С тем отличием, что вместо «плоских» графиков мы рассмотрим наиболее распространенные пространственные поверхности, а также научимся грамотно их строить от руки. Я довольно долго подбирал программные средства для построения трёхмерных чертежей и нашёл пару неплохих приложений, но, несмотря на всё удобство использования, эти программы плохо решают важный практический вопрос. Дело в том, что в обозримом историческом будущем студенты по-прежнему будут вооружены линейкой с карандашом, и, даже располагая качественным «машинным» чертежом, многие не смогут корректно перенести его на клетчатую бумагу. Поэтому в методичке особое внимание уделено технике ручного построения, и значительная часть иллюстраций страницы представляет собой handmade-продукт.

Чем отличается этот справочный материал от аналогов?

Обладая приличным практическим опытом, я очень хорошо знаю, с какими поверхностями чаще всего приходится иметь дело в реальных задачах высшей математики, и надеюсь, что эта статья поможет вам в кратчайшие сроки пополнить свой багаж соответствующими знаниями и прикладными навыками, которых в 90-95% случаев должно хватить.

Что нужно уметь на данный момент?

Самое элементарное:

Во-первых, необходимо уметь правильно строить пространственную декартову систему координат (см. начало статьи Графики и свойства функций ) .

Что вы приобретёте после прочтения этой статьи?

Бутылку После освоения материалов урока вы научитесь быстро определять тип поверхности по её функции и/или уравнению, представлять, как она расположена в пространстве, и, конечно же, выполнять чертежи. Ничего страшного, если не всё уложится в голове с 1-го прочтения – к любому параграфу по мере надобности всегда можно вернуться позже.

Информация по силам каждому – для её освоения не нужно каких-то сверхзнаний, особого художественного таланта и пространственного зрения.

Начинаем!

На практике пространственная поверхность обычно задаётся функцией двух переменных или уравнением вида (константа правой части чаще всего равна нулю либо единице) . Первое обозначение больше характерно для математического анализа, второе – для аналитической геометрии . Уравнение , по существу, является неявно заданной функцией 2 переменных, которую в типовых случаях легко привести к виду . Напоминаю простейший пример c :

уравнение плоскости вида .

– функция плоскости в явном виде .

Давайте с неё и начнём:

Распространенные уравнения плоскостей

Типовые варианты расположения плоскостей в прямоугольной системе координат детально рассмотрены в самом начале статьи Уравнение плоскости . Тем не менее, ещё раз остановимся на уравнениях, которые имеют огромное значение для практики.

Прежде всего, вы должны на полном автомате узнавать уравнения плоскостей, которые параллельны координатным плоскостям . Фрагменты плоскостей стандартно изображают прямоугольниками, которые в последних двух случаях выглядят, как параллелограммы. По умолчанию размеры можно выбрать любые (в разумных пределах, конечно), при этом желательно, чтобы точка, в которой координатная ось «протыкает» плоскость являлась центром симметрии:


Строго говоря, координатные оси местами следовало изобразить пунктиром, но во избежание путаницы будем пренебрегать данным нюансом.

(левый чертёж) неравенство задаёт дальнее от нас полупространство, исключая саму плоскость ;

(средний чертёж) неравенство задаёт правое полупространство, включая плоскость ;

(правый чертёж) двойное неравенство задаёт «слой», расположенный между плоскостями , включая обе плоскости.

Для самостоятельной разминки:

Пример 1

Изобразить тело, ограниченное плоскостями
Составить систему неравенств, определяющих данное тело.

Из-под грифеля вашего карандаша должен выйти старый знакомый прямоугольный параллелепипед . Не забывайте, что невидимые рёбра и грани нужно прочертить пунктиром. Готовый чертёж в конце урока.

Пожалуйста, НЕ ПРЕНЕБРЕГАЙТЕ учебными задачами, даже если они кажутся слишком простыми. А то может статься, раз пропустили, два пропустили, а затем потратили битый час, вымучивая трёхмерный чертёж в каком-нибудь реальном примере. Кроме того, механическая работа поможет гораздо эффективнее усвоить материал и развить интеллект! Не случайно в детском саду и начальной школе детей загружают рисованием, лепкой, конструкторами и другими заданиями на мелкую моторику пальцев. Простите за отступление, не пропадать же двум моим тетрадям по возрастной психологии =)

Следующую группу плоскостей условно назовём «прямыми пропорциональностями» – это плоскости, проходящие через координатные оси:

2) уравнение вида задаёт плоскость, проходящую через ось ;

3) уравнение вида задаёт плоскость, проходящую через ось .

Хотя формальный признак очевиден (какая переменная отсутствует в уравнении – через ту ось и проходит плоскость) , всегда полезно понимать суть происходящих событий:

Пример 2

Построить плоскость

Как лучше осуществить построение? Предлагаю следующий алгоритм:

Сначала перепишем уравнение в виде , из которого хорошо видно, что «игрек» может принимать любые значения. Зафиксируем значение , то есть, будем рассматривать координатную плоскость . Уравнения задают пространственную прямую , лежащую в данной координатной плоскости. Изобразим эту линию на чертеже. Прямая проходит через начало координат, поэтому для её построения достаточно найти одну точку. Пусть . Откладываем точку и проводим прямую.

Теперь возвращаемся к уравнению плоскости . Поскольку «игрек» принимает любые значения, то построенная в плоскости прямая непрерывно «тиражируется» влево и вправо. Именно так и образуется наша плоскость , проходящая через ось . Чтобы завершить чертёж, слева и справа от прямой откладываем две параллельные линии и поперечными горизонтальными отрезками «замыкаем» символический параллелограмм:

Так как условие не накладывало дополнительных ограничений, то фрагмент плоскости можно было изобразить чуть меньших или чуть бОльших размеров.

Ещё раз повторим смысл пространственного линейного неравенства на примере . Как определить полупространство, которое оно задаёт? Берём какую-нибудь точку, не принадлежащую плоскости , например, точку из ближнего к нам полупространства и подставляем её координаты в неравенство:

Получено верное неравенство , значит, неравенство задаёт нижнее (относительно плоскости ) полупространство, при этом сама плоскость не входит в решение.

Пример 3

Построить плоскости
а) ;
б) .

Это задания для самостоятельного построения, в случае затруднений используйте аналогичные рассуждения. Краткие указания и чертежи в конце урока.

На практике особенно распространены плоскости, параллельные оси . Частный случай, когда плоскость проходит через ось, только что был в пункте «бэ», и сейчас мы разберём более общую задачу:

Пример 4

Построить плоскость

Решение : в уравнение в явном виде не участвует переменная «зет», а значит, плоскость параллельна оси аппликат. Применим ту же технику, что и в предыдущих примерах.

Перепишем уравнение плоскости в виде из которого понятно, что «зет» может принимать любые значения. Зафиксируем и в «родной» плоскости начертим обычную «плоскую» прямую . Для её построения удобно взять опорные точки .

Поскольку «зет» принимает все значения, то построенная прямая непрерывно «размножается» вверх и вниз, образуя тем самым искомую плоскость . Аккуратно оформляем параллелограмм разумной величины:

Готово.

