Числовым выражением является запись чисел в совокупности с арифметическими операциями и скобками. Когда в выражении совместно с числами используются переменные и все выражение составлено со смыслом, то его называют алгебраическим (буквенным) выражением. Если в выражении присутствуют прямые, производные, обратные и другие тригонометрические функции, тогда выражение называют тригонометрическим. Большое количество примеров и задач с применением различных выражений детально изложено в школьном курсе математики.

Основное что нужно помнить:

1. Значением числового выражения будет являться число, полученное при выполнении арифметических действий в этом выражении. Главное последовательно выполнять арифметические действия. Для простоты всей операции, действия можно пронумеровать. Если выражение содержит скобки, то первым делом выполняем действие соответствующее знаку в скобках. Возведение в степень будет следующим этапом. Дальше по приоритету выполняем умножение либо деление и только в самом конце сложение и вычитание.

А теперь найдем значение числового выражения 5+20*(60-45). Для начала «избавляемся» от скобок. Выполняя действие, получим 60-45=15. Теперь мы имеем 5+20*15. Следующее действие умножение 20*15=300. И последним действием будет сложение, выполняем его и получаем конечный результат 5+300=305.

2. При известном угле? Работая с тригонометрическими выражениями, потребуются знания основных тригонометрических формул, которые помогут упростить выражение. Найдем значение выражения cos 12? cos 18?- sin 12? sin 18?. Чтобы упростить данное выражение воспользуемся формулой cos (? +?) = cos? cos? - sin? sin?, тогда получим cos 12? cos 18?- sin 12? sin 18?= cos(12? +18?)= cos30? =v3?2.

3. Выражения с переменными. Нужно помнить, что значение алгебраического выражения напрямую зависит от переменной. Переменные можно обозначать буквами греческого либо латинского алфавита. Когда мы имеем заданные параметры алгебраического выражения, для начала его нужно упростить. После этого необходимо подставить заданные переменные и произвести арифметические операции. В итоге при заданных переменных мы получим число, которое и будет являться значением алгебраического выражения. Рассмотрим такой пример, где нужно найти значение выражения 3(a+y)+2(3a+2y) при a=4 и y=5. Упростим это выражение и получим 3a+3y+6a+4y=9a+7y. Теперь необходимо подставить значение переменных и вычислить, полученный результат и будет являться значением выражения. Итак, мы имеем 9a+7y при a=4 и y=5 получим 36+35=71. Обратите внимание на то, что алгебраические выражения не всегда имеют смысл. Например, такое выражение 15:(b-4) имеет смысл при любом b кроме b =4.


Итак, если числовое выражение составлено из чисел и знаков +, −, · и:, то по порядку слева направо нужно сначала выполнить умножение и деление, а затем – сложение и вычитание, что позволит найти искомое значение выражения.

Приведем решение примеров для пояснения.

Пример.

Вычислите значение выражения 14−2·15:6−3 .

Решение.

Чтобы найти значение выражения, нужно выполнить все указанные в нем действия в соответствии с принятым порядком выполнения этих действий. Вначале по порядку слева направо выполняем умножение и деление, получаем 14−2·15:6−3=14−30:6−3=14−5−3 . Теперь также по порядку слева направо выполняем оставшиеся действия: 14−5−3=9−3=6 . Так мы нашли значение исходного выражения, оно равно 6 .

Ответ:

14−2·15:6−3=6 .

Пример.

Найдите значение выражения .

Решение.

В данном примере нам сначала нужно выполнить умножение 2·(−7) и деление с умножением в выражении . Вспомнив, как выполняется , находим 2·(−7)=−14 . А для выполнения действий в выражении сначала , после чего , и выполняем : .

Подставляем полученные значения в исходное выражение: .

А как быть, когда под знаком корня находится числовое выражение? Чтобы получить значение такого корня, нужно сначала найти значение подкоренного выражения, придерживаясь принятого порядка выполнений действий. Например, .

В числовых выражениях корни следует воспринимать как некоторые числа, и корни целесообразно сразу заменить их значениями, после чего находить значение полученного выражения без корней, выполняя действия в принятой последовательности.

Пример.

Найдите значение выражения с корнями .

Решение.

Сначала найдем значение корня . Для этого, во-первых, вычислим значение подкоренного выражения, имеем −2·3−1+60:4=−6−1+15=8 . А во-вторых, находим значение корня .

Теперь вычислим значение второго корня из исходного выражения: .

