Свойства реляционной таблицы

ОСНОВНЫЕ ПОНЯТИЯ БАЗ ДАННЫХ

База данных (БД) – именованная совокупность данных, отражающая состояние объектов и их отношений в рассматриваемой предметной области данных.

Примеры предметных областей данных: склад, магазин, вуз, больница, учебный процесс и т. д. Именно предметная область определяет совокупность данных, которые должны храниться в базе данных.

Система управления базами данных (СУБД) – совокупность языковых и программных средств, предназначенных для создания, ведения и совместного использования базы данных многими пользователями.

Другие определения, имеющие отношение к БД и СУБД.

Банк данных (БнД) – это система специальным образом организованных данных – баз данных, программных, технических, языковых, организационно-методических средств, предназначенных для обеспечения централизованного накопления и многоцелевого использования данных.

Информационная система (ИС) – взаимосвязанная совокупность средств, методов и персонала, используемых для хранения, обработки и выдачи информации в интересах достижения поставленной задачи.

Основой практически любой информационной системы является база данных.

Сервер – компьютер или программа, владеющая определенным информационным ресурсом и предназначенная для обработки запросов от программ-клиентов.

Основными моделями данных, определяющие структуру базы данных, являются:

­ иерархическая модель;

­ сетевая модель;

­ реляционная модель.

РЕЛЯЦИОННАЯ МОДЕЛЬ ДАННЫХ

Теоретической основой этой модели является теория отношений и основной структурой данных – отношение. Именно поэтому модель получила название реляционной (от английского слова relation - отношение).

Отношение представляет собой множество элементов, называемых кортежами. Наглядной формой представления отношения является двумерная таблица . Смысловые значения некоторых элементов реляционной модели приведены в следующей таблице.

Подавляющее число создаваемых и используемых баз данных являются реляционными . Их создание и развитие связано с научными работами известного американского математика, специалиста в области систем баз данных Э. Кодда.

Свойства реляционной таблицы

Реляционная модель ориентирована на организацию данных в виде двумерных таблиц. Каждая реляционная таблица представляет собой двумерный массив и обладает следующими свойствами:

· каждый элемент таблицы - один элемент данных;

· все столбцы (поля, атрибуты) в таблице однородные, т.е. все элементы в одном столбце имеют одинаковый тип (числовой, символьный и т.д.) и длину;

· каждый столбец имеет уникальное имя;

· одинаковые строки (записи, кортежи) в таблице отсутствуют;

· порядок следования строк и столбцов может быть произвольным.

Каждое поле содержит одну характеристику объекта предметной области. В записи собраны сведения об одном экземпляре этого объекта.

Ключи

Поле, каждое значение которого однозначно определяет соответствующую запись, на­зывается простым ключом (ключевым полем). Ключ, состоящий из нескольких полей называется составным ключом . В СУБД Access в качестве ключа может быть использован Счетчик, который автоматически возрастает на единицу при вводе в таблицу новой записи. Такой ключ называют искусственным. Он семантически не связан ни с одним полем таблицы. Из-за этого он допускает повторный ввод одних и тех же записей. Но с помощью него просто устанавливать связь между таблицами. Основное свойство ключа – уникальность, неповторимость.

Типы связей между таблицами

Структура базы данных определяется структурой таблиц и связями между ними.

Связи между таблицами бывают трех типов:

«один-к-одному» (1:1) – одной записи в главной таблице соответствует одна запись в подчиненной таблице,

«один-ко-многим» (1:М) – одной записи в главной таблице соответствует несколько записей в подчиненной таблице,

«многие-ко-многим» (М:М) – нескольким записям в главной таблице соответствуют несколько записей в подчиненной таблице. Или одной записи в первой таблице может соответствовать несколько записей во второй таблице. И одной записи во второй таблице могут соответствовать несколько записей в первой таблице.

Создание связей между таблицами

Связь между таблицами устанавливается с помощью ключей. Главной называют таблицу, первичный ключ которой используется для установления связи с другой таблицей, которая в этом случае называется подчиненной.

Чтобы связать две реляционные таблицы, необходимо ключ главной таблицы ввести в состав подчиненной таблицы. Название ключа может быть другим, но обязательно одинаковыми с первичным ключом должны быть тип и размер вторичного ключа в подчиненной таблице. Для удобства лучше обозначение вторичного ключа оставлять таким же, как и первичного. Однако если ключом выбран Счетчик , то вторичный ключ должен иметь тип Числовой - длинное целое (но не Счетчик !). Вторичный ключ – это или обычное поле, или часть первичного ключа в подчиненной таблице.