Уравнение плоскости в отрезках

Важнейшая прикладная разновидность. Если все коэффициенты общего уравнения плоскости отличны от нуля , то оно представимо в виде , который называется уравнением плоскости в отрезках . Очевидно, что плоскость пересекает координатные оси в точках , и большое преимущество такого уравнения состоит в лёгкости построения чертежа:

Пример 5

Построить плоскость

Решение : сначала составим уравнение плоскости в отрезках. Перебросим свободный член направо и разделим обе части на 12:

Нет, здесь не опечатка и все дела происходят именно в пространстве! Исследуем предложенную поверхность тем же методом, что недавно использовали для плоскостей. Перепишем уравнение в виде , из которого следует, что «зет» принимает любые значения. Зафиксируем и построим в плоскости эллипс . Так как «зет» принимает все значения, то построенный эллипс непрерывно «тиражируется» вверх и вниз. Легко понять, что поверхность бесконечна :

Данная поверхность называется эллиптическим цилиндром . Эллипс (на любой высоте) называется направляющей цилиндра, а параллельные прямые, проходящие через каждую точку эллипса называются образующими цилиндра (которые в прямом смысле слова его и образуют). Ось является осью симметрии поверхности (но не её частью!).

Координаты любой точки, принадлежащей данной поверхности, обязательно удовлетворяют уравнению .

Пространственное неравенство задаёт «внутренность» бесконечной «трубы», включая саму цилиндрическую поверхность, и, соответственно, противоположное неравенство определяет множество точек вне цилиндра.

В практических задачах наиболее популярен частный случай, когда направляющей цилиндра является окружность :

Пример 8

Построить поверхность, заданную уравнением

Бесконечную «трубу» изобразить невозможно, поэтому художества ограничиваются, как правило, «обрезком».

Сначала удобно построить окружность радиуса в плоскости , а затем ещё пару окружностей сверху и снизу. Полученные окружности (направляющие цилиндра) аккуратно соединяем четырьмя параллельными прямыми (образующими цилиндра):

Не забываем использовать пунктир для невидимых нам линий.

Координаты любой точки, принадлежащей данному цилиндру, удовлетворяют уравнению . Координаты любой точки, лежащей строго внутри «трубы», удовлетворяют неравенству , а неравенство задаёт множество точек внешней части. Для лучшего понимания рекомендую рассмотреть несколько конкретных точек пространства и убедиться в этом самостоятельно.

Пример 9

Построить поверхность и найти её проекцию на плоскость

Перепишем уравнение в виде из которого следует, что «икс» принимает любые значения. Зафиксируем и в плоскости изобразим окружность – с центром в начале координат, единичного радиуса. Так как «икс» непрерывно принимает все значения, то построенная окружность порождает круговой цилиндр с осью симметрии . Рисуем ещё одну окружность (направляющую цилиндра) и аккуратно соединяем их прямыми (образующими цилиндра). Местами получились накладки, но что делать, такой уж наклон:

На этот раз я ограничился кусочком цилиндра на промежутке и это не случайно. На практике зачастую и требуется изобразить лишь небольшой фрагмент поверхности.

Тут, к слову, получилось 6 образующих – две дополнительные прямые «закрывают» поверхность с левого верхнего и правого нижнего углов.

Теперь разбираемся с проекцией цилиндра на плоскость . Многие читатели понимают, что такое проекция, но, тем не менее, проведём очередную физкульт-пятиминутку. Пожалуйста, встаньте и склоните голову над чертежом так, чтобы остриё оси смотрело перпендикулярно вам в лоб. То, чем с этого ракурса кажется цилиндр – и есть его проекция на плоскость . А кажется он бесконечной полосой, заключенным между прямыми , включая сами прямые. Данная проекция – это в точности область определения функций (верхний «жёлоб» цилиндра), (нижний «жёлоб»).

Давайте, кстати, проясним ситуацию и с проекциями на другие координатные плоскости. Пусть лучи солнца светят на цилиндр со стороны острия и вдоль оси . Тенью (проекцией) цилиндра на плоскость является аналогичная бесконечная полоса – часть плоскости , ограниченная прямыми ( – любое), включая сами прямые.

А вот проекция на плоскость несколько иная. Если смотреть на цилиндр из острия оси , то он спроецируется в окружность единичного радиуса , с которой мы начинали построение.

Пример 10

Построить поверхность и найти её проекции на координатные плоскости

Это задача для самостоятельного решения. Если условие не очень понятно, возведите обе части в квадрат и проанализируйте результат; выясните, какую именно часть цилиндра задаёт функция . Используйте методику построения, неоднократно применявшуюся выше. Краткое решение, чертёж и комментарии в конце урока.

Эллиптические и другие цилиндрические поверхности могут быть смещены относительно координатных осей, например:

(по знакомым мотивам статьи о линиях 2-го порядка ) – цилиндр единичного радиуса с линией симметрии, проходящей через точку параллельно оси . Однако на практике подобные цилиндры попадаются довольно редко, и совсем уж невероятно встретить «косую» относительно координатных осей цилиндрическую поверхность.

Параболические цилиндры

Как следует из названия, направляющей такого цилиндра является парабола .

Пример 11

Построить поверхность и найти её проекции на координатные плоскости.

Не мог удержаться от этого примера =)

Решение : идём проторенной тропой. Перепишем уравнение в виде , из которого следует, что «зет» может принимать любые значения. Зафиксируем и построим обычную параболу на плоскости , предварительно отметив тривиальные опорные точки . Поскольку «зет» принимает все значения, то построенная парабола непрерывно «тиражируется» вверх и вниз до бесконечности. Откладываем такую же параболу, скажем, на высоте (в плоскости) и аккуратно соединяем их параллельными прямыми (образующими цилиндра ):

Напоминаю полезный технический приём : если изначально нет уверенности в качестве чертежа, то линии сначала лучше прочертить тонко-тонко карандашом. Затем оцениваем качество эскиза, выясняем участки, где поверхность скрыта от наших глаз, и только потом придаём нажим грифелю.

Проекции.

1) Проекцией цилиндра на плоскость является парабола . Следует отметить, что в данном случае нельзя рассуждать об области определения функции двух переменных – по той причине, что уравнение цилиндра не приводимо к функциональному виду .

2) Проекция цилиндра на плоскость представляет собой полуплоскость , включая ось

3) И, наконец, проекцией цилиндра на плоскость является вся плоскость .

Пример 12

Построить параболические цилиндры:

а) , ограничиться фрагментом поверхности в ближнем полупространстве;

б) на промежутке

В случае затруднений не спешим и рассуждаем по аналогии с предыдущими примерами, благо, технология досконально отработана. Не критично, если поверхности будут получаться немного корявыми – важно правильно отобразить принципиальную картину. Я и сам особо не заморачиваюсь над красотой линий, если получился сносный чертёж «на троечку», обычно не переделываю. В образце решения, кстати, использован ещё один приём, позволяющий улучшить качество чертежа;-)

Гиперболические цилиндры

Направляющими таких цилиндров являются гиперболы . Этот тип поверхностей, по моим наблюдениям, встречается значительно реже, чем предыдущие виды, поэтому я ограничусь единственным схематическим чертежом гиперболического цилиндра :

Принцип рассуждения здесь точно такой же – обычная школьная гипербола из плоскости непрерывно «размножается» вверх и вниз до бесконечности.

