Объединенная сеть (internetwork) представляет собой объединение отдельных сетей,

Соединенных промежуточными сетевыми устройствами, функционирующее как одна большая сеть. Понятие.объединенной сети включает в себя технологии, устройства и процедуры, которые позволяют решить задачу создания и администрирования объединенной сети. На,;щс. 1.1 показано, как несколько различных типов сетей могут быть, связаны между собой с помощью маршрутизаторов и других сетевых устройств и образовать объединенную сеть.

История объединенных сетей

‘ Первые сети’работали в режиме разделения времени и состояли из мэйнфреймов с Подключенными к ним терминалами. Такие среды строились как на основе системной архитектуры сети IBM (Systems Network Architecture - SNA), так и на основе сетевой архитектуры Digital.

Возникновение локальных сетей (Local-Area Network - LAN) связано с широким использованием персональных компьютеров PC. Локальные сети позволяют нескольким

пользователям, расположенным в относительно небольшой географической области, обмениваться файлами и сообщениями, а также совместно использовать общие ресурсы, такие как файловые серверы и принтеры.

Рис. 1.1. Сети, использующие различные технологии, могут быть соединены между собой и образовать объединенную сеть

Распределенные сети (Wide-Area Network - WAN) объединяют между собой локальные сети для того, чтобы обеспечить связь между пользователями, расположенными далеко друг от друга. Для объединения локальных сетей используются такие технологии, как Т1, ТЗ, ATM, ISDN, ADSL, Frame Relay, радиосвязь и другие. С каждым днем появляются все новые способы соединения удаленных друг от друга локальных сетей.

В настоящее время область применения высокоскоростных локальных сетей и коммутируемых объединенных сетей продолжает расширяться, поскольку они работают на очень высоких скоростях и поддерживают такие приложения, как мультимедиа и видеоконференции, которые требуют большой полосы пропускания.

Объединенные сети развивались как средство решения трех основных задач: объединение изолированных локальных сетей, исключение дублирования ресурсов и более эффективное управление сетями. Изолированность локальных сетей друг от друга делает невозможным обмен электронной информацией между офисами и отделами. Дублирование ресурсов означает установку в каждом офисе или отделе одного и того же оборудования и программного обеспечения, с отдельным персоналом технической поддержки. Недостаточно эффективное управление сетью означает отсутствие централизованных систем управления сетями и поиска неисправностей.

Проблемы создания объединенных сетей

Функциональная реализация объединенной сети является непростой задачей. При этом возникает много проблем, особенно в плане обеспечения связи, надежности, эффекгив- ного управления сетью и гибкости. Каждая из вышеперечисленных задач является критически важной при создании качественной и эффективной объединенной сети.

При соединении различных систем возникает проблема обмена данными между сетями, использующими принципиально разные технологии. Например, в различных узлах для передачи данных могут использоваться различные передающие среды, работающие с разными скоростями, или даже различные типы сетей, между которыми требуется осуществлять обмен данными.

Поскольку эффективность работы компаний в значительной степени зависит от информационного обмена, объединенные сети должны обеспечивать определенный уровень надежности. Сетевая среда во многом непредсказуема, поэтому в большинстве крупных объединенных сетей предусмотрена т.н. избыточность, позволяющая не прерывать обмен данными даже в случае возникновения проблем.

Кроме того, управление сетью и поиск неисправностей в объединенной сети должны быть централизованными. Для того чтобы объединенная сеть работала без сбоев, необходимо правильно выбрать конфигурацию, настроить систему безопасности, добиться максимальной производительности и решить другие вопросы. Система безопасности является неотъемлемой частью объединенной сети. Многие ошибочно полагают, что система безопасности в сети необходима только для защиты частной сети от внешних нападений. Однако не менее важно защитить сеть от внутренних атак, особенно с учетом того, что чаще всего система защиты нарушается именно изнутри. Поэтому необходима также защита от использования внутренней сети в качестве средства для атаки внешних узлов.

В начале 2000 года многие крупные Web-узлы стали жертвами распределенных атак типа "отказ в обслуживании" (Distributed Denial Of Service Attack - DDOS attack). Такие атаки стали возможными по той причине, что многие частные сети, подключенные к Internet, не были должным образом защищены и послужили средством нападения.

Поскольку все в мире изменяется, объединенные сети должны обладать достаточной гибкостью, чтобы их можно было изменить в соответствии с новыми требованиями.

