип NAT-ирования не принимает во внимание IP информацию на SIP и SDR уровнях. Действительно всеобъемлющий IMS доступ (возможность UE взаимодействовать с P-CSCF независимо от среды доступа) требует, чтобы IP информация в SIP/SDP и user plane соответствовала информации на сетевом (IP) уровне (из публичного пула IP адресации). Для модификации IP на уровне user plane P-CSCF управляет шлюзом сети доступа, который обеспечивает модификацию IP на уровне user plane.

    • Обнаружение экстренного вызова.

    Задача P-CSCF в этом случае – детектирование запроса экстренного вызова и выбор E-CSCF для обработки данного экстренного вызова.

    b) Interrogating Call Session Control Function (I-CSCF)

    I-CSCF является точкой в сети оператора для всех входящих соединений к абонентам данного оператора. Основная задача, выполняемая I-CSCF – назначение S-CSCF, основываясь на данных, полученных из HSS.

    Назначение S-CSCF происходит при регистрации пользователя или в ситуации, когда незарегистрированный пользователь получает SIP request к сервису, относящемуся к незарегистрированному состоянию (например, voice mail).

    c) Serving Call Session Control Function (S-CSCF)

    S-CSCF является центральной точкой IMS. Он обеспечивает выполнение процедуры регистрации, принятие решение о маршрутизации, управление машиной состояний сессии, хранение профиля пользователя.

    Когда пользователь посылает запрос на регистрацию, он в конечном итоге маршрутизируется к S-CSCF, который инициирует процедуру аутентификации и загружает профиль пользователя из HSS. Получив и верифицировав данные, S-CSCF подтверждает регистрацию, после чего пользователь может генерировать и принимать IMS запросы.

    S-CSCF использует информацию, содержащуюся в пользовательском профиле, для принятия решения – когда и какую AS подключать при получении от пользователя SIP запроса. Кроме того, пользовательский профиль может содержать инструкции о типе медиа политик, которые S-CSCF должен применить. Например, он может индицировать, что пользователю доступны только аудио компоненты, при этом видео компоненты не доступны.

    После получения S-CSCF запроса исходящей (UE-originated) или входящей (UE-terminated) сессии S-CSCF отвечает за принятие решений о его дальнейшей маршрутизации. Например, при получении запроса исходящей сессии (UE-originated) S-CSCF принимает решение – требуется ли ему подключать AS перед дельнейшей маршрутизацией запроса. После взаимодействия с AS S-CSCF либо продолжит сессию в IMS домене, либо переправит ее в другой домен (CS или IMS другого оператора). Если UE использует MSISDN для адресации вызываемой стороны, то S-CSCF преобразует MISISDN в SIP URI формат перед дальнейшей пересылкой, т.к. IMS не маршрутизирует запросы, основываясь на MSISDN номерах. Аналогично S-CSCF принимает все запросы, которые будут терминироваться в UE. Несмотря на то, что S-CSCF знает IP адрес UE (после процедуры регистрации) он маршрутизирует все запросы только через P-CSCF, т.к. P-CSCF может применять политики безопасности доступа.

    Дополнительно S-CSCF может послать тарификационную информацию в OCS для обеспечения on-line тарификации.

    d) Emergency Call Session Control Function (E-CSCF)

    E-CSCF – это выделенная функциональность для обработки экстренных запросов – вызов полиции, пожарной бригады, скорой помощи.

    Основная задача E-CSCF – выбрать соответствующий центр экстренных служб (public safety answering point – PSAP), в который должен быть перенаправлен поступивший запрос. Как правило, в качестве критерия выбора PSAP выступает местоположение пользователя и тип вызываемой службы.

    2. Серверы приложений (Application Server – AS)

    Строго говоря, серверы приложений (Application Server – AS) предоставляют услуги с добавленной стоимостью (value-added multimedia services) и не являются объектами IMS, т.к. располагаются в модели взаимодействия на вышележащем уровне. AS размещаются либо у оператора в домашней сети пользователя, либо у сервисного провайдера. Основные функции AS:

    • возможность обработки SIP сессий, полученных от IMS;
    • возможность создания исходящего SIP запроса;
    • возможность генерации тарификационных данных.

    Предоставляемые услуги не ограничиваются только чистыми SIP сервисами. Оператор может предоставлять в т.ч. CAMEL (customized applications for mobile network enhanced logic) и OSA (open service architecture) сервисы для своих IMS абонентов в соответствии с 3GPP TS 23.228.

    Таким образом, под AS будем понимать SIP AS, OSA service capability server (SCS) и CAMEL IP multimedia service switching function (IM-SSF).

    С точки зрения S-CSCF элементы SIP AS, OSA SCS и IM-SSF представляют собой однотипные модули. Поскольку пользователь может иметь несколько сервисов, то может существовать и несколько AS в профиле каждого пользователя. В одну сессию может быть вовлечен один или несколько AS. Для примера, оператор может иметь одну AS для предоставления голосовых supplementary services (например, услуга переадресации всех входящих голосовых вызовов с 17:00 до 19:00 на голосовую почту) и другую AS для предоставления услуги voice call continuity (handover VoLTE в 2G/3G CS call).

    3. Контролер и Процессор мультимедийных ресурсов (Media Resource Function Controller – MRFC, Media Resource Function Processor – MRFP)

    MRFC и MRFP обеспечивают предоставление таких сервисов, как конференц-связь, проигрывание голосовых сообщений (анноунсемент), транскодирование медиа потоков. MRFC – обрабатывает SIP сигнализацию к/от S-CSCF/AS и управляет MRFP. MRFP - предоставляет user-plane ресурсы в соответствии с командами, полученными от MRFC:

    • смешивание медиапотоков (для multiple parties);
    • генерирование голосовых сообщений (анноунсемент);
    • обработка медиа потока (транскодирование, анализ,...)

    Для направления вызова в домен с коммутацией каналов (CS домен) S-CSCF пересылает SIP запрос к BGCF, который осуществляет выбор соответствующего CS домена. При этом CS домен может быть выбран как на текущем узле (в соответствии с местонахождением пользователя, совершившего вызов), так и в другой сети. Если CS домен выбирается в другой сети – BGCF направляет запрос BGCF данной сети. Далее от BGCF запрос направляется в MGCF. Описанная опция позволяет маршрутизировать сигнальный и медиа поток по сети IMS максимально близко к вызываемому абоненту.

    Когда SIP запрос достигает MGCF он выполняет преобразование протоколов (SIP протокол с одной стороны и ISDN user part – ISUP с другой) после чего – посылает конвертированный сообщение в SGW CS домена. SGW выполняет двухстороннее преобразование транспортного уровня сигнализации (SIGTRAN IP/SCTP/MxUA с одной стороны и SS7 MTP с другой стороны). SGW не обрабатывает уровень приложений (application level) сигнализации (ISUP). На Рис. 2 SGW является частью IM-MGW.

    MGCF также осуществляет управление IM-MGW. IM-MGW обеспечивает user-plane линк между IMS и CS доменами. Он терминирует TDM каналы CS домена с одной стороны и медиа поток IMS домена с другой; выполняет их преобразование, транскодирование (при необходимости) и обработку пользовательской сигнализации.

    В дополнение IM-MGW может генерировать тональные сигналы и анноунсементы пользователям в CS домене.

    Сигнализация, относящаяся к входящим вызовам из CS домена (ISUP) в направлении к IMS пользователям направляется в MGCF, где выполняется ее преобразование в SIP запросы, которые далее направляются в I-CSCF для терминирования.

    IP short message gateway (IP-SM-GW) соединяет наиболее распространенную технологию мобильного обмена сообщениями SMS с IMS мессажингом. Когда SMS посылается к IMS пользователю – SMS маршрутизируется по сети сигнализации SS7 к IP-SM-GW, который помещает полученную SMS в качестве контента специального типа в SIP MESSAGE и направляет его в S-CSCF для дальнейшей маршрутизации. Это позволяет доставлять SMS сообщения пользователям, которые зарегистрированы не в 3GPP мобильных IP сетях (Wi-Fi, WiMAX), а также может рассматриваться как альтернатива традиционным методам доставки SMS сообщений (CS, GPRS).

    IP-SM-GW также позволяет доставлять SMS в обратном направлении (от абонентов IMS сетей пользователям CS 2G/3G сетей). Когда IMS абонент отправляет SIP сообщение, содержащее SMS как специальный тип контента (special content type), IP-SM-GW извлекает его и направляет в SMS центр (SMSC) для дальнейшей доставки по сетям SS7. Данный тип взаимодействия позволяет предоставлять все существующие SMS услуги (в т.ч. услуги с дополнительной оплатой) абонентам, зарегистрированным в IMS сетях. Эта функциональность называется SMS over IP (3GPP TS 23.204).

    Дополнительно IP-SM-GW может поддерживать "родной" (native) сервис взаимодействия между SMS и SIP-based аппликациями. При этом SMS конвертируется в native SIP запрос и со стороны IMS UE не требуется поддержка SMS технологии.

    Существует ограничивающий фактор, который нужно принимать во внимание, а именно – размер SIP сообщения (RFC3428) должен быть как минимум на 200 байт меньше MTU (maximum transmission unit). Если IP-SM-GW принимает сцепленное (concatenated) SMS сообщение (группа сообщений стандартной длины, вместе формирующих одно сообщение большой длины) и размер SIP MESSAGE превышает возможный лимит, IP-SM-GW должен использовать сессионный режим (session mode).

    Сессионный режим предполагает изначальную установку сессии между IMS UE и IP-SM-GW, для чего IP-SM-GW посылает SIP INVITE. Как только сессия установлена MSRP протокол (message session relay protocol) используется для доставки сообщения IMS UE.

    Функция взаимодействия между IMS сетями различных операторов связи реализуются посредством функционального модуля управления пограничным взаимодействием (Interconnection Border Control Function – IBCF) и транзитного шлюза (Transition Gateway – TrGW). Решаются следующие задачи:

    • Трансляция между различными версиями IP (IPv4, IPv6), используемыми на сетях операторов. В этом случае IBCF модифицирует SIP и SDP данные, позволяя пользователям, использующим различные версии IP, взаимодействовать друг с другом.
    • Транскодирование в ситуации, когда приложения конечных пользователей не имеют общего кодека, который может быть использован (например, транскодирование между AMR и G.722). Сервис транскодирования может быть включен проактивно (перед запросом на установку сессии к вызываемому абоненту) или реактивно (после того как сессия будет прервана вызываемым абонентом) – 3GPP TS 23.228.
    • Скрытие сетевой топологии. В этом случае IBCF выполняет шифрование / дешифрование всех заголовков сообщений, которые содержат информацию о топологии сети.
    • Фильтрация информации в SIP сообщениях. В этом случае IBCF удаляет или модифицирует некоторые SIP заголовки перед маршрутизацией сообщений в направлении сторонних сетей.
    • Выбор направления.
    • Генерация CDR.
    • NAT/Port трансляция – TrGW выполняет модификацию IP заголовков пакетов пользовательского трафика (RTP и пр.)