СУБД Access для реализации связи «многие-ко-многим» требует создать таблицу связи и ввести в нее в качестве вторичных ключей первичные ключи двух таблиц, которые должны иметь такую связь (М:М). После этого устанавливается связь 1:М каждой из двух таблиц с таблицей связи. Между двумя таблицами таким образом реализуется связь М:М. Если в БД «Моя библиотека» создать таблицы Книги и Авторы, то связь между ними будет вида М:М, так как одной записи в таблице Книги (реквизиты одной книги) может соответствовать несколько записей в таблице Авторы. Потому что у одной книги может быть несколько авторов. В свою очередь, одной записи в таблице Авторы могут соответствовать несколько записей в таблице Книги, так как один автор может написать несколько книг. Таблицу связи можно назвать КнигиАвторы, в которую будут включены ключи обеих таблиц – Книги и Авторы. Если требуется, в таблицу связи можно включить и другие поля.

Среди реляционных баз данных следует различать корпоративные и настольные базы данных.

Из корпоративных реляционных СУБД наиболее распространенными являются: Oracl, IBM DB2, Sybase, Microsoft SQL Server, Informix. Из постреляционных СУБД известна СУБД Cache компании InterSystems.

Наиболее известны в настоящее время следующие настольные БД: Microsoft Access, Paradox (фирмы Borland), FoxPro (Microsoft), dBase IV (IBM), Clarion.

Эти СУБД занимают более 90% всего рынка СУБД.

В следующем разделе дана краткая характеристика СУБД Microsoft Access.

База данных (БД) - это поименованная совокупность структурированных данных, относящихся к определенной предметной области и предназначенных для хранения, накопления и обработки с помощью ЭВМ.

Реляционная База Данных (РБД) - это набор отношений, имена которых совпадают с именами схемотношений в схеме БД.

Основные понятия реляционных баз данных:

· Тип данных – тип значений конкретного столбца.

· Домен (domain) – множество всех допустимых значений атрибута.

· Атрибут (attribute) – заголовок столбца таблицы, характеризующий поименованное свойство объекта, например, фамилия студента, дата оформления заказа, пол сотрудника и т.п.

· Кортеж – строка таблицы, представляющая собой совокупность значений логически связанных атрибутов.

· Отношение (relation) – таблица, отражающая информацию об объектах реального мира, например, о студентах, заказах, сотрудниках, жителях и т.д.

· Первичный ключ (primary key) – поле (или набор полей) таблицы, однозначно идентифицирующий каждую из ее записей.

· Альтернативный ключ – это поле (или набор полей), несовпадающее с первичным ключом и уникально идентифицирующий экземпляр записи.

· Внешний ключ – это поле (или набор полей), чьи значения совпадают с имеющимися значениями первичного ключа другой таблицы. При связи двух таблиц с первичным ключом первой таблицы связывается внешний ключ второй таблицы.

· Реляционная модель данных (РМД) - организация данных в виде двумерных таблиц.

Каждая реляционная таблица должна обладать следующими свойствами:

1. Каждая запись таблицы уникальна, т.е. совокупность значений по полям не повторяется.

2. Каждое значение, записывается на пересечении строки и столбца - является атомарным (неразделимым).

3. Значения каждого поля должны быть одного типа.

4. Каждое поле имеет уникальное имя.

5. Порядок расположения записей несущественен.

Основные элементы БД:

Поле - элементарная единица логической организации данных. Для описания поля используются следующие характеристики:

· имя, например, Фамилия, Имя, Отчество, Дата рождения;

· тип, например, строковый, символьный, числовой, датовый;

· длина, например, в байтах;

· точность для числовых данных, например, два десятичных знака для отображения дробной части числа.

Запись - совокупность значений логически связанных полей.

Индекс – средство ускорения операции поиска записей, использующееся для установки связей между таблицами. Таблица, для которой используется индекс, называют индексированной. При работе с индексами необходимо обращать внимание на организацию индексов, являющуюся основой для классификации. Простой индекс представлен одним полем или логическим выражением, обрабатывающим одно поле. Составной индекс представлен несколькими полями с возможностью использования различных функций. Индексы таблицы хранятся в индексном файле.