Рассмотренные цилиндры относятся к так называемым поверхностям 2-го порядка , и сейчас мы продолжим знакомиться с другими представителями этой группы:

Эллипсоид. Сфера и шар

Каноническое уравнение эллипсоида в прямоугольной системе координат имеет вид , где – положительные числа (полуоси эллипсоида), которые в общем случае различны . Эллипсоидом называют как поверхность , так и тело , ограниченное данной поверхностью. Тело, как многие догадались, задаётся неравенством и координаты любой внутренней точки (а также любой точки поверхности) обязательно удовлетворяют этому неравенству. Конструкция симметрична относительно координатных осей и координатных плоскостей:

Происхождение термина «эллипсоид» тоже очевидно: если поверхность «разрезать» координатными плоскостями, то в сечениях получатся три различных (в общем случае)

Канал связи представляет собой совокупность технических средств для передачи сообщений из одной точки пространства в другую. С точ­ки зрения теории информации физическое устройство канала несуще­ственно. Источник сообщений(ИС) имеет выходной алфавит символовA ={а i },i= 1.. n - количество информации, приходящееся в среднем на один символ источника:

где p i , - вероятность появления символаa i , на выходе источника, символы источника считаются независимыми. Канал связи имеет алфавит символовB={b j },j= 1.. m, среднее количество информации в одном символе канала

где q j - вероятность появления символаb i , в канале.

Техническими характеристиками канала связи являются:

    техническая производительность источника  A - среднее число символов, выдаваемых источником в единицу времени;

    техническая пропускная способность канала связи  B - среднее число символов, передаваемое по каналу в единицу времени.

Информационной характеристикой источника является инфор­мационная производительность. По определению, информационная производительность - это среднее количество информации, выдава­емое источником в единицу времени.

В канале без помех информационными характеристиками являются:

1) скорость передачи информации по каналу

2) пропускная способность канала

где {P } - множество всех возможных распределений вероятностей символов алфавитаВ канала. С учетом свойств энтропии

C K = B . log 2 m.

В канале с помехами в общем случае входной и выходной алфа­виты не совпадают. Пусть

B ВХ =X={x 1 ,x 2 ,…,x n };

B ВЫХ =Y={y 1 ,y 2 ,…,y m }.

Если отправленный на входе канал символ х к опознан в приемнике какy i иi K , то при передаче произошла ошибка. Свойства канала описываются матрицей переходных вероятностей (вероятность приема символау i , при условии, что посланх k ):

|| P(yi|xk) ||, k=1..n, i=1..m.

Справедливо соотношение:

Среднее количество информации на один входной символ канала:

p i =p(x i ) .

Среднее количество информации на выходной символ канала:

Информация, которую несет выход канала о входе:

I(Y,X)=H(X)-H Y (X)=H(Y)-H X (Y).

Здесь Ну (Х ) - условная энтропия входного символа канала при на­блюдении выходного символа (ненадежность канала),Н х (Y ) - услов­ная энтропия выходного символа канала при наблюдении входных символов (энтропия шума).

Скорость передачи информации по каналу с помехами:

dI(B)/dt= B I(X,Y).

Пропускная способность канала с помехами:

где { р} - множество всех возможных распределений вероятностей входного алфавита символов канала.

Рассмотрим пример

Найти пропускную способность двоичного симметричного канала (канала с двухсимвольными входными и выходными алфавитами) и одинаковыми вероятностями ошибок (рис.1), если априорные вероят­ности появления входных символов:P(x 1 )=P 1 =P, P(x 2 )=P 2 =1-P .

Решение. В соответствии с моделью канала условные веро­ятности

P(y 1 | x 2 ) = P(y 2 | x 1 ) = P i ,

P(y 1 | x 1 ) = P(y 2 | x 2 ) = 1-P i .

Пропускная способность канала - C K = B . max{H(Y)-H(X|Y)}. Найдем энтропию шума:

По теореме умножения: P (y j x i )=P (x i )P (y j |x i ), следовательно,

P (x 1 y 1 )=P (1-P i ), P (x 2 y 1 )=(1- P )P i ,P (x 1 y 2 )=PP i ,P (x 2 y 2 )=(1-P )(1-P i ).

Подставляя в формулу, получаем:

Таким образом, H( Y | X ) не зависит от распределения входного алфавита, следовательно:

Определим энтропию выхода:

Вероятности P (y 1 ) иP (y 2 ) получаем следующим образом:

P (y 1 )=P (y 1 x 1 )+P (y 1 x 2 )=P (1-P i )+(1-P i )P i , P (y2 )=P (y 2 x 1 )+P (y 2 x 2 )=PP i +(1-P )(1-P i ).

Варьируя Р, убеждаемся, что максимальное значение H (Y ), равное 1, получается при равновероятных входных символахP (y 1 ) иP (y 2 ). Следовательно,

Задача . Найти пропускную способность канала с трехсимвольными входными и выходными алфавитами (x 1 ,x 2 ,x 3 иy 1 ,y 2 ,y 3 соответсвенно). Интенсивность появления символов на входе канала k =V . 10 символов/с.

Вероятности появления символов:

,
, .

Вероятности передачи символов через канал связи:

,
,,

,
,,

,
,.

4. КОДИРОВАНИЕ ИНФОРМАЦИИ

4.1. Общие сведения Кодом называется:

Правило, описывающее отображение одного набора знаков в другой набор знаков или в набор слов без знаков;

Множество образов, получающихся при таком отображении.

В технических кодах буквы, цифры и другие знаки почти всегда кодируются двоичными последовательностями, называемыми двоичными кодовыми словами. У многих кодов слова имеют оди­наковую длину (равномерные коды).

Выбор кодов для кодирования конкретных типов сообщений определяется многими факторами:

Удобством получения исходных сообщений из источника;

Быстротой передачи сообщений через канал связи;

Объёмом памяти, необходимым дня хранения сообщений;

Удобством обработки данных;

Удобством декодирования сообщений приемником.

Закодированные сообщения передаются по каналам связи, хра­нятся в ЗУ, обрабатываются процессором. Объемы кодируемых данных велики, и поэтому во многих случаях важно обеспечить таксе кодирование данны:"., которое характеризуется минимальной длиной получающихся сообщений, Это проблема сжатия данных. Существуют два подхода сжатия данных:

Сжатие, основанное на анализе статистических свойств коди­руемых сообщений.

Сжатие на основе статистических свойств данных называется так же теорией экономного или эффективного кодирования. Эко­номное кодирование основано на использовании кодов с перемен­ной длиной кодового слова, например, код Шеннона-Фано, код Хафмана /31. Идея использования кодов переменной длины для сжа­тия данных состоит в том, чтобы сообщения с большей вероят­ностью появления ставить в соответствие кодовые комбинации мень­шей длины и, наоборот, сообщения с малой вероятностью появле­ния кодировать словами большей длины. Средняя длина кодового слова определяется с.о.:

где /, - длина кодового слова для кодирования i - го сообщения; p t - вероятность появления i - го сообщения.

