Матрица CCD (англ. Charge-Coupled Device ), или ПЗС-матрица (приборы с зарядовой связью ), была разработана в США еще в конце 1960-х годов в качестве памяти для компьютеров. Использоваться она стала в начале 1970-х годов. Принцип действия матрицы CCD основан на построчном перемещении зарядов, накопленных в образованных фотонами прорехах в вышеупомянутых атомах кремния. Во время считывания электрического заряда с матрицы осуществляется перенос зарядов к краю матрицы и в сторону усилителя, который передает усиленный сигнал в аналогово-цифровой преобразователь (АЦП), а затем – преобразованный сигнал поступает в процессор.

В современных цифровых фотоаппаратах используются матрицы двух типов:

Матрица фотоаппарата типа CMOS выходит в лидеры

Матрица CMOS (англ. Complementary Metal Oxide Semiconductor ), или КМОП-матрица (комплементарные металл-оксидные полупроводники ) действует на основе активных точечных сенсорах. В отличие от матрицы CCD, эта матрица преобразует заряд в напряжение сразу в пикселе. Благодаря такой рациональной системе значительно повышается скорость фотоаппарата при обработке информации с матрицы и способствует интегрированию матрицы CMOS непосредственно с аналогово-цифровым преобразователем или даже с процессором. В итоге происходит экономия питания (цепочка действий не такая длинная, как у фотокамер с матрицей CCD) и удешевление устройства за счет упрощения его конструкции.

Раньше матрицы CCD являлись более чувствительными и способными выдавать более качественные изображения, чем матрицы CMOS . Сейчас с развитием технологий, в частности, с повышением качества кремниевых пластин и улучшением схемы усилителя, качество изображения, полученного на цифровых фотоаппаратах с матрицей CMOS, практически не уступает качеству изображения, полученного на цифровых фотоаппаратах с матрицей CCD. Этот факт доказывает хотя бы то, компания Canon стала выпускать некоторые профессиональные зеркалки (D -30, D-60, D-10 и т.д.) с использованием матрицы CMOS.

У кремниевых матриц цифровых фотоаппаратов есть еще один нюанс: проходящие через объектив лучи света попадают на сенсор под прямым углом только в центре кадра, остальные падают косо. Если для пленки это не имеет значения, для матрицы лучи, падающие на нее под косым углом, критичны и нежелательны. Поэтому некоторые производители идут даже на такие ухищрения, что над каждым пикселем устанавливают микролинзочку, которая фокусирует свет под правильным углом и с нужной силой.

А вот рисунок, дающий представление о том, как выглядят матрицы различного размера на фоне 35-миллиметровой пленки, или полноразмерной матрицы.

Сенсор изображения является важнейшим элементом любой видеокамеры. Сегодня практически во всех камерах используются датчики изображения CCD или CMOS. Оба типа датчика выполняют задачу преобразования изображения, построенного на сенсоре объективом, в электрический сигнал. Однако вопрос, какой датчик лучше, до сих пор остается открытым

Н.И. Чура
Технический консультант
ООО "Микровидео Группа"

CCD является аналоговым датчиком, несмотря на дискретность светочувствительной структуры. Когда свет попадает на матрицу, в каждом пикселе накапливается заряд или пакет электронов, преобразуемый при считывании на нагрузке в напряжение видеосигнала, пропорциональное освещенности пикселей. Минимальное количество промежуточных переходов этого заряда и отсутствие активных устройств обеспечивают высокую идентичность чувствительных элементов CCD.

CMOS-матрица является цифровым устройством с активными чувствительными элементами (Active Pixel Sensor). С каждым пикселем работает свой усилитель, преобразующий заряд чувствительного элемента в напряжение. Это дает возможность практически индивидуально управлять каждым пикселем.

Эволюция CCD

С момента изобретения CCD лабораторией Белла (Bell Laboratories, или Bell Labs) в 1969 г. размеры сенсора изображения непрерывно уменьшались. Одновременно увеличивалось число чувствительных элементов. Это естественно вело к уменьшению размеров единичного чувствительного элемента (пикселя), а соответственно и его чувствительности. Например, с 1987 г. эти размеры сократились в 100 раз. Но благодаря новым технологиям чувствительность одного элемента (а следовательно, и всей матрицы) даже увеличилась.