Литература:

Руководство по технологиям объединенных сетей, 4-е издание. : Пер. с англ. - М.: Издательский дом «Вильяме», 2005. - 1040 с.: ил. – Парал. тит. англ.

МСЦ РАН является крупнейшим открытым суперкомпьютерным центром в нашей стране. Он имеет несколько технологических площадок в Москве, филиалы в других городах, является головной организацией проекта РИСП, участником проекта GEANT по развитию Европейской высокопроизводительной магистральной научно-исследовательской сетевой инфраструктуры. В работе центра накоплен опыт решения вопросов внешнего сетевого взаимодействия, которые стоят достаточно остро.

На двух технологических площадках в Москве функционируют высокопроизводительные вычислительные кластеры, системы хранения данных и различные информационные ресурсы. Кроме того, имеются два филиала в Санкт-Петербурге и Казани, на которых размещены части распределенного вычислительного кластера MBC15000BMD. Для эффективной работы суперкомпьютерного центра требуется объединение всех технологических площадок и филиалов объединенной сетью, обеспечивающей высокоскоростную и надежную связь, гибкость управления и сетевой организации, высокий уровень сетевой безопасности.

Одним из важнейших требований к объединенной сети суперкомпьютерного центра является ее производительность, определяющая скорость обмена данными между информационными и вычислительными ресурсами.

Процедура прохождения задачи на суперкомпьютере включает постановку задачи в очередь, запуск задачи из очереди на исполнение и освобождение вычислительной системы после счета. Данные, необходимые задаче для счета, должны быть доступны в локальной файловой системе суперкомпьютера к моменту запуска программы в очередь на счет.

Если вычислительный ресурс (суперкомпьютер) расположен на одной технологической площадке, а данные, необходимые для задачи, были подготовлены и загружены в хранилище данных на другой технологической площадке, то необходимо их копирование на технологическую площадку суперкомпьютера. Такая ситуация часто возникает если задача пускается на счет на разных компьютерах, в частности, при использовании ГРИД-систем.

Использование высокопроизводительных каналов связи между площадками обеспечивает быстрый доступ к сетевым файловым системам, даже если поддерживающие их серверы с данными расположены на удаленных площадках. Таким образом можно исключить необходимость копирования данных на локальную файловую систему суперкомпьютера, убрать дублирование данных и повысить эффективность использования хранилищ данных.

Основной канал связи между технологическими площадками МСЦ РАН в Москве организован по технологии 10 Gigabit Ethernet на базе одномодовой волоконно-оптической линии связи (4 км). До последнего времени производительности основного канала связи было достаточно для доступа суперкомпьютеров к хранилищам данных даже при условии их нахождения на разных технологических площадках. В настоящее время рассматриваются возможности наращивания производительности основного канала установкой оборудования волнового уплотнения DWDM или прокладкой дополнительных волоконно-оптических линий связи. Резервный канал использует VLAN опорной транспортной сети РАН. Поскольку магистральные каналы опорной транспортной сети РАН базируются на использовании технологии 10 Gigabit Ethernet, падение производительности сети при отказе основного канала заметно, но не приводит к фатальным последствиям.

Использование оптических каналов связи является наиболее предпочтительным для организации научных сетей, так как только они обеспечивают необходимые показатели производительности, гибкости и безопасности для научных приложений . Если подразделения (филиалы) находятся в одном городе (или даже в пределах одного региона), то строительство или аренда оптической линии связи часто оказываются экономически оправданными, особенно с учетом перспектив роста, что подтверждается, например, опытом развития опорной транспортной сети РАН в Московском регионе. Сложнее обстоит дело, если необходимо связать филиалы в разных регионах страны. Для этого возможно арендовать у магистральных операторов связи либо канал связи на физическом уровне (L1), либо построить виртуальную частную сеть на основе услуги IP VPN по технологии MPLS, предоставляемой магистральным оператором связи, либо организовать виртуальную частную сеть через Интернет, используя подключения к региональным операторам связи. И физические каналы связи, и виртуальная частная сеть обеспечат безопасность и прозрачность информационного обмена между подразделениями/филиалами, что значительно упростит доступ к общим информационно-вычислительным ресурсам.

