Лекция 4

  1. Элементы статистического анализа модели
  2. Проверка статистической значимости параметров уравнения регрессии
  3. Анализ дисперсии
  4. Проверка общего качества уравнения регрессии
  5. F-статистика. Распределение Фишера в регрессионном анализе.

Оценивая зависимость между эндогенными и экзогенными переменными (y и x) по выборочным данным не всегда удается на первом этапе получить удачную модель регрессии. При этом каждый раз следует оценивать качество полученной модели. Качество модели оценивается по 2м направлениям:

· Статистическая оценка качества модели

Статистический анализ модели включает следующие элементы:

  • Проверку статистической значимости параметров уравнения регрессии
  • Проверку общего качества уравнения регрессии
  • Проверку свойств данных, выполнение которых предполагалось при оценивании уравнения

Статистическая значимость параметров уравнения регрессии определяется по t-статистике или статистике Стьюдента. Так:

tb – t-статистика для коэффициента регрессии b

mb – стандартная ошибка коэффициента регрессии.

Так же рассчитывают t-статистику для коэффициентов корреляции R:

Таким образом tb^2=t r ^2=F. То есть проверка статистической значимости коэффициента регрессии b равносильна проверке статистической значимости коэффициента корреляции

Коэффициент корреляции показывает тесноту корреляционной связи(между х и у).

Для линейной регрессии коэффициент корреляции:

Для определения тесноты связи используют обычно таблицу Чеглока

R 0,1 – 0,3 слабая

R 0,3 – 0,5 умеренная

R 0,5-,07 заметная

R 0,7-0,9 высокая

R 0,9 до 0,99 весьма высокая связь между х и у

Коэффициент корреляции -1

Часто для практических целей рассчитывают коэффициент эластичности, бета-коэффициент:

Эластичностью функции у=f(x) называется предел отношения относительных переменных у и х

Эластичность показывает на сколько %-в изменится у при изменении х на 1 %.

Для парной линейной регрессии коэффициент эластичности вычисляется по формуле:

Он показывает на сколько %-в изменится у в среднем при изменении х в среднем на 1 %.

Бетта-коэффициент равен:

– среднее квадрат отклонение x

– Среднее квадрат отклонение у

Бетта-коэффициент показывает на какую величину от своего среднего квадратического отклонения изменится у при изменении х на величину своего среднего квадратического отклонения.


Анализ дисперсии

В анализе дисперсии особое место занимает разложение общей суммы квадратов отклонений переменой у от у среднего на две части: на сумму объясненную регрессией и сумму, не объясненную регрессией.

Общая сумма квадратов отклонений равна сумме квадратов отклонений объясненной регрессией плюс остаточной сумме квадратов отклонений.

Эти суммы связаны с числом степеней свободы df – это число свободы независимого варьирования признаков.

Так общая сумма квадратов отклонений имеет общее число степеней свободы (n – 1).

Сумма квадратов отклонений объясненная регрессией имеет степень свободы 1, так как переменная зависит от одной величины – коэффициента регрессии b.

Между числом степеней свободы существует равенство, из которого:

N – 1 = 1 + n – 2

Разделим каждую сумму на соответствующее число степеней свободы, получим средний квадрат отклонений или дисперсию:

D общ = D факт + D ост

Оценить общее качество уравнения регрессии означает, установить соответствует ли математическая модель, выражающая зависимость между переменными экспериментальным данным и достаточно ли включенных в модель переменных, объясняющих у.

Оценить общие качества модели = оценить надежность модели = оценить достоверность уравнения регрессии.

Оценка общего качества модели регрессии осуществляется на основе дисперсионного анализа. Для оценки качества модели рассчитывают коэффициент детерминации:

В числителе выборочная оценка остаточной дисперсии, в знаменателе выборочная оценка общей дисперсии.

Коэффициент детерминации характеризует долю вариации зависимой переменной, объясненной с помощью уравнения регрессии.

Так, если R квадрат равен 0,97 это значит что на 97% изменений у обусловлено изменением х.

Чем ближе R квадрат к единице, тем сильнее статистически значимая линейная связь между х и у.

Для получения не смещенных оценок дисперсии(коэффициента детерминации) и числитель, и знаменатель в формуле делят на соответствующее число степеней свободы:

Для определения статистической значимости коэффициента детерминации R квадрат проверяется нулевая гипотеза для F-статистики, рассчитываемой по формуле:

Для парной линейной:

F-расчетная сравнивается со значением статистики в таблице. F-табличная рассматривается с числом степеней свободы m, n-m-1, при уровне значимости альфа.

Если F расч> F табл то нулевая гипотеза отвергается, принимается гипотеза о статистической значимости коэффициента детерминации R квадрат.

F-критерий Фишера = факторная дисперсия / на остаточную дисперсию:

Лекция №5

Проверка свойств данных, выполнение которых предполагалось при оценивании уравнения регрессии

1. Автокорреляция в остатках

2. Статистика Дарбина-Уотсона

3. Примеры

При оценивании параметров модели регрессии предполагается, что отклонении

1. В случае, если взаимосвязь между х и у не линейна.

2. Связь между переменными х и у линейна, но на исследуемый показатель воздействует фактор, не включенный в модель. Величина такого фактора может менять свою динамику за рассматриваемый период. Особенно это характерно для лаговых переменных.

Обе причины свидетельствуют о том, что полученное уравнение регрессии можно улучшить, оценив нелинейную зависимость или добавив в исходную модель дополнительный фактор.