    7. Шлюз доступа IMS (IMS-AGW – Access Gateway)

    В частных (например, домашних и офисных) фиксированных сетях абонентский терминал (UE) может находиться за NAT-ом и firewall-ом, установленных на сетевых устройствах, являющихся точками доступа в такие сети (customer premise equipment - CPE). При этом NAT не осуществляет модификацию / натирование информации на SIP / SDP уровнях.

    Для решения данной задачи P-CSCF содержит функционал SIP ALG (application level gateway), который обеспечивает управление IMS-AGW. SIP INVITE запрос от UE с приватным IP адресом достигает P-CSCF, функционал ALG которого назначает публичный IP адрес, привязывает его к SIP сессии, выполняет NAT-ирование (замену приватных IP адресов на всех протокольных уровнях, включая IP, SIP, SDP), осуществляет его дальнейшую маршрутизацию и информирует шлюз доступа о созданной связке. При поступлении медиа потока между двумя абонентскими терминалами (UE) шлюз доступа будет осуществлять NAT-ирование RTP пакетов в/из публичного/частного адресного пространств.

    8. Шлюз безопасности (Security Gateway – SEG)

    Шлюз безопасности размещается на границе доменной зоны оператора и обеспечивает его защиту. Весь междоменный трафик должен в обязательном порядке проходить через SEG. SEG обеспечивает конфиденциальность, контроль целостности данных (data integrity) и аутентификацию в соответствии с 3GPP TS 33.203.

    9. Функция извлечения информации о местоположении (Location Retrieval Function - LRF)

    LRF ассистирует E-CSCF в обработке IMS экстренных вызовов путем предоставления информации о местоположении абонентского терминала (UE), инициировавшего экстренный вызов, которая используется для выбора экстренной службы (PSAP), куда сессия должна быть перенаправлена. Для получения информации о местонахождении пользователя LRF может иметь встроенный location server или иметь функционал GMLC (gateway mobile location center) – интерфейс к внешнему location server.

    Для выбора соответствующего PSAP – LRF может содержать функцию RDF (routing determination function), которая используется для выбора адреса PSAP на основании информации о местоположении пользователя.

    LRF может обеспечивать поддержку и других локальных регуляторных параметров, таких как emergency service routing number, location number, PSAP SIP URI, PSAP TEL URI,...

    10. Расширенный мобильный центр коммутации – Enhanced MSC Server (eMSS)

    eMSS представляет из себя MSC сетей 2G/3G, который обладает функциональностью P-CSCF в направлении IMS.

    При регистрации пользователя в сети 2G/3G eMSS выполняет от имени пользователя регистрацию в IMS домене, что позволяет пользователю CS сети, не имеющему доступа в пакетную сеть, получить доступ к IMS услугам.

    Когда пользователь совершает исходящий CS вызов (mobile originating call) eMSS конвертирует legacy CS вызов в запрос IMS сессии и направляет его на IMS систему. Аналогично, когда кто-либо совершает вызов к пользователю, обслуживаемому eMSS, входящий вызов (mobile terminating call) маршрутизируется на IMS платформу, выполняющую установленную процедуру управления входящим вызовом, включая HSS interrogation, и переправляющую SIP запрос на eMSS, который в свою очередь конвертирует протокол управления IMS сессией в протокол управления CS вызовом.

    eMSS позволяет предоставлять услугу, действительно независимую от типа доступа (CS, IP-CAN, legacy), поскольку предоставление услуги всегда обеспечивается IMS платформой. Это обеспечивает возможность пользователям мигрировать из 2G/3G CS сетей в IMS и обратно.

    11. Функция управления шлюзом доступа – Access Gateway Control Function (AGCF)

    AGCF – представляет из себя точку входа для пользователей PSTN/ISDN сетей (аналоговые и ISDN телефоны). Он выполняет следующие функции:

    • управление медиашлюзом (MGW) уровня доступа (access gateway);
    • взаимодействие с подсистемой управления ресурсами и доступом;
    • взаимодействие с подсистемой подключения к сети для получения информации о профиле линии;
    • обеспечение сигнального взаимодействия между SIP сигнализацией с одной стороны и аналоговой телефонной / ISDN сигнализацией с другой стороны.

    С точки зрения IMS платформы AGCF выглядит как P-CSCF и обеспечивает соответствующий функционал (управление процедурой SIP регистрации и пр.).

    Необходимая для тарификации информация собирается функциями тарификации различных модулей IMS из SIP запроса. При этом возможна online тарификация (в этом случае функция тарификации запрашивает разрешение у биллинговой системы на обработку SIP запроса) и offline тарификация (в этом случае функция тарификации всегда позволяет обработку SIP запроса, отправляя собранную тарификационную информацию в биллинговую систему для формирования CDR записей).

    В зависимости от конфигурации IMS возможны различные схемы тарификации различных сервисов. При этом управление логикой тарификации осуществляется на основе срабатывания тех или иных триггеров. Триггерами могут быть:

    • запросы создания, модификации и терминации сессии (sessionbased charging);
    • любая SIP транзакция, например, MESSAGE, PUBLISH, SUBSCRIBE (eventbased charging);
    • определенные SIP заголовки и SDP информация.

    Функции тарификации всех IMS модулей, а также модулей доступа могут взаимодействовать с offline модулем тарификации (offline charging entity – CDF), используя diameter-based Rf интерфейс (3GPP TS 32.299).

    На основе информации, полученной из функциональных блоков тарификации всех IMS модулей, CDF создает CDR записи, которые переправляются в шлюз тарификации (charging gateway function – CGF) через Ga интерфейс (3GPP TS 32.295). Далее CGF обрабатывает полученные CDR и переправляет их в биллинговую систему используя Bх интерфейс (3GPP TS 32.240).

    Prepaid сервисам необходима online тарификация. Это означает, что IMS сеть должна запрашивать OCS перед авторизацией пользователя на использование того или иного сервиса. OCS ответственен за контроль в реальном времени счета пользователя, авторизацию пользователя на использование сервиса и списание баланса со счета пользователя за полученные услуги. Только три IMS модуля (S-CSCF, AS, MRFC) взаимодействуют с OCS, используя интерфейс Ro. Кроме IMS модулей с OCS могут взаимодействовать не IMS модули. В частности, SGSN использует CAMEL application part (CAP). В дополнении к credit control (тарификация в on-line) OCS может создавать CDR записи подобно CGF.

    HSS является хранилищем абонентских данных и данных, связанных с услугами. Он содержит функциональность центра аутентификации (AUC), LTE функциональность (SAE-HSS), GSM/UMTS функциональность (HLR), IMS функциональность (IMS-HSS), функциональность репозитория данных для управления тарификацией и политиками качества (SPR). Также HSS может использоваться для хранения данных серверов приложений (AS).

    PCRF отвечает за формирование политик качества и управление тарификацией, основываясь на сессионной информации, полученной из P-CSCF.

    Установление сессии в IMS обеспечивается обменом сигнальными сообщениями, используя SIP и SDP, включая согласование медиа характеристик (кодеков, IP адресов, номеров портов). Если оператор использует на своей сети PCRF, P-CSCF переправляет ему необходимую SDP информацию, на основании которой он создает политики и правила тарификации, а также авторизует IP потоки соответствующих медиа компонентов, мапируя данные SDP на IP QoS параметры для шлюза сети доступа, например, P-GW/PCEF.

    Основываясь на доступной информации, PCRF применяет сформированные PCC политики и правила тарификации на шлюзе сети доступа (P-GW/PCEF), создает и модифицирует виртуальные соединения для переноса медиа-трафика (EPS bearer). В дополнение, PCRF принимает события с транспортного уровня, например, при потере радио-соединения, информируя об этих событиях P-CSCF, который в использует полученную информацию при формировании тарификационных данных и закрытии IMS сессии от имени пользователя.

    Кроме того, PCRF может использоваться для обмена тарификационными идентификаторами, которые позволяют оператору коррелировать CDR, сгенерированные сетью доступа и сетью IMS; доставлять в сеть доступа метод тарификации (длительность, объем, оба); информацию rating group; команды активации on-line / off-line тарификации; адреса on-line / off-line систем тарификации; требуемый уровень отчетности, базирующийся на сервисе и rating-group.

    • >">Вперед >>

    Изобретение относится к IP мультимедийной подсистеме (IMS), в частности к системе и способу для упрощения процесса регистрации пользователей в IMS. Техническим результатом является обеспечение IMS информацией о том, что является ли пользователь зарегистрированным при доступе с коммутацией каналов (CS) или доступе с коммутацией пакетов (PS). Указанный технический результат достигается тем, что в IMS подсистеме протокол канала управления IMS (ICCP) используется между абонентским устройством (UE) и функцией канала управления IMS (ICCF) и интерфейсом по протоколу инициирования сеанса (SIP) (между ICCF, функцией управления сеансами вызовов и сервером приложений), чтобы поддерживать индикатор доступа CS с использованием заголовка P-Access-Network-Information. Индикатор может использоваться посредством обслуживающей функции управления сеансами вызовов (S-CSCF) или сервером приложений (AS) в различных целях, таких как информация по решению маршрутизации, тарификации и оплате и присутствию. 4 н. и 10 з.п. ф-лы, 20 ил.

    Рисунки к патенту РФ 2434364

    Область техники, к которой относится изобретение

    Изобретение относится к IP мультимедийной подсистеме (IMS). Более конкретно и не в качестве ограничения, настоящее изобретение направлено на систему и способ для упрощения процесса регистрации пользователей в IMS.

    Уровень техники

    Ниже приводится список аббревиатур, используемых в описании, а также их определения, которые должны применяться по всему описанию, если не указано иное.