Целостность данных – это средство защиты данных по полям связи, позволяющее поддерживать таблицы в согласованном (непротиворечивом) состоянии (то есть не допускающее существование в подчиненной таблице записей, не имеющих соответствующих записей в родительской таблице).

Запрос – сформулированный вопрос к одной или нескольким взаимосвязанным таблицам, содержащий критерии выборки данных. Запрос осуществляется с помощью структурированного языка запросов SQL (Srtructured Query Language). В результате выборки данных из одной или нескольких таблиц может быть получено множество записей, называемое представлением.

Представление данных – сохраняемый в базе данных именованный запрос на выборку данных (из одной или нескольких таблиц).

Представление, по существу, является временной таблицей, формируемой в результате выполнения запроса. Сам запрос может быть направлен в отдельный файл, отчет, временную таблицу, таблицу на диске и т.п.

Отчет – компонент системы, основное назначение которого – описание и вывод на печать документов на основе информации из БД.

Общая характеристика работы с РБД:

Наиболее распространенная трактовка реляционной модели данных, по-видимому, принадлежит Дейту, который воспроизводит ее (с различными уточнениями) практически во всех своих книгах. Согласно Дейту реляционная модель состоит из трех частей, описывающих разные аспекты реляционного подхода: структурной части, манипуляционной части и целостной части.

В структурной части модели фиксируется, что единственной структурой данных, используемой в реляционных БД, является нормализованное n-арное отношение.

В манипуляционной части модели утверждаются два фундаментальных механизма манипулирования реляционными БД - реляционная алгебра и реляционное исчисление. Первый механизм базируется в основном на классической теории множеств (с некоторыми уточнениями), а второй - на классическом логическом аппарате исчисления предикатов первого порядка. Заметим, что основной функцией манипуляционной части реляционной модели является обеспечение меры реляционности любого конкретного языка реляционных БД: язык называется реляционным, если он обладает не меньшей выразительностью и мощностью, чем реляционная алгебра или реляционное исчисление.


28. АЛГОРИТМИЧЕСКИЕ ЯЗЫКИ. ТРАНСЛЯТОРЫ (ИНТЕРПРЕТАТОРЫ И КОМПИЛЯТОРЫ). АЛГОРИТМИЧЕСКИЙ ЯЗЫК БЕЙСИК. СТРУКТУРА ПРОГРАММЫ. ИДЕНТИФИКАТОРЫ. ПЕРЕМЕННЫЕ. ОПЕРАТОРЫ. ОБРАБОТКА ОДНОМЕРНЫХ И ДВУХМЕРНЫХ МАССИВОВ. ФУНКЦИИ ПОЛЬЗОВАТЕЛЯ. ПОДПРОГРАММЫ. РАБОТА С ФАЙЛАМИ ДАННЫХ.

Язык высокого уровня - язык программирования, понятия и структура которого удобны для восприятия человеком.

Алгоритмический язык (Algorithmic language) - язык программирования - искусственный (формальный) язык, предназначенный для записи алгоритмов. Язык программирования задается своим описанием и реализуется в виде специальной программы: компилятора или интерпретатора. Примерами алгоритмических языков служат – Borland Pascal, C++, Basic и т.д.

Основные понятия алгоритмического языка:

Состав языка :

Обычный разговорный язык состоит из четырех основных элементов: символов, слов, словосочетаний и предложений. Алгоритмический язык содержит подобные элементы, только слова называют элементарными конструкциями, словосочетания - выражениями, предложения - операторами.

Символы , элементарные конструкции, выражения и операторы составляют иерархическую структуру, поскольку элементарные конструкции образуются из последовательности символов.

Выражения - это последовательность элементарных конструкций и символов,

Оператор - последовательность выражений, элементарных конструкций и символов.

Описание языка:

Описание символов заключается в перечислении допустимых символов языка. Под описанием элементарных конструкций понимают правила их образования. Описание выражений - это правила образования любых выражений, имеющих смысл в данном языке. Описание операторов состоит из рассмотрения всех типов операторов, допустимых в языке. Описание каждого элемента языка задается его СИНТАКСИСОМ и СЕМАНТИКОЙ.

Синтаксические определения устанавливают правила построения элементов языка.

Семантика определяет смысл и правила использования тех элементов языка, для которых были даны синтаксические определения.

Символы языка - это основные неделимые знаки, в терминах которых пишутся все тексты на языке.

Элементарные конструкции - это минимальные единицы языка, имеющие самостоятельный смысл. Они образуются из основных символов языка.

