Человеческая цивилизация за время своего существования нашла множество способов фиксировать информацию. С каждым годом ее объемы растут в По этой причине меняются и носители. Именно об этой эволюции и пойдет речь ниже.

Пережитки прошлого

Древнейшими памятниками человеческой деятельности можно считать наскальные рисунки, на которых изображались животные, бывшие целями охоты. Первые материальные носители информации были природного происхождения.

Настоящим прорывом можно считать появление письменности у шумеров, живших в современном Ираке и использовавших не камень, а глиняные таблички, которые обжигались после письма. Таким образом, их сохранность значительно увеличивалась. Однако скорость, с которой фиксировались знания, была крайне малой.

Также можно отметить египетский папирус, воск, шкуры, на которых впервые начали писать в Персии. В Азии использовался бамбук и шелк. Древние индейцы имели уникальную систему узелкового письма. На Руси в ходу была береста, которую и сегодня находят археологи.

Бумага

Бумажные носители информации совершили переворот, масштаб которого сложно переоценить. Несмотря на то что первые аналоги целлюлозного материала были получены китайцами еще во II веке, общедоступным он стал только в XIX столетии.

С бумагой связано и появление книг. В 1450-ых немецкий изобретатель изобрел ручной типографский станок, с помощью которого издал два экземпляра Библии. Эти события послужили точкой отсчета для новой эпохи массового книгопечатания. Именно благодаря ему знание перестало быть уделом тонкой прослойки человечества, а стало доступным для каждого желающего.

Сегодняшняя бумага бывает газетной, офсетной, мелованной и т. д. Ее выбор зависит от конкретных целей. И хотя белое полотно пользуется спросом как никогда, свое инновационное положение оно уже уступило.

Перфокарты и перфоленты

Следующий толчок в своем развитии информационные носители получили в начале XIX века, когда появились первые картонные перфокарты. В определенных местах ставились отверстия, с помощью которых считывались данные. Первоначально технология использовалась для управления

Интерес к новинке возрос после того, как в США ее стали использовать для более удобного и быстрого подсчета результатов переписи населения страны в 1890 году. Производством карт занималась компания IBM в будущем ставшая пионером компьютерных технологий. Расцвет технологии пришелся на середину XX века. Именно тогда стала распространяться систематизировавшая и обобщившая самые разные данные.

Первые машинные носители информации представляли собой также и перфоленты. Производились они из бумаги и использовались в телеграфах. Благодаря своему формату ленты позволяли легко производить ввод и вывод. Это сделало их незаменимыми вплоть до появления магнитных конкурентов.

Магнитная лента

Как бы не были хороши прежние внешние носители информации, они не могли воспроизводить то, что фиксировали. Данная проблема была решена с появлением магнитной ленты. Она представляла собой гибкую основу, покрытую несколькими слоями, на которых и записывается информация. В качестве рабочей среды выступали различные химические элементы: железо, кобальт, хром.

Магнитные носители информации сделали рывок в звукозаписи. Именно эта инновация позволила новой технологии быстро прижиться в Германии в 30-ые годы. Прежние устройства (фонографы, граммофоны, патефоны) отличались механическим характером и были не практичны. Большое распространение получили магнитофоны катушечного и кассетного типа.

В 50-ые годы были предприняты попытки использовать данные разработки как компьютерные носители информации. Магнитные ленты внедрялись в персональные компьютеры в 80-ые годы. Их популярность в целом объяснялась такими преимуществами. как большая емкость, сравнительная дешевизна производства и низкое энергопотребление.

Недостатком лент можно считать срок годности. С течением времени они размагничиваются. В лучшем случае данные сохраняются на 40 - 50 лет. Тем не менее, это не помешало формату стать популярным во всем мире. Отдельно стоит упомянуть о видеокассетах, расцвет которых пришелся на окончание XX века. Магнитные носители информации стали основой теле и радиовещания нового типа.

Жесткие диски

Тем временем развитие отрасли продолжалось. Информационные носители большого объема требовали модернизации. Первые жесткие диски или винчестеры были созданы в 1956 году силами IBM. Однако они были непрактичны. Их размер превышал ящик, а вес почти равнялся тонне. При этом объем хранимых данных не превышал 3,5 мегабайт. Однако в дальнейшем стандарт развивался, и к 1995 году была преодолена планка в 10 гигабайт. А еще через 10 лет в продаже появились модели Hitachi объемом в 500 гигабайт.

В отличие от гибких аналогов жесткие диски содержали алюминиевые пластины. Данные воспроизводятся посредством считывающих головок. Они не прикасаются к диску, а работают на расстоянии нескольких нанометров от него. Так или иначе принцип работы винчестеров похож на характеристики магнитофонов. Основная разница заключается в физических материалах, используемых для производства устройств. Жесткие диски стали основой персональных компьютеров. Со временем подобные модели стали выпускаться совмещенно вместе с накопителями, приводами и блоком электроники.

Помимо основной памяти, необходимой для содержания данных, жесткие диски обладают определенным буфером, необходимым для сглаживания скоростей чтения с устройства.

3,5-дюймовые дискеты

Одновременно с этим шло движение вперед в сфере малых форматов. Знание магнитных свойств пригодилось при создании дискет, данные с которых считывались с помощью специального дисковода. Первый подобный аналог был представлен IBM в 1971 году. Плотность записи на такие информационные носители составляла до 3 мегабайт. Основой дискеты был гибкий диск, покрывавшийся специальным слоем из ферромагнетиков.

Главное достижение - уменьшение физических размеров носителя - сделало данный формат главным на рынке на протяжении четверти века. Только в США в 80-е ежегодно производилось до 300 миллионов новых дискет.

Несмотря на массу преимуществ, новинка имела и недостатки - чувствительность к магнитному воздействию и малая емкость по сравнению с все увеличивающимися потребностями рядового пользователя компьютера.

Компакт-диски

Первым поколением оптических носителей стали компакт-диски. Их прообразом были еще грампластинки. Однако новые внешние носители информации производились из поликарбоната. Диск из этого вещества получил тончайшее покрытие из металла (золото, серебро, алюминий). Для защиты данных он покрывался специальным лаком.

Пресловутый CD был разработан силами Sony и запущен в массовое производство в 1982 году. В первую очередь формат получил бешеную популярность за счет удобной звукозаписи. Объем в несколько сот мегабайт позволил вытеснить сначала виниловые проигрыватели, а после и магнитофоны. Если первые уступали в объеме информации, то вторые отличались худшим качеством звука. Кроме того новый формат отправил в прошлое дискеты, которые не только вмещали меньше данных, но и были не слишком надежны.

Компакт-диски стали причиной революции в сфере персональных компьютеров. Со временем все гиганты отрасли (например, Apple) перешли на производство ПК вместе с дисководами, поддерживающими формат CD.

DVD и Blue-Ray

Оптические информационные носители первого поколения продержались на Олимпе хранения данных недолго. В 1996 году появился DVD, который по объему был больше своего предка в шесть раз. Новый стандарт позволил записывать видео большей длительности. Под него быстро подстроилась киноиндустрия. Фильмы на DVD стали общедоступными по всему миру. Принцип работы и кодирования информации по сравнению с компакт-дисками остался тот же.

Наконец в 2006 году был запущен новый, на сегодняшний день последний формат оптического носителя информации. Объем стал исчисляться сотнями гигабайт. Благодаря этому обеспечивается лучшее качество записи звука и видео.

Войны форматов

На протяжении последних лет участились конфликты между несовместимыми форматами хранения информации. Внешние носители разных производителей на очередном витке развития отрасли конкурируют между собой за монополию в формате.