4.2. Задания

4.2.1. Из табл.4 выбрать дня последующего кодирования ис­ходный алфавит, содержащий 10 символов, начиная с N-ro (N - порядковый номер студента в журнале группы). Пронормировать вероятности символов.

4.2.2. Пронормировать выбранный в п.4.2.1. исходный алфавит равномерным двоичным кодом, кодом Шеннона-Фано, кодом Хафмана. Для каждого варианта кодирования рассчитать мини­мальное, максимальное, среднее значение длины кодового слова. Проанализировать результаты.

4.2.3. Проделать задание 4.2.2. для троичного кода.

Таблица 4

4.3. Указания к выполнению отдельных заданий К заданию 4.2.1. Нормирование вероятностей производится по формуле:

/W-HO / *Рк " JC=AT

где Pi - вероятности появления символов, приведенные в табл.4.

К заданию 4.2.2. Правила построения двоичных кодов изло­жены в /4,6/.

К заданию 4.2.3. При построении троичного кода в качестве кодовых слов берутся слова, записанные в троичной системе счис­ления. Оптимальный троичный код строится с помощью процедуры Хафмана (с помощью процедуры Шеннона-Фано строится субоп-тимальный код). При этом разбиение алфавита ведется на три груп­пы, первой группе приписывается "О", второй - "1", третьей - "2".

Рассмотрим каналы, отличающиеся по типу используемых в них линий связи.

1. Механические , в которых для передачи информации используется перемещение каких-либо твердых, жидких или газообразных тел. В первом случае могут использоваться рычаги или тросы (например − органы управления автомобилем), во втором – гидравлические системы (например − тормозная система автомобиля), в третьем – разного рода пневматические устройства (широко используются, например, в газовой промышленности).

2. Акустические . Используют механические колебания звуковой и ультразвуковой частоты, особенно хорошо распространяющиеся в жидких средах. Широко применяются, например, для передачи информации людям или устройствам, находящимся под водой или в другой жидкой среде, а также при проведении медицинских исследований (УЗИ). Акустический канал в газовой среде – едва ли не основной для передачи информации между людьми (речь). Акустические сигналы низкой интенсивности безвредны для здоровья человека.

4. Электрические каналы. Наиболее распространены в настоящее время при передаче информации на малые расстояния. Основа – проводные линии связи.

5. Радиоканалы. Как и оптические, используют для передачи информации электромагнитные волны. Однако намного более низкой частоты. Благодаря способности таких волн огибать препятствия и отражаться от плазменных слоев, окружающих Землю, становится возможным передача информации на большие расстояния, в том числе в масштабе всей Земли. Эти преимущества, однако, являются источником недостатков. Радиоканалы сильно подвержены влиянию помех и менее скрытны. Радиоканал, наряду с оптическим, может использоваться для подключения к компьютерной сети Интернет в районах со слаборазвитой инфраструктурой проводной электросвязи.

Конец работы -

Эта тема принадлежит разделу:

Теория информации и кодирования

Сочинский государственный университет.. туризма и курортного дела.. Факультет информационных технологий и математики..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Курс лекций
Эффективная организация обмена информации приобретает все большее значение как условие успешной практической деятельности людей. Объем информации, необходимый для нормального функционирования совре

Определение понятия информация
Слово информация происходит от латинского informare – изображать, составлять понятие о чем-либо, осведомлять. Информация наряду с материей и энергией является первичны

Фазы обращения информации
Система управления состоит из объекта управления, комплекса технических средств, состоящего из компьютера, входящих в его состав устройств ввода-вывода и хранения информации, устройств сбора переда

Некоторые определения
Данные или сигналы, организованные в определенные последовательности, несут информацию не потому, что они повторяют объекты реального мира, а по общественной договоренности о кодировании, т.е. одно

Меры информации
Прежде, чем перейти к мерам информации, укажем, что источники информации и создаваемые ими сообщения разделяются на дискретные и непрерывные. Дискретные сообщения слагаются из конечно

Геометрическая мера
Определение количества информации геометрическим методом сводится к измерению длины линии, площади или объема геометрической модели данного носителя информации или сообщения. По геометрическим разм

Аддитивная мера (мера Хартли)
Аддитивную меру можно рассматривать как более удобную для ряда применений комбинаторную меру. Наши интуитивные представления об информации предполагают, чтобы количество информации увеличивалось пр

Энтропия и ее свойства
Существует несколько видов статистических мер информации. В дальнейшем будем рассматривать только одну их них ─ меру Шеннона. Мера Шеннона количества информации тесно связана с понятие

Энтропия и средняя энтропия простого события
Рассмотрим подробнее понятие энтропии в разных вариантах, так как оно используется в шенноновской теории информации. Энтропия - мера неопределенности некоторого опыта. В простейшем случае его ис

Метод множителей Лагранжа
Если нужно найти экстремум (максимум, минимум или седловую точку) функции n переменных f(x1, x2, …, xn), связанных k

Вывод формулы среднего значения энтропии на букву сообщения
Предположим, имеется сообщение, состоящее из n букв: , где j=1, 2, …, n ─ номера букв в сообщении по порядку, а i1, i2, … ,in номера букв

Энтропия сложного события, состоящего из нескольких зависимых событий
Теперь предположим, что элементы сообщения (буквы) взаимозависимы. В этом случае вероятность появления последовательности из нескольких букв не равна произведению вероятностей появ

Избыточность сообщения
Как отмечалось, энтропия максимальна, если вероятности сообщений или символов, из которых они составлены, одинаковы. Такие сообщения несут максимально возможную информацию. Если же сообщение имеет

Содержательность информации
Мера содержательности обозначается cont (от английского Content ─ содержание). Содержательность события I выражается через функцию меры содержательности его о

Целесообразность информации
Если информация используется в системах управления, то ее полезность разумно оценивать по тому эффекту, который она оказывает на результат управления. В связи с этим в 1960 г. советским ученым А.А.

