Андрей Субботин Материал приводится с разрешения редакции.

В настоящее время наблюдается резкий рост объемов информации (в том числе и конфиденциальной), передаваемой по открытым каналам связи. По обычным телефонным каналам осуществляется взаимодействие между банками, брокерскими конторами и биржами, удаленными филиалами организаций, проводятся торги ценными бумагами. Поэтому все более актуальной становится проблема защиты передаваемой информации. Несмотря на то, что конкретные реализации систем защиты информации могут существенно отличаться друг от друга из-за различия процессов и алгоритмов передачи данных, все они должны обеспечивать решение триединой задачи:

    конфиденциальность информации (доступность ее только для того, кому она предназначена);

    целостность информации (ее достоверность и точность, а также защищенность ее преднамеренных и непреднамеренных искажений);

    готовность информации (в любой момент, когда в ней возникает необходимость).

Основными направлениями решения этих задач являются некриптографическая и криптографическая защита. Некриптографическая защита включает в себя организационно-технические меры по охране объектов, снижению уровня опасных излучений и созданию искусственных помех. Ввиду сложности и объемности данной темы некриптографическая защита в рамках данной статьи рассматриваться не будет.

Криптографическая защита в большинстве случаев является более эффективной и дешевой. Конфиденциальность информации при этом обеспечивается шифрованием передаваемых документов или всего трафика работы.

Первый вариант более прост в реализации и может использоваться для работы практически с любыми системами передачи электронной почты. Наиболее часто применяются алгоритмы шифрования DES, RSA, ГОСТ 28147-89, "Веста-2".

Второй вариант можно использовать только в специально разработанных системах, и в этом случае требуется алгоритм высокого быстродействия, так как необходима обработка потоков информации в режиме реального времени. Данный вариант можно считать более безопасным по сравнению с первым, так как шифруются не только передаваемые данные, но и сопроводительная информация, которая включает в себя обычно типы данных, адреса отправителя и получателя, маршруты прохождения и многое другое. Такой подход существенно усложняет задачу введения в систему ложной информации, а также дублирование перехваченной ранее подлинной информации.

Целостность передаваемой по открытым каналам связи информации обеспечивается использованием специальной электронной подписи, которая позволяет установить авторство и подлинность информации. Электронная подпись в настоящее время широко применяется для подтверждения юридической значимости электронных документов в таких системах обмена информации, как Банк - Банк, Банк - Филиал, Банк - Клиент, Биржа - Брокерская контора и т. п. Из наиболее распространенных алгоритмов электронной подписи можно назвать такие, как RSA, PGP, ElGamal.

Готовность информации в большинстве случаев обеспечивается организационно-техническими мерами и установкой специального отказоустойчивого оборудования. Выбор того или иного алгоритма криптографического преобразования обычно сопряжен с большими трудностями. Приведем несколько характерных примеров.

Положим, разработчик системы защиты утверждает, что полностью реализовал в ней требования ГОСТ 28147-89. Этот ГОСТ был опубликован, но не полностью. Не были опубликованы некоторые специальные криптографические подстановки, от которых существенно зависит ее криптостойкость. Таким образом, в правильности реализации ГОСТ можно быть уверенным только при наличии сертификата ФАПСИ, которого у большинства разработчиков нет.

Разработчик системы защиты сообщает, что у реализовал алгоритм RSA. При этом он умалчивает о том, что реализация должна лицензироваться фирмой RSA Data Security Inc. (патент США # 4 405 829). Более того, вывоз из США реализаций RSA с длиной ключа более 40 бит запрещен (криптостойкость такого ключа оценивается специалистами примерно в несколько дней работы обычного компьютера с процессором Pentium).

Разработчик системы защиты сообщает, что в ней реализован алгоритм PGP, который широко применяется у нас в стране благодаря бесплатно распространявшимся до 1995 г. его исходным текстам через BBS США. Здесь две проблемы. Первая - электронная подпись сделана на базе алгоритма RSA и, с точки зрения охраны авторских прав, также должна лицензироваться фирмой RSA Data Security Inc. Вторая - распространяемые программы нечувствительны к вмешательству в их работу, поэтому с помощью специального криптовируса можно легко получить секретный ключ для формирования электронной подписи.

В заключение хочется с сожалением отметить, что в нашей стране практически отсутствует нормативно-методическая база, с помощью которой можно было бы обоснованно сопоставлять предлагаемые системы защиты информации и выбирать наиболее оптимальные решения.