Аренда физических каналов связи, безусловно, гарантирует максимальную эффективность и гибкость построения объединенной сети, однако является наиболее дорогостоящей в нашей стране. Построение сети на основе IP VPN/MPLS значительно дешевле, и при этом обеспечиваются приемлемые показатели производительности. Еще дешевле построить VPN через Интернет, однако добиться при этом необходимой научным приложениям производительности в большинстве случаев нереально.

Наиболее эффективным способом обеспечения отказоустойчивости сети, как известно, является использование кольцевых топологий. Выход из строя узла или канала в кольце не приводит к потере связности между остальными узлами. Как показывает опыт эксплуатации сети EsNET , при применении кольцевых топологий можно обойтись без резервирования активного сетевого оборудования в узлах. Этот подтверждается опытом строительства и эксплуатации опорной сети РАН и сети МСЦ РАН.

Топология локальной сети МСЦ РАН включает два кольца: большое кольцо захватывает обе технологические площадки, его узлами являются коммутаторы серии Cisco Catalyst 6500, которые одновременно являются центральными коммутаторами сетей суперкомпьютеров МВС100K, MBC6000IM и части распределенного суперкомпьютера МВС15000BMD, а также коммутатор группы информационных ресурсов. Малое кольцо включает только коммутаторы главной технологической площадки, причем его каналы не совпадают с каналами большого кольца. В настоящее время кольцевая топология еще не реализована в полной мере для территориально-распределенной сети, включающей филиалы в Санкт-Петербурге и Казани. Для Казанского филиала предусмотрена организация кольца на основе основного канала IP MPLS и туннеля по протоколу SSH через Интернет в качестве резервного канала.

В показано, что одним из важных аспектов интеграции кластерных вычислительных систем в локальную сеть суперкомпьютерного центра является объединение их транспортных сетей, поэтому возможность проброса структуры VLAN через канал связи между технологическими площадками является существенной для обеспечения эффективной работы суперкомпьютерного центра. Так как для резервного канала связи между площадками используется единственный VLAN, проброс VLAN-центра между технологическими площадками осуществляется с использованием туннелирования IEEE 802.1QinQ. При передаче из транка в туннель 802.1Q кадры, помеченные идентификаторами VLAN, не разбираются, а передаются как целое. Если кадры в дальнейшем попадают в транковый порт, они дополнительно помечаются в соответствии с протоколом 802.1Q полем VLAN, назначенным туннельному порту в системе коммутаторов провайдера.

Возможность организации согласованной системы виртуальных локальных сетей весьма важна и для каналов связи с территориально-удаленными подразделениями и филиалами, но реализовать ее в этом случае труднее и дороже. Для этого необходимо либо использование физического канала связи, либо виртуальной частной сети (VPN), основанной на туннелях с инкапсуляцией канального уровня в канальный (например, упомянутое выше туннелирование IEEE 802.1QinQ), либо на использовании технологии Ethernet over IP MPLS.

В настоящее время технология Ethernet over IP MPLS реализована (или реализуется) рядом производителей сетевого оборудования, например, Alcatel, Cisco Systems, Juniper Networks, Nortel Networks и др. Cisco Systems, например, разработала архитектуру, называемую Any Transport over MPLS (AtoM) , в которой на оконечных маршрутизаторах провайдера, обеспечивающего сеть MPLS, пользовательские пакеты канального уровня (L2) инкапсулируются, пересылаются через опорную сеть, разбираются на оконечных маршрутизаторах другого конца MPLS-цепи и пересылаются в пользовательскую сеть L2. Таким образом, использование MPLS-провайдера предоставляет пользователю связность канального уровня (L2). Описанная архитектура основана на разрабатываемом стандарте IETF draft, Architecture for Layer 2 VPNs. В настоящее время поддерживаются следующие механизмы:

· Ethernet поверх MPLS,

· ATM AAL5 поверх MPLS,

· Frame Relay поверх MPLS,

· ATM Cell Relay поверх MPLS,

· PPP поверх MPLS,

· HDLC поверх MPLS,

· эмуляция соединений (Circuit Emulation) поверх MPLS.

Ethernet поверх MPLS позволяет транспортировать трафик Ethernet (многоадресный и широковещательный) из исходной VLAN 802.1Q в VLAN 802.1Q назначения через магистральную сеть MPLS, отображая VLAN в путь с коммутацией меток (MPLS LSP). Ethernet поверх MPLS использует протокол пересылки меток (LDP) для динамической установки и очистки пути LSP через магистраль MPLS при динамическом выделении сервиса.