Что позволило доминировать
С самого начала CCD стали доминирующими сенсорами, поскольку обеспечивали лучшее качество изображения, меньший шум, более высокую чувствительность и большую равномерность параметров пикселей. Основные усилия по совершенствованию технологии были направлены на улучшение характеристик CCD.

Как растет чувствительность
По сравнению с популярной матрицей Sony HAD стандартного разрешения (500х582) конца 1990-х гг. (ICX055) чувствительность моделей более совершенной технологии Super HAD выросла почти в 3 раза (ICX405) и Ex-view HAD – в 4 раза (ICX255). Причем для черно-белого и цветного варианта.

Для матриц высокого разрешения (752х582) успехи несколько менее впечатляющие, но если сопоставлять модели цветного изображения Super HAD с самыми современными технологиями Ex-view HAD II и Super HAD II, то рост чувствительности составит в 2,5 и 2,4 раза соответственно. И это несмотря на уменьшение размеров пикселя почти на 30%, поскольку речь идет о матрицах самого современного формата 960H с увеличенным количеством пикселей до 976х582 для стандарта PAL. Для обработки такого сигнала Sony предлагает ряд сигнальных процессоров Effio.

Добавилась ИК-составляющая
Одним из эффективных методов роста интегральной чувствительности является расширение спектральных характеристик чувствительности в область инфракрасного диапазона. Это особенно характерно для матрицы Ex-view. Добавление ИК-составляющей несколько искажает передачу относительной яркости цветов, но для черно-белого варианта это не критично. Единственная проблема возникает с цветопередачей в камерах "день/ночь" с постоянной ИК-чувствительностью, то есть без механического ИК-фильтра.


Развитие этой технологии в моделях Ex-view HAD II (ICX658AKA) в сравнении с предыдущим вариантом (ICX258AK) обеспечивает рост интегральной чувствительности всего на 0,8 дБ (с 1100 до 1200 мВ) с одновременным увеличением чувствительности на длине волны 950 нм на 4,5 дБ. На рис. 1 приведены характеристики спектральной чувствительности этих матриц, а на рис. 2 – отношение их интегральной чувствительности.


Оптические инновации
Другим методом роста чувствительности CCD являются увеличение эффективности пиксельных микролинз, светочувствительной области и оптимизация цветовых фильтров. На рис. 3 представлено устройство матриц Super HAD и Super HAD II, показывающее увеличение площади линзы и светочувствительной области последней модификации.

Дополнительно в матрицах Super HAD II значительно увеличено пропускание светофильтров и их устойчивость к выцветанию. Кроме того, расширено пропускание в коротковолновой области спектра (голубой), что улучшило цветопередачу и баланс белого.

На рис. 4 представлены спектральные характеристики чувствительности матриц Sony 1/3" Super HAD (ICX229AK) и Super HAD II (ICX649AKA).

CCD: уникальная чувствительность

В совокупности перечисленных мер удалось добиться значительных результатов по улучшению характеристик CCD.

Сравнить характеристики современных моделей с более ранними вариантами не представляется возможным, поскольку тогда не производились цветные матрицы широкого применения даже типового высокого разрешения. В свою очередь, сейчас не производятся черно-белые матрицы стандартного разрешения по новейшим технологиям Ex-view HAD II и Super HAD II.

В любом случае по чувствительности CCD до сих пор являются пока недостижимым ориентиром для CMOS, поэтому они все еще широко используются за исключением мегапиксельных вариантов, которые очень дорого стоят и применяются в основном для специальных задач.

CMOS: достоинства и недостатки

Сенсоры CMOS были изобретены в конце 1970-х гг., но их производство удалось начать только в 1990-е по причине технологических проблем. И сразу наметились их основные достоинства и недостатки, которые и сейчас остаются актуальными.

К достоинствам можно отнести большую интеграцию и экономичность сенсора, более широкий динамический диапазон, простоту производства и меньшую стоимость, особенно мегапиксельных вариантов.