Защита каналов связи

Защита информации в каналах связи - важнейший вопрос организации безопасности на предприятии. На сегодняшний день используют много способов успешно защитить информацию, передаваемую по каналам связи внутри корпорации или во внешний мир.

Защита каналов связи и ее основные методы

Защита связи и информации осуществляется при помощи двух методов. Это метод защиты, основанный на физическом ограничении доступа непосредственно к каналу связи, а также преобразование сигнала (шифрование), которое не позволит злоумышленнику прочитать передаваемую информацию без специального ключа.

В первом способе защита канала связи организовывается ограничением доступа к аппаратуре, по которой передается информация. Используется, в основном, в крупных компаниях и правительственных структурах. Данный метод действует лишь в том случае, если информация не поступает во внешний мир.

Защита информации в каналах связи во всех остальных случаях выполняется благодаря шифрованию данных. Шифрование передаваемой информации, если говорить о классических компьютерных сетях, может выполняться на различных уровнях сетевой модели OSI. Чаще всего преобразование данных происходят на сетевом или прикладном уровнях.

В первом случае шифрование данных осуществляется непосредственно на аппаратуре, которая является отправителем информации, а расшифровка - на приемнике. Данный вариант наиболее эффективно защитит передаваемые данные, однако для его реализации необходимо постороннее программное обеспечение, которое работало бы на прикладном уровне.

Во втором случае шифрование осуществляется непосредственно на узлах канала связи в локальной или глобальной сети. Этот способ защиты связи менее действенный, чем первый, и для должного уровня защиты информации требует реализацию надежных алгоритмов шифрования.

Защита информации в каналах связи также организовывается при построении виртуальных каналов VPN. Данная технология позволяет организовать защищенное соединение с указанным шифрованием по особому виртуальному каналу. Такая технология обеспечивает целостность и конфиденциальность передаваемой по каналу связи информации.

Устройства защиты каналов связи

К таким устройствам относятся:

  • всевозможные глушители,
  • подавители связи,
  • антижучки,
  • детекторы,

благодаря которым можно взять под контроль состояние эфира внутри или снаружи предприятия. Это один из действенных методов защиты связи еще на ранней стадии нейтрализовать несанкционированный доступ к источнику информации.


Уважаемый покупатель!
Надеемся, что Вам понравилась прочитанная статья. Если по данной теме у Вас остались вопросы или пожелания, просим Вас заполнить небольшую форму, мы обязательно учтем и опубликуем Ваш отзыв.
Пожалуйста, учтите, что публикация ссылок на посторонние сайты, а также комментарии, не имеющие отношения к тексту статьи запрещены.


Как к Вам обращаться:

E-mail для связи:

Текст отзыва:


Посетитель нашего сайта обратился с просьбой о консультации по защите информации клиентов:

Я пишу дипломную работу на тему: Защита персональных данных пациента в сети поликлиник. Предположим есть такая программа для регистрации пациентов в нескольких поликлиниках, и они связаны с друг другом по сети(как обычно это бывает). Мне нужно обеспечить безопасность информации о пациентах. Пожалуйста помогите мне раскрыть этот вопрос… Как выполняется взлом, или же кража информации (по сети, внешне и т.д.); каким образом защитить информацию; пути решения этой проблемы и т.д. Оочень прошу помогите…Ais

Что ж, эта задача для многих актуальна во все времена. Информационная безопасность — это отдельное направление в IT.

Как похищают информацию и взламывают информационные системы?

Действительно, для того чтобы защититься от утечки информации прежде всего нужно понимать отчего такие утечки случаются. Как происходит взлом иформационных систем?

Большинство проблем с безопасностью — изнутри

Возможно для опытных специалистов по безопасности это и звучит банально, но для многих людей это будет откровением: большая часть проблем с информационной безопасностью происходит по вине самих пользователей информационных систем. Я ткну пальцем в небо и моя цифра взята «с потолка», но по моему мнению и опыту 98% всех хищений и взломов происходят либо по халатности пользователей, либо умышленно, но опять же изнутри. Поэтому, бОльшую часть усилий стоит направить именно на внутреннюю безопасность. Самое интересное, что я читал по этому поводу, это одно из суждений учителя Инь Фу Во :

Другими словами, мотивы для утечки информации и способы её устроить, рождаются именно изнутри, и чаще всего в таком деле фигурируют те люди, которые уже и так имеют доступ к этой информации.