Четвертая предпосылка метода наименьших квадратов говорит о том, что отклонения являются независимыми между собой, однако при исследовании и анализе исходных данных на практике встречаются ситуации, когда эти отклонения содержат тенденцию или циклические колебания.

y =f (x ), когда каждому значению независимой переменной x соответствует одно определённое значение величины y , при регрессионной связи одному и тому же значению x могут соответствовать в зависимости от случая различные значения величины y . Если при каждом значении x =x i наблюдается n i значений y i 1 …y in 1 величины y , то зависимость средних арифметических =(y i 1 +…+y in 1)/n i от x =x i и является регрессией в статистическом понимании этого термина .

Этот термин в статистике впервые был использован Френсисом Гальтоном (1886) в связи с исследованием вопросов наследования физических характеристик человека. В качестве одной из характеристик был взят рост человека; при этом было обнаружено, что в целом сыновья высоких отцов, что не удивительно, оказались более высокими, чем сыновья отцов с низким ростом. Более интересным было то, что разброс в росте сыновей был меньшим, чем разброс в росте отцов. Так проявлялась тенденция возвращения роста сыновей к среднему (regression to mediocrity ), то есть «регресс». Этот факт был продемонстрирован вычислением среднего роста сыновей отцов, рост которых равен 56 дюймам, вычислением среднего роста сыновей отцов, рост которых равен 58 дюймам, и т. д. После этого результаты были изображены на плоскости, по оси ординат которой откладывались значения среднего роста сыновей, а по оси абсцисс - значения среднего роста отцов. Точки (приближённо) легли на прямую с положительным углом наклона меньше 45°; важно, что регрессия была линейной.

Итак, допустим, имеется выборка из двумерного распределения пары случайных переменных (X, Y ). Прямая линия в плоскости (x, y ) была выборочным аналогом функции

В этом примере регрессия Y на X является линейной функцией . Если регрессия Y на X отлична от линейной, то приведённые уравнения суть линейная аппроксимация истинного уравнения регрессии.

В общем случае регрессия одной случайной переменной на другую не обязательно будет линейной. Также не обязательно ограничиваться парой случайных переменных. Статистические проблемы регрессии связаны с определением общего вида уравнения регрессии, построением оценок неизвестных параметров, входящих в уравнение регрессии, и проверкой статистических гипотез о регрессии . Эти проблемы рассматриваются в рамках регрессионного анализа .

Простым примером регрессии Y по X является зависимость между Y и X , которая выражается соотношением: Y =u (X )+ε, где u (x )=E (Y | X =x ), а случайные величины X и ε независимы. Это представление полезно, когда планируется эксперимент для изучения функциональной связи y =u (x ) между неслучайными величинами y и x . На практике обычно коэффициенты регрессии в уравнении y =u (x ) неизвестны и их оценивают по экспериментальным данным.

Линейная регрессия (пропедевтика)

Представим зависимость y от x в виде линейной модели первого порядка:

Будем считать, что значения x определяются без ошибки, β 0 и β 1 - параметры модели, а ε - ошибка, распределение которой подчиняется нормальному закону с нулевым средним значением и постоянным отклонением σ 2 . Значения параметров β заранее не известны и их нужно определить из набора экспериментальных значений (x i , y i ), i =1, …, n . Таким образом мы можем записать:

где означает предсказанное моделью значение y при данном x , b 0 и b 1 - выборочные оценки параметров модели, а - значения ошибок аппроксимации.

Метод наименьших квадратов даёт следующие формулы для вычисления параметров данной модели и их отклонений:

здесь средние значения определяются как обычно: , и s e 2 обозначает остаточное отклонение регрессии, которое является оценкой дисперсии σ 2 в том случае, если модель верна.

Стандартные ошибки коэффициентов регрессии используются аналогично стандартной ошибке среднего - для нахождения доверительных интервалов и проверки гипотез. Используем, например, критерий Стьюдента для проверки гипотезы о равенстве коэффициента регрессии нулю, то есть о его незначимости для модели. Статистика Стьюдента: t =b /s b . Если вероятность для полученного значения и n −2 степеней свободы достаточно мала, например, <0,05 - гипотеза отвергается. Напротив, если нет оснований отвергнуть гипотезу о равенстве нулю, скажем b 1 - есть основание задуматься о существовании искомой регрессии, хотя бы в данной форме, или о сборе дополнительных наблюдений. Если же нулю равен свободный член b 0 , то прямая проходит через начало координат и оценка углового коэффициента равна

,

а её стандартной ошибки

Обычно истинные величины коэффициентов регрессии β 0 и β 1 не известны. Известны только их оценки b 0 и b 1 . Иначе говоря истинная прямая регрессии может пройти иначе, чем построенная по выборочным данным. Можно вычислить доверительную область для линии регрессии. При любом значении x соответствующие значения y распределены нормально. Средним является значение уравнения регрессии . Неопределённость его оценки характеризуется стандартной ошибкой регрессии:

Теперь можно вычислить 100(1−α/2)-процентный доверительный интервал для значения уравнения регрессии в точке x :

,

где t (1−α/2, n −2) - t -значение распределения Стьюдента. На рисунке показана линия регрессии, построенная по 10 точкам (сплошные точки), а также 95%-я доверительная область линии регрессии, которая ограничена пунктирными линиями. С 95%-й вероятностью можно утверждать, что истинная линия находится где-то внутри этой области. Или иначе, если мы соберём аналогичные наборы данных (обозначены кружками) и построим по ним линии регрессии (обозначены голубым цветом), то в 95 случаях из 100 эти прямые не покинут пределов доверительной области. (Для визуализации кликните по картинке) Обратите внимание, что некоторые точки оказались вне доверительной области. Это совершенно естественно, поскольку речь идёт о доверительной области линии регрессии, а не самих значений. Разброс значений складывается из разброса значений вокруг линии регрессии и неопределённости положения самой этой линии, а именно:

Здесь m - кратность измерения y при данном x . И 100(1−α/2)-процентный доверительный интервал (интервал прогноза) для среднего из m значений y будет:

.