Динамическая энтропия
Здесь энтропия рассматривается как функция времени. При этом преследуется цель – избавиться от неопределенности, т.е. добиться положения, когда энтропия равна 0. Такая ситуация характерна для задач

Энтропия непрерывных сообщений
Исходные данные часто представляются в виде непрерывных величин, например, температура воздуха или морской воды. Поэтому представляет интерес измерение количества содержащейся в таких сообщениях ин

Первый случай (значения сл. величины ограничены интервалом)
Случайная величина a ограничена интервалом . В этом случае определенный интеграл ее плотности распределения вероятностей (дифференциального закона распределения вероятностей) на

Второй случай (заданы дисперсия и математическое ожидание сл. величины)
Предположим теперь, что область определения значений случайной величины не ограничена, но задана ее дисперсия D и математическое ожидание M. Заметим, что дисперсия прямо пропорциональ

Квантование сигналов
Непрерывные сигналы – носители информации – представляют собой непрерывные функции непрерывного аргумента – времени. Передача таких сигналов может выполняться при помощи непрерывных каналов связи,

Виды дискретизации (квантования)
Наиболее простыми и часто используемыми видами квантования являются: · квантование по уровню (будем говорить просто квантование); · квантование по времени (будем называть

Критерии точности представления квантованного сигнала
В результате обратного преобразования из непрерывно-дискретной формы в непрерывную получается сигнал, отличающийся от исходного на величину ошибки. Сигнал называется воспроизводящей функц

Элементы обобщенной спектральной теории сигналов
Обобщенная спектральная теория сигналов объединяет методы математического описания сигналов и помех. Эти методы позволяют обеспечить требуемую избыточность сигналов с целью уменьшения влияния помех

О практическом использовании теоремы Котельникова
Возможную схему квантования-передачи-восстановления непрерывного сигнала можно представить в виде, изображенном на рис. 2.5. Рис. 2.5. Возможная схема квантования-передачи-

Выбор периода дискретизации (квантования по времени) по критерию наибольшего отклонения
В результате квантования по времени функции x(t) получается ряд значений x(t1), x(t2), … квантуемой величины x(t) в дискретные моменты времени t

Интерполяция при помощи полиномов Лагранжа
Воспроизводящая функция в большинстве случаев рассчитывается по формуле: , где − некоторые функции. Эти функции обычно стремятся выбрать так, чтобы. (2.14) В этом случае,

Оценка максимального значения ошибки при получении воспроизводящей функции на основе полинома Лагранжа
Найдем погрешность интерполяции. Представим ее виде: , (2.16) где K(t) – вспомогательная функция, которую надо найти. Для произвольного t* имеем: (

Обобщение на случай использования полиномов Лагранжа произвольного порядка
Интерполяция полиномами n-го порядка рассматривается аналогично предыдущим случаям. При этом наблюдается значительное усложнение формул. Обобщение приводит к формуле следующего вида:

Выбор интервала дискретизации по критерию среднеквадратического отклонения
Рассмотрим случай дискретизации случайного стационарного эргодического процесса x(t) с известной корреляционной функцией. Восстанавливать будем при помощи полиномов Лагранжа. Наиболее часто

Оптимальное квантование по уровню
Рисунком 2.13 иллюстрируется принцип квантования по уровню. Рис. 2.13. Квантование по уровню. Это квантование сводится к замене значения исходного сигнала уровн

Расчет неравномерной оптимальной в смысле минимума дисперсии ошибки шкалы квантования
Рис. 2.19. Обозначения Зададимся теперь числом шагов квантования n, границами интервала (xmin, xmax

Общие понятия и определения. Цели кодирования
Кодирование − операция отождествления символов или групп символов одного кода с символами или группами символов другого кода. Код (франц. code), совокупность зна

Элементы теории кодирования
Некоторые общие свойства кодов. Рассмотрим на примерах. Предположим, что дискретный источник без памяти, т.е. дающий независимые сообщения – буквы – на выходе, име

Неравенство Крафта
Теорема 1. Если целые числа n1, n2, …, nk удовлетворяют неравенству, (3.1) существует префиксный код с алфавитом объемом m,

Теорема 2.
Формулировка. Пусть задан код с длинами кодовых слов n1, n2, … , nk и с алфавитом объема m. Если код однозначно декодируем, неравенство Крафта удовле

Теорема 3.
Формулировка. При заданной энтропии H источника и объеме m вторичного алфавита существует префиксный код с минимальной средней длиной nср min

Теорема о минимальной средней длине кодового слова при поблочном кодировании (теорема 4)
Рассмотрим теперь случай кодирования не отдельных букв источника, а последовательностей из L букв. Теорема 4. Формулировка. Для данного дискретного источника

Оптимальные неравномерные коды
Определения. Неравномерными называют коды, кодовые слова которых имеют различную длину. Оптимальность можно понимать по-разному, в зависимости о

Лемма 1. О существовании оптимального кода с одинаковой длиной кодовых слов двух наименее вероятных кодируемых букв
Формулировка. Для любого источника с k>=2 буквами существует оптимальный (в смысле минимума средней длины кодового слова) двоичный код, в котором два наименее вероятных сло

Лемма 2. Об оптимальности префиксного кода нередуцированного ансамбля, если префиксный код редуцированного ансамбля оптимален
Формулировка. Если некоторый префиксный код редуцированного ансамбля U"является оптимальным, то соответствующий ему префиксный код исходного ансамбля т



Особенности эффективных кодов
1. Букве первичного алфавита с наименьшей вероятностью появления ставится в соответствие код с наибольшей длиной (лемма 1), т.е. такой код является неравномерным (с разной длиной кодовых слов). В р

Помехоустойчивое кодирование
Как следует из названия, такое кодирование предназначено для устранения вредного влияния помех в каналах передачи информации. Уже сообщалось, что такая передача возможна как в пространстве, так и в

Простейшие модели цифровых каналов связи с помехами
Свойство помехоустойчивых кодов обнаруживать и исправлять ошибки в сильной степени зависит от характеристик помех и канала передачи информации. В теории информации обычно рассматривают две простые

Расчет вероятности искажения кодового слова в ДСМК
Положим, кодовое слово состоит из n двоичных символов. Вероятность неискажения кодового слова, как несложно доказать, равна: . Вероятность искажения одного символа (однокра

Общие принципы использования избыточности
Для простоты рассмотрим блоковый код. С его помощью каждым k разрядам (буквам) входной последовательности ставится в соответствие n-разрядное кодовое слова. Количество разного вида

Граница Хэмминга
Граница Хэмминга Q, определяет максимально возможное количество разрешенных кодовых слов равномерного кода при заданных длине n кодового слова и корректирующей способности кода КСК

Избыточность помехоустойчивых кодов
Одной из характеристик кода является его избыточность. Увеличение избыточности в принципе нежелательно, т.к. увеличивает объемы хранимых и передаваемых данных, однако для борьбы с искажениями избыт

Линейные коды
Рассмотрим класс алгебраических кодов, называемых линейными. Определение: Линейными называют блоковые коды, дополнительные разряды которых образуются

Определение числа добавочных разрядов m
Для определения числа добавочных разрядов можно воспользоваться формулой границы Хэмминга: . При этом можно получить плотноупакованный код, т.е. код с минимальной при заданных пар

Построение образующей матрицы
Линейные коды обладают следующим свойством: из всего множества 2k разрешенных кодовых слов, образующих, кстати, группу, можно выделить подмножества из k слов, обладающих св

Порядок кодирования

Порядок декодирования

Двоичные циклические коды
Вышеприведенная процедура построения линейного кода имеет ряд недостатков. Она неоднозначна (МДР можно задать различным образом) и неудобна в реализации в виде технических устройств. Этих недостатк

Некоторые свойства циклических кодов
Все свойства циклических кодов определяются образующим полиномом. 1. Циклический код, образующий полином которого содержит более одного слагаемого, обнаруживает все одиночные ошибки.