Сюда же можно отнести и всевозможные вирусы, трояны, зловредные расширения для браузеров. Поскольку эти вещи проникают в компьютеры пользователей просто по незнанию. И если пользователь с зараженного компьютера будет работать с важной информацией — то соответственно с помощью этих вещей можно похитить и её. Сюда же относим и плохие пароли, социальную инженерию, фейковые сайты и письма — со всем этим легко справляться, нужно просто быть внимательным.

Атаки MITM

Этот пункт будет следующим в списке, поскольку это самый очевидный способ для хищения информации. Речь идёт о перехвате. Аббревиатура означает Man In The Middle — человек на середине. То есть, для кражи информации происходит как бы вклинивание злоумышленника в канал передачи данных — он изобретает и использует какой то способ, для того чтобы перехватить данные на пути их следования.

Как происходит перехват информации

В свою очередь, способов организовать MITM тоже много. Это и всевозможные фейки сайтов и сервисов, различные снифферы и прокси. Но суть всегда одна — злоумышленник заставляет «думать» какую-либо из сторон, что он — это другая сторона и при обмене все данные проходят через него.

Как защититься от перехвата информации?

Способы тоже очевидны. И сводятся к двум:

  1. Не допустить, чтобы злоумышленник мог вклиниться в процесс обмена данными
  2. Даже если исключить это невозможно и каким-то образом произошло — не допустить чтобы злоумышленник смог читать и использовать перехваченную информацию.

Варианты организации этого тоже не отличаются многообразием, по крайней мере в своей сути. Реализаций конечно же достаточно. Давайте рассмотрим именно суть этих методов защиты.

Использовать туннелирование и виртуальные приватные сети

VPN — Virtual Privat Network. Наверняка слышал о нём каждый. Это первый, и часто единственный, способ, который позволяет организовать безопасное информационное пространство для обмена нескольких учреждений. Суть его — построение сети туннелей поверх глобальной незащищенной сети (Интернет). Именно такой способ я и рекомендую как первый к внедрению в подобной системе офисов. VPN позволит офисам работать как-бы в единой локальной сети. Но связь между офисами будет происходить по интернету. Для этого между офисами организовываются VPN-туннели.

Примерно таким образом это работает. VPN-туннель, это как бы «труба» в интернете, внутри которой проложена ваша локальная сеть. Технически, такой тунель можно организовать множеством способом. Самих VPN — есть несколько реализаций — это и pptp, и l2tp, ipsec. позволяет — получается такой «VPN на коленке». Это конечно не исключает возможности для MITM — данные можно перехватить, «подключиться к трубе». Но здесь мы и переходим ко второму пункту защиты — шифрованию.

Шифрование данных в сети

Для того чтобы атака MITM не могла быть успешной, достаточно зашифровать все передаваемые данные. Я не буду вдаваться в подробности, но суть такова, что вы превращаете передаваемый между вами трафик в нечитабельную субстанцию, которую невозможно прочитать и использовать — шифруете. При этом, расшифровать эти данные может только адресат. И наоборот.

Соответственно, даже если злоумышленник сумеет организовать MITM-атаку — он перехватит передаваемые вами данные. Но он не сможет их расшифровать, а значит никакого вреда не нанесёт. Да и не будет он организовывать такую атаку, зная что вы передаете шифрованные данные. Так вот, та самая «труба» из предыдушего пункта, это именно шифрование.

В принципе, вся современная информационная безопасность сводится именно к этим двум вещам — туннелированию и шифрованию. Тот же https — это только шифрование, данные передаются открыто, в глобальной сети, любой желающий может организовать атаку и перехватить их. Но пока у него нет ssl-сертификатов и ключей для расшировки этих данных — ничем это и никому не грозит.

Защита путем обучения пользователей

Это те самые пресловутые 98%. Даже если вы построите сверхшифрованные двойные туннели с двухфакторной аутентификацией — это ничем вам не поможет, пока пользователи могут подхватить троян или использовать слабые пароли.

Поэтому, самым важным в защите является именно забота об обучении пользователей. Я давно этим стараюсь заниматься и на сайте уже есть некоторые материалы, которые в этом могут помочь:

  1. Суть антивирусной защиты — . Здесь я постарался подробно раскрыть вопросы о том, что такое вредоносное ПО и вирусы и как жить не находясь в постоянном страхе чем-то «заразить» свой компьютер, даже без антивируса.
  2. — описывал свой, довольно простой метод генерации сильных паролей «из головы».