Одним из первых подобных примеров можно назвать конфликт между фонографом Эдисона и граммофоном Берлинера в 10-е годы XX века. В дальнейшем подобные споры возникали между компакт-кассетами и 8-дорожечными аудиокассетами; VHS и Betamax; MP3 и AAC и т. д. Последней в этом ряду стала «война» между HD DVD и Blue-Ray, которая окончилась победой последнего.

Флеш-накопители

Примеры носителей информации не могут обойтись без упоминания USB-флеш-накопителей. Первый Universal Serial Bus был разработан в середине 90-х годов. На сегодняшний день существует уже третье поколение этого Шина позволяет присоединить к персональному компьютеру периферийное устройство. И хотя эта проблема существовала задолго до появления USB, решена она была только в последнее десятилетие.

Сегодня каждый компьютер обладает узнаваемым гнездом, с помощью которого к компьютеру можно подключить мобильный телефон, плеер, планшет и т. д. Быстрая передача данных любого формата сделало USB действительно универсальным инструментом.

Наибольшую популярность на основе данного интерфейса получили флеш-накопители или в просторечии флешки. Такое устройство обладает USB-разъемом, микроконтроллером, микросхемой, и светодиодом. Все эти детали сделали возможным держать в одном кармане гигабайты информации. По своему размеру флешка уступает даже дискетами, обладавшим объемом в 3 мегабайта. В разы увеличился объем устройств, где осуществляется хранение информации. Носители информации, напротив, имеют тенденцию к физическому уменьшению.

Универсальность разъема позволяет накопителям работать не только с персональными компьютерами, но и с телевизорами, DVD-проигрывателями и другими устройствами, обладающими технологией USB. Огромным преимуществом по сравнению с оптическими аналогами стала меньшая восприимчивость к внешнему воздействию. Флешке не страшны царапины и пыль, бывшие смертельной угрозой для CD.

Виртуальная реальность

В последние годы компьютерные носители информации уступают позиции виртуальной альтернативе. Так как сегодня легко подключить ПК к Глобально Сети, информация хранится на общих серверах. Удобства неоспоримы. Теперь чтобы получить доступ к своим файлам, пользователю вовсе не нужен физический носитель. Для взаимодействия с данными на расстоянии достаточно находиться в зоне доступа беспроводного Wi-Fi соединения и т. д.

Кроме того, данное явление помогает избежать недоразумений с выходом из строя физических накопителей, уязвимых к повреждениям. Удаленные сервера, связь с которыми поддерживается сигналом, не пострадают, а в случае непредвиденных ситуаций там существуют резервные хранилища данных.

Вывод

На протяжении всей истории - от наскальных рисунков до виртуальных бит - человек стремился сделать информационные носители объемнее, надежнее и доступнее. Это стремление привело к тому, что сегодня мы живем в эпоху, которую не без основания называют веком информационного общества. Прогресс дошел до того, что теперь люди в своей повседневной жизни просто захлебываются в потоке данных. Возможно информационные носители, виды которых все множатся, кардинально изменятся, согласно требованиям современенного человека.

(электромагнитное излучение) и т. д. и т. п.

Носителем информации может быть любой объект, с которого возможно (но не обязательно) чтение имеющейся (записанной) информации.

Зачастую сам носитель информации помещается в защитную оболочку, повышающую его сохранность и, соответственно, надёжность сохранения И (к примеру: бумажные листы - в обложку, микросхему памяти - в пластик (смарт-карта), магнитную ленту - в корпус и т. д.).

Носители информации в быту, науке (библиотеки), технике (скажем, для нужд связи), общественной жизни (СМИ) применяются для:

  • записи
  • хранения
  • чтения
  • передачи (распространения)
  • создания произведений компьютерного искусства

В общем случае границы между этими разновидностями носителей довольно расплывчаты и могут варьироваться в зависимости от ситуации и внешних условий.

Основные материалы

  • бумага (перфолента, перфокарта, листы);
  • пластик (штрих-код, оптические диски);
  • магнитные материалы (магнитные ленты и диски);

Также ранее имели распространение: обожжённая глина , камень , кость , древесина , пергамент , берёста , папирус , воск , ткань и др.

Для внесения изменений в структуру материала носителя используются различные виды воздействия:

  • термическое (выжигание);

Электронные носители

К электронным носителям относят носители для однократной или многократной записи (обычно цифровой ) электрическим способом: CD-ROM , DVD -ROM, полупроводниковые (флеш-память и т. п.), дискеты .

Имеют значительное преимущество перед бумажными (листы, газеты , журналы) по объёму и удельной стоимости. Для хранения и предоставления оперативной (не долговременного хранения) информации - имеют подавляющее преимущество, также имеются значительные возможности по предоставлению И в удобном потребителю виде (форматирование , сортировка). Недостаток - малый размер экрана (или значительный вес) и хрупкость устройств считывания, зависимость от .

В настоящее время электронные носители активно вытесняют бумажные, во всех отраслях жизни, что приводит к значительному сбережению древесины. Минусом их является то, что для считывания И для каждого типа и формата носителя необходимо соответствующее ему устройство считывания.

Устройства хранения

Недостатком данного носителя являлось то, что со временем он темнел и ломался. Дополнительным недостатком стало то, что египтяне ввели запрет на вывоз папируса за границу.

Азия

Недостатки носителей информации (глина, папирус, воск) стимулировали поиск новых носителей. На этот раз сработал принцип «всё новое - хорошо забытое старое»: в Персии для письма издревле использовался дефтер - высушенные шкуры животных (в турецком и родственных ему языках слово «дефтер» и сейчас означает тетрадь), о чём вспомнили греки.

Европа

На территории Европы высокоразвитые народы (греки и римляне) нащупывали свои способы записи. Сменяются множество различных носителей: свинцовые листы, костяные пластинки и т. д.

Начиная с VII века до н. э. запись производится острой палочкой - стилусом (как и на глине) на деревянных дощечках, покрытых слоем податливого воска (т. н. восковые таблички). Стирание информации (ещё одно преимущество данного носителя) производилось обратным тупым концом стилуса. Скрепляли такие дощечки по четыре штуки (отсюда и слово «тетрадь», так как др.-греч. τετράς в переводе с греческого - четыре).

Однако на воске надписи недолговечны, и проблема сохранения записей была весьма актуальной.

Америка

В XI-XVI веках коренные народы Южной Америки придумали узелковое письмо «кипу » (quipu в переводе с языка индейцев кечуа - узел) . Из верёвок (к ним привязывали ряды шнурков) составлялись «сообщения». Тип, число узелков, цвета и количества нитей, их расположения и переплетения представлял собой «кодировку» («алфавит») кипу.
Нанизанными на шнуры небольшими раковинами кодировали свои сообщения индейские племена Северной Америки. Этот вид письменности назывался «вампум» - от индейского слова wampam (сокращённое от wampumpeag) - белые бусы . Переплетения шнуров образовывали полоску, которую обычно носили как пояс. Комбинацией цветных ракушек и рисунков на них могли составляться целые послания.

Древняя Русь

Как носитель использовалась берёста (верхний слой берёзовой коры). Буквы на ней прорезывали писалом (костяная или металлическая палочка).

К концу XVI века на Руси появляется своя бумага (в русский язык слово «бумага» пришло скорее всего из итальянского, bambagia - хлопок).

Средневековье

В античном мире и Средневековье восковые таблички использовались в качестве записных книжек, для хозяйственных пометок и для обучения детей письму.

Новое время

Современность

Сейчас люди используют компьютеры для обработки и хранения информации.

См. также

  • Носитель имени
  • Носитель фамилии
  • Нуклеиновые кислоты (ДНК, РНК)

Ссылки

Примечания

Потребность хранить какую-либо информацию у человека появилась еще в доисторические времена, чему яркий пример - наскальная живопись, которая сохранилась и по сей день. Наскальные рисунки можно по праву назвать самым износостойким носителем информации на данный момент, хотя с портативностью и удобством использования есть некоторые трудности. С появлением ЭВМ (и ПК в частности) разработка емких и удобных в использовании носителей информации стала особенно актуальной.