На рисунке эта 95%-я доверительная область при m =1 ограничена сплошными линиями. В эту область попадает 95 % всех возможных значений величины y в исследованном диапазоне значений x .

Литература

Ссылки

  • (англ.)

Wikimedia Foundation . 2010 .

Смотреть что такое "Регрессия (математика)" в других словарях:

    В Викисловаре есть статья «регрессия» Регрессия (лат. regressio «обратное движение, возвращение») многознач … Википедия

    О функции, см.: Интерполянт. Интерполяция, интерполирование в вычислительной математике способ нахождения промежуточных значений величины по имеющемуся дискретному набору известных значений. Многим из тех, кто сталкивается с научными и… … Википедия

    У этого термина существуют и другие значения, см. среднее значение. В математике и статистике среднее арифметическое одна из наиболее распространённых мер центральной тенденции, представляющая собой сумму всех наблюденных значений деленную на их… … Википедия

    Не следует путать с японскими свечами. График 1. Результаты эксперимента Майкельсона Морли … Википедия

    Начинающим · Сообщество · Порталы · Награды · Проекты · Запросы · Оценивание География · История · Общество · Персоналии · Религия · Спорт · Техника · Наука · Искусство · Философия … Википедия

    РЕГРЕССИОННЫЙ И КОРРЕЛЯЦИОННЫЙ АНАЛИЗ - REGRESSION AND CORRELATION ANALYSISР.а. представляет собой вычисления на основе статистической информации с целью математической оценки усредненной связи между зависимой переменной и некоторой независимой переменной или переменными. Простая… … Энциклопедия банковского дела и финансов

    Логотип Тип Программы математического моделирования Разработчик … Википедия

Целью регрессионного анализа является измерение связи меж­ду зависимой переменной и одной (парный регрессионный анализ) или не­сколькими (множественный) независимыми переменными. Независимые переменные называют также факторными, объясняющими, опреде­ляющими, регрессорами и предикторами.

Зависимую переменную иногда называют определяемой, объясняемой, «откликом». Чрезвы­чайно широкое распространение регрессионного анализа в эмпири­ческих исследованиях связано не только с тем, что это удобный ин­струмент тестирования гипотез. Регрессия, особенно множественная, является эффективным методом моделирования и прогнозирования.

Объяснение принципов работы с регрессионным анализом начнем с более простого - парного метода.

Парный регрессионный анализ

Первые действия при использовании регрессионного анализа будут практически идентичны предпринятым нами в рамках вычисления коэффициента корреляции. Три основных условия эффективности корреляционного анализа по методу Пирсона - нормальное распре­деление переменных, интервальное измерение переменных, линейная связь между переменными - актуальны и для множественной регрес­сии. Соответственно, на первом этапе строятся диаграммы рассеяния, проводится статистически-описательный анализ переменных и вы­числяется линия регрессии. Как и в рамках корреляционного анализа, линии регрессии строятся методом наименьших квадратов.

Чтобы более наглядно проиллюстрировать различия между двумя методами анализа данных, обратимся к уже рассмотренному приме­ру с переменными «поддержка СПС» и «доля сельского населения». Исходные данные идентичны. Отличие в диаграммах рассеяния бу­дет заключаться в том, что в регрессионном анализе корректно от­кладывать зависимую переменную - в нашем случае «поддержка СПС» по оси Y, тогда как в корреляционном анализе это не имеет значения. После чистки выбросов диаграмма рассеяния имеет вид:

Принципиальная идея регрессионного анализа состоит в том, что, имея общую тенденцию для переменных - в виде линии регрессии, - можно предсказать значение зависимой переменной, имея значения независимой.

Представим обычную математическую линейную функцию. Лю­бую прямую в евклидовом пространстве можно описать формулой:

где а - константа, задающая смещение по оси ординат; b - коэффи­циент, определяющий угол наклона линии.

Зная угловой коэффициент и константу, можно рассчитать (пред­сказать) значение у для любого х.

Эта простейшая функция и легла в основу модели регрессионного анализа с той оговоркой, что значение у мы предскажем не точно, а в рамках определенного доверительного интервала, т.е. приблизительно.

Константой является точка пересечения линии регрессии и оси ординат (F-пересечение, в статистических пакетах, как правило, обозначаемое «interceptor»). В нашем примере с голосованием за СПС ее округленное значение составит 10,55. Угловой коэффициент Ъ бу­дет равен примерно -0,1 (как и в корреляционном анализе, знак по­казывает тип связи - прямая или обратная). Таким образом, получен­ная модель будет иметь вид СП С = -0,1 х Сел. нас. + 10,55.

СПС = -0,10 х 47 + 10,55 = 5,63.

Разность между исходным и предсказанным значениями называет­ся остатком (с этим термином - принципиальным для статистики - мы уже сталкивались при анализе таблиц сопряженности). Так, для случая «Республика Адыгея» остаток будет равен 3,92 - 5,63 = -1,71. Чем больше модульное значение остатка, тем менее удачно предсказа­но значение.

Рассчитываем предсказанные значения и остатки для всех случаев:
Случай Сел. нас. СПС

(исходное)

СПС

(предсказанное)

Остатки
Республика Адыгея 47 3,92 5,63 -1,71 -
Республика Алтай 76 5,4 2,59 2,81
Республика Башкортостан 36 6,04 6,78 -0,74
Республика Бурятия 41 8,36 6,25 2,11
Республика Дагестан 59 1,22 4,37 -3,15
Республика Ингушетия 59 0,38 4,37 3,99
И т.д.