Я думаю, после прочтения данной статьи и этих мануалов вы будете знать об информационной безопасности больше, чем 90% людей:) По крайней мере, вы сможете задавать уже более конкретные вопросы и находить чёткую информацию.

А тем временем, у меня есть новость, друзья. Мы идём в SMM! И я рад представить вам нашу группу на Facebook —

В условиях нарастающих интеграционных процессов и создания единого информационного пространства во многих организациях ЛАНИТ предлагает провести работы по созданию защищенной телекоммуникационной инфраструктуры, связывающей удаленные офисы фирм в единое целое, а также обеспечение высокого уровня безопасности информационных потоков между ними.

Применяемая технология виртуальных частных сетей позволяет объединять территориально распределенные сети как с помощью защищенных выделенных каналов, так и виртуальных каналов, проходящих через глобальные общедоступные сети. Последовательный и системный подход к построению защищенных сетей предполагает не только защиту внешних каналов связи, но и эффективную защиту внутренних сетей путем выделения замкнутых внутренних контуров VPN. Таким образом, применение технологии VPN позволяет организовать безопасный доступ пользователей в Интернет, защитить серверные платформы и решить задачу сегментирования сети в соответствии с организационной структурой.

Защита информации при передаче между виртуальными подсетями реализуется на алгоритмах асимметричных ключей и электронной подписи, защищающей информацию от подделки. Фактически данные, подлежащие межсегментной передаче, кодируются на выходе из одной сети, и декодируются на входе другой сети, при этом алгоритм управления ключами обеспечивает их защищенное распределение между оконечными устройствами. Все манипуляции с данными прозрачны для работающих в сети приложений.

Удаленный доступ к информационным ресурсам. Защита информации, передаваемой по каналам связи

При межсетевом взаимодействии между территориально удаленными объектами компании возникает задача обеспечения безопасности информационного обмена между клиентами и серверами различных сетевых служб. Сходные проблемы имеют место и в беспроводных локальных сетях (Wireless Local Area Network, WLAN), а также при доступе удаленных абонентов к ресурсам корпоративной информационной системы. В качестве основной угрозы здесь рассматривается несанкционированное подключение к каналам связи и осуществление перехвата (прослушивания) информации и модификация (подмена) передаваемых по каналам данных (почтовые сообщения, файлы и т.п.).

Для защиты данных, передаваемых по указанным каналам связи, необходимо использовать соответствующие средства криптографической защиты. Криптопреобразования могут осуществляться как на прикладном уровне (или на уровнях между протоколами приложений и протоколом TCP/IP), так и на сетевом (преобразование IP-пакетов).

В первом варианте шифрование информации, предназначенной для транспортировки по каналу связи через неконтролируемую территорию, должно осуществляться на узле-отправителе (рабочей станции - клиенте или сервере), а расшифровка - на узле-получателе. Этот вариант предполагает внесение существенных изменений в конфигурацию каждой взаимодействующей стороны (подключение средств криптографической защиты к прикладным программам или коммуникационной части операционной системы), что, как правило, требует больших затрат и установки соответствующих средств защиты на каждый узел локальной сети. К решениям данного варианта относятся протоколы SSL, S-HTTP, S/MIME, PGP/MIME, которые обеспечивают шифрование и цифровую подпись почтовых сообщений и сообщений, передаваемых с использованием протокола http.

Второй вариант предполагает установку специальных средств, осуществляющих криптопреобразования в точках подключения локальных сетей и удаленных абонентов к каналам связи (сетям общего пользования), проходящим по неконтролируемой территории. При решении этой задачи необходимо обеспечить требуемый уровень криптографической защиты данных и минимально возможные дополнительные задержки при их передаче, так как эти средства туннелируют передаваемый трафик (добавляют новый IP-заголовок к туннелируемому пакету) и используют различные по стойкости алгоритмы шифрования. В связи с тем, что средства, обеспечивающие криптопреобразования на сетевом уровне полностью совместимы с любыми прикладными подсистемами, работающими в корпоративной информационной системе (являются «прозрачными» для приложений), то они наиболее часто и применяются. Поэтому, остановимся в дальнейшем на данных средствах защиты информации, передаваемой по каналам связи (в том числе и по сетям общего доступа, например, Internet). Необходимо учитывать, что если средства криптографической защиты информации планируются к применению в государственных структурах, то вопрос их выбора должен решаться в пользу сертифицированных в России продуктов.