Бумажные носители

В первых компьютерах использовалась перфокарты и перфорированная бумажная лента, намотанная на бобины, так называемая перфолента. Ее прародителями были автоматизированные ткацкие станки, в частности машина Жаккара, финальный вариант которой был создан изобретателем (в честь которого она и названа) в 1808 году. Для автоматизации процесса подачи нитей использовались перфорированные пластины:

Перфокарты - картонные карточки, которые использовали подобный метод. Их было много разновидностей, как с отверстиями, которые отвечали за "1" в двоичном коде, так и текстового вида. Самым распространенным был формат IBM: размер карты составлял 187х83 мм, на ней инфомация располагалась в 12 строк и 80 столбцов. В современных терминах, одна перфокарта хранила 120 байт информации. Для ввода информации перфокарты нужно было подавать в определенной последовательности.

В перфоленте используется тот же принцип. Информация хранится на ней в виде отверстий. Первые компьютеры, созданные в 40-х годах прошлого века работали как с вводимыми с помощью перфоленты в реальном времени данными, так и использовали некое подобие оперативной памяти, преимущественно с использованием электронно-лучевых трубок. Бумажные носители активно использовались в 20-50 годах, после чего постепенно начали заменяться магнитными носителями.

Магнитные носители

В 50-х годах началось активное развитие магнитных носителей. За основу взято было явление электромагнетизма (образование магнитного поля в проводнике при пропускании тока через него). Магнитный носитель состоит из поверхности, покрытой ферромагнетиком и считывающей/пишущей головки (сердечник с обмоткой). По обмотке протекает ток, появляется магнитное поле определенной полярности (в зависимости от направления тока). Магнитное поле воздействует на ферромагнетик и магнитные частицы в нем поляризуются в направлении действия поля и создают остаточную намагниченность. Для записи данных на разные участки производится воздействие магнитным полем разной полярности, а при считывании данных регистрируются зоны, в которых изменяется направление остаточной намагниченности ферромагнетика. Первыми такими носителями были магнитные барабаны: большие металлические цилиндры, покрытые ферромагнетиком. Вокруг них устанавливались считывающие головки.

После них появился жесткий диск в 1956 году, это был 305 RAMAC компании IBM, который состоял из 50 дисков диаметром 60 см, по размером был соизмерим с большим холодильником современного формата Side-by-Side и весил чуть меньше тонны. Его объем составлял невероятные по тем временам 5 МБ. Головка свободно перемещалась по поверхности диска и скорость работы была выше, чем у магнитных барабанов. Процесс погрузки 305 RAMAC в самолет:

Объем быстро начал увеличиваться и в конце 60-х годов IBM выпустила высокоскоростной накопитель с двумя дисками емкостью по 30 МБ. Производители активно работали над уменьшением габаритов и к 1980 году жесткий диск имел размеры 5.25-дюймового привода. С тех времен конструкция, технологии, объем, плотность и размеры претерпели колоссальных изменений и самыми популярными стали форм-факторы и 3.5, 2.5 дюйма, в меньшей мере - 1.8 дюйма, а объемы уже достигают десятка терабайт на одном носителе.

Некоторое время использовался еще формат IBM Microdrive, который представлял из себя миниатюрный жесткий диск в форм-факторе карты памяти CompactFlash тип II. Выпущен в 2003 году, позже продан компании Hitachi.

Параллельно развивалась магнитная лента. Появилась она вместе с выходом первого американского коммерческого компьютера UNIVAC I в 1951 году. Опять же постаралась компания IBM. Магнитная лента представляла из себя тонкую пластиковую полосу с магниточувствительным покрытием. С тех времен использовалась в самых разных форм-факторах.

Начиная с бобин, ленточных картриджей и заканчивая компакт-кассетами и видеокассетами VHS. В компьютерах использовались начиная с 70 годов и заканчивая 90-ми (уже в значительно меньших количествах). Часто в качестве внешнего носителя к ПК использовался подключаемый магнитофон.

Накопители на магнитной ленте под названием Стримеры применяются и сейчас, преимущественно в промышленности и крупном бизнесе. На данный момент используются бобины стандарта Linear Tape-Open (LTO), а рекорд в этом году поставили IBM и FujiFilm, умудрившись записать на стандартную бобину 154 терабайта информации. Предыдущий рекорд - 2.5 терабайт, LTO 2012 года.

Еще один тип магнитных носителей - дискеты или флоппи-диск. Тут слой ферромагнетика наносится на гибкую, легкую основу и помещается в пластиковый корпус. Такие носители были просты с точки зрения изготовления и отличались невысокой стоимостью. Первая дискета имела форм-фактор 8 дюймов и появилась в конце 60-х. Создатель - опять IBM. К 1975 году емкость достигла 1 МБ. Хотя популярность дискеты заработали благодаря выходцам из IBM, которые основали собственную компанию Shugart Associates и в 1976 году выпустили дискету формата 5.25 дюйма, емкость составляла 110 КБ. К 1984 году емкость уже составляла 1.2 МБ, а Sony подсуетилась с более компактным форм-фактором 3.5 дюйма. Такие дискеты до сих пор можно найти у многих дома.

Компания Iomega выпустила в 1980-х картриджи с магнитными дисками Bernoulli Box, емкостью 10 и 20 МБ, а в 1994 году - так называемые Zip размера 3.5 дюйма объемом 100 МБ, до конца 90-х они достаточно активно использовались, но конкурировать с компакт-дисками им было не по зубам.

Оптические носители

Оптические носители имеют форму дисков, чтение с них ведется с помощью оптического излучения, обычно лазера. Луч лазера направляется на специальный слой и отражается от него. При отражении луч модулируется мельчайшими выемками на специальном слое, при регистрации и декодировании этих изменений восстанавливается записанная на диск информация. Впервые технологию оптической записи с использованием светопропускающего носителя была разработана Дэвидом Полом Греггом в 1958 году и запатентована в 1961 и 1990 годах, а в 1969 году компания Philips создала так называемый LaserDisc , в котором свет отражался. Впервые публике LaserDisc был показан в 1972 году, а в продажу поступил в 1978. По размеру он был близок к виниловым пластинкам и предназначался для фильмов.

В семидесятых годах началась разработка оптических носителей нового образца, в результате Philips и Sony представили в 1980 году формат CD (Compact Disk), который был впервые продемонстрирован в 1980 году. В продажу компакт-диски и аппаратура поступили в 1982 году. Изначально использовались для аудио, помещалось до 74 минут. В 1984 году Philips и Sony создали стандарт CD-ROM (Compact Disc Read Only Memory) для любых типов данных. Объем диска составлял 650 МБ, позже - 700 МБ. Первые диски, которые можно было записывать в домашних условиях, а не на заводе были выпущены в 1988 году и получили названиеCD-R (Compact Disc Recordable), а CD-RW, позволяющие многократную перезапись данных на диске, появились уже в 1997.

Форм-фактор не менялся, увеличивалась плотность записи. В 1996 году появился формат DVD (Digital Versatile Disc), который имел ту же форму и диаметр 12 см, а объем - 4.7 ГБ или 8.5 ГБ у двухслойного. Для работы с DVD-дисками были выпущены соответствующие приводы, обратно совместимые с CD. В последующие годы было выпущено еще несколько стандартов DVD.

В 2002 году миру были представлены два разных и несовместимых формата оптических дисков нового поколения: HD DVD и Blu-ray Disc (BD). В обоих случаях для записи и чтения данных используется голубой лазер с длинной волны 405 нм, что позволило еще увеличить плотность. HD DVD способен хранить 15 ГБ, 30 ГБ или 45 ГБ (один, два или три слоя), Blu-ray - 25, 50, 100 и 128 ГБ. Последний стал более популярен и 2008 году компания Toshiba (один из создателей) отказалась от HD DVD.