Анализ соотношения исходных и предсказанных значений служит для оценки качества полученной модели, ее прогностической способности. Одним из главных показателей регрессионной статистики является множественный коэффициент корреляции R - коэффициент корреляции между исходными и предсказанными значениями зави­симой переменной. В парном регрессионном анализе он равен обыч­ному коэффициенту корреляции Пирсона между зависимой и неза­висимой переменной, в нашем случае - 0,63. Чтобы содержательно интерпретировать множественный R, его необходимо преобразовать в коэффициент детерминации. Это делается так же, как и в корреля­ционном анализе - возведением в квадрат. Коэффициент детерминации R -квадрат (R 2) показывает долю вариации зависимой пере­менной, объясняемую независимой (независимыми) переменными.

В нашем случае R 2 = 0,39 (0,63 2); это означает, что переменная «доля сельского населения» объясняет примерно 40% вариации переменной «поддержка СПС». Чем больше величина коэффициента детер­минации, тем выше качество модели.

Другим показателем качества модели является стандартная ошиб­ка оценки (standard error of estimate). Это показатель того, насколько сильно точки «разбросаны» вокруг линии регрессии. Мерой разброса для интервальных переменных является стандартное отклонение. Со­ответственно, стандартная ошибка оценки - это стандартное откло­нение распределения остатков. Чем выше ее значение, тем сильнее разброс и тем хуже модель. В нашем случае стандартная ошибка со­ставляет 2,18. Именно на эту величину наша модель будет «ошибаться в среднем» при прогнозировании значения переменной «поддерж­ка СПС».

Регрессионная статистика включает в себя также дисперсионный анализ. С его помощью мы выясняем: 1) какая доля вариации (дисперсии) зависимой переменной объясняется независимой перемен­ной; 2) какая доля дисперсии зависимой переменной приходится на остатки (необъясненная часть); 3) каково отношение этих двух вели­чин (/"-отношение). Дисперсионная статистика особенно важна для выборочных исследований - она показывает, насколько вероятно наличие связи между независимой и зависимой переменными в генеральной совокупности. Однако и для сплошных исследований (как в нашем примере) изучение результатов дисперсионного анализа небесполезно. В этом случае проверяют, не вызвана ли выявленная ста­тистическая закономерность стечением случайных обстоятельств, насколько она характерна для того комплекса условий, в которых на­ходится обследуемая совокупность, т.е. устанавливается не истинность полученного результата для какой-то более обширной гене­ральной совокупности, а степень его закономерности, свободы от случайных воздействий.

В нашем случае статистика дисперсионного анализа такова:

SS df MS F значение
Регрес. 258,77 1,00 258,77 54,29 0.000000001
Остат. 395,59 83,00 Л,11
Всего 654,36

F-отношение 54,29 значимо на уровне 0,0000000001. Соответ­ственно, мы можем с уверенностью отвергнуть нулевую гипотезу (что обнаруженная нами связь носит случайный характер).

Аналогичную функцию выполняет критерий t, но уже в отношении регрессионных коэффициентов (углового и F-пересечения). С помо­щью критерия / проверяем гипотезу о том, что в генеральной совокуп­ности регрессионные коэффициенты равны нулю. В нашем случае мы вновь можем уверенно отбросить нулевую гипотезу.

Множественный регрессионный анализ

Модель множественной регрессии практически идентична модели парной регрессии; разница лишь в том, что в линейную функцию последовательно включаются несколько независимых переменных:

Y = b1X1 + b2X2 + …+ bpXp + а.

Если независимых переменных больше двух, мы не имеем возмож­ности получить визуальное представление об их связи, в этом плане множественная регрессия менее «наглядна», нежели парная. При на­личии двух независимых переменных данные бывает полезно отобразить на трехмерной диаграмме рассеяния. В профессиональных ста­тистических пакетах программ (например, Statisticа) существует опция вращения трехмерной диаграммы, позволяющая хорошо визуально представить структуру данных.

При работе с множественной регрессией, в отличие от парной, не­обходимо определять алгоритм анализа. Стандартный алгоритм включает в итоговую регрессионную модель все имеющиеся предикторы. Пошаговый алгоритм предполагает последовательное включе­ние (исключение) независимых переменных, исходя из их объяснительного «веса». Пошаговый метод хорош, когда имеется много независимых переменных; он «очищает» модель от откровенно слабых предикторов, делая ее более компактной и лаконичной.

Дополнительным условием корректности множественной регрес­сии (наряду с интервальностью, нормальностью и линейностью) является отсутствие мультиколлинеарности - наличия сильных корреляционных связей между независимыми переменными.

Интерпретация статистики множественной регрессии включает в себя все злементы, рассмотренные нами для случая парной регрессии. Кроме того, в статистике множественного регрессионного анализа есть и другие важные составляющие.

Работу с множественной регрессией мы проиллюстрируем на при­мере тестирования гипотез, объясняющих различия в уровне электоральной активности по регионам России. В ходе конкретных эмпири­ческих исследований были высказаны предположения, что на уровень явки избирателей влияют:

Национальный фактор (переменная «русское население»; операционализирована как доля русского населения в субъектах РФ). Предполагается, что увеличение доли русского населения ведет к сни­жению активности избирателей;

Фактор урбанизации (переменная «городское население»; операционализирована как доля городского населения в субъектах РФ, с этим фактором мы уже работали в рамках корреляционного анализа). Предполагается, что увеличение доли городского населения также ве­дет к снижению активности избирателей.