Построение кода с заданной корректирующей способностью
Существует несложная процедура построения кода с заданной корректирующей способностью. Она состоит в следующем: 1. По заданному размеру информационной составляющей кодового слова длиной

Матричное описание циклических кодов
Циклические коды можно, как и любые линейные коды, описывать с помощью матриц. Вспомним, что KC(X) = gm(X)*И(Х) . Вспомним также на примере порядок умножения пол

Выбор образующего полинома
Ясно, что полиномы кодовых слов КС(Х) должны делиться на образующий полином g(X) без остатка. Циклические коды относятся к классу линейных. Это означает, что для этих кодов существует

Пропускная способность каналов связи
Эта тема является одной из центральных в теории информации. В ней рассматриваются предельные возможности каналов связи по передаче информации, определяются характеристики каналов, влияющие на эти в

Пропускная способность дискретного канала связи с шумом
Исследуем теперь пропускную способность дискретного канала связи с шумом. Существует большое количество математических моделей таких каналов. Простейшей из них является канал с независимой

Типичные последовательности и их свойства
Будем рассматривать последовательности статистически независимых букв. Согласно закону больших чисел, наиболее вероятными будут последовательности длиной n, в которых при количества N

Основная теорема Шеннона для дискретного канала с шумом
Формулировка Для дискретного канала в шумом существует такой способ кодирования, при котором может быть обеспечена безошибочная передача все информации, поступающей от источ

Обсуждение основной теоремы Шеннона для канала с шумом
Теорема Шеннона для канала с шумом не указывает на конкретный способ кодирования, обеспечивающий достоверную передачу информации со скоростью, сколь угодно близкой с пропускной способности канала с

Пропускная способность непрерывного канала при наличии аддитивного шума
Рассмотрим следующую модель канала: 1. Канал способен пропускать колебания с частотами ниже Fm. 2. В канале действует помеха n(t), имеющая нормальный (гау

Шаг 2. Ввод текстовых файлов в Excel-таблицу с разбиением каждой строки текста на отдельные символы
При вводе ранее сохраненного текстового файла следует указать тип файла *.*. Это позволит во время выбора видеть в списке все файлы. Укажите свой файл. После этого на экран будет выведено окно М

Шаг 4. Находим среднюю энтропию, приходящуюся на 1 букву сообщения
Как описано в теоретическом введении, средняя энтропия находится по формулам 1 и 2. В обоих случаях нужно найти вероятности появления букв или двухбуквенных комбинаций.. Вероятности можно

Шаг 8. Напишем отчет о выполненной работе с описанием всех вычислений и о том, как они выполнялись. Прокомментируйте результаты
Результаты вычислений представьте в виде таблицы: <Язык 1> <Язык

Подключение возможности использования нестандартных функций
Программное управление приложениями, входящими в состав Microsoft Office, осуществляется при помощи так называемых макросов. Слово Макрос – греческого происхождения. В перево

Создание нестандартной функции
Перед созданием нестандартных функций нужно открыть файл в рабочей книгой, содержащей информацию, которую нужно обработать с применением этих нестандартных функций. Если ранее эта рабочая книга был

Запись голоса и подготовка сигнала
Запись начинается и заканчивается нажатием кнопки Record (рис. 5), помеченной красный кружком. В процессе записи кнопка Recоrd выглядит вдавленной и более светлой (подсвеченной).

Импорт текстовых данных в Excel
Двойным кликом откройте текстовый файл с экспортированные из программы Wavosaur данными (рис. 23). Рис. 23. Примерный вид данных Видно, что экспортированные

Квантование по уровню сводится к замене значения исходного сигнала уровнем того шага, в пределы которого это значение попадает
Квантование по уровню – необходимое условие преобразования непрерывного сигнала в цифровую форму. Однако одного лишь квантования по уровню для этого недостаточно – для преобразования в цифровую фор

Коды Хаффмена
На этом алгоритме построена процедура построения оптимального кода, предложенная в 1952 году доктором Массачусетского технологического института (США) Дэвидэм Хаффменом: 5) буквы перви

Процесс повторяется до тех пор, пока в каждой подгруппе останется по одной букве
Рассмотрим алфавит из восьми букв. Ясно, что при обычном (не учитывающем статистических характеристик) кодировании для представления каждой буквы требуется три символа. Наибольший эффек

Параметры эффективности оптимальных кодов
Таких параметров 2: коэффициент статистического сжатия и коэффициент относительной эффективности. Оба параметра характеризуют степень уменьшения средней длины кодового слова. При этом средняя длина

Особенности эффективных кодов
5. Букве первичного алфавита с наименьшей вероятностью появления ставится в соответствие код с наибольшей длиной (лемма 1), т.е. такой код является неравномерным (с разной длиной кодовых слов). В р

Выполнение работы
Лабораторная работа №4 выполняется под управлением специально написанной управляющей программы. Эта управляющая программа написана на языке Visual Basic 6. Исполняемый файл программы носит и

Построение образующей матрицы
Линейные коды обладают следующим свойством: из всего множества 2k разрешенных кодовых слов можно выделить подмножества из k слов, обладающих свойством линейной независимост

Порядок кодирования
Кодовое слово КС получается путем умножения матрицы информационной последовательности ||X|| на образующую матрицу ||OM||: ||KC1*n|| = ||X

Порядок декодирования
В результате передачи кодового слова через канал оно может быть искажено помехой. Это приведет к тому, что принятое кодовое слово ||ПКС|| может не совпасть с исходным ||КС||.

Выполнение работы
Лабораторная работа №5, как и работа №4, выполняется под управлением управляющей программы, написанной на алгоритмическом языке Visual Basic 6. Исполняемый файл программы носит имя Помехо

Каналом связи называется совокупность технических средств и физической среды, способной к передаче посылаемых сигналов, которая обеспечивает передачу сообщений от источника информации к получателю.

Каналы принято делить на непрерывные и дискретные.

В наиболее общем случае всякий дискретный канал включает в себя непрерывный как составную часть. Если влиянием мешающих факторов на передачу сообщений в канале можно пренебречь, то такой идеализированный канал называется каналом без помех . В таком канале каждому сообщению на входе однозначно соответствовало определенное сообщение на выходе и наоборот. Если влиянием помех в канале пренебречь нельзя, то при анализе особенностей передаваемых сообщений по такому каналу используются модели характеризующие работу канала при наличии помех.

Под моделью канала понимается математическое описание канала, позволяющие рассчитать или оценить его характеристики, на основании которых исследуются способы построения систем связи без проведения экспериментальных исследований.

Канал в котором вероятности отождествления первого сигнала со вторым и второго с первым одинаковы называется симметричным .

Канал, алфавит сигналов на входе которого отличается от алфавита сигналов на его выходе называется каналом со стиранием.

Канал передачи сообщения от источника к получателю, дополненный обратным каналом, служит для повышения достоверности передачи называется каналом с обратной связью.

Канал связи считается заданным, если известны данные по сообщению на его входе, а также ограничения которые накладываются на входные сообщения физическими характеристиками каналов.