Полупроводниковые носители

В 1984 году компания Toshiba предложила полупроводниковые носители, так называемую флэш-память NAND, которая стала популярна спустя десятилетие после изобретения. Второй вариант NOR был предложен Intel в 1988 году и используется для хранения программных кодов, например BIOS. NAND-память используется сейчас в картах памяти , флэшках, SSD-накопителях и гибридных жестких дисках.

Технология NAND позволяет создавать чипы с высокой плотностью записи, она компактна, менее энергозатратна в использовании и имеет более высокую скорость работы (в сравнении с жесткими дисками). Основным минусом на данный момент является достаточно высокая стоимость.

Облачные хранилища

С развитием всемирной сети, увеличением скоростей и мобильного интернета появились многочисленные облачные хранилища, в которых данные хранятся на многочисленных распределенных в сети серверах. Данные хранятся и обрабатываются в так называемом виртуальном облаке и пользователь имеет к ним доступ при наличии доступа в интернет. Физически серверы могут находиться удаленно друг от друга. Есть как специализированные сервисы типа Dropbox, так и варианты компаний-производителей ПО или устройств. У Microsoft - OneDrive (ранее SkyDrive), iCloud у Apple, Google Диск и так далее.

Введение…………………………………………………………………………...3

Носители информации……………………………………………………………4

Кодирование и считывание информации..………………………………………9

Перспективы развития…………………….…………………………………….15

Заключение……………………………………………………………………….18

Литература.………………………………………………………………………19

Введение

В 1945 г. Джон фон Нейман (1903-1957), американский ученый, выдвинул идею использования внешних запоминающих устройств для хранения программ и данных. Нейман разработал структурную принципиальную схему компьютера. Схеме Неймана соответствуют и все современные компьютеры.

Внешняя память предназначена для долговременного хранения программ и данных. Устройства внешней памяти (накопители) являются энергонезависимыми, выключение питания не приводит к потере данных. Они могут быть встроены в системный блок или выполнены в виде самостоятельных блоков, связанных с системным через его порты. По способу записи и чтения накопители делятся, в зависимости от вида носителя, на магнитные, оптические и магнитооптические.

Кодирование информации – это процесс формирования определенного представления информации. Компьютер может обрабатывать только информацию, представленную в числовой форме. Вся другая информация (например, звуки, изображения, показания приборов и т. д.) для обработки на компьютере должна быть преобразована в числовую форму. Как правило, все числа в компьютере представляются с помощью нулей и единиц (а не десяти цифр, как это привычно для людей). Иными словами, компьютеры обычно работают в двоичной системе счисления, поскольку при этом устройства для их обработки получаются значительно более простыми.

Считывание информации – извлечение информации, хранящейся в запоминающем устройстве (ЗУ), и передача её в др. устройства вычислительной машины. Считывание информации производится при выполнении большинства машинных операций, а иногда является самостоятельной операцией.

В ходе реферата рассмотрим основные типы носителей информации, кодирования и считывания информации, а также перспективы развития.

Носители информации

Исторически первыми носителями информации были перфоленточные и перфокарточные устройства ввода-вывода. Вслед за ними пришли внешние записывающие устройства в виде магнитных лент, сменных и постоянных магнитных дисков и магнитных барабанов.

Магнитные ленты хранят и используют намотанными на катушки. Выделялись катушки двух видов: подающие и принимающие. Ленты поставляются пользователям на подающих катушках и не требуют дополнительной перемотки при установке их в накопители. Лента на катушку наматывается рабочим слоем внутрь. Магнитные ленты относятся к накопителям непрямого доступа. Это значит, что время поиска любой записи зависит от ее местоположения на носителе, так как физическая запись не имеет своего адреса и чтобы её просмотреть необходимо просмотреть предыдущие. К запоминающим устройствам прямого доступа относятся магнитные диски и магнитные барабаны. Основная особенность их заключается в том, что время поиска любой записи не зависит от ее местоположения на носителе. Каждая физическая запись на носителе имеет адрес, по которому обеспечивается непосредственный доступ к ней, минуя остальные записи. Следующим видом записывающих устройств стали пакеты сменных магнитных дисков, состоящие из шести алюминиевых дисков. Ёмкость всего пакета составляла 7,25 Мбайт.

Рассмотрим более подробно современные носители информации.

1. Накопитель на гибких магнитных дисках (НГМД – дисковод).

Это устройство использует в качестве носителя информации гибкие магнитные диски – дискеты, которые могут быть 5-ти или 3-х дюймовыми. Дискета – это магнитный диск вроде пластинки, помещенный в «конверт». В зависимости от размера дискеты изменяется ее емкость в байтах. Если на стандартную дискету размером 5’25 дюйма помещается до 720 Кбайт информации, то на дискету 3’5 дюйма уже 1,44 Мбайта. Дискеты универсальны, подходят на любой компьютер того же класса оснащенный дисководом, могут служить для хранения, накопления, распространения и обработки информации. Дисковод – устройство параллельного доступа, поэтому все файлы одинаково легко доступны. Диск покрывается сверху специальным магнитным слоем, который обеспечивает хранение данных. Информация записывается с двух сторон диска по дорожкам, которые представляют собой концентрические окружности. Каждая дорожка разделяется на секторы. Плотность записи данных зависит от плотности нанесения дорожек на поверхность, т. е. числа дорожек на поверхности диска, а также от плотности записи информации вдоль дорожки. К недостаткам относятся маленькая емкость, что делает практически невозможным долгосрочное хранение больших объемов информации, и не очень высокая надежность самих дискет. В настоящее време дискеты практически не используются.

2. Накопитель на жестком магнитном диске (НЖМД – винчестер)

Является логическим продолжением развития технологии магнитного хранения информации. Основные достоинства:

– большая емкость;

– простота и надежность использования;

– возможность обращаться к множеству файлов одновременно;

– высокая скорость доступа к данным.

Из недостатков можно выделить лишь отсутствие съемных носителей информации, хотя в настоящее время используются внешние винчестеры и системы резервного копирования.

В компьютере предусмотрена возможность с помощью специальной системной программы условно разбивать один диск на несколько. Такие диски, которые не существуют как отдельное физическое устройство, а представляют лишь часть одного физического диска, называются логическими дисками. Логическим дискам присваиваются имена, в качестве которых используются буквы латинского алфавита [С:], , [Е:], и т. д.

3. Устройство чтения компакт-дисков (CD-ROM)

В этих устройствах используется принцип считывания сфокусированным лазерным лучом бороздок на металлизированном несущем слое компакт-диска. Этот принцип позволяет достичь высокой плотности записи информации, а, следовательно, и большой емкости при минимальных размерах. Компакт-диск является отличным средством хранения информации, он дешевый, практически не подвержен каким-либо влияниям среды, информация, записанная на нем не исказится и не сотрется, пока диск не будет уничтожен физически, его ёмкость 650 Мбайт. Имеет только один недостаток – сравнительно небольшой объём хранения информации.