Зависимая переменная - «интенсивность избирательной активно­сти» («актив») операционализирована через усредненные данные яв­ки по регионам на федеральных выборах с 1995 по 2003 г. Исходная таблица данных для двух независимых и одной зависимой перемен­ной будет иметь следующий вид:

Случай Переменные
Актив. Гор. нас. Рус. нас.
Республика Адыгея 64,92 53 68
Республика Алтай 68,60 24 60
Республика Бурятия 60,75 59 70
Республика Дагестан 79,92 41 9
Республика Ингушетия 75,05 41 23
Республика Калмыкия 68,52 39 37
Карачаево-Черкесская Республика 66,68 44 42
Республика Карелия 61,70 73 73
Республика Коми 59,60 74 57
Республика Марий Эл 65,19 62 47

И т.д. (после чистки выбросов остается 83 случая из 88)

Статистика, описывающая качество модели:

1. Множественный R = 0,62; Л-квадрат = 0,38. Следовательно, национальный фактор и фактор урбанизации вместе объясняют около 38% вариации переменной «электоральная активность».

2. Средняя ошибка составляет 3,38. Именно настолько «в среднем ошибается» построенная модель при прогнозировании уровня явки.

3. /л-отношение объясненной и необъясненной вариации состав­ляет 25,2 на уровне 0,000000003. Нулевая гипотеза о случайности выявленных связей отвергается.

4. Критерий /для константы и регрессионных коэффициентов пе­ременных «городское население» и «русское население» значим на уровне 0,0000001; 0,00005 и 0,007 соответственно. Нулевая гипотеза о случайности коэффициентов отвергается.

Дополнительная полезная статистика в анализе соотношения ис­ходных и предсказанных значений зависимой переменной - расстояние Махаланобиса и расстояние Кука. Первое - мера уникальности слу­чая (показывает, насколько сочетание значений всех независимых переменных для данного случая отклоняется от среднего значения по всем независимым переменным одновременно). Второе - мера влия­тельности случая. Разные наблюдения по-разному влияют на наклон линии регрессии, и с помощью расстояния Кука можно сопоставлять их по этому показателю. Это бывает полезно при чистке выбросов (вы­брос можно представить как чрезмерно влиятельный случай).

В нашем примере к уникальным и влиятельным случаям, в частно­сти, относится Дагестан.

Случай Исходные

значения

Предска­

значения

Остатки Расстояние

Махаланобиса

Расстояние
Адыгея 64,92 66,33 -1,40 0,69 0,00
Республика Алтай 68,60 69.91 -1,31 6,80 0,01
Республика Бурятия 60,75 65,56 -4,81 0,23 0,01
Республика Дагестан 79,92 71,01 8,91 10,57 0,44
Республика Ингушетия 75,05 70,21 4,84 6,73 0,08
Республика Калмыкия 68,52 69,59 -1,07 4,20 0,00

Собственно регрессионная модель обладает следующими парамет­рами: У-пересечение (константа) = 75,99; Ь (Гор. нас.) = -0,1; Ъ (Рус. нас.) = -0,06. Итоговая формула.

Основная особенность регрессионного анализа: при его помощи можно получить конкретные сведения о том, какую форму и характер имеет зависимость между исследуемыми переменными.

Последовательность этапов регрессионного анализа

Рассмотрим кратко этапы регрессионного анализа.

    Формулировка задачи. На этом этапе формируются предварительные гипотезы о зависимости исследуемых явлений.

    Определение зависимых и независимых (объясняющих) переменных.

    Сбор статистических данных. Данные должны быть собраны для каждой из переменных, включенных в регрессионную модель.

    Формулировка гипотезы о форме связи (простая или множественная, линейная или нелинейная).

    Определение функции регрессии (заключается в расчете численных значений параметров уравнения регрессии)

    Оценка точности регрессионного анализа.

    Интерпретация полученных результатов. Полученные результаты регрессионного анализа сравниваются с предварительными гипотезами. Оценивается корректность и правдоподобие полученных результатов.

    Предсказание неизвестных значений зависимой переменной.

При помощи регрессионного анализа возможно решение задачи прогнозирования и классификации. Прогнозные значения вычисляются путем подстановки в уравнение регрессии параметров значений объясняющих переменных. Решение задачи классификации осуществляется таким образом: линия регрессии делит все множество объектов на два класса, и та часть множества, где значение функции больше нуля, принадлежит к одному классу, а та, где оно меньше нуля, - к другому классу.

Задачи регрессионного анализа

Рассмотрим основные задачи регрессионного анализа: установление формы зависимости, определение функции регрессии , оценка неизвестных значений зависимой переменной.

Установление формы зависимости.

Характер и форма зависимости между переменными могут образовывать следующие разновидности регрессии:

    положительная линейная регрессия (выражается в равномерном росте функции);

    положительная равноускоренно возрастающая регрессия;

    положительная равнозамедленно возрастающая регрессия;

    отрицательная линейная регрессия (выражается в равномерном падении функции);

    отрицательная равноускоренно убывающая регрессия;

    отрицательная равнозамедленно убывающая регрессия.

Однако описанные разновидности обычно встречаются не в чистом виде, а в сочетании друг с другом. В таком случае говорят о комбинированных формах регрессии.

Определение функции регрессии.

Вторая задача сводится к выяснению действия на зависимую переменную главных факторов или причин, при неизменных прочих равных условиях, и при условии исключения воздействия на зависимую переменную случайных элементов. Функция регрессии определяется в виде математического уравнения того или иного типа.

Оценка неизвестных значений зависимой переменной.

Решение этой задачи сводится к решению задачи одного из типов:

    Оценка значений зависимой переменной внутри рассматриваемого интервала исходных данных, т.е. пропущенных значений; при этом решается задача интерполяции.

    Оценка будущих значений зависимой переменной, т.е. нахождение значений вне заданного интервала исходных данных; при этом решается задача экстраполяции.

Обе задачи решаются путем подстановки в уравнение регрессии найденных оценок параметров значений независимых переменных. Результат решения уравнения представляет собой оценку значения целевой (зависимой) переменной.

Рассмотрим некоторые предположения, на которые опирается регрессионный анализ.