Наконец, мы можем найти значение исходного выражения, заменив корни их значениями: .

Ответ:

Достаточно часто, чтобы стало возможно найти значение выражения с корнями, предварительно приходится проводить его преобразование. Покажем решение примера.

Пример.

Каково значение выражения .

Решение.

Мы не имеем возможности заменить корень из трех его точным значением, что не позволяет нам вычислить значение этого выражения описанным выше способом. Однако мы можем вычислить значение этого выражение, выполнив несложные преобразования. Применим формулу разности квадратов : . Учитывая , получаем . Таким образом, значение исходного выражения равно 1 .

Ответ:

.

Со степенями

Если основание и показатель степени являются числами, то их значение вычисляется по определению степени, например, 3 2 =3·3=9 или 8 −1 =1/8 . Встречаются также записи, когда основание и/или показатель степени являются некоторыми выражениями. В этих случаях нужно найти значение выражения в основании, значение выражения в показателе, после чего вычислить значение самой степени.

Пример.

Найдите значение выражения со степенями вида 2 3·4−10 +16·(1−1/2) 3,5−2·1/4 .

Решение.

В исходном выражении две степени 2 3·4−10 и (1−1/2) 3,5−2·1/4 . Их значения нужно вычислить до выполнения остальных действий.

Начнем со степени 2 3·4−10 . В ее показателе находится числовое выражение, вычислим его значение: 3·4−10=12−10=2 . Теперь можно найти значение самой степени: 2 3·4−10 =2 2 =4 .

В основании и показателе степени (1−1/2) 3,5−2·1/4 находятся выражения, вычисляем их значения, чтобы потом найти значение степени. Имеем (1−1/2) 3,5−2·1/4 =(1/2) 3 =1/8 .

Теперь возвращаемся к исходному выражению, заменяем в нем степени их значениями, и находим нужное нам значение выражения: 2 3·4−10 +16·(1−1/2) 3,5−2·1/4 = 4+16·1/8=4+2=6 .

Ответ:

2 3·4−10 +16·(1−1/2) 3,5−2·1/4 =6 .

Стоит заметить, что более распространены случаи, когда целесообразно провести предварительное упрощение выражения со степенями на базе .

Пример.

Найдите значение выражения .

Решение.

Судя по показателям степеней, находящихся в данном выражении, точные значения степеней получить не удастся. Попробуем упростить исходное выражение, может быть это поможет найти его значение. Имеем

Ответ:

.

Степени в выражениях зачастую идут рука об руку с логарифмами, но о нахождении значений выражений с логарифмами мы поговорим в одном из .

Находим значение выражения с дробями

Числовые выражения в своей записи могут содержать дроби . Когда требуется найти значение подобного выражения, дроби, отличные от обыкновенных дробей, следует заменить их значениями перед выполнением остальных действий.

В числителе и знаменателе дробей (которые отличны от обыкновенных дробей) могут находиться как некоторые числа, так и выражения. Чтобы вычислить значение такой дроби нужно вычислить значение выражения в числителе, вычислить значение выражения в знаменателе, после чего вычислить значение самой дроби. Такой порядок объясняется тем, что дробь a/b , где a и b – некоторые выражения, по сути представляет собой частное вида (a):(b) , так как .

Рассмотрим решение примера.

Пример.

Найдите значение выражения с дробями .

Решение.

В исходном числовом выражении три дроби и . Чтобы найти значение исходного выражения, нам сначала нужно эти дроби, заменить их значениями. Сделаем это.

В числителе и знаменателе дроби находятся числа. Чтобы найти значение такой дроби, заменяем дробную черту знаком деления, и выполняем это действие: .

В числителе дроби находится выражение 7−2·3 , его значение найти легко: 7−2·3=7−6=1 . Таким образом, . Можно переходить к нахождению значения третьей дроби.

Третья дробь в числителе и знаменателе содержит числовые выражения, поэтому, сначала нужно вычислить их значения, а это позволит найти значение самой дроби. Имеем .

Осталось подставить найденные значения в исходное выражение, и выполнить оставшиеся действия: .

Ответ:

.

Часто при нахождении значений выражений с дробями приходится выполнять упрощение дробных выражений , базирующееся на выполнении действий с дробями и на сокращении дробей.

Пример.

Найдите значение выражения .

Решение.