4. DVD

А) Отличия DVD от обычных CD-ROM

Самое основное отличие – это, естественно, объем записываемой информации. Если на обычный CD-диск можно записать 650 Мб (хотя в последнее время встречаются болванки и на 800 Мб, но далеко не все приводы смогут прочитать то, что записано на таком носителе), то на один DVD-диск влезет от 4,7 до 17 Гб. В DVD используется лазер с меньшей длиной волны, что позволило существенно увеличить плотность записи, а кроме того, DVD подразумевает возможность двухслойной записи информации, то есть на поверхности компакта находится один слой, поверх которого наносится еще один, полупрозрачный, и первый считывается сквозь второй параллельно. В самих носителях тоже отличий больше, чем кажется на первый взгляд. Из-за того, что плотность записи существенно возросла, а длина волны стала меньше, изменились и требования к защитному слою – для DVD он составляет 0,6 мм против 1,2 мм у обычных CD. Естественно, что диск такой толщины будет значительно более хрупким, по сравнению с классической болванкой. Поэтому еще 0,6 мм обычно заливаются пластиком с двух сторон, чтобы получились те же 1,2 мм. Но самый главный бонус такого защитного слоя в том, что благодаря его малому размеру на одном компакте стало возможным записывать информацию с двух сторон, то есть удваивать его емкость, при этом оставляя размеры практически прежними.

Б) Емкость DVD

Существует пять разновидностей DVD-дисков:

1. DVD5 – однослойный односторонний диск, 4,7 Гб, или два часа видео;

2. DVD9 – двухслойный односторонний диск, 8,5 Гб, или четыре часа видео;

3. DVD10 – однослойный двухсторонний диск, 9,4 Гб, или 4,5 часа видео;

4. DVD14 – двухсторонний диск, два слоя на одной и один на другой стороне, 13,24 Гб, или 6,5 часов видео;

5. DVD18 – двухслойный двухсторонний диск, 17 Гб, или более восьми часов видео.

Самые популярные стандарты – DVD5 и DVD9.

В) Возможности

Ситуация с DVD-носителями сейчас напоминает аналогичную с CD, на которых долгое время тоже хранили только музыку. Сейчас можно встретить не только фильмы, но и музыку (так называемые DVD-Audio) и сборники софта, и игры, и фильмы. Естественно, что основной областью использования является кинопродукция.

Г) Звук в DVD

Звуковое сопровождение может быть закодировано во многих форматах. Самые известные и часто используемые – Dolby Prologic, DTS и Dolby Digital всех версий. То есть фактически в форматах, используемых в кинотеатрах для получения максимально точной и красочной звуковой картины.

Д) Механические повреждения

К механическим повреждениям диски CD и DVD одинаково чувствительны. То есть царапина есть царапина. Однако из-за гораздо более высокой плотности записи потери на DVD-диске будут более значительными. Сейчас существуют программы, которые могут восстанавливать информацию даже с поврежденных дисков, правда с пропуском повреждённых секторов.

Быстрорастущий рынок портативных жестких дисков, предназначенных для транспортировки больших объемов данных, привлек к себе внимание одного из самых крупных производителей винчестеров. Компания Western Digital объявила о выпуске сразу двух моделей устройств под названием WD Passport Portable Drive. В продажу поступили варианты емкостью 40 и 80 Гб. Портативные устройства WD Passport Portable Drive основаны на 2,5-дюймовых HDD WD Scorpio EIDE. Они упакованы в прочный корпус, оборудованы поддержкой технологии Data Lifeguard, и не нуждаются в дополнительном источнике питания (питание через USB). Производитель отмечает, что накопители не греются, работают тихо и потребляют мало энергии.

6. USB Flash Drive

Новый тип внешнего носителя информации для компьютера, появившийся благодаря широкому распространению интерфейса USB(универсальной шины) и преимуществам микросхем Flash памяти. Достаточно большая емкость при небольших размерах, энергонезависимость, высокая скорость передачи информации, защищённость от механических и электромагнитных воздействий, возможность использования на любом компьютере - всё это позволило USB Flash Drive заменить или успешно конкурировать со всеми существовавшими ранее носителями информации.

Кодирование и считывание информации

Современный компьютер может обрабатывать числовую, текстовую, графическую, звуковую и видео информацию. Все эти виды информации в компьютере представлены в двоичном коде, т. е. используется алфавит мощностью два (всего два символа 0 и 1). Связано это с тем, что удобно представлять информацию в виде последовательности электрических импульсов: импульс отсутствует (0), импульс есть (1). Такое кодирование принято называть двоичным, а сами логические последовательности нулей и единиц – машинным языком.

Каждая цифра машинного двоичного кода несет количество информации равное одному биту. Данный вывод можно сделать, рассматривая цифры машинного алфавита, как равновероятные события. При записи двоичной цифры можно реализовать выбор только одного из двух возможных состояний, а, значит, она несет количество информации равное 1 бит. Следовательно, две цифры несут информацию 2 бита, четыре разряда – 4 бита и т. д. Чтобы определить количество информации в битах, достаточно определить количество цифр в двоичном машинном коде.

А) Кодирование текстовой информации

В настоящее время большая часть пользователей при помощи компьютера обрабатывает текстовую информацию, которая состоит из символов: букв, цифр, знаков препинания и др. Традиционно для того чтобы закодировать один символ используют количество информации равное 1 байту, т. е. I = 1 байт = 8 бит. При помощи формулы, которая связывает между собой количество возможных событий К и количество информации I, можно вычислить сколько различных символов можно закодировать (считая, что символы - это возможные события): К = 2I = 28 = 256, т. е. для представления текстовой информации можно использовать алфавит мощностью 256 символов. Суть кодирования заключается в том, что каждому символу ставят в соответствие двоичный код от 00000000 до 11111111 или соответствующий ему десятичный код от 0 до 255. Необходимо помнить, что в настоящее

Двоичный код Десятичный код КОИ8 СР1251 СР866 Мас ISO
11000010 194 б В - - Т

время для кодировки русских букв используют пять различных кодовых

таблиц (КОИ - 8, СР1251, СР866, Мас, ISO), причем тексты, закодированные при помощи одной таблицы, не будут правильно отображаться в другой кодировке. Наглядно это можно представить в виде фрагмента объединенной таблицы кодировки символов. Одному и тому же двоичному коду ставится в соответствие различные символы. Впрочем, в большинстве случаев о перекодировке текстовых документов заботится на пользователь, а специальные программы – конверторы, которые встроены в приложения.

Б) Кодирование графической информации

В середине 50-х годов для больших ЭВМ, которые применялись в научных и военных исследованиях, впервые в графическом виде было реализовано представление данных. Без компьютерной графики трудно представить уже не только компьютерный, но и вполне материальный мир, так как визуализация данных применяется во многих сферах человеческой деятельности. Графическую информацию можно представлять в двух формах: аналоговой или дискретной. Живописное полотно, цвет которого изменяется непрерывно - это пример аналогового представления, а изображение, напечатанное при помощи струйного принтера и состоящее из отдельных точек разного цвета - это дискретное представление. Путем разбиения графического изображения (дискретизации) происходит преобразование графической информации из аналоговой формы в дискретную. При этом производится кодирование - присвоение каждому элементу конкретного значения в форме кода. При кодировании изображения происходит его пространственная дискретизация. Ее можно сравнить с построением изображения из большого количества маленьких цветных фрагментов (метод мозаики). Все изображение разбивается на отдельные точки, каждому элементу ставится в соответствие код его цвета. При этом качество кодирования будет зависеть от следующих параметров: размера точки и количества используемых цветов. Чем меньше размер точки, а, значит, изображение составляется из большего количества точек, тем выше качество кодирования. Чем большее количество цветов используется (т. е. точка изображения может принимать больше возможных состояний), тем больше информации несет каждая точка, а, значит, увеличивается качество кодирования. Создание и хранение графических объектов возможно в нескольких видах – в виде векторного, фрактального или растрового изображения. Отдельным предметом считается 3D (трехмерная) графика, в которой сочетаются векторный и растровый способы формирования изображений. Она изучает методы и приемы построения объемных моделей объектов в виртуальном пространстве. Для каждого вида используется свой способ кодирования графической информации.