Для характеристики каналов связи используют два понятия скорости передач:

1 – техническая скорость передачи, которая характеризуется числом элементарных сигналов, передаваемых по каналу связи в единицу времени, она зависти от свойств линий связи и от быстродействия аппаратуры канала:

2 – информационная скорость, которая определяется средним количеством информации, передающимся по каналу связи в единицу времени:

Пропускной способностью канала называется максимальная скорость передачи информации по этому каналу, достигаемая при самых совершенных способах передачи и приема.

Лекция №8

Согласование физических характеристик канала связи и сигнала

Каждый конкретный канал связи обладает физическими параметрами, определяющими возможности передачи по этому каналу тех или иных сигналов. Независимо от конкретного типа и назначения каждый канал может быть охарактеризован тремя основными параметрами:

    Т К – время доступа канала [с];

    F K – полоса пропускания каналов [Гц];

    Н К – допустимое превышение сигнала над помехами в канале.

На основании этих характеристик используется интегральная характеристика – объем канала.

Рассмотрим следующие случаи:

а)

Чтобы оценить возможность передачи данного сигнала по конкретному каналу нужно соотнести характеристики канала с соответствующими характеристиками сигнала:

    T C – длительность сигнала [с];

    F C – полоса частот (ширина спектра) сигнала [Гц];

    H C – уровень превышения сигнала над помехой.

Тогда можем ввести понятие объема сигнала .

Передача информации по каналу с решающей обратной связью

дипломная работа

1.2.1 Способы передачи информации по каналам связи

Передача информации с повторением (накоплением). Такой метод передачи применяют для повышения достоверности при отсутствии обратного канала, хотя нет принципиальных ограничений для его использования и при наличии обратной связи. Иногда такой метод классифицируют как прием сообщений с накоплением. Сущность метода заключается в передаче одного и того же сообщения несколько раз, запоминании принятых сообщений, сравнении их поэлементно и составлении сообщения, включая элементы, выбранные «по большинству». Предположим, что трижды передана одна и та же кодовая комбинация 1010101. Во всех трех передачах она подверглась воздействию помех и была искажена:

Приемник поразрядно сравнивает три принятых символа и проставляет те символы (под чертой), количество которых в данном разряде преобладает.

Существует и другой метод передачи информации с накоплением, при котором производится не посимвольное сравнение, а сравнение всей комбинации в целом. Этот метод проще реализуется, но обеспечивает более плохие результаты.

Таким образом, высокая помехоустойчивость метода передачи информации с повторением (накоплением) основана на том, что сигнал и помехи в канале не зависят друг от друга и изменяются по разным законам (сигнал периодичен, а помеха случайна), поэтому повторяющаяся комбинация в каждой передаче, как правило, будет искажаться по-разному. Вследствие этого на приеме накопление, то есть суммирование сигнала, возрастает пропорционально числу повторений, тогда как сумма помехи возрастает по другому закону. Если считать, что помехи и сигнал независимы, то суммируются средн-ие квадраты и средний квадрат суммы возрастает пропорционально первойстепени. Поэтому при n повторениях отношение сигнал/помеха увеличивается в n раз, причем это происходит без увеличения мощности сигнала. Однако это достигается за счет усложнения аппаратуры и возрастания времени передачи или полосы частот в случае, если сигнал передается на нескольких частотах одновременно во времени. Кроме того, при зависимых ошибках и пачках ошибок помехоустойчивость системы снижается.

Передача информации с обратной связью. Помехоустойчивость передачи без обратной связи (ПБОС) обеспечивается следующими способами: помехоустойчивым кодированием, передачей с повторением, одновременной передачей по нескольким параллельным каналам. В ПБОС применяются обычно коды с исправлением ошибок, что связано с высокой избыточностью и усложнением аппаратуры. Передача с обратной связью (ПОС) во многом устраняет указанные недостатки, так как позволяет применять менее помехоустойчивые коды, обладающие, как правило, меньшей избыточностью. В частности, можно использовать коды с обнаружением ошибок. Преимуществом обратного канала является также возможность контроля работоспособности объекта, принимающего информацию.

При ПОС вводят понятие прямого канала, т.е. канала от передатчика к приемнику, например передается сигнал команды с пункта управления (ПУ) на контролируемый пункт (КП). Обратным каналом при этом явится передача сообщения с КП на ПУ о принятии сигнала команды, причем по обратному каналу могут передаваться как сообщение только о том, что сигнал принят на входе КП (в этом случае контролируется лишь прохождение сигнала по каналу связи), так и сведения о полном выполнении команды. Возможна и обратная связь, дающая сведения о поэтапном прохождении сигнала команды по тракту приема.

Рассмотрим отдельные виды передачи с обратной связью.

Передача с информационной обратной связью (ИОС). Если сообщение передается в виде непомехозащищенного кода, то в кодирующем устройстве данный код может быть преобразован в помехозащищенный. Однако, поскольку в этом обычно нет необходимости, кодирующее устройство представляет собой регистр для превращения простого параллельного кода в последовательный. Одновременно c передачей по прямому каналу сообщение запоминается в накопителе на передатчике (рис.1.1а). На контролируемом пункте принятое сообщение декодируется и также запоминается в накопителе. Однако получателю сообщение передается не сразу: сначала оно поступает через обратный канал на пункт управления. В схеме сравнения ПУ происходит сравнение принятого сообщения с переданным. Если сообщения совпадают, то формируется сигнал «Подтверждение» и происходит передача последующих сообщений (иногда перед посылкой последующего сообщения на КП сначала посылается сигнал «Подтверждение» о том, что предыдущее сообщение было принято верно и с накопителя можно передать информацию получателю). При несовпадении сообщений, что свидетельствует об ошибке, формируется сигнал «Стирание». Этот сигнал запирает ключ для прекращения передачи очередного сообщения и посылается на КП для уничтожения записанного в накопителе сообщения. После этого с ПУ производится повторная передача сообщения, записанного в накопителе.

Рис.1.1а. Способ передачи информации с ИОС.

В системах с ИОС ведущая роль принадлежит передающей части, так как она определяет наличие ошибки, приемник только информирует передатчик о том, какое сообщение им получено. Имеются различные варианты передачи с ИОС. Так, существуют системы с ИОС, в которых передача сигналов происходит непрерывно и прекращается лишь при обнаружении ошибки: передатчик посылает сигнал «Стирание» и повторяет передачу. Системы с ИОС, в которых по обратному каналу передается вся информация, переданная на КП, называются системами с ретрансляционной обратной связью. В некоторых системах с ИОС передается не вся информация, а только некоторые характерные сведения о ней (квитанции). Например, по прямому каналу передаются информационные, а по обратному каналу -- контрольные символы, которые будут сравниваться на передатчике с предварительно записанными контрольными символами. Имеется вариант, в котором после проверки принятого по обратному каналу сообщения и обнаружения ошибки передатчик может либо повторить его (дублирование сообщения), либо послать дополнительную информацию, необходимую для исправления (корректирующая информация). Число повторений может быть ограниченным или неограниченным.