Корень из пяти нацело не извлекается, поэтому для нахождения значения исходного выражения для начала упростим его. Для этого избавимся от иррациональности в знаменателе первой дроби: . После этого исходное выражение примет вид . После вычитания дробей пропадут корни, что нам позволит найти значение изначально заданного выражения: .

Ответ:

.

С логарифмами

Если числовое выражение содержит , и если есть возможность избавиться от них, то это делается перед выполнением остальных действий. Например, при нахождении значения выражения log 2 4+2·3 , логарифм log 2 4 заменяется его значением 2 , после чего выполняются остальные действия в обычном порядке, то есть, log 2 4+2·3=2+2·3=2+6=8 .

Когда под знаком логарифма и/или в его основании находятся числовые выражения, то сначала находятся их значения, после чего вычисляется значение логарифма. Для примера рассмотрим выражение с логарифмом вида . В основании логарифма и под его знаком находятся числовые выражения, находим их значения: . Теперь находим логарифм, после чего завершаем вычисления: .

Если же логарифмы не вычисляются точно, то найти значение исходного выражения может помочь предварительное его упрощение с использованием . При этом нужно хорошо владеть материалом статьи преобразование логарифмических выражений .

Пример.

Найдите значение выражения с логарифмами .

Решение.

Начнем с вычисления log 2 (log 2 256) . Так как 256=2 8 , то log 2 256=8 , следовательно, log 2 (log 2 256)=log 2 8=log 2 2 3 =3 .

Логарифмы log 6 2 и log 6 3 можно сгруппировать. Сумма логарифмов log 6 2+log 6 3 равна логарифму произведения log 6 (2·3) , таким образом, log 6 2+log 6 3=log 6 (2·3)=log 6 6=1 .

Теперь разберемся с дробью . Для начала основание логарифма в знаменателе перепишем в виде обыкновенной дроби как 1/5 , после чего воспользуемся свойствами логарифмов, что позволит нам получить значение дроби:
.

Осталось лишь подставить полученные результаты в исходное выражение и закончить нахождение его значения:

Ответ:

Как найти значение тригонометрического выражения?

Когда числовое выражение содержит или и т.п., то их значения вычисляются перед выполнением остальных действий. Если под знаком тригонометрических функций стоят числовые выражения, то сначала вычисляются их значения, после чего находятся значения тригонометрических функций.

Пример.

Найдите значение выражения .

Решение.

Обратившись к статье , получаем и cosπ=−1 . Подставляем эти значения в исходное выражение, оно принимает вид . Чтобы найти его значение, сначала нужно выполнить возведение в степень, после чего закончить вычисления: .

Ответ:

.

Стоит отметить, что вычисление значений выражений с синусами, косинусами и т.п. зачастую требует предварительного преобразования тригонометрического выражения .

Пример.

Чему равно значение тригонометрического выражения .

Решение.

Преобразуем исходное выражение, используя , в данном случае нам потребуются формула косинуса двойного угла и формула косинуса суммы:

Проделанные преобразования помогли нам найти значение выражения.

Ответ:

.

Общий случай

В общем случае числовое выражение может содержать и корни, и степени, и дроби, и какие-либо функции, и скобки. Нахождение значений таких выражений состоит в выполнении следующих действий:

  • сначала корни, степени, дроби и т.п. заменяются их значениями,
  • дальше действия в скобках,
  • и по порядку слева направо выполняется оставшиеся действия - умножение и деление, а за ними – сложение и вычитание.

Перечисленные действия выполняются до получения конечного результата.

Пример.

Найдите значение выражения .

Решение.

Вид данного выражения довольно сложен. В этом выражении мы видим дробь, корни, степени, синус и логарифм. Как же найти его значение?

Продвигаясь по записи слева на право, мы натыкаемся на дробь вида . Мы знаем, что при работе с дробями сложного вида, нам нужно отдельно вычислить значение числителя, отдельно – знаменателя, и, наконец, найти значение дроби.

В числителе мы имеем корень вида . Чтобы определить его значение, сначала надо вычислить значение подкоренного выражения . Здесь есть синус. Найти его значение мы сможем лишь после вычисления значения выражения . Это мы можем сделать: . Тогда , откуда и .

Со знаменателем все просто: .

Таким образом, .

После подстановки этого результата в исходное выражение, оно примет вид . В полученном выражении содержится степень . Чтобы найти ее значение, сначала придется найти значение показателя, имеем .

Итак, .

Ответ:

.