Таким образом, для построения согласованной системы VLAN в территориально-распределенных подразделениях/филиалах возможно использовать Ethernet поверх MPLS в сочетании с туннелированием IEEE 802.1QinQ.

Виртуальная частная сеть между филиалами суперкомпьютерного центра необходима и в случае, когда ее удается организовать только на сетевом (L3), а не на канальном уровне (L2), поскольку это единственный способ обеспечить безопасность и прозрачность информационного обмена, а значит, и эффективный доступ к общим информационно-вычислительным ресурсам. При организации виртуальной частной сети на сетевом уровне можно также использовать технологию MPLS в случае поддержки ее провайдером магистральных каналов или использовать криптографическую защиту соединений через Интернет (IPSec, OpenVPN и др.) Использование технологии IP MPLS представляется более предпочтительным, поскольку она позволяет обеспечить более высокую скорость передачи данных и качество сервиса при приемлемом для открытых приложений уровне сетевой безопасности. Так как IP MPLS позволяет осуществлять вложение меток, внутри корпоративной сети, объединяющей филиалы, возможно установить несколько корпоративных частных сетей. Это позволяет объединять и разделять группы сетей и информационно-вычислительных ресурсов между подразделениями и филиалами, хотя и более сложным способом, чем при использовании Ethernet поверх MPLS.

Таким образом, опыт построения объединенной сети МСЦ показывает, что в региональном масштабе наиболее эффективным подходом представляется построение сети на базе выделенной оптической инфраструктуры, а для связи между региональными филиалами использование IP VPN на основе MPLS.

Список литературы

1. Сеть для науки ESNet. (http://book.itep.ru/4/7/esnet.htm)

2. Овсянников А.П. Сети высокопроизводительных кластерных вычислительных систем и их интеграция в локальную сеть суперкомпьютерного центра. // Программные продукты и системы. - №2. - 2007. - С.17-19.

3. Any Transport over Multiprotocol Label Switching (AtoM). (http://www.cisco.com/en/US/products/ps6646/products_ ios_protocol_option_home.html)

Цепочка поставок – определение области

Инновации - Совершенствование

6. Какое из утверждений описывает одну из особенностей объединенной сети?

Ответ: Единая сеть, которая обеспечивает передачу голоса, видео и данных на различные устройства

7. Что определяет этап развития Интернета, называемый «сетевой экономикой»?

Ответ: Этот этап считается началом электронной коммерции.

8. Что такое «Всеобъемлющий Интернет»?

Ответ: Соединение между людьми, данными, процессами и вещами для обеспечения преимуществ.

9. Каковы две функции промежуточных устройств в сети? (Выберите два варианта ответа.)

Ответ: Они направляют данные по альтернативным путям в случае возникновения сбоя канала.

Они отфильтровывают поток данных на основании настроек безопасности

10. Что такое Интернет?

Ответ: Сеть сетей

11. Какие два критерия используются для выбора сетевой среды? (Выберите два варианта.)

Ответ: Расстояние, на которое выбранная среда способна успешно передавать сигнал

Условия, в которых будет развернута выбранная среда

1. В чем заключается функция IP-адреса?

Ответ: Он позволяет определить источник и получателя пакетов данных в сети

2. Каким образом пакеты перемещаются через Интернет?



Ответ: Каждый отдельный пакет коммутируется независимо от остальных, перемещаясь от маршрутизатора к маршрутизатору по оптимальному пути.

3. Посмотрите на изображение. На нем показано, каким образом данные помогают принимать решения, на основе которых мы выполняем действия. Эти действия создают данные, которые в свою очередь служат основанием для действий устройств. Это пример петли

Ответ: обратной связи

4. Несколько дней назад пользователь просматривал веб-сайт интернет-магазина спортивных товаров. Через некоторое время этот пользователь получает электронное сообщение с того же веб-сайта о распродаже аналогичного товара. Как называется данный метод ведения бизнеса?

Ответ: Микромаркетинг

5. Понятие «большие данные» относится исключительно к объему создаваемых данных.

Ответ: Верно

6. Какой сценарий является примером взаимодействия «машина-машина» (M2M) в решении для Всеобъемлющего Интернета в розничной торговле?