С другой стороны, CMOS-сенсоры обладают меньшей чувствительностью, обусловленной, при прочих равных условиях, большими потерями в фильтрах структуры RGB, меньшей полезной площадью светочувствительного элемента. В результате множества переходных элементов, включая усилители в тракте каждого пикселя, обеспечить равномерность параметров всех чувствительных элементов значительно сложнее в сравнении с CCD. Но совершенствование технологий позволило приблизить чувствительность CMOS к лучшим образцам CCD, особенно в мегапиксельных вариантах.

Ранние сторонники CMOS утверждали, что эти структуры будут гораздо дешевле, потому что могут быть произведены на том же оборудовании и по тем же технологиям, что и микросхемы памяти и логики. Во многом данное предположение подтвердилось, но не полностью, поскольку совершенствование технологии привело к практически идентичному по сложности производственному процессу, как и для CCD.

С расширением круга потребителей за рамки стандартного телевидения разрешение матриц стало непрерывно расти. Это бытовые видеокамеры, электронные фотоаппараты и камеры, встроенные в средства коммуникации. Кстати, для мобильных устройств вопрос экономичности довольно важный, и здесь у CMOS-сенсора нет конкурентов. Например, с середины 1990-х гг. разрешение матриц ежегодно вырастало на 1–2 млн элементов и теперь достигает 10–12 Мпкс. Причем спрос на CMOS-сенсоры стал доминирующим и сегодня превышает 100 млн единиц.

CMOS: улучшение чувствительности

Первые образцы камер наблюдения конца 1990-х – начала 2000-х с CMOS-матрицами имели разрешение 352х288 пкс и чувствительность даже для черно-белого варианта около 1 лк. Цветные варианты уже стандартного разрешения отличались чувствительностью около 7–10 лк.

Что предлагают поставщики
В настоящее время чувствительность CMOS-матриц, безусловно, выросла, но не превышает для типовых вариантов цветного изображения величины порядка нескольких люксов при разумных величинах F числа объектива (1,2– 1,4). Это подтверждают данные технических характеристик брендов IP-видеонаблюдения, в которых применяются CMOS-матрицы с прогрессивной разверткой. Те производители, которые заявляют чувствительность около десятых долей люкса, обычно уточняют, что это данные для меньшей частоты кадров, режима накопления или по крайней мере включенной и достаточно глубокой АРУ (AGC). Причем у некоторых производителей IP-камер максимальная АРУ достигает умопомрачительной величины –120 дБ (1 млн раз). Можно надеяться, что чувствительность для этого случая в представлении производителей предполагает пристойное отношение "сигнал/шум", позволяющее наблюдать не один только "снег" на экране.

Инновации улучшают качество видео
В стремлении улучшить характеристики CMOS-матриц компания Sony предложила ряд новых технологий, обеспечивающих практическое сравнение CMOS-матриц с CCD по чувствительности, отношению "сигнал/шум" в мегапиксельных вариантах.

Новая технология производства матриц Exmor основана на изменении направления падения светового потока на матрицу. В типовой архитектуре свет падает на фронтальную поверхность кремниевой пластины через и мимо проводников схемы матрицы. Свет рассеивается и перекрывается этими элементами. В новой модификации свет поступает на тыльную сторону кремниевой пластины. Это привело к существенному росту чувствительности и снижению шума CMOS-матрицы. На рис. 5 поясняется различие структур типовой матрицы и матрицы Exmor, показанных в разрезе.


На фото 1 приведены изображения тестового объекта, полученные при освещенности 100 лк (F4.0 и 1/30 с) камерой с CCD (фронтальное освещение) и CMOS Exmor, имеющих одинаковый формат и разрешение 10 Мпкс. Очевидно, что изображение камеры с CMOS по крайней мере не хуже изображения с CCD.


Другим способом улучшения чувствительности CMOS-сенсоров является отказ от прямоугольного расположения пикселей с построчным сдвигом красного и синего элементов. При этом в построении одного элемента разрешения используются по два зеленых пикселя – синий и красный из разных строк. Взамен предлагается диагональное расположение элементов с использованием шести соседних зеленых элементов для построения одного элемента разрешения. Такая технология получила название ClearVid CMOS. Для обработки предполагается более мощный сигнальный процессор изображений. Различие структур расположения цветных элементов иллюстрируются рис. 6.