Если же нет возможности вычислить точные значения корней, степеней и т.п., то можно попробовать избавиться от них с помощью каких-либо преобразований, после чего вернуться к вычислению значения по указанной схеме.

Рациональные способы вычисления значений выражений

Вычисление значений числовых выражений требует последовательности и аккуратности. Да, необходимо придерживаться последовательности выполнения действий, записанной в предыдущих пунктах, но не нужно это делать слепо и механически. Этим мы хотим сказать, что часто можно рационализировать процесс нахождения значения выражения. Например, значительно ускорить и упростить нахождение значения выражения позволяют некоторые свойства действий с числами.

К примеру, мы знаем такое свойство умножения: если один из множителей в произведении равен нулю, то и значение произведения равно нулю. Используя это свойство, мы можем сразу сказать, что значение выражения 0·(2·3+893−3234:54·65−79·56·2,2)· (45·36−2·4+456:3·43) равно нулю. Если бы мы придерживались стандартного порядка выполнения действий, то сначала нам бы пришлось вычислять значения громоздких выражений в скобках, а это бы заняло массу времени, и в результате все равно получился бы нуль.

Также удобно пользоваться свойством вычитания равных чисел: если от числа отнять равное ему число, то в результате получится нуль. Это свойство можно рассматривать шире: разность двух одинаковых числовых выражений равна нулю. Например, не вычисляя значения выражений в скобках можно найти значение выражения (54·6−12·47362:3)−(54·6−12·47362:3) , оно равно нулю, так как исходное выражение представляет собой разность одинаковых выражений.

Рациональному вычислению значений выражений могут способствовать тождественные преобразования . Например, бывает полезна группировка слагаемых и множителей , не менее часто используется вынесение общего множителя за скобки . Так значение выражения 53·5+53·7−53·11+5 очень легко находится после вынесения множителя 53 за скобки: 53·(5+7−11)+5=53·1+5=53+5=58 . Непосредственное вычисление заняло бы намного больше времени.

В заключение этого пункта обратим внимание на рациональный подход к вычислению значений выражений с дробями – одинаковые множители в числителе и знаменателе дроби сокращаются. Например, сокращение одинаковых выражений в числителе и знаменателе дроби позволяет сразу найти ее значение, которое равно 1/2 .

Нахождение значения буквенного выражения и выражения с переменными

Значение буквенного выражения и выражения с переменными находится для конкретных заданных значений букв и переменных. То есть, речь идет о нахождении значения буквенного выражения для данных значений букв или о нахождении значения выражения с переменными для выбранных значений переменных.

Правило нахождения значения буквенного выражения или выражения с переменными для данных значений букв или выбранных значений переменных таково: в исходное выражение нужно подставить данные значения букв или переменных, и вычислить значение полученного числового выражения, оно и является искомым значением.

Пример.

Вычислите значение выражения 0,5·x−y при x=2,4 и y=5 .

Решение.

Чтобы найти требуемое значение выражения, сначала нужно подставить в исходное выражение данные значения переменных, после чего выполнить действия: 0,5·2,4−5=1,2−5=−3,8 .

Ответ:

−3,8 .

В заключение отметим, что иногда выполнение преобразований буквенных выражений и выражений с переменными позволяет получить их значения, независимо от значений букв и переменных. Например, выражение x+3−x можно упростить, после чего оно примет вид 3 . Отсюда можно сделать вывод, что значение выражения x+3−x равно 3 для любых значений переменной x из ее области допустимых значений (ОДЗ) . Еще пример: значение выражения равно 1 для всех положительных значений x , так областью допустимых значений переменной x в исходном выражении является множество положительных чисел, и на этой области имеет место равенство .

Список литературы.

  • Математика : учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 21-е изд., стер. - М.: Мнемозина, 2007. - 280 с.: ил. ISBN 5-346-00699-0.
  • Математика. 6 класс: учеб. для общеобразоват. учреждений / [Н. Я. Виленкин и др.]. - 22-е изд., испр. - М.: Мнемозина, 2008. - 288 с.: ил. ISBN 978-5-346-00897-2.
  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.

Как правило, дети начинают изучать алгебру уже в младших классах. После освоения основных принципов работы с числами, они решают примеры с одной или несколькими неизвестными переменными. Найти значение выражения подобного плана может быть довольно трудно, однако если упростить его, используя знания начальной школы, все получится легко и быстро.