Ответ: Когда покупатель снимает товар со стеллажа, RFID-метка отправляет сообщение об изменении состояния запасов в систему управления заказами

7. Каковы две причины представления данных на электронных устройствах в виде битов (двоичных цифр)? (Выберите два варианта.)

Ответ: Биты можно передавать на более дальние расстояния без ухудшения качества.

Биты обеспечивают более эффективное хранение данных .

8. По мере развития Всеобъемлющего Интернета какой компонент претерпит изменения, чтобы обеспечить более эффективную передачу нужной информации в нужную точку и в нужное время?

Ответ: Процессы

9. Какое направление сетевых технологий в данный момент внедряет ЦОД?

Ответ: виртуализация

10. Какому устройству такой датчик отправил бы эти данные, чтобы в конечном итоге хозяин дома получил текстовое сообщение?

Ответ: Контроллеру

1. Сколько битов содержит адрес IPv6?

Ответ: 128

2. Какое сетевое устройство хранит информацию о том, куда нужно отправлять пакеты данных, адресованные удаленным получателям?

Ответ: Маршрутизатор

3. Какие три протокола 802.15 должны пересылать информацию на устройство с поддержкой IP для взаимодействия через Интернет? (Выберите три варианта.)

Ответ: ZigBee

Bluetooth

4. это программное обеспечение, встроенное в ПЗУ устройств, таких как часы и сотовые телефоны. Это программное обеспечение с ограниченными функциями часто используется для загрузки устройства.

Ответ: Микропрограмма

5. по умолчанию должен быть настроен на конечном устройстве с поддержкой IP-протокола, чтобы устройство могло взаимодействовать с устройствами в других IP-сетях.

Ответ:Шлюз

6. Какой тип устройства будет вносить наибольший вклад в бурный рост Интернета вещей?

Ответ: Датчики

7. Почему облачные вычисления необходимы для управления данными в мире Всеобъемлющего Интернета?

Ответ: Они обеспечивают распространение приложений и сервисов по всему миру.

8. Почему для передачи данных по удаленным сетям нужен единый для всех набор протоколов?

Существует два основных способа соединения разных сетей. Можно создать специальные устройства, которые умеют конвертировать пакеты из любой сети в лю- бую другую. Устройства для соединения сетей: повторители, концентраторы, мосты, коммутаторы и шлюзы. Повторители и концентраторы просто переносят биты с одного кабеля на другой. Мосты и коммутаторы работают на канальном уровне. Они могут использоваться для построения сетей, осуществляя по ходу дела минимальные преобразования протоколов.

Объединение сетей в общем случае является исключительно сложной задачей. Одна- ко есть частный случай, реализация которого вполне осуществима даже для разных сетевых протоколов. Это случай, при котором хост-источник и хост-приемник на- ходятся в сетях одного типа, но между ними находится сеть другого типа. Например, представьте себе международный банк, у которого имеется одна сеть IPv6 в Париже и такая же сеть в Лондоне, а между ними находится IPv4, как показано на рис. 5.35.

Метод решения данной проблемы называется туннелированием (tunneling). Что- бы послать IP-пакет хосту в Лондоне, хост в Париже формирует пакет, содержащий лондонский IPv6-адрес и отправляет его на мультипротокольный маршрутизатор, соединяющий парижскую сеть IPv6 и сеть IPv4. Получив пакет IPv6, маршрутизатор помещает его в другой пакет с IPv4-адресом маршрутизатора, соединяющего сеть IPv4 и лондонскую сеть IPv6. Когда пакет попадает на этот адрес, лондонский многопро- токольный маршрутизатор извлекает исходный IPv6-пакет и посылает его дальше на хост назначения.

Туннелирование широко используется для соединения изолированных хостов и сетей через сеть-посредник. В результате появляется новая сеть, которая как бы накладывается на старую. Такая сеть называется оверлейной сетью (overlay). Ис- пользование сетевого протокола с новым свойством (как в нашем примере, где сети IPv6 соединяются через IPv4) - достаточно распространенная причина. Недостатком туннелирования является то, что пакет не может быть доставлен ни на один из хостов, расположенных в сети-посреднике. Однако этот недостаток становится преимуществом в сетях VPN (виртуальная частная сеть). VPN - обычная оверлейная сеть, использующаяся в качестве меры безопасности.