Считывание информации осуществляется быстродействующим параллельным аналого-цифровым преобразователем. При этом частота кадров прогрессивной развертки может достигать 180 и даже 240 кадр/с. При параллельном съеме информации устраняется диагональный сдвиг кадра, привычный для CMOS-камер с последовательным экспонированием и считыванием сигнала, так называемый эффект Rolling Shutter – когда полностью отсутствует характерный смаз быстро движущихся объектов.


На фото 2 приведены изображения вращающегося вентилятора, полученные CMOS-камерой с частотой кадров 45 и 180 кадр/с.

Полноценная конкуренция

В качестве примеров мы приводили технологии Sony. Естественно, CMOS-матрицы, как и CCD, производят и другие компании, хотя не в таких масштабах и не столь известные. В любом случае все так или иначе идут примерно одним путем и используют похожие технические решения.

В частности, известная технология матриц Panasonic Live-MOS также существенно улучшает характеристики CMOS-матриц и, естественно, похожими методами. В матрицах Panasonic уменьшено расстояние от фотодиода до микролинзы. Упрощена передача сигналов с поверхности фотодиода. Уменьшено количество управляющих сигналов с 3 (стандартные CMOS) до 2 (как в CCD), что увеличило фоточувствительную область пикселя. Применен малошумящий усилитель фотодиода. Используется более тонкая структура слоя датчиков. Сниженное напряжение питания уменьшает шум и нагрев матрицы.

Можно констатировать, что мегапиксельные матрицы CMOS уже могут успешно конкурировать с CCD не только по цене, но и по таким проблемным для этой технологии характеристикам, как чувствительность и уровень шума. Однако в традиционном CCTV телевизионных форматов CCD-матрицы остаются пока вне конкуренции.

В большинстве современных цифровых устройствах для фото- и видео- съёмки используется два типа матриц — CCD и CMOS.

CCD — charge-coupled device (или ПЗС - прибор с обратной зарядной связью).

CMOS — complementary metal-oxide-semiconductor (или — комплементарная логика на транзисторах металл-оксид-полупроводник, КМОП).

В цифровом фотоаппарате или видеокамере матрица это аналог фото- видео- плёнки. Но в отличии от плёнок, матрица не одноразовая, не покрыта специальной эмульсией, вступающей в химическую реакцию со светом, не сохраняет на себе готовый кадр.

Матрица — это высокотехнологическое электронное устройство, основной функцией которого является оцифровка света попадающего на её поверхность через объектив. После чего этот оцифрованный свет преобразуется в один из популярных цифровых форматов и сохраняется на жёстком диске, или ином предназначенном для этого устройстве.

Матрицы выполненные по технологии CCD (или ПЗС) отличаются от матриц сделанных по технологии CMOS (или КМОП) по нескольким ключевым параметрам. Прежде всего это цветопередача. Считается, что на CCD-матрицах она лучше. Однако, общепризнанно, что CCD-матрицы гораздо шумнее своих CMOS-собратьев даже на средних значениях ISO (ИСО). Поэтому большинство современных цифровых фотоаппаратов комплектуется именно CMOS-матрицами. К тому же CCD-матрицы более дороги в производстве, а также и потребляют гораздо больше энергии, чем CMOS.
Основным отличием технологий является принцип реагирования поверхности на сигнал. Другими словами, CCD- матрица обрабатывает весь попавший на нее свет целиком. А CMOS-матрица — частями — каждый пиксель отдельно. Благодаря инновационной технологии Active Pixel Sensors (APS), где с помощью транзисторных усилителей, подключённых к каждому пикселю, качество цветопередачи CMOS-матриц вплотную приблизилось к уровню CCD- матриц.