Что такое значение выражения

Числовым выражением называют алгебраическую запись, состоящую из чисел, скобок и знаков в том случае, если она имеет смысл.

Иными словами, если есть возможность найти значение выражения, значит запись не лишена смысла, и наоборот.

Примеры следующих записей являются правильными числовыми конструкциями:

  • 3*8-2;
  • 15/3+6;
  • 0,3*8-4/2;
  • 3/1+15/5;

Отдельное число также будет представлять собой числовое выражение, как число 18 из вышеуказанного примера.
Примеры неправильных числовых конструкций, которые не имеют смысла:

  • *7-25);
  • 16/0-;
  • (*-5;

Неправильные числовые примеры представляют собой лишь набор математических знаков и не имеют никакого смысла.


Как находить значение выражения

Поскольку в подобных примерах присутствуют арифметические знаки, можно сделать вывод, что они позволяют произвести арифметические вычисления. Чтобы просчитать знаки или, говоря иначе, найти значение выражения, необходимо выполнить соответствующие арифметические манипуляции.

В качестве примера можно рассмотреть следующую конструкцию: (120-30)/3=30. Число 30 будет являться значением числового выражения (120-30)/3.

Инструкция:


Понятие числового равенства

Числовым равенством называется ситуация, когда две части примера разделены знаком «=». То есть одна часть полностью равна (идентична) другой, пусть даже отображенной в виде других сочетаний символов и цифр.
Например, любую конструкцию типа 2+2=4 можно назвать числовым равенством, поскольку, даже поменяв части местами, смысл не изменится: 4=2+2. То же самое касается более сложных конструкций, включающих скобки, деление, умножение, действие с дробями и так далее.

Как находить значение выражения правильно

Чтобы верно найти значение выражения необходимо выполнять вычисления согласно определенному порядку действий. Этот порядок преподается еще на уроках математики, а позже – на занятиях алгебры в начальной школе. Он также известен как ступени арифметических действий.

Ступени арифметических действий:

  1. Первая ступень – выполняется сложение и вычитание чисел.
  2. Вторая ступень – выполняется деление и умножение.
  3. Третья ступень – числа возводятся в квадрат или куб.


Соблюдая следующие правила, вы всегда сможете верно определить значение выражения:

  1. Выполняйте действия, начиная с третьей ступени, заканчивая первой, если в примере нет скобок. То есть сперва возводите в квадрат или куб, затем делите или умножайте и только потом – складывайте и вычитайте.
  2. В конструкциях со скобками сперва выполняйте действия в скобках, а затем руководствуйтесь вышеописанным порядком. Если скобок несколько, также используйте порядок действий из первого пункта.
  3. В примерах в виде дроби сначала узнайте результат в числителе, затем – в знаменателе, после чего первый поделите на второй.

Найти значение выражения не составит труда, если усвоить элементарные знания начальных курсов алгебры и математики. Руководствуясь вышеописанной информацией, вы сможете решить любую задачу, даже повышенной сложности.

Узнать пароль от ВК, зная логин

В среде Lazarus можно также вычислять значения сложных математических выражений. К примеру, таких как нижеследующее выражение:

Все, что нам необходимо сделать, это правильно составить формулу, чтобы Lazarus смог скомпилировать ее, а затем и решить.

Рис. 4 – Программа «вычисление значения выражений» до запуска

Для начала при составлении программы между «procedure» и «begin» вводим команду var alfa………y:real; она необходима для расчета десятичных чисел. Также нужно ввести команду «math» в «uses», иначе некоторые функции в программе работать не будут.

Вот так выглядит код программы «вычисление значения выражений» в Lazarus-е:

procedure TForm1.SpeedButton1Click(Sender: TObject);

var x,y: Single;

x:= StrToFloat (Edit1.Text);

y:= ((sin(x))/2)+3;

Label3.Caption:=FloatToStr(y);

Рис. 5 – Программа «Вычисление выражений» после запуска.

Программа составлена правильно, интерпретация прошла успешно. Сейчас, для того, чтобы рассчитать функцию «y», необходимо задать в формулу свои значения.

Вычисление сумм ряда чисел.

С помощью суммы рядов чисел можно: - разложить функцию в степенной ряд; - выполнить приближенные вычисления значений функции; - выполнить вычисления пределов; - выполнить вычисление определенных интегралов; - выполнить вычисление логарифмов; - выполнить интегрирование дифференциальных уравнений; - решить уравнение первого порядка итерационным методом.