Сцепленные виртуальные каналы. Наиболее распространенными являются два стиля объединения сетей: ориентированное на соединение сцепление подсетей виртуальных каналов и дейтаграммный интерсетевой стиль. Мы рассмотрим их поочередно, однако необходимо предварить наше рассмотрение небольшим вступлением. В прошлом большинство сетей (общего пользования) были ориентированными на соединение (сети с ретрансляцией кадров, SNA, 802.16 и ATM по сей день являются таковыми). Со стремительным развитием Интернета все больше входили в моду дейтаграммы. Тем не менее, было бы ошибкой думать, что дейтаграммный способ будет существовать вечно. В этом деле единственное постоянство - это изменчивость. С ростом доли и важности мультимедийных данных в общем потоке растет вероятность того, что наступит эпоха возрождения для технологий, ориентированных на соединение. Причиной тому является тот простой факт, что при установлении соединения гораздо проще гарантировать определенный уровень обслуживания. Далее мы еще уделим некоторое место сетям, ориентированным на соединение.


В модели сцепленных виртуальных каналов соединение с хостом в удаленной сети устанавливается способом, близким к тому, как устанавливаются обычные соединения. Подсеть видит, что адресат является удаленным, и создает виртуальный канал к ближайшему маршрутизатору из сети адресата. Затем строится виртуальный канал от этого маршрутизатора к внешнему шлюзу (многопротокольному маршрутизатору). Этот шлюз запоминает существование созданного виртуального канала в своих таблицах и строит новый виртуальный канал к маршрутизатору в следующей подсети. Процесс продолжается до тех пор, пока не будет достигнут хост-получатель.

Когда по проложенному пути начинают идти пакеты данных, каждый шлюз переправляет их дальше, преобразуя формат пакетов и номера виртуальных каналов. Очевидно, что все информационные пакеты будут передаваться по одному и тому же пути и, таким образом, прибудут к пункту назначения с сохранением порядка отправления.

Существенной особенностью данного подхода является то, что последовательность виртуальных пакетов устанавливается от источника через один или более шлюзов к приемнику. Каждый шлюз хранит таблицы, содержащие информацию о проходящих через них виртуальных каналах, о том, как осуществлять маршрутизацию для них и каков номер нового виртуального канала.

Такая схема лучше всего работает, когда все сети обладают примерно одинаковыми свойствами. Например, если каждая из них гарантирует надежную доставку пакета сетевого уровня, то, исключив случай сбоя системы где-то на его пути, можно сказать, что и весь поток от источника до приемника будет надежным. С другой стороны, если машина-источник работает в сети, которая гарантирует надежную доставку, а какая-то промежуточная сеть может терять пакеты, то сцепление радикально изменит сущность сервиса.

Сцепленные виртуальные каналы часто применяются на транспортном уровне. В частности, можно построить битовый канал, используя, скажем, SNA, который заканчивается на шлюзе, и иметь при этом TCP-соединение между соседними шлюзами. Таким образом, можно построить сквозной виртуальный канал, охватывающий разные сети и протоколы.

Наука об объединении сетей, как и другие науки, имеет свою собственную терминологию и научную базу. К сожалению, ввиду того, что наука об объединении сетей очень молода, пока что не достигнуто единое соглашение о значении концепций и терминов объединенных сетей. По мере дальнейшего совершенствования индустрии объединенных сетей определение и использование терминов будут более четкими.

Адресация

Существенным компонентом любой системы сети является определение местонахождения компьютерных систем. Существуют различные схемы адресации, используемые для этой цели, которые зависят от используемого семейства протоколов . Другими словами, адресация AppleTalk отличается от адресации TCP/IP, которая в свою очередь отличается от адресации OSI, и т.д.

Двумя важными типами адресов являются адреса канального уровня и адреса сетевого уровня. Адреса канального уровня (называемые также физическими или аппаратными адресами ), как правило, уникальны для каждого сетевого соединения. У большинства локальных сетей (LAN) адреса канального уровня размещены в схеме интерфейса; они назначаются той организацией, которая определяет стандарт протокола, представленный этим интерфейсом. Т.к. большинство компьютерных систем имеют одно физическое сетевое соединение, они имеют только один адрес канального уровня. Роутеры и другие системы, соединенные с множеством физических сетей, могут иметь множество адресов канального уровня. В соответствии с названием, адреса канального уровня существуют на Уровне 2 эталонной модели OSI.