В) Кодирование звуковой информации

С самого детства мы сталкиваемся с записями музыки на разных носителях: грампластинках, кассетах, компакт-дисках и т.д. В настоящее время существует два основных способах записи звука: аналоговый и цифровой. Но для того чтобы записать звук на какой-нибудь носитель его нужно преобразовать в электрический сигнал. Это делается с помощью микрофона. Самые простые микрофоны имеют мембрану, которая колеблется под воздействием звуковых волн. К мембране присоединена катушка, перемещающаяся синхронно с мембраной в магнитном поле. В катушке возникает переменный электрический ток. Изменения напряжения тока точно отражают звуковые волны. Переменный электрический ток, который появляется на выходе микрофона, называется аналоговым сигналом. Применительно к электрическому сигналу «аналоговый» обозначает, что этот сигнал непрерывен по времени и амплитуде. Он точно отражает форму звуковой волны, которая распространяется в воздухе. Звуковую информацию можно представить в дискретной или аналоговой форме. Их отличие в том, что при дискретном представлении информации физическая величина изменяется скачкообразно («лесенкой»), принимая конечное множество значений. Если же информацию представить в аналоговой форме, то физическая величина может принимать бесконечное количество значений, непрерывно изменяющихся. Виниловая пластинка является примером аналогового хранения звуковой информации, так как звуковая дорожка свою форму изменяет непрерывно. Но у аналоговых записей на магнитную ленту есть большой недостаток – старение носителя. За год фонограмма, которая имела нормальный уровень высоких частот, может их потерять. Виниловые пластинки при проигрывании их несколько раз теряют качество. Поэтому преимущество отдают цифровой записи. В начале 80-х годов появились компакт-диски. Они являются примером дискретного хранения звуковой информации, так как звуковая дорожка компакт - диска содержит участки с различной отражающей способностью. Теоретически эти цифровые диски могут служить вечно, если их не царапать, т.е. их преимуществами являются долговечность и неподверженность механическому старению. Другое преимущество заключается в том, что при цифровой перезаписи нет потери качества звука. На мультимедийных звуковых картах можно найти аналоговые микрофонный предусилитель и микшер. Рассмотрим процессы преобразования звука из аналоговой формы в цифровую и наоборот. Примерное представление о том, что происходит в звуковой карте, может помочь избежать некоторых ошибок при работе со звуком. Звуковые волны при помощи микрофона превращаются в аналоговый переменный электрический сигнал. Он проходит через звуковой тракт и попадает в аналого-цифровой преобразователь (АЦП) – устройство, которое переводит сигнал в цифровую форму. В упрощенном виде принцип работы АЦП заключается в следующем: он измеряет через определенные промежутки времени амплитуду сигнала и передает дальше, уже по цифровому тракту, последовательность чисел, несущих информацию об изменениях амплитуды. Во время аналого-цифрового преобразования никакого физического преобразования не происходит. С электрического сигнала как бы снимается отпечаток или образец, являющийся цифровой моделью колебаний напряжения в аудиотракте. Если это изобразить в виде схемы, то эта модель представлена в виде последовательности столбиков, каждый из которых соответствует определенному числовому значению. Цифровой сигнал по своей природе дискретен - то есть прерывист, поэтому цифровая модель не совсем точно соответствует форме аналогового сигнала. Вывод цифрового звука происходит при помощи цифро-аналогового преобразователя (ЦАП), который на основании поступающих цифровых данных в соответствующие моменты времени генерирует электрический сигнал необходимой амплитуды.

Считывание информации – извлечение информации, хранящейся в запоминающем устройстве (ЗУ), и передача её в др. устройства вычислительной машины. Считывание информации производится при выполнении большинства машинных операций, а иногда является самостоятельной операцией. Считывание может сопровождаться разрушением (стиранием) информации в тех ячейках (зонах) ЗУ, откуда производилось считывание (как, например, в ЗУ на ферритовых сердечниках), или быть неразрушающим (например, в ЗУ на магнитных лентах, дисках) и, следовательно, допускающим многократное использование однажды записанной информации. Считывание информации характеризуется временем, затрачиваемым непосредственно на вывод данных из ЗУ; оно составляет от нескольких десятков наносек до нескольких милисек.

Рассмотрим процесс считывания информации на примере компакт-диска. Данные с диска читаются при помощи лазерного луча с длиной волны 780 нм. Принцип считывания информации лазером для всех типов носителей заключается в регистрации изменения интенсивности отражённого света. Лазерный луч фокусируется на информационном слое в пятно диаметром ~1,2 мкм. Если свет сфокусировался между питами (на ленде), то фотодиод регистрирует максимальный сигнал. В случае, если свет попадает на пит, фотодиод регистрирует ме́ньшую интенсивность света. Различие между дисками «только для чтения» и дисками однократной/многократной записи заключается в способе формирования питов. В случае диска «только для чтения» питы представляют собой некую рельефную структуру (фазовую дифракционную решетку), причём оптическая глубина каждого пита чуть меньше четверти длины волны света лазера, что приводит к разнице фаз в половину длины волны между светом, отражённым от пита и светом, отражённым от ленда. В результате в плоскости фотоприёмника наблюдается эффект деструктивной интерференции и регистрируется снижение уровня сигнала. В случае CD-R/RW пит представляет собой область с бо́льшим поглощением света, нежели ленд (амплитудная дифракционная решетка). В результате фотодиод также регистрирует снижение интенсивности отражённого от диска света. Длина пита изменяет как амплитуду, так и длительность регистрируемого сигнала.

Скорость чтения/записи CD указывается кратной 150 Кб/с (то есть 153 600 байт/с). Например, 48-скоростной привод обеспечивает максимальную скорость чтения (или записи) CD, равную 48 × 150 = 7200 Кб/с (7,03 Мб/с).

Перспективы развития

Развитие носителей записи информации идет в 3 основных направлениях:

а) увеличение объема полезной информации на конкретном носителе (особенно актуально для оптических дисков);

б) улучшение качества технического оборудования (время доступа к информации, скорость передачи данных);

в) постепенное повышение уровня сочетаемости различных форматов используемых носителей.

К перспективным видам носителей памяти относятся: Eye-Fi, Голографический многоцелевой диск (Holographic Versatile Disc), Millipede.

Eye-Fi - разновидность SD флеш-карт памяти со встроенными внутри карты аппаратными элементами поддержки Wi-Fi-технологии.

Карты могут быть использованы в любом цифровом фотоаппарате. Карта вставляется в соответствующее гнездо фотоаппарата, получая питание от фотоаппарата и при этом расширяя его функционал. Фотоаппарат, оснащённый такой картой может передавать отснятые фотоснимки или видеоролики на компьютер, в мировую сеть интернет на заранее запрограммированные ресурсы, которые осуществляют фото или видео хостинг подобного рода контента. Администрирование, доступ к настройкам и управление работой таких карт осуществляется по Wi-Fi с PC или Mac совместимого компьютера через браузер. Карта работает только через заранее прописанные Wi-Fi сети, поддерживаются шифрование WEP и WPA2.

Технические характеристики:

Емкость карты: 2, 4 или 8 Гигабайта

Поддерживаемые стандарты Wi-Fi: 802.11b, 802.11g

Безопасность Wi-Fi: cтатический WEP 64/128, WPA-PSK, WPA2-PSK

Размеры карты: SD стандарт - 32 х 24 х 2.1 мм

Вес карты: 2.835 г

Голографический многоцелевой диск (Holographic Versatile Disc) - разрабатываемая перспективная технология производства оптических дисков, которая предполагает значительно увеличить объём хранимых на диске данных по сравнению сBlu-Ray и HD DVD. Она использует технологию, известную как голография, которая использует два лазера: один - красный, а второй - зелёный, сведённые в один параллельный луч. Зелёный лазер читает данные, закодированные в виде сетки с голографического слоя близкого к поверхности диска, в то время как красный лазер используется для чтения вспомогательных сигналов с обычного компакт-дискового слоя в глубине диска. Вспомогательная информация используется для отслеживания позиции чтения, наподобие системы CHS в обычном жёстком диске. На CD или DVD эта информация внедрена в данные. Предполагаемая информационная ёмкость этих дисков - до 3.9 терабайт (TB), что сравнимо с 6000 CD, 830 DVD или 160 однослойными дисками Blu-ray; скорость передачи данных - 1 Гбит/сек. Optware собирался выпустить 200GB диск в начале июня 2006 года и Maxell в сентябре 2006 с ёмкостью 300GB. 28 июня 2007 года HVD стандарт был утверждён и опубликован.