Выражение в алгоритмическом языке состоит из элементарных конструкций и символов, оно задает правило вычисления некоторого значения.

Оператор задает полное описание некоторого действия, которое необходимо выполнить. Для описания сложного действия может потребоваться группа операторов.

В этом случае операторы объединяются в Составной оператор или Блок. Действия , заданные операторами, выполняются над данными. Предложения алгоритмического языка, в которых даются сведения о типах данных, называются описаниями или неисполняемыми операторами. Объединенная единым алгоритмом совокупность описаний и операторов образует программу на алгоритмическом языке. В процессе изучения алгоритмического языка необходимо отличать алгоритмический язык от того языка, с помощью которого осуществляется описание изучаемого алгоритмического языка. Обычно изучаемый язык называют просто языком, а язык, в терминах которого дается описание изучаемого языка - Метаязыком .

Трансляторы - (англ. translator - переводчик) - это программа-переводчик. Она преобразует программу, написанную на одном из языков высокого уровня, в программу, состоящую из машинных команд.

Программа, написанная на каком-либо алгоритмическом языке высокого уровня, не может быть непосредственно выполнена на ЭВМ. ЭВМ понимает только язык машинных команд. Следовательно, программа на алгоритмическом языке должна быть переведена (транслирована) на язык команд конкретной ЭВМ. Такой перевод осуществляется автоматически специальными программами-трансляторами, создаваемыми для каждого алгоритмического языка и для каждого типа компьютеров.

Существуют два основных способа трансляции - компиляция и интерпретация.

1.Компиляция: Компилятор (англ. compiler - составитель, собиратель) читает всю программу целиком, делает ее перевод и создает законченный вариант программы на машинном языке, который затем и выполняется.

При компиляции вся исходная программа сразу превращается в последовательность машинных команд. После этого полученная результирующая программа выполняется ЭВМ с имеющимися исходными данными. Достоинство такого способа состоит в том, что трансляция выполняется один раз, а (многократное) выполнение результирующей программы может осуществляться с большой скоростью. Вместе с тем результирующая программа может занять в памяти ЭВМ очень много места, так как один оператор языка при трансляции заменяется сотнями или даже тысячами команд. Кроме того, отладка и видоизменения транслированной программы весьма затруднены.

2. Интерпретация: Интерпретатор (англ. interpreter - истолкователь, устный переводчик) переводит и выполняет программу строка за строкой.

При интерпретации исходная программа хранится в памяти ЭВМ почти в неизменном виде. Программа-интерпретатор декодирует операторы исходной программы по одному и тут же обеспечивает их выполнение с имеющимися данными. Интерпретируемая программа занимает в памяти компьютера мало места, ее легко отлаживать и видоизменять. Зато выполнение программы происходит достаточно медленно, поскольку при каждом исполнении заново осуществляется поочередная интерпретация всех операторов.

Откомпилированные программы работают быстрее, но интерпретируемые проще исправлять и изменять

Каждый конкретный язык ориентирован либо на компиляцию, либо на интерпретацию - в зависимости от того, для каких целей он создавался. Например, Паскаль обычно используется для решения довольно сложных задач, в которых важна скорость работы программ. Поэтому данный язык обычно реализуется с помощью компилятора.

С другой стороны, Бейсик создавался как язык для начинающих программистов, для которых построчное выполнение программы имеет неоспоримые преимущества.

Иногда для одного языка имеется и компилятор, и интерпретатор. В этом случае для разработки и тестирования программы можно воспользоваться интерпретатором, а затем откомпилировать отлаженную программу, чтобы повысить скорость ее выполнения.

РЕЛЯЦИОННАЯ БАЗА ДАННЫХ И ЕЕ ОСОБЕННОСТИ. ВИДЫ СВЯЗЕЙ МЕЖДУ РЕЛЯЦИОННЫМИ ТАБЛИЦАМИ

Реляционная база данных - это совокупность взаимосвязанных таблиц, каждая из которых содержит информацию об объектах определенного типа. Строка таблицы содержит данные об одном объекте (например, товаре, клиенте), а столбцы таблицы описывают различные характеристики этих объектов - атрибутов (например, наименование, код товара, сведения о клиенте). Записи, т. е. строки таблицы, имеют одинаковую структуру - они состоят из полей, хранящих атрибуты объекта. Каждое поле, т. е. столбец, описывает только одну характеристику объекта и имеет строго определенный тип данных. Все записи имеют одни и те же поля, только в них отображаются различные информационные свойства объекта.