Итерация – это повторяемое выполнение некоторого действия до тех пор, пока не будет удовлетворено некоторое условие. Ряд считается заданным, если дан закон, по которому можно вычислить любой член ряда, и известен порядковый номер этого числа. Среди рядов есть сходящиеся ряды и расходящиеся. Если значение частичных сумм Sn при неограниченном возрастании n стремится к некоторому числу А, ряд называется сходящимся, а число А при этом называют суммой. Таким образом, при неограниченном возрастании n значение Sn сколь угодно мало отличается от А, т.е. число А предел последовательности Sn.

Рис. 6 – Программа «Вычисление сумм ряда чисел» до запуска

Код программы «Вычисление сумм ряда чисел» будет выглядеть следующим образом:

Classes, SysUtils, FileUtil, LResources, Forms, Controls, Graphics, Dialogs, ExtCtrls, StdCtrls, Math;

TForm1 = class (TForm)

Button1: TButton;

procedure Button1Click(Sender: TObject);

{ private declarations }

{ public declarations }

procedure TForm1.Button1Click(Sender: TObject);

var n, factorial: integer; x, y, s: real;

x:=StrToFloat(Edit1.Text);

for n:=1 to 25 do

s:=s + power(x,(n-1))/factorial;

factorial:=factorial*(n+1);

Label4.Caption:=FloatToStr(s);

y:=(power(2.76,x)-1)/x;

Label5.Caption:=FloatToStr(y);

Рис. 7 – Программа «Вычисление сумм ряда чисел» после запуска

Программа составлена правильно, компилирование объекта прошло успешно. Сейчас, для того, чтобы вычислить сумму ряда чисел, необходимо задать в формулу свои значения, и, созданная программа, аналогично калькулятору, рассчитает ответ.

Формула

Сложение, вычитание, умножение, деление - арифметические действия (или арифметические операции ). Этим арифметическим действиям соответствуют знаки арифметических действий:

+ (читаем "плюс ") - знак операции сложения,

- (читаем "минус ") - знак операции вычитания,

(читаем "умножить ") - знак операции умножения,

: (читаем "разделить ") - знак операции деления.

Запись, состоящая из чисел, связанных между собой знаками арифметических действий, называется числовым выражением. В числовом выражении могут присутствовать также скобки Например, запись 1290 : 2 - (3 + 20 ∙ 15) является числовым выражением.

Результат выполнения действий над числами в числовом выражении называется значением числового выражения . Выполнение этих действий называется вычислением значения числового выражения. Перед записью значения числового выражения ставят знак равенства «=». В таблице 1 приведены примеры числовых выражений и их значений.

Запись, состоящая из чисел и малых букв латинского алфавита, связанных между собой знаками арифметических действий называется буквенным выражением . В этой записи могут присутствовать скобки. Например, запись a + b - 3 ∙ c является буквенным выражением. Вместо букв в буквенное выражение можно подставлять различные числа. При этом значение букв может изменяться, поэтому буквы в буквенном выражении называют еще переменными .

Подставив в буквенное выражение числа вместо букв и вычислив значение получившегося числового выражения, находят значение буквенного выражения при данных значениях букв (при данных значениях переменных). В таблице 2 приведены примеры буквенных выражений.

Буквенное выражение может не иметь значения, если при подстановке значений букв получается числовое выражение, значение которого для натуральных чисел не может быть найдено. Такое числовое выражение называется некорректным для натуральных чисел. Говорят также, что значение такого выражения «не определено» для натуральных чисел, а само выражение «не имеет смысла» . Например, буквенное выражение a - b не имеет значения при a = 10 и b = 17. Действительно, для натуральных чисел, уменьшаемое не может быть меньше вычитаемого. Например, имея всего 10 яблок (a = 10), нельзя отдать из них 17 (b = 17)!

В таблице 2 (колонка 2) приведён пример буквенного выражения. По аналогии заполните таблицу полностью.

Для натуральных чисел выражение 10 -17 некорректно (не имеет смысла) , т.е. разность 10 -17 не может быть выражена натуральным числом. Другой пример: на ноль делить нельзя, поэтому для любого натурального числа b, частное b: 0 не определено.