    Аббревиатуры

    3GPP - Партнерский проект третьего поколения

    ADS - выбор домена доступа

    AS - сервер приложений

    CAMEL - пользовательское приложение для усовершенствованной логики мобильной связи

    CDR - запись данных вызова

    CS - коммутация каналов

    CSCF - функция управления сеансами вызовов

    CSI - комбинация CS и IMS-услуги

    IA - IMS адаптер

    ICCF - функция управления коммутации каналов IMS

    ICCP - протокол управления коммутации каналов IMS

    ICS - централизованные IMS-услуги

    IMPI - конфиденциальные идентификационные данные для IP мультимедийной подсистемы

    IMS - IP мультимедийная подсистема

    IMSI - международные идентификационные данные абонента мобильной связи

    IP-CAN - сеть доступа с подключением по IP

    ISC - управление IP мультимедийной подсистемой

    ISUP - абонентская подсистема ISDN

    MAP - подсистема мобильных приложений

    MGCF - функция управления сетевым шлюзом

    PS - с коммутацией пакетов

    P-CSCF - прокси-функция управления сеансами вызовов

    S-CSCF - обслуживающая функция управления сеансами вызовов

    SIP - протокол инициирования сеанса

    TAS - сервер телефонных приложений

    UE - пользовательское оборудование

    URL - унифицированный указатель ресурса

    USSD - неструктурированные данные по дополнительным услугам

    VCC - непрерывность речевых вызовов

    WCDMA - широкополосный множественный доступ с кодовым разделением

    Фиг. 1 иллюстрирует высокоуровневую блок-схему архитектуры 100 ICS. Централизованные IMS-услуги (ICS) являются предложенным рабочим элементом в Партнерском проекте третьего поколения (3GPP), чтобы сделать возможными IMS-услуги во множестве типов сетей доступа, таких как сеть 102 коммутации каналов (CS). Реализация услуг размещается в IMS 110, и CS-сеть 102 используется в качестве доступа к услугам в IMS 110.

    По сравнению с 3GPP Версии 7, архитектура непрерывности речевых вызовов (VCC), функция управления IMS CS (ICCF) 106 вводится для того, чтобы обеспечивать возможность сигнализации, не поддерживаемой в рамках CS сигнализации (к примеру, ISUP), такой как IMS-регистрация, сигнализация в ходе вызова, дополнительная информация для сигнализации при установлении вызова (к примеру, SIP URL), чтобы эмулировать IMS-терминал в направлении IMS. Неструктурированные данные по дополнительным услугам (USSD) могут использоваться для того, чтобы транспортировать эту дополнительную сигнализацию, называемую ICCP (управление IMS CS) 104, в CS-сети.

    В VCC согласно 3GPP Версии 7, пользователь VCC не является зарегистрированным в IMS при CS-доступе, и сервер телефонных приложений (TAS) 108 должен реализовывать дополнительные механизмы для того, чтобы предоставлять IMS-услуги пользователю. В качестве возможного решения, в 3GPP Версии 8, предлагается поддерживать IMS-регистрацию из UE 101 с помощью ICCP так, чтобы TAS 108 мог информироваться от S-CSCF по процедуре сторонней регистрации, что пользователь зарегистрирован в IMS. Обслуживающая CSCF - это функция управления сеансами вызовов для управления регистрацией пользовательского оборудования и маршрутизации в IP мультимедийной подсистеме. Другая CSCF, прокси-CSCF, является первой точкой контакта для пользовательского оборудования и управляет решениями по безопасности, верификации и политике. В настоящее время, нет процедуры, которая информирует IMS о том, является ли пользователь зарегистрированным при CS-доступе или при PS-доступе (это обусловлено тем, что ранее не было IMS-регистрации для CS-доступа). IMS может знать только то, что пользователь зарегистрирован в одном или более радиодоступов, при этом предполагается, что все доступы являются пакетными доступами. Доступ с коммутацией пакетов (PS) всегда предполагался в IMS.

    Ввиду предположения, что доступ всегда является PS-доступом, имеются ситуации, которые не могут быть разрешены посредством механизма сторонней IMS-регистрации вплоть до 3GPP Версии 7. Например, оператор может захотеть реализовывать локальную политику при выборе контактного адреса S-CSCF, чтобы продвигать CS-доступ, а не PS-доступ; или наоборот. Оператор может захотеть различать плату за CS-доступ и PS-доступ и указывать это различие в IMS CDR. Кроме того, оператор может захотеть различать режим работы TAS в зависимости от того, является ли пользователь зарегистрированным при CS-доступе или при PS-доступе (к примеру, почтовый ящик "видео-в-видео" с переадресацией вызовов, если пользователь зарегистрирован в CS-доступе, где видео не может поддерживаться).

    Было бы полезным иметь систему и способ для идентификации того, является ли пользователь зарегистрированным при CS или PS-доступе, которые преодолевают недостатки уровня техники. Настоящее изобретение предоставляет такую систему и способ.

    Раскрытие изобретения

    Настоящее изобретение предоставляет изменение SIP-интерфейса, к примеру, для ICCF, CSCF и AS, чтобы поддерживать индикатор CS-доступа в заголовке P-Access-Network-Information (Информация сети для P-доступа). Затрагиваемые узлы - это ICCF, S-CSCF и AS. Индикатор может использоваться посредством S-CSCF или AS в различных целях, таких как информация решения по маршрутизации, оплате и присутствию.

    Таким образом, в одном аспекте, настоящее изобретение направлено на способ регистрации пользовательского оборудования (UE) в IP мультимедийной подсистеме (IMS) посредством отправки запроса на регистрацию в обслуживающую функцию управления сеансами вызовов (S-CSCF), при этом запрос на регистрацию включает в себя заголовок, содержащий информацию о типе доступа пользователя и контактах, связанных с типом доступа. Запрос на регистрацию пересылается ассоциированному IMS-серверу приложений, который отвечает на ICCF. S-CSCF использует вставленный заголовок запроса на регистрацию для того, чтобы реализовывать правила доступа согласно настройкам оператора или пользователя, при этом заголовок, включенный в запрос на регистрацию, является заголовком P-Access-Network-Information, который включает в себя контакты, связанные с доступом с коммутацией каналов.

    Контактные адреса, связанные с доступом с коммутацией каналов в заголовке, размещаются в порядке использования перед обычным контактом доступа с коммутацией пакетов, и правила упорядочения, касающиеся обработки контактов, связанной с типом доступа, основаны на локальной политике в S-CSCF. Локальная политика в S-CSCF может зависеть от времени дня или профиля абонента.

    В другом аспекте, настоящее изобретение направлено на систему для регистрации пользовательского оборудования (UE) в IP мультимедийной подсистеме (IMS), при этом система содержит средство для отправки запроса на регистрацию в обслуживающую функцию управления сеансами вызовов (S-CSCF), и запрос на регистрацию включает в себя заголовок, содержащий информацию о типе доступа пользователя и контакты, связанные с типом доступа. Система включает в себя средство для пересылки запроса на регистрацию ассоциированному IMS-серверу приложений и средство для отправки ответа регистрации на ICCF.

    Предусмотрены средства, включенные в S-CSCF, для использования заголовка запроса на регистрацию, чтобы реализовывать правила доступа согласно настройкам оператора или пользователя, и заголовком, который включен в запрос на регистрацию, является заголовок P-Access-Network-Information, который включает в себя контакты, связанные с доступом с коммутацией каналов.

    Контакты, связанные с доступом с коммутацией каналов в заголовке, могут быть размещены по порядку перед обычным контактом доступа с коммутацией пакетов, и правила упорядочения, касающиеся обработки контактов, связанной с типом доступа, основаны на локальной политике в S-CSCF, причем локальная политика в S-CSCF зависит от времени дня или профиля абонента.

    Краткое описание чертежей

    В следующем разделе изобретение описывается со ссылками на примерные варианты осуществления, проиллюстрированные на чертежах, на которых:

    Фиг. 1 иллюстрирует высокоуровневую блок-схему архитектуры ICS;

    Фиг. 2 иллюстрирует высокоуровневую схему последовательности сигналов доступа с коммутацией каналов при регистрации в соответствии с вариантом осуществления настоящего изобретения; и

    Фиг. 3a, 3b и 3c иллюстрируют три ситуации, в которых зарегистрированное устройство идентифицируется в S-CSCF согласно вариантам осуществления настоящего изобретения;

    Фиг. 4a-4d иллюстрируют ситуации, в которых упорядочение в S-CSCF изменяется в соответствии с вариантом осуществления настоящего изобретения;

    Фиг. 5a-5d иллюстрируют ситуации, в которых различные ответвляющиеся действия могут быть предприняты согласно варианту осуществления настоящего изобретения;

    Фиг. 6a-6f иллюстрируют ситуации, касающиеся различных действий последовательной посылки вызова согласно варианту осуществления настоящего изобретения; и

    Фиг. 7 иллюстрирует индикацию доступа с коммутацией каналов в сервер присутствия согласно варианту осуществления настоящего изобретения.

    Осуществление изобретения

    В последующем описании многие конкретные подробности пояснены для того, чтобы предоставлять полное понимание изобретения. Тем не менее, специалисты в данной области техники должны понимать, что настоящее изобретение может быть использовано на практике без этих конкретных подробностей. В других случаях, хорошо известные способы, процедуры и компоненты не описаны подробно с тем, чтобы не затруднять понимание настоящего изобретения.

    Параметр, ассоциированный с IMS, "P-Access-Network-Information", уже присутствует для того, чтобы доставлять касающуюся доступа информацию сети, но дополнительная информация, указывающая тип доступа (CS и PS), в настоящее время не включена в этот параметр. До появления ICS, PS-доступ являлся случаем по умолчанию. Заголовок P-Access-Network-Information описывается ниже для справки:

    Фиг. 2 иллюстрирует высокоуровневую схему последовательности сигналов доступа с коммутацией каналов при регистрации в соответствии с вариантом осуществления настоящего изобретения. Заголовок P-Access-Network-Information расширяется в настоящем изобретении так, чтобы указывать тип доступа как CS, и вставляется посредством ICCF в ICCP запрос на регистрацию и доставляется в S-CSCF и сервер приложений (AS). Сервер приложений может быть сервером телефонных приложений или AS непрерывности речевых вызовов или любым другим AS (к примеру, сервером присутствия), который использует состояние регистрации для того, чтобы выполнять свое приложение «поверх» интерфейса управления IP мультимедийной подсистемой (ISC). S-CSCF также может использовать P-Access-Network-Information для того, чтобы реализовывать правила согласно настройкам оператора или пользователя, чтобы помещать контакты, связанные с CS-доступом, в порядке, отличающемся от PS-доступа.