Структура голографического диска (HVD)

1. Зелёный лазер чтения/записи (532nm)

2. Красный позиционирующий/индексный лазер (650nm)

3. Голограмма (данные)

4. Поликарбонатный слой

5. Фотополимерный (рhotopolimeric) слой (слой содержащий данные)

6. Разделяющий слой (Distans layers)

7. Слой отражающий зелёный цвет (Dichroic layer)

8. Алюминиевый отражающий слой (отражающий красный свет)

9. Прозрачная основа

P. Углубления

Millipede – относительно новая технология запоминающих устройств, разрабатываемая компанией IBM. Для считывания и записи информации используется зонд сканирующего зондового микроскопа. Также вопросами Millipede memory (Милипидовой памяти) занимаются учёные из Университета науки и технологий в Поханге (Южная Корея). Они смогли первыми в мире создать материал, подходящий для создания миллипидовой памяти. Особенность миллипидовой памяти заключается в том, что информация сохраняется в огромном количестве наноямок, покрывающем поверхность рабочего материала. При этом подобная память является энергонезависимой, и данные сохраняются в ней сколь угодно долго. Для создания действующего прототипа миллипидовой памяти корейские электронщики разработали уникальный полимерный материал. Только с его помощью удалось создать стабильно функционирующее запоминающее устройство, которое уже практически готово к внедрению в производство.

Заключение

В ходе реферата были рассмотрены основные виды носителей информации, принципы кодирования и считывания информации, а также перспективы развития носителей информации.

Также были рассмотрены история носителей информации (перфоленты, перфокарты, магнитные ленты, сменные и постоянные магнитные диски, магнитные барабаны, пакеты сменных магнитных дисков); накопители на гибких магнитных дисках, накопители на жестких магнитных дисках, CD-диски, DVD-диски, портативные USB-накопители, USB Flash Drive. Были рассмотрены кодирование (текстовое, графическое, звуковое) и считывание информации (на примере считывание информации с CD-диска). Самыми перспективными на сегодняшний день считаются Eye-Fi, Голографический многоцелевой диск (Holographic Versatile Disc) и Millipede.

Что было известно первому человеку? Как убить мамонта, бизона или поймать кабана. В эпоху палеолита хватало стен в пещере, чтобы зафиксировать все изученное. Пещерная база данных целиком бы уместилась на скромную флешку размером мегабайт. За 200000 лет своего существования мы узнали о геноме африканской лягушки, нейронных сетях и больше не рисуем на скалах. Сейчас у нас есть диски, облачные хранилища. А также другие виды носителей информации, способные сохранить на одном чипсете всю библиотеку МГУ.

Что такое носитель информации

Носитель информации - это физический объект, свойства и характеристики которого используются для записи и хранения данных. Примерами носителей информации являются пленки, компактные оптические диски, карты, магнитные диски, бумага и ДНК. Носители информации различаются по принципу осуществления записи:

  • печатная или химическая с нанесением краски: книги, журналы, газеты;
  • магнитная: HDD, дискеты;
  • оптическая: CD, Blu-ray;
  • электронная: флешки, твердотельные накопители.

Классифицируются хранилища данных по форме сигнала:

  • аналоговые, использующие для записи непрерывный сигнал: аудио компакт-кассеты и бобины для магнитофонов;
  • цифровые - с дискретным сигналом в виде последовательности чисел: дискеты, флешки.

Первые носители информации

История записи и хранения данных началась 40 тысяч лет назад, когда Homo sapiens пришла идея делать эскизы на стенах своих жилищ. Первое наскальное творчество находится в пещере Шове на юге современной Франции. Галерея содержит 435 рисунков, изображающих львов, носорогов и других представителей фауны позднего палеолита.

На смену Ориньякской культуре в бронзовом веке возник принципиально новый вид носителей информации - туппу́м. Девайс представлял собой пластину из глины и напоминал современный планшет. На поверхность с помощью тростниковой палочки - стилуса - наносились записи. Чтобы труд не размыло дождем, туппумы обжигались. Все таблички с древней документацией тщательно сортировались и хранились в специальных деревянных ящиках.

В Британском музее есть туппум, содержащий информацию о финансовой сделке, произошедшей в Месопотамии во времена правления царя Ассурбанипала. Офицер из свиты принца подтверждал продажу рабыни Арбелы. Табличка содержит его именную печать и записи о ходе операции.

Кипу и папирус

С III тысячелетия до нашей эры в Египте начинают использовать папирус. Запись данных происходит на листы, изготовленные из стеблей растения papyrus. Портативный и легкий вид носителей информации быстро вытеснил свою глиняную предшественницу. На папирусе пишут не только египтяне, но и греки, римляне, византийцы. В Европе материал использовали до XII века. Последний документ, написанный на папирусе, - папский декрет 1057 года.

Одновременно с древними египтянами, на противоположном конце планеты инки изобретают кипу, или «говорящие узелки». Информация фиксировалась с помощью завязывания узлов на прядильных нитях. Кипу хранили данные о налоговых сборах, численности населения. Предположительно использовалась нечисловая информация, но ученым ее только предстоит разгадать.

Бумага и перфокарты

С XII до середины XX века основным хранилищем данных была бумага. Ее использовали для создания печатных и рукописных изданий, книг, средств масс-медиа. В 1808 году из картона начали делать перфокарты - первые цифровые носители информации. Представляли собой листы картона с проделанными в определенной последовательности отверстиями. В отличие от книг и газет, перфокарты считывались машинами, а не людьми.

Изобретение принадлежит американскому инженеру с немецкими корнями Герману Холлериту. Впервые автор применил свое детище для составления статистики смертности и рождаемости в Нью-Йоркском Совете здравоохранения. После пробных попыток, перфокарты использовали для переписи населения США в 1890 году.

Но сама идея проделывать дырки в бумаге, чтобы записывать информацию, была далеко не новой. Еще в 1800 году перфокарты ввел в обиход француз Джозеф-Мари Жаккард для управления ткацким станком. Поэтому технологический прорыв заключался в создании Холлеритом не перфокарт, а табуляционной машины. Это был первый шаг на пути к автоматическому считыванию и вычислению информации. Компания TMC Германа Холлерита по производству табуляционных машин в 1924 году была переименована в IBM.

OMR-карты

Представляют собой листы плотной бумаги с информацией, записанной человеком в виде оптических меток. Сканер распознает метки и обрабатывает данные. OMR-карты используют для составления опросников, тестов с опциональным выбором, бюллетеней и форм, которые необходимо заполнять вручную.

Технология основана на принципе составления перфокарт. Но машина считывает не сквозные отверстия, а выпуклости, или оптические метки. Погрешность исчислений составляет менее 1 %, поэтому OMR-технологию продолжают использовать государственные учреждения, экзаменационные органы, лотереи и букмекерские конторы.

Перфолента

Цифровой носитель информации в виде длинной бумажной полоски с отверстиями. Перфорированные ленты были впервые использованы Базиле Бушоном в 1725 году для управления ткацким станком и механизирования отбора нитей. Но ленты были очень хрупкими, легко рвались и при этом дорого стоили. Поэтому их заменили на перфокарты.