Предположение линейности, т.е. предполагается, что связь между рассматриваемыми переменными является линейной. Так, в рассматриваемом примере мы построили диаграмму рассеивания и смогли увидеть явную линейную связь. Если же на диаграмме рассеивания переменных мы видим явное отсутствие линейной связи, т.е. присутствует нелинейная связь, следует использовать нелинейные методы анализа.

Предположение о нормальности остатков . Оно допускает, что распределение разницы предсказанных и наблюдаемых значений является нормальным. Для визуального определения характера распределения можно воспользоваться гистограммамиостатков .

При использовании регрессионного анализа следует учитывать его основное ограничение. Оно состоит в том, что регрессионный анализ позволяет обнаружить лишь зависимости, а не связи, лежащие в основе этих зависимостей.

Регрессионный анализ дает возможность оценить степень связи между переменными путем вычисления предполагаемого значения переменной на основании нескольких известных значений.

Уравнение регрессии.

Уравнение регрессии выглядит следующим образом: Y=a+b*X

При помощи этого уравнения переменная Y выражается через константу a и угол наклона прямой (или угловой коэффициент) b, умноженный на значение переменной X. Константу a также называют свободным членом, а угловой коэффициент - коэффициентом регрессии или B-коэффициентом.

В большинстве случав (если не всегда) наблюдается определенный разброс наблюдений относительно регрессионной прямой.

Остаток - это отклонение отдельной точки (наблюдения) от линии регрессии (предсказанного значения).

Для решения задачи регрессионного анализа в MS Excel выбираем в меню Сервис "Пакет анализа" и инструмент анализа "Регрессия". Задаем входные интервалы X и Y. Входной интервал Y - это диапазон зависимых анализируемых данных, он должен включать один столбец. Входной интервал X - это диапазон независимых данных, которые необходимо проанализировать. Число входных диапазонов должно быть не больше 16.

На выходе процедуры в выходном диапазоне получаем отчет, приведенный в таблице 8.3а -8.3в .

ВЫВОД ИТОГОВ

Таблица 8.3а. Регрессионная статистика

Регрессионная статистика

Множественный R

R-квадрат

Нормированный R-квадрат

Стандартная ошибка

Наблюдения

Сначала рассмотрим верхнюю часть расчетов, представленную в таблице 8.3а , - регрессионную статистику.

Величина R-квадрат , называемая также мерой определенности, характеризует качество полученной регрессионной прямой. Это качество выражается степенью соответствия между исходными данными и регрессионной моделью (расчетными данными). Мера определенности всегда находится в пределах интервала .

В большинстве случаев значение R-квадрат находится между этими значениями, называемыми экстремальными, т.е. между нулем и единицей.

Если значение R-квадрата близко к единице, это означает, что построенная модель объясняет почти всю изменчивость соответствующих переменных. И наоборот, значениеR-квадрата , близкое к нулю, означает плохое качество построенной модели.

В нашем примере мера определенности равна 0,99673, что говорит об очень хорошей подгонке регрессионной прямой к исходным данным.

множественный R - коэффициент множественной корреляции R - выражает степень зависимости независимых переменных (X) и зависимой переменной (Y).

Множественный R равен квадратному корню из коэффициента детерминации, эта величина принимает значения в интервале от нуля до единицы.

В простом линейном регрессионном анализе множественный R равен коэффициенту корреляции Пирсона. Действительно,множественный R в нашем случае равен коэффициенту корреляции Пирсона из предыдущего примера (0,998364).

Таблица 8.3б. Коэффициенты регрессии

Коэффициенты

Стандартная ошибка

t-статистика

Y-пересечение

Переменная X 1

* Приведен усеченный вариант расчетов

Теперь рассмотрим среднюю часть расчетов, представленную в таблице 8.3б . Здесь даны коэффициент регрессии b (2,305454545) и смещение по оси ординат, т.е. константа a (2,694545455).

Исходя из расчетов, можем записать уравнение регрессии таким образом:

Y= x*2,305454545+2,694545455

Направление связи между переменными определяется на основании знаков (отрицательный или положительный) коэффициентов регрессии (коэффициента b).

Если знак при коэффициенте регрессии - положительный, связь зависимой переменной с независимой будет положительной. В нашем случае знак коэффициента регрессии положительный, следовательно, связь также является положительной.

Если знак при коэффициенте регрессии - отрицательный, связь зависимой переменной с независимой является отрицательной (обратной).

В таблице 8.3в . представлены результаты выводаостатков . Для того чтобы эти результаты появились в отчете, необходимо при запуске инструмента "Регрессия" активировать чекбокс "Остатки".

ВЫВОД ОСТАТКА

Таблица 8.3в. Остатки

Наблюдение

Предсказанное Y

Остатки

Стандартные остатки

При помощи этой части отчета мы можем видеть отклонения каждой точки от построенной линии регрессии. Наибольшее абсолютное значение остатка в нашем случае - 0,778, наименьшее - 0,043. Для лучшей интерпретации этих данных воспользуемся графиком исходных данных и построенной линией регрессии, представленными нарис. 8.3 . Как видим, линия регрессии достаточно точно "подогнана" под значения исходных данных.

Следует учитывать, что рассматриваемый пример является достаточно простым и далеко не всегда возможно качественное построение регрессионной прямой линейного вида.

Рис. 8.3. Исходные данные и линия регрессии

Осталась нерассмотренной задача оценки неизвестных будущих значений зависимой переменной на основании известных значений независимой переменной, т.е. задача прогнозирования.

Имея уравнение регрессии, задача прогнозирования сводится к решению уравнения Y= x*2,305454545+2,694545455 с известными значениями x. Результаты прогнозирования зависимой переменной Y на шесть шагов вперед представлены в таблице 8.4 .