    Фиг. 3a, 3b и 3c иллюстрируют три ситуации, в которых зарегистрированное устройство идентифицируется в S-CSCF согласно вариантам осуществления настоящего изобретения. Различение между UE-устройствами с поддержкой CS и PS выполняется с использованием информации, включенной в регистрационное сообщение, предоставляемое ICCF с помощью ICCP. Фиг. 3a иллюстрирует использование «Device ID» (Идентификатор устройства) из UE в ходе регистрации как в CS, так и в PS. Это новый параметр в запросе на регистрацию ICCP и в сообщении SIP REGISTER, и S-CSCF должна хранить информацию Device ID с IP-адресом контакта. Например, если зарегистрированы два устройства, одно из которых является UE с CS- и PS-доступом, а другое - UE, являющимся PC только с PS-доступом, информация, сохраненная в S-CSCF, выглядит следующим образом:

    Public User ID --- Contact IP1 --- CS access --- Device ID1

    Contact IP2 --- PS access --- Device ID1

    Contact IP3 --- PS access --- Device ID2

    Примечание 1 - IP1 - это IP-адрес ICCF в случае CS-доступа.

    Фиг. 3b иллюстрирует включение, по меньшей мере, одного "альтернативного контакта" из UE в ходе CS-регистрации. В запросе на регистрацию ICCP и в сообщении REGISTER, S-CSCF должна хранить информацию альтернативного контакта с IP-адресом контакта для CS-доступа. S-CSCF может идентифицировать, что две регистрации принадлежат одному совпадающему контактному адресу устройства и альтернативному контактному адресу. Например, если два устройства зарегистрированы, одно из которых является UE с CS- и PS-доступом, а другое - UE, являющимся PC только с PS-доступом, информация, сохраненная в S-CSCF, выглядит следующим образом:

    Public User ID --- Contact IP1 - CS access - Alt contact IP2

    Contact IP2 - PS access

    Contact IP3 - PS access

    Примечание - IP1 - это IP-адрес ICCF в случае CS-доступа.

    Фиг. 3c иллюстрирует использование конфиденциальных идентификационных данных для IP мультимедийной подсистемы (IMPI) для того, чтобы идентифицировать устройство. IMPI могут быть извлечены из IMSI, доставленного в запросе на регистрацию ICCP (сообщении MAP USSD), и могут быть заполнены в существующем заголовке Authorization (Авторизация) сообщения REGISTER. S-CSCF должна хранить информацию IMPI с IP-адресом контакта, который должен использоваться для решения по маршрутизации. Например, если два устройства зарегистрированы, одно из которых является UE с CS- и PS-доступом, а другое - UE, являющимся PC только с PS-доступом, информация, сохраненная в S-CSCF, выглядит следующим образом:

    Public User ID --- Contact IP1 - CS access - IMPI1

    Contact IP2 - PS access - IMPI1

    Contact IP3 - PS access - IMPI1

    Примечание 1 - IP1 - это IP-адрес ICCF в случае CS-доступа. Примечание 2 - IMPI1 извлекается из IMSI, и IMPI2 сохраняется в IMSI, присоединенном к PC.

    Фиг. 4a-4d иллюстрируют ситуации, в которых упорядочение в S-CSCF изменяется в соответствии с вариантом осуществления настоящего изобретения. S-CSCF также может использовать P-Access-Network-Information для того, чтобы реализовывать правила согласно настройкам оператора или пользователя, чтобы помещать контакты, связанные с CS-доступом, в порядке, отличающемся от типичного PS-доступа.

    В настоящее время обработка контакта основана только на q-значении от пользователя. Параметр q используется для того, чтобы указывать приоритетное значение контактов для маршрутизации от пользователя. Настоящее изобретение предусматривает правило упорядочения, которое может быть основано на локальной политике в S-CSCF и может быть различным, к примеру, в зависимости от времени дня или для каждого подписчика. Возможные упорядочения в S-CSCF могут включать в себя:

    Сначала проба контакта CS-доступа, а затем проба PS-доступа, если нет отклика (Фиг. 4a);

    Сначала проба контакта PS-доступа, а затем проба CS-доступа, если нет отклика (Фиг. 4b);

    Проба контакта CS-доступа только в том случае, если контакты как с CS-доступом, так и с PS-доступом зарегистрированы (если зарегистрирован только один контакт, проба зарегистрированного контакта) (Фиг. 4c); и альтернативно,

    Проба контакта PS-доступа только в том случае, если контакты как с CS-доступом, так и с PS-доступом зарегистрированы (если зарегистрирован только один контакт, проба зарегистрированного контакта) (Фиг. 4d). Эти варианты должны дополнять обработку контактов в S-CSCF, которая в настоящее время основана только на q-значении от пользователя.

    Фиг. 5a-5d иллюстрируют ситуации, в которых различные ответвляющиеся действия могут быть предприняты согласно варианту осуществления настоящего изобретения. S-CSCF также может использовать P-Access-Network-Information для того, чтобы реализовывать правила, чтобы подавлять разветвление к контактам для одного устройства, зарегистрированного по нескольким доступам. Правило разветвления может быть основано на локальной политике в S-CSCF и может быть различным, к примеру, в зависимости от времени дня. Возможные правила разветвления включают в себя:

    Ветвление только к контакту с PS-доступом, если пользователь зарегистрирован как в CS-доступе, так и в PS-доступе (Фиг. 5a);

    Ветвление только к контакту с CS-доступом, если пользователь зарегистрирован как в CS-доступе, так и в PS-доступе (Фиг. 5b);

    Сначала ветвление к контакту с PS-доступом, а затем к контакту CS (Фиг. 5c); и

    Сначала ветвление к контакту с CS-доступом, а затем ветвление к контакту PS (Фиг. 5d). Правило также может быть комбинировано с последовательной посылкой вызова так, что:

    Ветвление только к контакту с PS-доступом, если пользователь зарегистрирован как в CS-доступе, так и в PS-доступе. Если ни одно из разветвленных устройств не откликается, запрашивание контакта CS-доступа, и

    Ветвление только к контакту с CS-доступом, если пользователь зарегистрирован как в CS-доступе, так и в PS-доступе. Если ни одно из разветвленных устройств не откликается, запрашивание контакта PS-доступа.

    Правило разветвления может быть основано на локальной политике в S-CSCF и может быть различным, к примеру, в зависимости от времени дня.

    Фиг. 6a-6f иллюстрируют ситуации, касающиеся различных действий последовательной посылки вызова согласно варианту осуществления настоящего изобретения. S-CSCF может использовать P-Access-Network-Information для того, чтобы последовательно вызывать контакты способом, которым контакты, связанные с одним устройством, но с различными доступами, запрашиваются последовательно перед (или после) попыткой звонить контактам, указывающим на другие устройства. Другими словами, возможные правила последовательной посылки вызова включают в себя:

    1) При последовательной посылке вызова различным устройствам, сначала проба контакта PS-доступа, если пользователь зарегистрирован как в CS-доступе, так и в PS-доступе. Если нет отклика:

    Проба CS-доступа до пробы другого устройства (Фиг. 6a);

    Проба контакта CS-доступа после того, как на все последовательные посылки вызовов в другие устройства нет ответа (Фиг. 6b); и

    Не включать контакт CS-доступа (Фиг. 6c);

    2) При последовательной посылке вызова различным устройствам, сначала проба контакта CS-доступа, если пользователь зарегистрирован как в CS-доступе, так и в PS-доступе. Если нет отклика:

    Проба PS-доступа до запрашивания другого устройства (Фиг. 6d);

    Проба контакта PS-доступа после отсутствия ответа на все последовательные посылки вызовов в другие устройства (Фиг. 6e); и

    Не включение контакта P-доступа (Фиг. 6c);

    Правило последовательной посылки вызова может быть основано на локальной политике в S-CSCF и может быть различным, к примеру, в зависимости от времени дня.

    Эти параметры могут быть включены в P-Access-Network-Information или могут быть включены как новый параметр заголовка SIP. AS может использовать контактную информацию для того, чтобы различать между CS-доступом и PS-доступом для выбора домена доступа (ADS).

    В VCC 3GPP Версии 7, сервер приложений VCC реализует ADS. Когда ADS выбирает PS-доступ, вызов маршрутизируется в зарегистрированный контакт в PS-доступе. Когда ADS выбирает CS-доступ, поскольку S-CSCF не имеет зарегистрированного контакта в CS-доступе, ADS пересылает вызов с использованием подходящего маршрутного номера, чтобы иметь возможность маршрутизировать в CS-доступ (называемый маршрутным номером CS), чтобы обходить обработку контактов в S-CSCF. AS VCC может узнавать состояние регистрации PS с использованием механизма сторонней регистрации, когда пользователь зарегистрирован в PS-доступе, но должен реализовывать конкретный отличный от IMS механизм, чтобы узнавать, что пользователь зарегистрирован в CS-доступе. Сторонняя IMS-регистрация также может использоваться для того, чтобы определять состояние регистрации в CS-доступе, что должно упрощать реализацию ADS.

    AS и S-CSCF могут выдавать CDR, включающие в себя P-Access-Network-Information так, чтобы оператор мог различать схему тарификации и оплаты для связи по PS-доступу и связи по CS-доступу. P-Access-network-Information также может быть включен в запрос INVITE, когда сеанс устанавливается от ICCF (не только сообщение REGISTER, когда пользователь регистрируется в CS-доступе), чтобы указывать, что связь осуществляется по CS-доступу.

    Фиг. 7 иллюстрирует указание доступа с коммутацией каналов в сервер присутствия согласно варианту осуществления настоящего изобретения. Сервер присутствия, которым является SIP AS, также может принимать P-Access-Network-Information в ходе процедур сторонней регистрации, чтобы определять то, находится ли пользователь в PS-доступе или в CS-доступе, и может предоставлять оптимальную информацию наблюдателям. "Наблюдатель" в этом контексте - это пользователь, подписанный на информацию присутствия пользователя ICS, и он "наблюдает" состояние присутствия пользователя ICS. Наблюдатель использует состояние присутствия для того, чтобы определять, какой доступ должен использоваться для того, чтобы инициировать мультимедийную связь, так что если пользователь зарегистрирован в PS-доступе, наблюдатель может инициировать мультимедийный вызов по PS-доступу (к примеру, речь и видео по PS-доступу). Такой наблюдатель может постоянно размещаться в UE или в сетевом узле.