Aдреса сетевого уровня (называемые также виртуальными или логическими адресами) существуют на Уровне 3 эталонной модели OSI. В отличие от адресов канального уровня, которые обычно существуют в пределах плоского адресного пространства, адреса сетевого уровня обычно иерархические. Другими словами, они похожи на почтовые адреса, которые описывают местонахождение человека, указывая страну, штат, почтовый индекс, город, улицу, адрес на этой улице и наконец, имя. Хорошим примером одноуровневой адресации является номерная система социальной безопасности США, в соответствии с которой каждый человек имеет один уникальный номер, присвоенный ему службой безопасности.

Иерархические адреса делают сортировку адресов и повторный вызов более легкими путем исключения крупных блоков логически схожих адресов в процессе последовательности операций сравнения. Например, можно исключить все другие страны, если в адресе указана страна "Ирландия". Легкость сортировки и повторного вызова являются причиной того, что роутеры используют адреса сетевого уровня в качестве базиса маршрутизации.

Адреса сетевого уровня различаются в зависимости от используемого семейства протоколов , однако они, как правило, используют соответствующие логические разделы для нахождения компьютерных систем в объединенной сети. Некоторые из этих логических разделов базируются на физических характеристиках сети (таких, как сегмент сети, в котором находится какая-нибудь система); другие логические разделы базируются на группировках, не имеющих физического базиса (например, "зона" AppleTalk ).

Блоки данных, пакеты и сообщения

После того, как по адресам установили местоположение компьютерных систем, может быть произведен обмен информацией между двумя или более системами. В литературе по объединенным сетям наблюдается непоследовательность в наименовании логически сгруппированных блоков информации, которая перемещается между компьютерными системами. "блок данных", "пакет", "блок данных протокола", " PDU ", "сегмент", "сообщение" - используются все эти и другие термины, в зависимости от прихоти тех, кто пишет спецификации протоколов.

В настоящей работе термин "блок данных" (frame ) обозначает блок информации, источником и пунктом назначения которого являются объекты канального уровня. Термин "пакет" (packet ) обозначает блок информации, у которого источник и пункт назначения - объекты сетевого уровня. И наконец, термин "сообщение" (message ) oбoзначает информационный блок, у которого объекты источника и места назначения находятся выше сетевого уровня. Термин "сообщение" используется также для обозначения отдельных информационных блоков низших уровней, которые имеют специальное, хорошо сформулированное назначение.

Основные организации, занимающиеся стандартизацией объединенных сетей

Без услуг нескольких основных организаций по стандартизации, в области объединенных сетей было бы значительно больше хаоса, чем его имеется в настоящее время. Организации по стандартизации обеспечивают форум для дискуссий, помогают превратить результаты дискуссий в официальные спецификации, а также распространяют эти спецификации после завершения процесса стандартизации.

Большинство организаций по стандартизации выполняют специфичные процессы, чтобы превратить идеи в официальные стандарты. И хотя у различных организаций эти процессы немного отличаются, они схожи в том, что проходят через несколько раундов организации идей, обсуждения этих идей, разработки проектов стандартов, голосования по всем или некоторым аспектам этих стандартов и наконец, официального выпуска завершенных стандартов.

Наиболее известными организациями по стандартизации являются следующие огранизации:

  • Международная Организация по Стандартизации (ISO)

    международная организация по стандартизации, которая является автором широкого диапазона стандартов, включая стандарты по сетям. Этой организации принадлежит эталонная модель OSI и набор протоколов OSI.

  • Американский Национальный Институт Стандартизации (ANSI)

    координирующий орган добровольных групп по стандартизации в пределах США. ANSI является членом ISO. Наиболее широко известным стандартом ANSI по коммуникациям является FDDI.

  • Совет по Регуляции Работы Internet (IAB)

    группа исследователей по объединенным сетям, которая регулярно встречается для обсуждения проблем, относящихся к Internet. Этот совет определяет основную политику в области Internet, принимая решения и определяя суть задач, которые необходимо выполнить, чтобы решить различные проблемы. Некоторые из документов " Request for Comments " (RFC) (Запрос для Комментария") разработаны IAB в качестве стандартов Internet, в том числе Тransmission Control Protocol/ Internet Protocol (TCP/IP) и Simple Network Management Protocol (SNMP) .