Таблица 8.4. Результаты прогнозирования переменной Y

Y(прогнозируемое)

Таким образом, в результате использования регрессионного анализа в пакете Microsoft Excel мы:

    построили уравнение регрессии;

    установили форму зависимости и направление связи между переменными - положительная линейная регрессия, которая выражается в равномерном росте функции;

    установили направление связи между переменными;

    оценили качество полученной регрессионной прямой;

    смогли увидеть отклонения расчетных данных от данных исходного набора;

    предсказали будущие значения зависимой переменной.

Если функция регрессии определена, интерпретирована и обоснована, и оценка точности регрессионного анализа соответствует требованиям, можно считать, что построенная модель и прогнозные значения обладают достаточной надежностью.

Прогнозные значения, полученные таким способом, являются средними значениями, которые можно ожидать.

В этой работе мы рассмотрели основные характеристики описательной статистики и среди них такие понятия, каксреднее значение ,медиана ,максимум ,минимум и другие характеристики вариации данных.

Также было кратко рассмотрено понятие выбросов . Рассмотренные характеристики относятся к так называемому исследовательскому анализу данных, его выводы могут относиться не к генеральной совокупности, а лишь к выборке данных. Исследовательский анализ данных используется для получения первичных выводов и формирования гипотез относительно генеральной совокупности.

Также были рассмотрены основы корреляционного и регрессионного анализа, их задачи и возможности практического использования.

  • Tutorial

Статистика в последнее время получила мощную PR поддержку со стороны более новых и шумных дисциплин - Машинного Обучения и Больших Данных . Тем, кто стремится оседлать эту волну необходимо подружится с уравнениями регрессии . Желательно при этом не только усвоить 2-3 приемчика и сдать экзамен, а уметь решать проблемы из повседневной жизни: найти зависимость между переменными, а в идеале - уметь отличить сигнал от шума.



Для этой цели мы будем использовать язык программирования и среду разработки R , который как нельзя лучше приспособлен к таким задачам. Заодно, проверим от чего зависят рейтинг Хабрапоста на статистике собственных статей.

Введение в регрессионный анализ

Если имеется корреляционная зависимость между переменными y и x , возникает необходимость определить функциональную связь между двумя величинами. Зависимость среднего значения называется регрессией y по x .


Основу регрессионного анализа составляет метод наименьших квадратов (МНК) , в соответствии с которым в качестве уравнения регресии берется функция такая, что сумма квадратов разностей минимальна.



Карл Гаусс открыл, или точнее воссоздал, МНК в возрасте 18 лет, однако впервые результаты были опубликованы Лежандром в 1805 г. По непроверенным данным метод был известен еще в древнем Китае, откуда он перекочевал в Японию и только затем попал в Европу. Европейцы не стали делать из этого секрета и успешно запустили в производство, обнаружив с его помощью траекторию карликовой планеты Церес в 1801 г.


Вид функции , как правило, определен заранее, а с помощью МНК подбираются оптимальные значения неизвестных параметров. Метрикой рассеяния значений вокруг регрессии является дисперсия.


  • k - число коэффициентов в системе уравнений регрессии.

Чаще всего используется модель линейной регрессии, а все нелинейные зависимости приводят к линейному виду с помощью алгебраических ухищрений, различных преобразования переменных y и x .

Линейная регрессия

Уравнения линейной регрессии можно записать в виде



В матричном виде это выгладит


  • y - зависимая переменная;
  • x - независимая переменная;
  • β - коэффициенты, которые необходимо найти с помощью МНК;
  • ε - погрешность, необъяснимая ошибка и отклонение от линейной зависимости;


Случайная величина может быть интерпретирована как сумма из двух слагаемых:



Еще одно ключевое понятие - коэффициент корреляции R 2 .


Ограничения линейной регрессии

Для того, чтобы использовать модель линейной регрессии необходимы некоторые допущения относительно распределения и свойств переменных.



Как обнаружить, что перечисленные выше условия не соблюдены? Ну, во первых довольно часто это видно невооруженным глазом на графике.


Неоднородность дисперсии


При возрастании дисперсии с ростом независимой переменной имеем график в форме воронки.



Нелинейную регрессии в некоторых случая также модно увидеть на графике довольно наглядно.


Тем не менее есть и вполне строгие формальные способы определить соблюдены ли условия линейной регрессии, или нарушены.




В этой формуле - коэффициент взаимной детерминации между и остальными факторами. Если хотя бы один из VIF-ов > 10, вполне резонно предположить наличие мультиколлинеарности.


Почему нам так важно соблюдение всех выше перечисленных условий? Все дело в Теореме Гаусса-Маркова , согласно которой оценка МНК является точной и эффективной лишь при соблюдении этих ограничений.

Как преодолеть эти ограничения

Нарушения одной или нескольких ограничений еще не приговор.

  1. Нелинейность регрессии может быть преодолена преобразованием переменных, например через функцию натурального логарифма ln .
  2. Таким же способом возможно решить проблему неоднородной дисперсии, с помощью ln , или sqrt преобразований зависимой переменной, либо же используя взвешенный МНК.
  3. Для устранения проблемы мультиколлинеарности применяется метод исключения переменных. Суть его в том, что высоко коррелированные объясняющие переменные устраняются из регрессии , и она заново оценивается. Критерием отбора переменных, подлежащих исключению, является коэффициент корреляции. Есть еще один способ решения данной проблемы, который заключается в замене переменных, которым присуща мультиколлинеарность, их линейной комбинацией . Этим весь список не исчерпывается, есть еще пошаговая регрессия и другие методы.

К сожалению, не все нарушения условий и дефекты линейной регрессии можно устранить с помощью натурального логарифма. Если имеет место автокорреляция возмущений к примеру, то лучше отступить на шаг назад и построить новую и лучшую модель.