    Специалисты данной области техники должны понимать, что инновационные идеи, описанные в настоящей заявке, могут модифицироваться и варьироваться согласно широкому спектру вариантов применения. Соответственно, объем запатентованного предмета изобретения не должен быть ограничен ни одной из конкретных примерных идей, поясненных выше, а, наоборот, должен задаваться посредством прилагаемой формулы изобретения.

    ФОРМУЛА ИЗОБРЕТЕНИЯ

    1. Способ регистрации пользовательского оборудования (UE) в IP мультимедийной подсистеме (IMS), содержащий этапы, на которых: отправляют запрос на регистрацию UE в IMS; определяют, исходит ли запрос на регистрацию из сети доступа с коммутацией каналов; в ответ на определение, что запрос на регистрацию исходит из сети с коммутацией каналов, вставляют заголовок, содержащий информацию, касающуюся сети доступа с коммутацией каналов, в запрос на регистрацию и пересылают запрос на регистрацию в IMS и ассоциированный IMS-сервер приложений.

    2. Способ по п.1, дополнительно содержащий обслуживающую функцию управления сеансами вызовов (S-CSCF), использующую информацию во вставленном заголовке для реализации зависимых от доступа правил согласно настройкам оператора или пользователя IMS.

    3. Способ по п.1, в котором заголовок вставляется в запрос на регистрацию посредством функции управления IMS CS и заголовок является заголовком P-Access-Network-Information, который включает в себя контакты, связанные с доступом с коммутацией каналов.

    4. Способ по п.3, в котором адреса контактов, связанных с доступом с коммутацией каналов в заголовке, размещаются в порядке до или после обычного контакта доступа с коммутацией пакетов на основе локальной политики, времени дня или согласно профилю абонента.

    5. Способ по п.1, в котором идентификация пользовательского оборудования выполняется посредством использования информации, включенной в ICCP запрос на регистрацию, причем информация включает в себя идентификатор устройства (Device ID), альтернативный контакт или конфиденциальные идентификационные данные для IP мультимедийной подсистемы.

    6. Способ по п.5, в котором идентификатор устройства представляет собой IP-адрес ICCF, альтернативный контакт представляет собой информацию, сохраненную S-CSCF с IP-адресом контакта, а конфиденциальные идентификационные данные для IP мультимедийной подсистемы извлекаются из IMSI UE.

    7. Система для регистрации пользовательского оборудования (UE) в IP мультимедийной подсистеме (IMS), содержащая: UE для отправки запроса на регистрацию по протоколу управления IMS CS (ICCP) в IMS; средство, связанное с IMS, для определения того, исходит ли запрос на регистрацию из сети доступа с коммутацией каналов; функцию для вставки заголовка, содержащего информацию, касающуюся типа доступа с коммутацией каналов, в запрос на регистрацию, если определено, что запрос на регистрацию исходит из сети с коммутацией каналов; и логическое средство для пересылки запроса на регистрацию в IMS и ассоциированный IMS-сервер приложений.

    8. Система по п.7, дополнительно содержащая обслуживающую функцию управления сеансами вызовов (S-CSCF) для использования информации во вставленном заголовке для реализации правил доступа согласно настройкам оператора или пользователя IMS.

    9. Система по п.7, в которой заголовок вставляется в запрос на регистрацию посредством функции управления IMS CS (ICCF) и заголовок является заголовком P-Access-Network-Information, который включает в себя контакты, связанные с доступом с коммутацией каналов.

    10. Система по п.9, в которой адреса контактов, связанных с доступом с коммутацией каналов в заголовке, размещаются в порядке до или после обычного контакта доступа с коммутацией пакетов на основе правил упорядочения, касающихся обработки контактов согласно локальной политике, времени дня или согласно профилю абонента.

    11. Система по п.7, в которой идентификация пользовательского оборудования осуществляется посредством использования информации, включенной в ICCP запрос на регистрацию, причем информация включает в себя идентификатор устройства (Device ID), альтернативный контакт или конфиденциальные идентификационные данные для IP мультимедийной подсистемы.

    12. Система по п.11, в которой идентификатор устройства представляет собой IP-адрес ICCF, альтернативный контакт представляет собой информацию, сохраненную S-CSCF с IP-адресом контакта, а конфиденциальные идентификационные данные для IP мультимедийной подсистемы извлекаются из IMSI UE.

    13. Функция управления для регистрации пользовательского оборудования (UE) в IP мультимедийной подсистеме (IMS), причем функция управления содержит: средство для приема от UE запроса на регистрацию в IMS по протоколу управления IMS CS (ICCP); средство, связанное с IMS, для определения того, исходит ли запрос на регистрацию из сети доступа с коммутацией каналов; функцию для вставки заголовка, содержащего информацию, касающуюся типа доступа с коммутацией каналов, в запрос на регистрацию, если определено, что запрос на регистрацию исходит из сети с коммутацией каналов; и логическое средство для пересылки запроса на регистрацию в IMS и ассоциированный IMS-сервер приложений.

    14. Обслуживающая функция управления сеансами вызовов (S-CSCF) в системе для регистрации пользовательского оборудования (UE) в IP мультимедийной подсистеме (IMS), причем система содержит средство для приема от UE запроса на регистрацию в IMS по протоколу управления IMS CS (ICCP), средство, связанное с IMS, для определения того, исходит ли запрос на регистрацию из сети доступа с коммутацией каналов; функцию для вставки заголовка, содержащего информацию, касающуюся типа доступа с коммутацией каналов, в запрос на регистрацию, если определено, что запрос на регистрацию исходит из сети с коммутацией каналов; и логическое средство для пересылки запроса на регистрацию в IMS и ассоциированный IMS-сервер приложений; причем S-CSCF содержит средство для использования информации во вставленном заголовке для реализации правил доступа согласно настройкам оператора или пользователя IMS.

    Стандарт IP Multimedia Subsystem (IMS) является ключевым элементом при переходе к полномасштабным IP8услугам и конвергенции сетей. Этот стандарт обладает преимуществами IP, сохраняя при этом ожидаемый уровень качества для пользователей, расширяя сферы применения, поддерживая новые равноправные связи и мультимедийные возможности.

    Сегодня операторы все больше ощущают влияние изменений, которые влечет за собой стремительное развитие рынка и технологий.

    Направление развития рынка телекоммуникационных услуг следующего поколения во многом определяется тем фактом, что 3GPP (3rd Generation Partnership Project) приняла решение утвердить определенный IETF протокол Session Initiation Protocol (SIP) в качестве основы для сетей третьего поколения мобильной связи. Кроме того, 3GPP разработала спецификации IP Multimedia Subsystem (IMS), определяющие стандартную базовую архитектуру для услуг передачи голоса через интернет (VoIP) и мультимедийных сервисов.

    Другие органы стандартизации, включая ETSI/TISPAN, в настоящее время также начинают использовать IMS. Этот стандарт поддерживает разнообразные типы доступа, в том числе GSM, WCDMA, CDMA2000, кабельный широкополосный доступ и WLAN.

    Стандарт IP Multimedia Subsystem (IMS) определяет динамическую базовую архитектуру для услуг передачи голоса через интернет (Voice over IP, VoIP) и мультимедийных сервисов. Для пользователей услуги, основанные на IMS, обеспечивают связь между двумя абонентами и между абонентом и контент-ресурсом в различных режимах (включая передачу голоса, текста, изображений и видео или любую их комбинацию) с максимальной персонализацией и контролем.

    Для операторов IMS предлагает концепцию многоуровневой архитектуры нового поколения, определяя горизонтальную архитектуру, в которой средства предоставления услуг и обычные функции могут использоваться неоднократно для различных приложений. Горизонтальная архитектура IMS также определяет совместимость и роуминг и обеспечивает контроль канала, биллинг и безопасность. Кроме того, она тесно интегрирована с существующими сетями передачи голоса и данных, и имеет множество ключевых преимуществ из области IT. Это делает IMS главным средством для слияния стационарных и мобильных сетей связи. Вот почему IMS станет оптимальным решением для предоставления мультимедийных услуг операторами стационарных и мобильных сетей.

    Архитектура IMS

    Архитектура IMS позволяет предоставлять мультимедийные услуги. Этот стандарт создан на основе протоколов SIP, но содержит специфические расширения для телефонной связи, относящиеся, например, к качеству услуг (QoS) и масштабируемости, аутентификации и биллингу.

    IMS обеспечивает сервисную архитектуру, в которой многие функции могут быть использованы с различными приложениями и у разных провайдеров. Это позволяет быстро и эффективно создавать новые услуги и непосредственно предоставлять их.

    В основе концепции этого стандарта лежит способность IMS передавать сигнальный трафик и трафик в канале через IP-уровень, а также выполнять функции маршрутизатора или механизма управления сессиями абонентов с использованием информации об их состоянии.

    IMS включает в себя блок интерфейсов, SIP-прокси-серверов и обычных серверов, а также медиашлюзов (для подсоединения к сетям с отличным от IP протоколом). Многоуровневая архитектура IMS показана на рисунке.

    Упрощенная схема многоуровневой архитектуры IMS

    Итак, уровень услуг состоит из серверов приложений и контент-серверов для предоставления абонентам дополнительных услуг. Базовые средства предоставления услуг, как это определено стандартом IMS (например, управление присутствием или управление списками групп), реализованы в качестве услуг на сервере SIP-приложения.

    Уровень управления включает в себя серверы управления сетью для обработки установления, изменения или отмены вызова или сеанса. Наиболее важной функцией в данном случае является CSCF (функция управления сеансом вызова). Данный уровень также включает полный набор функций поддержки, например, предоставления услуг, биллинга, эксплуатации и управления (О&М). Взаимодействие с сетями других операторов и/или прочими типами сетей осуществляется благодаря пограничным шлюзам.

    На уровне связи и взаимодействия присутствуют маршрутизаторы и коммутаторы для магистральной сети и сети доступа.

    Конвергенция сетей

    Поддержка конвергенции позволяет создать более эффективную сеть с мультисервисной многоуровневой архитектурой. Это означает создание горизонтальной архитектуры, включающей в себя уровень средств предоставления услуг и приложений, уровень управления связью, уровень опорной сети и сети доступа.