Обратный канал используют для того, чтобы определить, необходима ли повторная передача информации. В системах с ИОС повышение достоверности передачи достигается путем повторения информации только при наличии ошибки, тогда как в системах без обратной связи (при передаче с накоплением) повторение осуществляется независимо от искажения сообщения. Поэтому в системах с ИОС избыточность информации значительно меньше, чем в системах с ПБОС: она минимальна при отсутствии искажений и увеличивается при ошибках. В системах с ИОС качество обратного канала должно быть не хуже качества прямого во избежание искажений, которые могут увеличить число повторений.

Передача с решающей обратной связью (РОС). Переданное с передатчика по прямому каналу сообщение принимается на приемнике (рис.1.1б), где оно запоминается и проверяется в декодирующем устройстве (декодере). Если ошибок нет, то из накопителя сообщение поступает к получателю информации, а через обратный канал на передатчик подается сигнал о продолжении дальнейшей передачи (сигнал продолжения). Если ошибка обнаружена, то декодер выдает сигнал, стирающий информацию в накопителе. Получателю сообщение не поступает, а через обратный канал на передатчик подается сигнал о переспросе или повторении передачи (сигнал повторения или переспроса). На передатчике сигнал повторения (иногда называемый решающим сигналом) выделяется приемником решающих сигналов, а переключающее устройство отключает вход кодера от источника информации и подключает его к накопителю, что позволяет повторить переданное сообщение. Повторение сообщения может происходить несколько раз до его правильного приема.

Рис.1.1б. Способ передачи информации с РОС.

При передаче с РОС ошибка определяется приемником. Для этого передаваемое сообщение должно кодироваться обязательно помехозащищенным кодом, что позволяет приемнику выделить разрешенную комбинацию (сообщение) из неразрешенных. Это означает, что передача с РОС осуществляется с избыточностью. Достоверность передачи в системах РОС определяется выбором кода и защитой решающих сигналов повторения и продолжения. Последнее не представляет особых трудностей, так как эти сигналы несут одну двоичную единицу информации и могут передаваться достаточно помехоустойчивым кодом.

Системы с РОС, или системы с переспросом, подразделяют на системы с ожиданием решающего сигнала и системы с непрерывной передачей информации.

В системах с ожиданием передача новой кодовой комбинации или повторение переданной происходит только после поступления на передатчик сигнала запроса.

В системах с непрерывной передачей происходит непрерывная передача информации без ожидания сигнала запроса. Скорость передачи при этом выше, чем в системах с ожиданием. Однако после обнаружения ошибки по обратному каналу посылается сигнал переспроса и за время прихода на передатчик с последнего уже будет передано какое-то новое сообщение. Поэтому системы с непрерывной передачей необходимо усложнять соответствующей блокировкой приемника, чтобы он не принимал информацию после обнаружения ошибки.

Для сравнения эффективности системы без обратной связи, в которой применяется код Хэмминга с исправлением одной ошибки, и системы с РОС, использующей простой код, вводят понятие коэффициента эффективности. Этот коэффициент учитывает уменьшение вероятности ошибочного приема и затраты на его достижение, выигрыш в защите от ошибок (в случае применения указанных кодов), относительное снижение скорости передачи и схемную избыточность, связанные с использованием разных кодов. Итоговое сравнение показало, что в отличие от системы без обратной связи, использующей сложный код, система с РОС дает выигрыш в 5,1 раза. Высокая эффективность систем с РОС обеспечила их широкое распространение.

Сравнительный анализ достоверности передачи систем с ИОС и РОС, показал, что:

1) системы с ИОС и РОС обеспечивают одинаковую достоверность передачи при одинаковых суммарных затратах энергии сигналов в прямом и обратном каналах при условии, что эти каналы симметричны и имеют одинаковый уровень помех;

2) системы с ИОС обеспечивают более высокую достоверность передачи, чем Системы с РОС при относительно слабых помехах в обратном канале в отличие от прямого. При отсутствии помех в обратном канале системы с ИОС обеспечивают безошибочную передачу сообщений по основному каналу;

3) при сильных помехах в обратном канале более высокую достоверность обеспечивают системы с РОС;

4) при пачках ошибок в прямом и обратном каналах более высокую достоверность обеспечивают системы с ИОС.

1.1 Акустическая информация К защищаемой речевой (акустической) информации относится информация, являющаяся предметом собственности и подлежащая защите в соответствии с требованиями правовых документов или требованиями...

Защита акустической (речевой) информации от утечки по техническим каналам

Защита акустической (речевой) информации от утечки по техническим каналам

Генераторы пространственного зашумления Генератор шума ГРОМ-ЗИ-4 предназначен для защиты помещений от утечки информации и предотвращения съема информации с персональных компьютеров и локальных вычислительных сетей на базе ПК...

Методы защиты информации

Методы защиты информации в телекоммуникационных сетях

Угрозу отождествляют обычно либо с характером (видом, способом) дестабилизирующего воздействия на информацию, либо с последствиями (результатами) такого воздействия. Однако такого рода термины могут иметь много трактовок...

Методы сбора и обработки цифровых сигналов

Передача данных -- физический перенос данных (цифрового битового потока) в виде сигналов от точки к точке или от точки к нескольким точкам средствами электросвязи по каналу передачи данных, как правило...

Моделирование объекта защиты

3.1 Утечка информации через строительные конструкции и инженерно-технические системы Для обеспечения защиты помещения от данной угрозы можно применить как метод пассивной защиты (звукопоглощающие материалы)...

Определение состава системы передачи информации

Сигнал на выходе аппаратуры ПТИ представляет собой, как правило, сигнал кодоимпульсной формы, спектр частот которого в общем случае бесконечный...

Организация работ по строительству волоконно-оптической линии связи (ВОЛС)

Возможность передачи информации по волоконно-оптическим линиям появилась благодаря переложению квантовой теории света на его распространение в прозрачных однородных средах...

3.1 Анализ возможности передачи конфиденциальной информации по квантовым каналам связи При переходе от сигналов, где информация кодируется импульсами, содержащими тысячи фотонов, к сигналам, где среднее число фотонов...

Передача информации по квантовым каналам связи

Примером протокола исправления ошибок является способ коррекции ошибок, состоящий в том, что блок данных, который должен быть согласован между пользователями, рассматривается как информационный блок некоторого кода...

Проектирование и программная реализация комплексной системы стрелочных переводов

Канал связи представляет собой тракт связи, который начинается с информационного источника, проходит через все этапы кодирования и модулирования, передатчик, физический канал...

Проектирование магистральной волоконно-оптической системы передачи с повышенной пропускной способностью

Развитие телекоммуникаций идет ускоренными темпами. Получили широкое развитие современные цифровые технологии передачи данных, к которым можно отнести ATM, Frame Relay, IP, ISDN, PCM, PDH, SDH и WDM. Причем такие технологии, как АТМ, ISDN, PCM, PDH...

Расчет надежности работы атмосферной оптической линии связи

В данной главе рассматривается технология лазерной сети связи, а так же её преимущества, такие как экономичность; низкие эксплуатационные расходы; высокая пропускная способность и качество цифровой связи...