С конца XIX века перфолента получила широкое применение в телеграфии, для ввода данных в компьютеры 1950-1960 годов и в качестве носителей для мини-компьютеров и станков с ЧПУ. Сейчас бобины с намотанной перфолентой стали анахронизмом и канули в Лету. На смену бумажным носителям пришли более мощные и объемные хранилища данных.

Магнитная лента

Дебют магнитной ленты в качестве компьютерного носителя информации состоялся в 1952 году для машины UNIVAC I. Но сама технология появилась гораздо раньше. В 1894 году датский инженер Вольдемар Поульсен обнаружил принцип магнитной записи, работая механиком в Копенгагенской телеграфной компании. В 1898 году ученый воплотил идею в аппарате под названием "телеграфон".

Стальная проволока проходила между двумя полюсами электромагнита. Запись информации на носитель осуществлялась посредством неравномерного намагничивания колебаний электрического сигнала. Вольдемар Поульсен запатентовал свое изобретение. На Всемирной выставке 1900 года в Париже он имел честь записать голос императора Франца-Иосифа на свой девайс. Экспонат с первой магнитной звукозаписью по сей день хранится в Датском музее науки и техники.

Когда патент Поульсена истек, Германия занялась улучшением магнитной записи. В 1930 году стальная проволока была заменена гибкой лентой. Решение использовать магнитные полосы принадлежит австрийско-немецкому разработчику Фрицу Пфлеймеру. Инженер придумал покрывать тонкую бумагу порошком оксида железа и осуществлять запись посредством намагничивания. С использованием магнитной пленки были созданы компакт-кассеты, видеокассеты и современные носители информации для персональных компьютеров.

HDD-диски

Винчестер, HDD или жесткий диск - это аппаратное устройство с энергонезависимой памятью, что означает полное сохранение информации, даже при отключенном питании. Является вторичным запоминающим устройством, состоящим из одной или нескольких пластин, на которые записываются данные с использованием магнитной головки. HDD находятся внутри системного блока в отсеке дисководов. Подключаются к материнской плате с помощью кабеля ATA, SCSI или SATA и к блоку питания.

Первый жесткий диск был разработан американской компанией IBM в 1956 году. Технологию применили в качестве нового вида носителей информации для коммерческого компьютера IBM 350 RAMAC. Аббревиатура расшифровывается как «метод случайного доступа к учету и контролю».

Чтобы вместить девайс у себя дома, потребовалась бы целая комната. Внутри диска было 50 алюминиевых пластин по 61 см в диаметре и 2,5 см шириной. Размер системы хранения данных приравнивался к двум холодильникам. Его вес составлял 900 кг. Емкость RAMAC была всего лишь 5МБ. Смешная цифра на сегодняшний день. Но 60 лет назад это расценивалось как технология завтрашнего дня. После анонсирования разработки, ежедневная газета города Сан Хосе выпустила репортаж под названием «Машина с суперпамятью!».

Размеры и возможности современных HDD

Жесткий диск - компьютерный носитель информации. Используется для хранения данных, включая изображения, музыку, видео, текстовые документы и любые созданные или загруженные материалы. Кроме того, содержат файлы для операционной системы и программного обеспечения.

Первые винчестеры вмещали до нескольких десятков Мбайт. Постоянно развивающаяся технология позволяет современным HDD хранить терабайты информации. Это около 400 фильмов со средним расширением, 80 000 песен в mp3-формате или 70 компьютерных ролевых игр, аналогичных «Скайрим», на одном устройстве.

Дискета

Floppy, или гибкий магнитный диск, - носитель информации, созданный IBM в 1967 году как альтернатива HDD. Дискеты стоили дешевле винчестеров и предназначались для хранения электронных данных. На ранних компьютерах не было CD-ROM или USB. Гибкие диски были единственным способом установки новой программы или резервного копирования.

Вместительность каждой 3,5-дюймовой дискеты была до 1,44 Мбайт, когда одна программа «весила» не менее полутора мегабайт. Поэтому версия Windows 95 появилась сразу на 13 дискетах DMF. Floppy disk на 2,88 Мбайт появился только в 1987 году. Просуществовал этот электронный носитель информации до 2011 года. В современной комплектации компьютеров отсутствуют флоппи-дисководы.

Оптические носители

С появлением квантового генератора началась популяризация оптических запоминающих устройств. Запись осуществляется лазером, а считываются данные за счет оптического излучения. Примеры носителей информации:

  • Blu-ray диски;
  • CD-ROM диски;
  • DVD-R, DVD+R, DVD-RW и DVD+RW.

Устройство представляет собой диск, покрытый слоем поликарбоната. На поверхности находятся микроуглубления, которые считываются лазером при сканировании. Первый коммерческий лазерный диск появился на рынке в 1978 году, а в 1982 году японская компания SONY и Philips выпустили в продажу компакт-диски. Их диаметр составлял 12 см, а разрешение было увеличено до 16 бит.

Электронные носители информации формата CD использовались исключительно для воспроизведения звуковой записи. Но на то время это была передовая технология, за которую в 2009 году Royal Philips Electronics получила награду IEEE. А в январе 2015 года CD был награжден как ценнейшая инновация.

В 1995 году появились цифровые универсальные диски или DVD, ставшие оптическими носителями нового поколения. Для их создания использовалась технология другого типа. Вместо красного лазер DVD использует более короткий инфракрасный свет, что увеличивает объем носителя информации. Двухслойные DVD-диски способны хранить до 8,5 Гбайта данных.

Flash-память

Флеш-память - это интегральная микросхема, которая не требует постоянной мощности для сохранения данных. Другими словами, это энергонезависимая полупроводниковая компьютерная память. Запоминающие устройства с флеш-памятью постепенно завоевывают рынок, вытесняя магнитные носители.

Преимущества Flash-технологии:

  • компактность и мобильность;
  • большой объем;
  • высокая скорость работы;
  • низкое энергопотребление.

К запоминающим устройствам Flash-типа относят:

  • USB-флешки. Это самый простой и дешевый носитель информации. Используется для многократной записи, хранения и передачи данных. Размеры варьируются от 2 Гбайт до 1 Тбайта. Содержит микросхему памяти в пластиковом или алюминиевом корпусе с USB-разъёмом.
  • Карты памяти. Разработаны для хранения данных на телефонах, планшетах, цифровых фотоаппаратах и других электронных девайсах. Отличаются размером, совместимостью и объемом.
  • SSD. Твердотельный накопитель с энергонезависимой памятью. Это альтернатива стандартному жесткому диску. Но в отличие от винчестеров у SSD нет движущийся магнитной головки. За счет этого они обеспечивают быстрый доступ к данным, не издают скрипов, как HDD. Из недостатков - высокая цена.

Облачные хранилища

Облачные онлайн-хранилища - это современные носители информации, представляющие собой сеть из мощных серверов. Вся информация хранится удаленно. Каждый пользователь может получать к данным доступ в любое время и из любой точки мира. Недостаток в полной зависимости от интернета. Если у вас нет подключения к Сети или Wi-Fi, доступ к данным закрыт.

Облачные хранилища гораздо дешевле своих физических аналогов и обладают большим объемом. Технология активно используется в корпоративной и образовательной среде, разработке и проектировании веб-приложений компьютерного софта. На облаке можно хранить любые файлы, программы, резервные копии, использовать их как среду разработки.

Из всех перечисленных видов носителей информации самыми перспективными являются облачные хранилища. Также все больше пользователей ПК переходят с магнитных жестких дисков на твердотельные накопители и носители с Flash-памятью. Развитие голографических технологий и искусственного интеллекта обещает появление принципиально новых девайсов, которые оставят флешки, SDD и диски далеко позади.