    IMS предлагает общую архитектуру для всех типов доступа (фиксированного широкополосного, WLAN, 2,5G, 3G), обеспечивая рост доходов за счет повышения качества услуг, увеличения эффективности передачи и поддержки внедрения новых мультимедийных услуг через различные сети доступа. Кроме того, эксплуатационные затраты уменьшаются благодаря упрощенному планированию и модернизации сетей, а также распределению сфер компетенции и разделению функций эксплуатации и технического обслуживания.

    За последние несколько лет передача голосовых данных по IP-сетям (VoIP) в стационарных интернет-системах достигла приемлемого уровня качества, и многие большие предприятия используют данную услугу или собираются переходить на нее. Конвергенция голосовых сетей и сетей передачи данных имеет большие преимущества, поскольку снижает стоимость и увеличивает эффективность и функциональность.

    Стандарты на смену патентованным решениям

    Операторы IMS также могут выбирать между использованием стандартизированных сервисных структур как части платформ предоставления услуг и созданием собственной сервисной структуры.

    Если оператор предпочитает разрабатывать все услуги самостоятельно или по контракту с разработчиками, он может определить способы интеграции и взаимодействия этих приложений с разнообразными сетевыми и коммерческими системами. Также оператор получает возможность продвижения своих услуг под собственным брендом.

    Недостатком отказа от стандартов является дороговизна разработки собственной системы. В этом случае все будет ограниченным: количество терминалов и их версий, круг разработчиков, привлеченных к проектированию, набор доступных услуг, совместимость с другими сетями и терминалами.

    Альтернативой для операторов может стать использование стандартной архитектуры - IMS.

    Функции и сервисы IMS

    IMS упрощает создание и предоставление мультимедийных сервисов, базирующихся на общих средствах оказания услуг по типу "однократное создание - многократное использование". Эти средства предоставления услуг представляют собой общие "строительные" блоки многократного использования для создания сервисов. Средства оказания услуг, созданные для разнообразных приложений, могут становиться глобальными и автоматически включаться в новые приложения и услуги. Таких средств много, но основными из них являются управление присутствием и списками групп.

    Управление присутствием

    Благодаря средству оказания услуги присутствия можно информировать определенный круг пользователей о доступности и способах связи с членами данной группы. Это дает возможность пользователям "видеть" друг друга до установления соединения (активная адресная книга) или получать сообщения о том, что другие пользователи доступны.

    Функция "Присутствие в IMS" позволяет распознавать различные информационные средства, пользователей (абонентов) и пользовательские настройки. Эта функция также предоставляет сведения о том, по каким терминалам можно связаться с пользователем в различных проводных и беспроводных сетях связи. Пользователь может задавать разные правила для определения того, кто и какую информацию увидит.

    Управление списками групп

    Средство управления списками групп позволяет пользователям создавать и управлять определениями сетевой группы для использования любым сервисом, развернутым в сети. Существуют общие механизмы для извещения об изменениях в определениях групп. Примеры приложений для управления группой включают в себя списки друзей, списки заблокированных абонентов, открытые/закрытые группы (например, простое определение VPN-ориентированных сервисных пакетов), списки управления доступом, открытые или закрытые чаты, а также любые другие приложения, в которых есть список коллективных идентификаторов.

    Совместимость сервисов

    Надо отметить, что IMS позволяет многократно использовать связи между операторами. Вместо того чтобы развивать различные связи и соглашения о взаимодействии для каждого сервиса, IMS обеспечивает установление и развитие связей между операторами для каждого сервиса.

    Сегодня, если один пользователь желает получить доступ к сервису другого - например, проверить статус или местоположение, - маршрутизация к сервису этого другого пользователя будет специфической услугой и потребует запроса сервиса от оператора пользователя. Более того, для каждого сервиса должен существовать специфический межсетевой интерфейс, маршрутизация, точка доступа к сервису и средства обеспечения безопасности, а следовательно, и специфическое соглашение об услуге между операторами.

    Если IMS функционирует, доступ к сервисам других пользователей является задачей сети IMS, общей для всех персональных сервисов IMS, как это показано на рисунке справа.

    Услуги оператора, запрашивающего пользователя, не требуются для маршрутизации запроса. Межсетевой интерфейс между операторами действует в IMS, а общее сервисное согла-шение - между операторами IMS; маршрутизация, точка доступа к сервисной сети и средства безопасности могут использоваться неоднократно.

    "Бесшовная" связь

    IMS позволяет проводить сеансы обмена информацией между большим количеством пользователей и устройств. Она обеспечивает передачу множества сервисов через один канал связи. IMS допускает интеграцию сервисов в реальном и не в реальном времени в ходе одного сеанса, а также дает возможность сервисам взаимодействовать друг с другом.

    Таким образом, IMS предоставляет конечным пользователям две основные функции - поддержку интеграции и взаимодействия сервисов.

    Интеграция сервисов представляет собой возможность динамического изменения информационных средств, активизированных в ходе мультимедийного сеанса связи. Диапазон используемых типов информационных средств определяется только возможностями терминала пользователя. Таким образом IMS "интегрирует" в одном сеансе то, что сегодня представляет собой различные сервисы. Для пользователей применение единого сеанса означает то, что они могут работать в многозадачном режиме, то есть нет необходимости прерывать голосовой вызов (или переводить его в режим удержания), чтобы послать текстовое сообщение или видеоклип.

    Взаимодействие сервисов - это возможность объединять их в пакеты, создавая новые возможности и удовлетворяя потребности пользователей. Например, пользователь может просматривать вэб-сайт и перейти к голосовому или видеовызову простым нажатием кнопки. Таким образом, сервисы взаимодействуют друг с другом, создавая для пользователя единое рабочее пространство.

    Хотя мультимедийные сервисы на базе существующей технологии были доступны и раньше, всегда возникали сложности с развертыванием, высокой стоимостью и неэффективностью использования сетевых ресурсов. Компания Ericsson уверена, что высочайший технический уровень мультимедийной IP-технологии позволит предоставлять разнообразные сервисы, в том числе:

    • голосовые;
    • видео;
    • присутствие и мгновенный обмен сообщениями;
    • игры;
    • организация коллективной конференц-связи с использованием различных типов информационных средств;
    • интерактивное телевидение;
    • видео по запросу;
    • текстовые чаты.

    Усовершенствование телефонной связи с помощью комбинационных сервисов, объединяющих сервисы традиционной коммутируемой голосовой телефонной связи и передачи данных через IP, позволяет пользователю мгновенно и интерактивно обмениваться информацией - изображениями, реальным видео и вэб-контентом.

    Также появится возможность совмещать диалоговые мультимедийные сервисы с другими категориями сервисов, такими как информация о каталогах, просмотр информации в интернете, позиционирование и присутствие. Например, может быть разработана услуга, связанная с месторасположением, когда сеанс голосовой связи объединяется с позиционированием абонентов для предоставления информации о географическом расположении собеседников.

    В мире проводной связи IMS не только способна предоставлять стандартизированные услуги VoIP, но и объединять, например, мультимедийные сервисы с IP-Centrex, или создавать усовершенствованные сервисы взаимодействия, подходящие как для малых/средних, так и для крупных предприятий.

    Широкоизвестное приложение IMS: поддержка возможности push-to-talk по сотовой связи

    Сотовая связь по принципу push-to-talk (Push-to-Talk over Cellular, PoC) является первой из многочисленных сфер применения IMS. В 2003 году ведущие поставщики услуг и операторы (в том числе Ericsson) объявили о завершении совместной разработки спецификации Push-to-Talk over Cellular, основанной на IP Multimedia Subsystem (IMS), как определено стандартами 3GPP и 3GPP2. Большую поддержку многих операторов и поставщиков услуг получила не только данная спецификация, но и РоС, предоставленная для ратификации в Open Mobile Alliance (ОМА). Open Mobile Alliance в настоящее время проводит работу по стандартизации, и учитывая тот факт, что в альянс входит более 350 представителей производителей, данная организация обеспечит преемственность стандартов и их функциональную совместимость.

    Это должно сделать push-to-talk общедоступным сервисом, подобно SMS и MMS, за счет обеспечения "прозрачности" сети для конечных пользователей. Такая спецификация разработана для удовлетворения огромной потребности рынка в push-to-talk и IMS. Стандартизация ведет к расширению ассортимента типов и моделей терминалов за счет увеличения объемов производства у всех операторов, вовлеченных в процесс стандартизации.

    РоС предлагает разнообразные сервисы для связи "абонент - абонент" и групповой связи, включая чаты, индивидуальные сигналы оповещения и управление присутствием. РоС работает только в среде с коммутацией пакетов и базируется на средствах оказания услуг IMS и общих функциях, как, например, управление группой, списком и присутствием, проведение конференц-связи, безопасность, биллинг и O&M.

    Сервисы push-to-talk можно использовать в потребительском сегменте: оставаясь на связи с друзьями, планировать досуг, или общаться с членами семьи посредством нажатия кнопки. Эта услуга нацелена также на корпоративный сегмент, где она используется, в частности, для обмена информацией в рабочих группах - например, для находящегося на выезде специалиста IS/IT, которому необходимо связаться с коллегами для получения нужной информации.

    Сервис push-to-talk с учетом соответствующего позиционирования и ценообразования может быть представлен как новая голосовая услуга в сегменте между голосовыми вызовами и сервисами текстовых сообщений типа SMS. Данный сервис является более быстродействующим по сравнению с обычными голосовыми вызовами и обеспечивает более простое групповое соединение. Также он, в отличие от SMS, кроме собственно сообщения, обеспечивает более быструю и эмоциональную связь между абонентами, а также мгновенную ответную реакцию.

    Устройство типа портативной радиостанции для связи в мобильных сетях впервые с успехом было применено в США. Уже в середине девяностых годов мобильный оператор Nextel запустил региональный сервис, который к 2004 году превратился в общенациональную сеть с 12,3 миллионами абонентов. Nextel продемонстрировал рынку впечатляющие финансовые результаты наряду с очень высоким уровнем проникновения (>90%) сервисов типа портативной радиостанции, что побудило остальных игроков рынка к анализу возможностей создания конкурирующих сервисов.