Математические законы, свойства, некоторые правила и соотношения часто записывают в буквенном виде (т.е. в виде буквенного выражения). В этих случаях буквенное выражение называют формулой . Например, если стороны семиугольника равны a, b, c, d, e, f, g , то формула (буквенное выражение) для вычисления его периметра p имеет вид:


p = a + b + c + d + e + f + g

При a = 1, b = 2, c = 4, d = 5, e = 5, f = 7, g = 9, периметр семиугольника p = a + b + c + d + e + f + g = 1 + 2 + 4 + 5 +5 + 7 + 9 = 33.

При a = 12, b = 5, c = 20, d = 35, e = 4, f = 40, g = 18, периметр другого семиугольника p = a + b + c + d + e + f + g = 12 + 5 + 20 + 35 + 4 + 40 + 18 = 134.

Блок 1. Словарь

Составьте словарь новых терминов и определений из параграфа. Для этого в пустые клетки впишите слова из списка терминов, приведенного ниже. В таблице (в конце блока) укажите номера терминов в соответствии с номерами рамок. Рекомендуется перед заполнением клеток словаря еще раз внимательно просмотреть параграф.

  1. Операции: сложение, вычитание, умножение, деление.

2.Знаки «+» (плюс), «-» (минус), «∙» (умножить, «: » (разделить).

3.Запись, состоящая из чисел, которые связанны между собой знаками арифметических действий и в которой могут присутствовать также скобки.

4.Результат выполнения действий над числами в числовом выражении.

5. Знак, стоящий перед значением числового выражения.

6. Запись, состоящая из чисел и малых букв латинского алфавита, связанных между собой знаками арифметических действий (могут присутствовать также скобки).

7. Общее название букв в буквенном выражении.

8. Значение числового выражения, которое получается при подстановке переменных.в буквенное выражение.

9.Числовое выражение, значение которого для натуральных чисел не может быть найдено.

10. Числовое выражение, значение которого для натуральных чисел может быть найдено.

11. Математические законы, свойства, некоторые правила и соотношения, записанные в буквенном виде.

12. Алфавит, малые буквы которого используются для записи буквенных выражений.

Блок 2. Установите соответствие

Установите соответствие между заданием в левой колонке и решением в правой. Ответ запишите в виде: 1а, 2г, 3б…

Блок 3. Фасетный тест. Числовые и буквенные выражения

Фасетные тесты заменяют сборники задач по математике, но выгодно отличаются от них тем, что их можно решать на компьютере, проверять решения и сразу узнавать результат работы. В этом тесте содержится 70 задач. Но решать задачи можно по выбору, для этого есть оценочная таблица, где указаны простые задачи и посложнее. Ниже приведён тест.

  1. Дан треугольник со сторонами c, d, m, выраженными в см
  2. Дан четырехугольник со сторонами b, c, d, m , выраженными в м
  3. Скорость автомобиля в км/ч равна b, время движения в часах равно d
  4. Расстояние, которое преодолел турист за m часов, составляет с км
  5. Расстояние, которое преодолел турист, двигаясь со скоростью m км/ч, составляет b км
  6. Сумма двух чисел больше второго числа на 15
  7. Разность меньше уменьшаемого на 7
  8. Пассажирский лайнер имеет две палубы с одинаковым количеством пассажирских мест. В каждом из рядов палубы m мест, рядов на палубе на n больше, чем мест в ряду
  9. Пете m лет Маше n лет, а Кате на k лет меньше, чем Пете и Маше вместе
  10. m = 8, n = 10, k = 5
  11. m = 6, n = 8, k = 15
  12. t = 121, x = 1458

  1. Значение данного выражения
  2. Буквенное выражение для периметра имеет вид
  3. Периметр, выраженный в сантиметрах
  4. Формула пути s, пройденного автомобилем
  5. Формула скорости v, движения туриста
  6. Формула времени t, движения туриста
  7. Путь, пройденный автомобилем в километрах
  8. Скорость туриста в километрах в час
  9. Время движения туриста в часах
  10. Первое число равно…
  11. Вычитаемое равно….
  12. Выражение для наибольшего количества пассажиров, которое может перевезти лайнер за k рейсов
  13. Наибольшее количество пассажиров, которое может перевезти лайнер за k рейсов
  14. Буквенное выражение для возраста Кати
  15. Возраст Кати
  16. Координата точки В, если координата точки С равна t
  17. Координата точки D, если координата точки С равна t
  18. Координата точки А, если координата точки С равна t
  19. Длина отрезка BD на числовом луче
  20. Длина отрезка CА на числовом луче
  21. Длина отрезка DА на числовом луче