Организация защищенного канала связи

Максим Илюхин,
к.т.н., ОАО "ИнфоТеКС"

КОНЕЦ XX века был отмечен лавинообразным распространением Интернета: в геометрической прогрессии росли скорости доступа, охватывались все новые и новые территории, практически между любыми двумя точками в мире можно было установить быструю связь через сеть. Но передача информации не была безопасной, злоумышленники могли перехватить, украсть, изменить ее. В это время стала набирать популярность идея организации надежного канала, который для связи будет использовать общедоступные коммуникации, но защитит передаваемые данные за счет применения криптографических методов. Стоимость организации такого канала была во много раз меньше стоимости прокладки и поддержания выделенного физического канала. Таким образом, организация защищенного канала связи становилась доступной средним и малым предприятиям и даже частным лицам.

Система ViPNet

На заре своего развития идея организации частных приватных сетей (VPN) была чрезвычайно популярна, и многие серьезные участники ИТ-рынка и энтузиасты-любители пытались воплотить абстрактные идеи в реальный программный продукт. Серьезные компании создали множество решений, обеспечивающих функциональность частных приватных сетей как на программном, так и на аппаратном уровне. Одним из самых ярких и масштабных стала система ViPNet, разработанная компанией "ИнфоТеКС".

Система ViPNet обеспечивает прозрачную защиту информационных потоков любых приложений и любых протоколов IP как для отдельных рабочих станций, файловых серверов, серверов приложений, маршрутизаторов, серверов удаленного доступа и т.п., так и сегментов IP-сетей. Одновременно она выполняет функции персонального сетевого экрана для каждого компьютера и межсетевого экрана для сегментов IP-сетей.

Ключевая структура носит комбинированный характер, имеет как симметричную схему распределения ключей, что позволяет обеспечить жесткую централизованную систему управления, так и систему открытого распределения ключей, и используется как доверенная среда для работы PKI. Прикладные программы системы ViPNet дополнительно предоставляют защищенные службы реального времени для циркулярного обмена сообщениями, проведения конференций, ведения переговоров; для служб гарантированной доставки почтовой корреспонденции с процедурами электронной подписи и разграничением доступа к документам; для служб автопроцессинга для автоматической доставки файлов. Кроме того, отдельно оформленные криптографические функции ядра (подпись и шифрование) и реализованная поддержка MS Crypto API при необходимости могут встраиваться непосредственно в различные прикладные системы (например, системы электронного документооборота).

Программное обеспечение системы ViPNet функционирует в операционных средах Windows, Linux.

ViPNet CUSTOM

ViPNet CUSTOM - многофункциональная технология создания защищенных VPN-сетей с возможностью развертывания полноценной PKI-структуры, ориентированная на организацию защищенного взаимодействия "клиент - клиент", в то время как большинство VPN-решений других производителей обеспечивают только соединения уровня "сервер - сервер" или "сервер -клиент". Это дает возможность реализовать любую необходимую политику разграничения доступа в рамках всей защищенной сети, а также снизить нагрузку на VPN-серверы, так как в общем случае при взаимодействии "клиент - клиент" VPN-сервер не задействован в операциях шифрования трафика между этими клиентами. Большое внимание в ViPNet CUSTOM уделено решению проблемы функционирования в условиях наличия разнообразного сетевого оборудования и программного обеспечения, реализующего динамическую или статическую трансляцию адресов/портов (NAT/PAT), что существенно облегчает процесс интеграции системы защиты в существующую инфраструктуру сети. В большинстве случаев ручной настройки клиентского ПО ViPNet Client вообще не требуется.

Каждый компонент ViPNet CUSTOM содержит встроенный сетевой экран и систему контроля сетевой активности приложений, что позволяет получить надежную распределенную систему межсетевых и персональных сетевых экранов.

Для разрешения возможных конфликтов IP-адресов в локальных сетях, включаемых в единую защищенную сеть, ViPNet CUSTOM предлагает развитую систему виртуальных адресов. Во многих случаях это позволяет упростить настройку прикладного ПО пользователя, так как наложенная виртуальная сеть со своими виртуальными адресами будет скрывать реальную сложную структуру сети. ViPNet CUSTOM поддерживает возможность межсетевого взаимодействия, что позволяет устанавливать необходимые защищенные каналы связи между произвольным числом защищенных сетей, построенных с использованием ViPNet CUSTOM. Кроме того, система обеспечивает защиту информации в современных мульти-сервисных сетях связи, предоставляющих услуги IP-телефонии и аудио- и видеоконфе-ренц-связи. Поддерживается приоритизация трафика и протоколы Н.323, Skinny.