Трёхматричная видеокамера />

Для видеосъёмки предпочтительнее выбирать аппаратуру на CCD- матрицах. Этот тип матриц значительно лучше фиксирует движущиеся изображения, за которыми не поспевают более технологически медленные CMOS-матрицы. Некоторые , в том числе для любительской съёмки, комплектуются сразу тремя CCD- матрицами — каждая из которых настроена на фиксацию отдельного цвета из RGB модели. Такие видеокамеры отличаются улучшенной цветопередачей и повышенным качеством видео. Большинство профессиональных цифровых видеокамер укомплектованы именно тремя CCD- матрицами.

Для фотосъёмки, наоборот, лучше подходят камеры работающие на CMOS-матрицах.

© bukentagen

Выберите оценку Плохо Нормально Хорошо Замечательно Отлично

Сравнение матриц в видеокамерах и фотоаппаратах (CMOS, CCD)

Недавно в нашей статье о выборе видеокамеры для семьи мы писали о матрицах. Там мы коснулись этого вопроса легко, однако сегодня постараемся более детально описать обе технологии.

Что же такое матрица в видеокамере? Это микросхема, которая преобразовывает световой сигнал в электрический. На сегодняшний день существует 2 технологии, то есть2 типа матриц – CCD (ПЗС) и CMOS (КМОП) . Они отличаются друг от друга, каждая имеет свои плюсы и минусы. Нельзя точно сказать, какая из них лучше, а какая – хуже. Они развиваются параллельно. Вдаваться с технические детали мы не будем, т.к. они будут банально непонятны, но общими словами определим их главные плюсы и минусы.

Технология CMOS (КМОП)

CMOS-матрицы в первую очередь хвастаются низким энергопотреблением, что плюс. Видеокамера с этой технологией будет работать чуть дольше (зависит от емкости аккумулятора). Но это мелочи.

Главное отличие и достоинство – это произвольное считывание ячеек (в CCD считывание осуществляется одновременно), благодаря чему исключается размазывание картинки. Возможно, вы когда-нибудь видели «вертикальные столбы света» от точечных ярких объектов? Так вот CMOS-матрицы исключают возможность их появления. И еще камеры на их основе дешевле.

Недостатки также есть. Первый из них – небольшой размер светочувствительного элемента (в соотношении к размеру пикселя). Здесь большая часть площади пикселя занята под электронику, поэтому и площадь светочувствительного элемента уменьшена. Следовательно, чувствительность матрицы уменьшается.

Т.к. электронная обработка осуществляется на пикселе, то и количество помех на картинке возрастает. Это также является недостатком, как и низкое время сканирования. Из-за этого возникает эффект «бегущего затвора»: при движении оператора возможно искажение объекта в кадре.

Технология CCD (ПЗС)

Видеокамеры с CCD-матрицами позволяют получить высококачественное изображение. Визуально легко заметить меньшее количество шумов на видео, отснятом с помощью видеокамеры на основе CCD-матрицы по сравнению с видео, отснятым на камеру CMOS. Это самое первое и важное преимущество. И еще: эффективность CCD-матриц просто потрясающая: коэффициент заполнения приближается к 100%, соотношение зарегистрированных фотонов равен 95%. Возьмите обычный человеческий глаз – здесь соотношение равно приблизительно 1%.


ПЗС-матрица камеры

Высокая цена и большое энергопотребление – это недостатки данных матриц. Дело в том, что здесь процесс записи невероятно труден. Фиксация изображения осуществляется благодаря многим дополнительным механизмам, которых нет в CMOS-матрицах, поэтому технология CCD существенно дороже.

CCD-матрицы используются в устройствах, от которых требуется получение цветного и качественного изображения, и которыми, возможно, будут снимать динамические сцены. Это профессиональны видеокамеры в своем большинстве, хотя и бытовые тоже. Это также системы наблюдения, цифровые фотоаппараты и т.д.

CMOS-матрицам применяются там, где нет особо высоких требований к качестве картинки: датчики движения, недорогих смартфонах…Впрочем, так было ранее. Современные матрицы CMOS имеют разные модификации, что делает их весьма качественными и достойными с точки зрения составления конкуренции матрицам CCD.

Сейчас сложно судить о том, какая технология лучше, ведь обе демонстрируют прекрасные результаты. Поэтому ставить тип матрицы как единственный критерий выбора, как минимум, глупо. Важно учитывать многие характеристики.