    Гарантией успеха данного сервиса является его совместимость, аналогичная нынешней совместимости SMS, которая дает возможность клиентам общаться друг с другом вне зависимости от конкретного провайдера услуг. Совместимость сетей и технологий является сегодня ключевым фактором для клиентов, поскольку невозможность установить связь между двумя абонентами, пользующимися различными пакетами мобильных услуг, может привести к замедлению распространения этой услуги. Именно поэтому IMS стал базой для PoC.

    Технология push-to-talk от компании Ericsson - Ericsson Instant Talk (EIT) - является комплексным решением, состоящим из трех основных компонентов: системы Ericsson IMS (IPMM), сервера приложений EIT и РоС-клиента на терминале пользователя.

    Коммерческое обоснование IMS

    Для конечных пользователей IMS обеспечивает связь между двумя абонентами и между абонентом и контент-ресурсом в различных режимах (включая голос, текст, изображения и видео или любую их комбинацию) с максимальной персонализацией и контролем.

    Горизонтальная архитектура IMS дает возможность операторам отойти от вертикального внедрения новых сервисов, уменьшая затраты и упрощая структуру традиционной сети с дублированием функций для биллинга, присутствия, управления группой и списком, маршрутизации и обеспечения.

    Внедрение архитектуры IMS выгодно сегодня для операторов как стационарных, так и мобильных сетей. В перспективе IMS обеспечит безопасный переход к полномасштабной IP-архитектуре, которая будет удовлетворять потребности пользователей в новых усовершенствованных сервисах.

    Используя IMS, операторы смогут сначала проверить возможности IP-мультимедиа, а затем принять соответствующие меры в отношении массового рынка мультимедийных IP-сервисов, в зависимости от рыночных и коммерческих потребностей.

    Опираясь на концепцию горизонтальной архитектуры IMS, операторы смогут получить еще большую прибыль от многоуровневой архитектуры беспроводных и проводных сетей. Благодаря горизонтальной архитектуре с ее общими функциями многократного использования оператор может начать переход к полномасштабным IР-услугам.

    IMS обеспечивает надежные возможности для предоставления привлекательных, легких в использовании, надежных и прибыльных мультимедийных услуг. Кроме того, IMS позволяет операторам осуществлять конвергенцию стационарных и мобильных сервисов.

    Надо отметить, что IMS-сеть превосходит сети других типов по многим параметрам. Ключевым преимуществом IMS является то, что все перечисленные возможности реализуются на стандартизированной основе, обеспечивая таким образом функциональную совместимость между IMS-сетями и стационарными IP-сетями.

    В дальнейшем операторы могут переходить к полномасштабным IP-ориентированным мультимедийным сервисам с многостанционным доступом. Переход к полномасштабным IP-услугам гарантирует операторам клиентские предпочтения при выборе провайдера голосовой связи, передачи данных, мультимедийных и прочих услуг. Это, в свою очередь, позволит операторам создавать новые сервисы и предоставлять их пользователям, а также даст возможность управлять финансовыми потоками посредством эффективной инфраструктуры бизнеса.

    ределенный в RFC 2486. PrUI выглядит следующим образом: [email protected]

    Для абонентов UMTS PrUI хранится в логическом модуле идентифи-

    кации мобильных абонентов IMS ISIM (IP Multimedia Services Identity Module), а так же в HSS, и используется для аутентификации и регистрации пользователя в IMS. PrUI не может быть изменен в терминале пользователя, действителен на все время подписки пользователя на услуги IMS, не используется для маршрутизации сообщений SIP. После регистрации и аутентификации пользователя PrUI должен храниться так же в S-CSCF.

    3GPP Release 5 предписывал каждому пользователю иметь один PrUI, но в Release 6 это ограничение убрано, и теперь пользователь может иметь несколько PrUI.

    Каждому идентификатору PrUI оператор ставит в соответствие, по меньшей мере, один идентификатор PuUI в формате SIP URI (RFC 3261) и не более чем один в формате tel URL (RFC 3966). В IMS идентификатор PuUI используется для маршрутизации сигнальных SIP-сообщений и в качестве контактной информации для других пользователей.

    Формат PuUI:

     sip:[email protected]

    sip:[email protected];user=phone

    Пользователю обычно требуется два разных PuUI – один для сети передачи данных, другой для телефонной сети общего пользования.

    Другая причина иметь несколько PuUI – возможность использовать различные номера для разных контактов или услуг. Идентификационная карта IMS-терминала ISIM хранит один PrUI и, как минимум, один PuUI. Перед началом установления или в ходе сессии PuUI должен быть зарегистрирован в процессе регистрации.

    Полная структура взаимосвязи нескольких PrUI и PuUI хранится в пользовательском профиле HSS (рис. 1.2). Пользовательский профиль обычно состоит из информации необходимой для подписки на услуги IMS, такой как идентификатор PrUI. Подписка на услуги IMS содержит один или несколько профилей обслуживания Service Profile (набор услуг и соответствующих данных пользователя). Каждому идентификатору PuUI оператор ставит в соответствие только один профиль обслуживания Service Profile.

    UICC (Universal Integrated Circuit Card) – термин, означающий смен-

    ную идентификационную карту, имеющую стандартизованный интерфейс с терминалом. Карта UICC может содержать несколько логических приложений, таких как SIM (GSM), USIM (UMTS) и ISIM – наиболее важное приложение, поскольку служит для идентификации, авторизации и конфигурации терминала при работе в IMS-сети.

    Public User Identity 1

    Service Profile 1

    Private User Identity 1

    Подписка на услуги

    Public User Identity 2

    IMS (IMS Subscription)

    Private User Identity 2

    Service Profile 2

    Public User Identity 3

    Рис. 1.2. Идентификация IMS пользователей

    В 3GPP Release 6 появился идентификатор Public Service Identity (PSI),

    В отличие от описанных выше идентификаторов, PSI присваивается не пользователям, а услугам, размещенным на серверах приложений. Так же, как и PuUI, идентификаторы PSI могут иметь формат sip url или tel url.

    1.5. Архитектура IMS

    Подсистема IMS специфицируется как многоуровневая архитектура с разделением на три уровня (плоскости):

    User Plane – транспортную плоскость; Control Plane – плоскость управления; Application Plane – плоскость приложений.

    Партнерство 3GPP специфицирует не оборудование сети, а функции, которые должны выполняться элементами сети. Таким образом, IMS архитектура (рис. 1.3) представляет собой набор логических функций, взаимодействующих с использованием стандартных протоколов.

    Разработчики вправе комбинировать несколько функций в одном физическом объекте или, наоборот, реализовать одну функцию распределенно, однако чаще всего физическую архитектуру ставят в соответствие функциональной и реализуют каждую функцию в отдельном элементе.

    Синализация

    Пользовательские данные

    Рис. 1.3. Архитектура IMS

    Транспортный уровень

    Транспортный уровень отвечает за процедуру подключения пользователей к сети IMS (подуровень управления) и транспортировку данных пользователя (функции передачи). Функциональными элементами транспортного уровня являются:

    подсистема присоединения сети NASS (network attachment subsystem) используется для пользователей не 3GPP доступа, относится к подуровню управления транспортного уровня. NASS обеспечивает динамическое назначение IP-адресов и других параметров конфигурации оборудования пользователя, аутентификацию пользователя до или в течение процедуры назначения IP-адреса, авторизацию и конфигурацию доступа к сети на основе профиля пользователя, управление местоположением;

    подсистема управления доступом и ресурсами RACS (resource and admission control subsystem) используется для пользователей не 3GPP доступа, относится к подуровню управления транспортного уровня. RACS обеспечивает управление доступом, резервирование ресурсов, обеспечивает доступ к услугам, предоставляемым пограничным шлюзом, включая управление шлюзом и преобразование сетевых адресов;

    мультимедийный шлюз IM–MGW (IP Multimedia Media GateWay)

    осуществляет преобразование пользовательской информации сети с коммутацией каналов TDM в пакеты IP-сети и обратно и коммутацию пользовательской информации между портами шлюза;

    шлюз сопряжения TrGW (Transition Gateway) вместе с функцией пограничного взаимодействия IBCF (Interconnection Border Control

    Function) отвечает за взаимодействие между IP-сетями различных версий IP и операторов. Шлюз сопряжения TrGW осуществляет согласование сетей на уровне передачи пользовательской информации;

    функция процессора ресурсов мультимедиа MRFP (Media Resource Function Processor) обеспечивает под управлением контроллера ресурсов мультимедиа MRFC широкий набор функций для поддержки мультимедийных сеансов, в том числе конфигурирование ресурсов, смешивание различных медиапотоков от нескольких источников, генерацию мультимедийных объявлений, обработку мультимедийных потоков (транскодирование), управление правом доступа к медиаресурсам при организации конференции.

    Уровень управления

    Уровень управления – это совокупность функций IMS, которые осуществляют все действия по управлению сеансами связи и регистрации пользователя в сети IMS.

    Основные логические элементы уровня управления.

    Функциональный объект управления сессиями CSCF (Call/Session Control Function) является центральной частью системы IMS, используя протокол SIP, выполняет функции, обеспечивающие предоставление различных услуг реального времени посредством транспорта IP. CSCF включает три основных функции:

    Proxy CSCF (P-CSCF) – выполняет функцию посредника (на сигнальном уровне) для взаимодействия IMS сети и пользовательского IMS терминала. Весь сигнальный трафик протокола SIP направляется от пользовательского терминала к P-CSCF и далее к точке входа в домашнюю сеть (I-CSCF), если пользователь находится в гостевой IMS, или к S-CSCF, если пользователь находится в домашней сети. Адрес S-CSCF определяется в процессе регистрации пользователя. Можно сказать, что P-CSCF реализует функции логического объекта SIP-агента пользователя UA (User Agent). P- CSCF участвует в регистрации пользователя, определяет адрес I-CSCF, находящейся в домашней сети, формирует учетные записи и передает их в сервер начисления платы, а также осуществляет проверку правильности построения сообщений SIP, передаваемых IMS терминалом. Обслуживаемый терминал пользователя закрепляется за функциональным объектом P- CSCF при регистрации в сети на все время регистрации. Адрес P-CSCF на все время сеанса хранится в S-CSCF для трансляции данных к пользователю;

    Interrogating CSCF (I-CSCF) – выполняет функцию посредника для взаимодействия с внешними сетями. Функциональный объект I-CSCF создает первую контактную точку домашней сети IMS на сигнальном уровне в процессе регистрации пользователей, находящихся в гостевой сети, при установлении соединений между пользователями, находящимися в