Линейная регрессия плюсов на Хабре

Итак, довольно теоретического багажа и можно строить саму модель.
Мне давно было любопытно от чего зависит та самая зелененькая цифра, что указывает на рейтинг поста на Хабре. Собрав всю доступную статистику собственных постов, я решил прогнать ее через модель линейно регрессии.


Загружает данные из tsv файла.


> hist <- read.table("~/habr_hist.txt", header=TRUE) > hist
points reads comm faves fb bytes 31 11937 29 19 13 10265 93 34122 71 98 74 14995 32 12153 12 147 17 22476 30 16867 35 30 22 9571 27 13851 21 52 46 18824 12 16571 44 149 35 9972 18 9651 16 86 49 11370 59 29610 82 29 333 10131 26 8605 25 65 11 13050 20 11266 14 48 8 9884 ...
  • points - Рейтинг статьи
  • reads - Число просмотров.
  • comm - Число комментариев.
  • faves - Добавлено в закладки.
  • fb - Поделились в социальных сетях (fb + vk).
  • bytes - Длина в байтах.

Проверка мультиколлинеарности.


> cor(hist) points reads comm faves fb bytes points 1.0000000 0.5641858 0.61489369 0.24104452 0.61696653 0.19502379 reads 0.5641858 1.0000000 0.54785197 0.57451189 0.57092464 0.24359202 comm 0.6148937 0.5478520 1.00000000 -0.01511207 0.51551030 0.08829029 faves 0.2410445 0.5745119 -0.01511207 1.00000000 0.23659894 0.14583018 fb 0.6169665 0.5709246 0.51551030 0.23659894 1.00000000 0.06782256 bytes 0.1950238 0.2435920 0.08829029 0.14583018 0.06782256 1.00000000

Вопреки моим ожиданиям наибольшая отдача не от количества просмотров статьи, а от комментариев и публикаций в социальных сетях . Я также полагал, что число просмотров и комментариев будет иметь более сильную корреляцию, однако зависимость вполне умеренная - нет надобности исключать ни одну из независимых переменных.


Теперь собственно сама модель, используем функцию lm .


regmodel <- lm(points ~., data = hist) summary(regmodel) Call: lm(formula = points ~ ., data = hist) Residuals: Min 1Q Median 3Q Max -26.920 -9.517 -0.559 7.276 52.851 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.029e+01 7.198e+00 1.430 0.1608 reads 8.832e-05 3.158e-04 0.280 0.7812 comm 1.356e-01 5.218e-02 2.598 0.0131 * faves 2.740e-02 3.492e-02 0.785 0.4374 fb 1.162e-01 4.691e-02 2.476 0.0177 * bytes 3.960e-04 4.219e-04 0.939 0.3537 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 16.65 on 39 degrees of freedom Multiple R-squared: 0.5384, Adjusted R-squared: 0.4792 F-statistic: 9.099 on 5 and 39 DF, p-value: 8.476e-06

В первой строке мы задаем параметры линейной регрессии. Строка points ~. определяет зависимую переменную points и все остальные переменные в качестве регрессоров. Можно определить одну единственную независимую переменную через points ~ reads , набор переменных - points ~ reads + comm .


Перейдем теперь к расшифровке полученных результатов.




Можно попытаться несколько улучшить модель, сглаживая нелинейные факторы: комментарии и посты в социальных сетях. Заменим значения переменных fb и comm их степенями.


> hist$fb = hist$fb^(4/7) > hist$comm = hist$comm^(2/3)

Проверим значения параметров линейной регрессии.


> regmodel <- lm(points ~., data = hist) > summary(regmodel) Call: lm(formula = points ~ ., data = hist) Residuals: Min 1Q Median 3Q Max -22.972 -11.362 -0.603 7.977 49.549 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 2.823e+00 7.305e+00 0.387 0.70123 reads -6.278e-05 3.227e-04 -0.195 0.84674 comm 1.010e+00 3.436e-01 2.938 0.00552 ** faves 2.753e-02 3.421e-02 0.805 0.42585 fb 1.601e+00 5.575e-01 2.872 0.00657 ** bytes 2.688e-04 4.108e-04 0.654 0.51677 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 16.21 on 39 degrees of freedom Multiple R-squared: 0.5624, Adjusted R-squared: 0.5062 F-statistic: 10.02 on 5 and 39 DF, p-value: 3.186e-06

Как видим в целом отзывчивость модели возросла, параметры подтянулись и стали более шелковистыми, F-статистика выросла, так же как и скорректированный коэффициент детерминации.


Проверим, соблюдены ли условия применимости модели линейной регрессии? Тест Дарбина-Уотсона проверяет наличие автокорреляции возмущений.


> dwtest(hist$points ~., data = hist) Durbin-Watson test data: hist$points ~ . DW = 1.585, p-value = 0.07078 alternative hypothesis: true autocorrelation is greater than 0

И напоследок проверка неоднородности дисперсии с помощью теста Бройша-Пагана.


> bptest(hist$points ~., data = hist) studentized Breusch-Pagan test data: hist$points ~ . BP = 6.5315, df = 5, p-value = 0.2579

В заключение

Конечно наша модель линейной регрессии рейтинга Хабра-топиков получилось не самой удачной. Нам удалось объяснить не более, чем половину вариативности данных. Факторы надо чинить, чтобы избавляться от неоднородной дисперсии, с автокорреляцией тоже непонятно. Вообще данных маловато для сколь-нибудь серьезной оценки.


Но с другой стороны, это и хорошо. Иначе любой наспех написанный тролль-пост на Хабре автоматически набирал бы высокий рейтинг, а это к счастью не так.

Использованные материалы

  1. Кобзарь А. И. Прикладная математическая статистика. - М.: Физматлит, 2006.
  2. William H. Green Econometric Analysis

Теги: Добавить метки