В реляционной базе данных каждая таблица должна иметь первичный ключ - поле или комбинацию полей, которые единственным образом идентифицируют каждую строку таблицы. Если ключ состоит из нескольких полей, он называется составным. Ключ должен быть уникальным и однозначно определять запись. По значению ключа можно отыскать единственную запись. Ключи служат также для упорядочивания информации в БД.

Таблицы реляционной БД должны отвечать требованиям нормализации отношений. Нормализация отношений - это формальный аппарат ограничений на формирование таблиц, который позволяет устранить дублирование, обеспечивает непротиворечивость хранимых в базе данных, уменьшает трудозатраты на ведение базы данных.

Пусть создана таблица Студент, содержащая следу-рэщие поля: № группы, ФИО, № зачетки, дата рождения, шазвание специальности, название факультета. Такая организация хранения информации будет иметь ряд недостатков:

  • дублирование информации (наименование специальности и факультета повторяются для каждого студента), следовательно, увеличится объем БД;
  • процедура обновления информации в таблице затрудняется из-за необходимости редактирования каждой записи таблицы.

Нормализация таблиц предназначена для устранения этих недостатков. Имеется три нормальные формы отношений .

Первая нормальная форма. Реляционная таблица приведена к первой нормальной форме тогда и только тогда, когда ни одна из ее строк не содержит в любом своем поле более одного значения и ни одно из ее ключевых полей не пусто. Так, если из таблицы Студент требуется получать сведения по имени студента, то поле ФИО следует разбить на части Фамилия, Имя, Отчество.

Вторая нормальная форма . Реляционная таблица задана во второй нормальной форме, если она удовлетворяет требованиям первой нормальной формы и все ее поля, не входящие в первичный ключ, связаны полной функциональной зависимостью с первичным ключом. Чтобы привести таблицу ко второй нормальной форме, необходимо определить функциональную зависимость полей. Функциональная зависимость полей - это зависимость, при крторой в экземпляре информационного объекта определенному значению ключевого реквизита соответствует только одно значение описательного реквизита.

Третья нормальная форма. Таблица находится в третьей нормальной форме, если она удовлетворяет требованиям второй нормальной формы, ни одно из ее неключевых полей не зависит функционально от любого другого неключевого поля. Например, в таблице Студент (№ группы, ФИО, № зачетной книжки, Дата рождения, Староста) три поля - № зачетной книжки, № группы, Староста находятся в транзитивной зависимости. № группы зависит от № зачетной книжки, а Староста зависит от № группы. Для устранения транзитивной зависимости необходимо часть полей таблицы Студент перенести в другую таблицу Группа. Таблицы примут следующий вид: Студент (№ группы, ФИО, № зачетной книжки, Дата рождения), Группа (№ группы, Староста).

Над реляционными таблицами возможны следующие операции:

  • Объединение таблиц с одинаковой структурой. Результат- общая таблица: сначала первая, затем вторая (конкатенация).
  • Пересечение таблиц с одинаковой структурой. Результат - выбираются те записи, которые находятся в обеих таблицах.
  • Вычитание таблиц с одинаковой структурой. Результат - выбираются те записи, которых нет в вычитаемом.
  • Выборка (горизонтальное подмножество). Результат - выбираются записи, отвечающие определенным условиям.
  • Проекция (вертикальное подмножество). Результат - отношение, содержащее часть полей из исходных таблиц.
  • Декартово произведение двух таблиц Записи результирующей таблицы получаются путем объединения каждой записи первой таблицы с каждой записью другой таблицы.

Реляционные таблицы могут быть связаны друг с другом, следовательно, данные могут извлекаться одновременно из нескольких таблиц. Таблицы связываются между собой для того, чтобы в конечном счете уменьшить объем БД. Связь каждой пары таблиц обеспечивается при наличии в них одинаковых столбцов.

Существуют следующие типы информационных связей:

  • один-к-одному;
  • один-ко-многим;
  • многие-ко-многим.

Связь один-к-одному предполагает, что одному атрибуту первой таблицы соответствует только один атрибут второй таблицы и наоборот.

Связь один-ко-многим предполагает, что одному атрибуту первой таблицы соответствует несколько атрибутов второй таблицы.

Связь многие-ко-многим предполагает, что одному атрибуту первой таблицы соответствует несколько атрибутов второй таблицы и наоборот.