    различных домашних сетях, для всех внешних соединений с пользователями данной сети или гостевыми пользователями, временно находящимися в данной сети. Кроме выполнения функций SIP-прокси I-CSCF взаимодействует по протоколу Diameter с пользовательской базой данных HSS для:

    o определения наличия или возможности регистрации пользователя

    в данной сети,

    o получения информации о функциональном объекте S-CSCF,

    o если S-CSCF еще не назначен, I-CSCF производит его выбор в процессе регистрации пользователя,

    o определение возможностей пользователя по доступу к услугам. I-CSCF также формирует учетные записи для начисления платы;

    Serving CSCF (S-CSCF) – обслуживающая функция, обеспечивает управление мультимедийными сеансами. Помимо функции SIP-сервера, S- CSCF выполняет функцию регистрирующего сервера сети SIP (SIPregistrar), то есть хранит всю информацию о пользователе, полученную от I-CSCF и HSS: IP-адреса терминала, с которого пользователь получил доступ в сеть, PuUI, PrUI, возможности пользователя по доступу к услугам, адреса P-CSCF, I-CSCF. В свою очередь, S-CSCF информирует сервер пользовательских данных HSS о том, что пользователь прикреплен к ней на срок своей регистрации, и о срабатывании таймера регистрации. Вся сигнальная информация SIP, передаваемая и принимаемая IMS-терминалом, проходит через функциональный объект S-CSCF, к которому прикреплен пользователь. S-CSCF поддерживает сеанс в течение всего времени его продолжения и, по мере надобности, взаимодействует с сервисными платформами и с функциями начисления платы. S-CSCF всегда находится в домашней сети пользователя.

    Пользовательская база данных HSS (Home Subscriber Server) представляет собой централизованное хранилище информации о пользователях и услугах сети IMS и является эволюционным развитием HLR (Home Location Register) из архитектуры сетей GSM/UMTS. В HSS хранится информация о публичном PuUI и закрытом PrUI идентификаторах пользователя IMS, имя обслуживающей функции управления сеансом связи S- CSCF, параметры аутентификации и шифрования, информация о сервере приложений, об услугах, на которые подписан пользователь, имя функции учета стоимости.

    HSS взаимодействует с CSCF и серверами приложений, используя протокол Diameter. Если количество пользователей слишком велико, чтобы данные о них хранились в одном HSS, сеть может содержать более одного HSS. Такая сеть наряду с несколькими HSS имеет в своем составе функ-

    циональный объект SLF (Subscriber Location Function), который хранит данные и соответствие адресов HSS адресам пользователей. Узел, передавший к SLF запрос с адресом пользователя, получает от него сведения о

    Функциональный объект управления медиашлюзом MGCF (Media Gateways Control Function), его основной задачей является управление медиашлюзами (IM-MGW), а также прямое и обратное преобразование сигнализации сетей ОКС 7 (протокол ISUP) в сигнализацию сети IMS (протокол

    Сигнальный шлюз SGW (Signaling Gateway) осуществляет преобразование протоколов нижних уровней для обеспечения двустороннего сигнального обмена между сетью IP и сетью TDM, заменяя подсистемы MTP протоколом SIGTRAN. При этом протоколы прикладного уровня (ISUP, MAP, CAP и другие) через SGW транслируются без анализа.

    Контроллер ресурсов мультимедиа MRFC (Media Resource Function Controller). Контроллер ресурсов мультимедиа MRFC взаимодействует с S-CSCF по протоколу SIP и, используя информацию, полученную от S- CSCF, управляет MRFP с помощью протокола MEGACO (H.248). Например, трансляцией акустических сигналов и объявлений, транскодированием и перекодированием, объединением медиапотоков при управлении конференциями.

    Функциональный объект управления пограничными шлюзами

    BGCF (Breakout Gateway Control Function) реализует функции управления выбором сети, осуществляет маршрутизацию на основе информации о телефонных номерах, получаемой из сообщений протокола SIP, административной информации и/или с помощью доступа к базам данных. BGCF используется только при установлении сеанса между пользователями сети IMS и абонентом сети с коммутацией каналов. BGCF выбирает сеть IMS, в которой будет происходить взаимодействие с сетью с коммутацией каналов, или MGCF, если BGCF находится в сети IMS, которая будет взаимодействовать с сетью с коммутацией каналов. Оборудование BGCF также маршрутизирует транзитный сигнальный трафик.

    Функциональный объект граничного взаимодействия IBCF

    (Interconnection Border Control Function) обеспечивает взаимодействие с IP-

    сетями. IBCF, обеспечивает реализацию стека протоколов SIP/SDP для установления взаимосвязи между приложениями SIP на основе IPv6 и приложениями SIP на основе IPv4, сокрытие сетевой топологии, управление с помощью протокола MEGACO шлюзами сопряжения TrGW при установлении соединений с другими IMS или другими сетями, функционирующими на основе протокола IP. IBCF также выполняет функции маршрутизации при транзите.

    Уровень приложений

    Уровень приложений относится к верхнему уровню сетевой архитектуры IMS. На данном уровне расположены серверы приложений AS, пре-

    доставляющие доступ как к приложениям IMS, так и приложениям на основе других платформ (таких как OSA и CAMEL).

    На этом уровне сервера приложений отвечают за обслуживание конечных пользователей.

    Архитектура IMS и сигнализация SIP обеспечивают достаточную гибкость для поддержки разнообразных телефонных и других приложений:

    SCIM (Service Capability Interaction Manager) – обеспечивает управление взаимодействием плоскости приложений и ядра IMS;

    SIP AS (SIP Application Server) – сервер приложений, служащий для выполнения услуг, базирующихся на протоколе SIP. Ожидается, что все новые услуги в IMS будут находиться именно в сервере SIP AS;

    OSA-SCS (Open Service Access – Service Capability Server) – сер-

    вер возможных услуг, который обеспечивает интерфейс к услугам, базирующимся на открытом доступе (OSA). Его задачей является обеспечение возможности доступа услуг к сетевым функциям посредством стандартного программного интерфейса приложений;

    IM-SSF (IP Multimedia – Service Switching Function) – сервер ком-

    мутации услуги, служит для возможности использования в IMS услуг

    CAMEL (Customized Applications for Mobile network Enhanced Logic) разра-

    ботанных для мобильных сетей;

    TAS (Telephony Application Server) – сервер телефонных прило-

    жений принимает и обрабатывает сообщения протокола SIP, а также определяет, каким образом должен быть инициирован исходящий вызов. Сервисная логика TAS обеспечивает базовые сервисы обработки вызовов, включая анализ цифр, маршрутизацию, установление, ожидание и перенаправление вызовов, конференц-связь.

    1.6. Технологии доступа к сети IMS

    Благодаря концепции инвариантности доступа даже не предназначенные для взаимодействия с подсистемой IMS пользовательские устройства могут осуществлять доступ к опорной сети и сервисам на базе IMS.

    Изначально (в спецификациях 3GPP Release 5) IMS была ориентирована на работу с мобильными сетями поколения 2,5G (GSM/GPRS), имеющими технологию радиодоступа GERAN, и 3G (UMTS) – технология радиодоступа UTRAN. В стандартах консорциума 3GPP2 описана возможность доступа к IMS сети радиодоступа CDMA2000.

    В последующих версиях 3GPP Release 6, 7 и ETSI TISPAN рассмотрены вопросы взаимодействия IMS с сетями, имеющими технологии доступа WLAN/Wi-Fi, хDSL (рис. 1.4). А в версиях 8 и 10 спецификаций 3GPP была добавлена поддержка инфраструктур HSPA и LTE.

    Presence AS Messaging AS

    Уровень приложения

    Рис. 1.4. Организация доступа к сети IMS

    Для доступа к IMS пользователей сетей радиодоступа GERAN/UTRAN используются узлы GPRS (SGSN, GGSN) (рис. 1.4).

    За доступ пользовательского оборудования WLAN к сети IMS отвечает пакетный шлюз PDG (Packet Data Gateway) и шлюз беспроводного дос-

    тупа WAG (Wireless Access Gateway).

    Мультиплексор DSLAM (Digital Subscriber Line Access Multiplexer) и граничный шлюз A-BGF/BAS (Access Border Gateway Function/Broadband Access Switch), обеспечивает широкополосный доступ фиксированных пользователей к сети IMS.

    1.7. Основные протоколы IMS

    Как уже говорилось ранее, архитектура IMS представляет собой набор функциональных объектов, соединенных стандартными интерфейсами (рис. 1.5). Взаимодействие функциональных объектов IMS осуществляется с использованием протоколов сети Интернет, определенных организацией

    Протоколы подсистемы IMS обеспечивают управление мультимедийными сессиями (SIP, SDP), передачу пользовательского трафика (RTP и RTCP), регистрацию, аутентификацию, авторизацию, поддержку мобильности пользователя (Diameter). Протокол MEGACO/H.248 используется для

    управления зависимыми объектами транспортной плоскости. Для транс-

    портировки сигнальной информации ОКС7в сетях IP и взаимодействия с

    другими сетями, в частности с ТфОП, используется протокол SIGTRAN.

    Плоскость услуг и

    приложений

    Плоскость управления

    Транспортная плоскость

    Сеть абонентского доступа

    Рис. 1.5. Функциональные элементы и интерфейсы архитектуры IMS

    Перечень возможных интерфейсов (внешних и внутренних) и протоколов взаимодействия, реализованных в архитектуре IMS, представлен в табл. 1.1.

    Таблица 1.1

    Наименование

    Протоколы

    Описание

    интерфейса (рис. 1.6)

    взаимодействия

    Обмен сообщениями

    между сервером приложения AS

    и функцией MRFC

    Взаимодействие

    между I-CSCF/S-CSCF и HSS

    Обнаружение сервером приложе-

    ний AS, необходимого HSS,

    в сети с несколькими HSS

    Обнаружение функциями

    I-CSCF/S-CSCF, необходимого

    HSS, в сети с несколькими HSS

    Обмен сообщениями между

    оборудованием пользователя

    и функциями CSCF

    Взаимодействие между

    блоками IBCF различных

    мультимедийных сетей

    Обмен сообщениями между

    функциями CSCF и серверами

    приложений AS

    Взаимодействие между

    элементами IBCF и TrGW

    Взаимодействие между TrGW

    и пограничными шлюзами

    различных мультимедийных сетей

    Взаимодействие между блоками

    I-CSCF и сервером приложений