ВВЕДЕНИЕ

1. Типы глобальных сетей

1.1 Выделенные каналы

2. Интерфейсы DTE-DCE

ЗАКЛЮЧЕНИЕ


ВВЕДЕНИЕ

Глобальные сети Wide Area Networks, WAN), которые также называют территориальными компьютерными сетями, служат для того, чтобы предоставлять свои сервисы большому количеству конечных абонентов, разбросанных по большой территории - в пределах области, региона, страны, континента или всего земного шара. Ввиду большой протяженности каналов связи построение глобальной сети требует очень больших затрат, в которые входит стоимость кабелей и работ по их прокладке, затраты на коммутационное оборудование и промежуточную усилительную аппаратуру, обеспечивающую необходимую полосу пропускания канала, а также эксплуатационные затраты на постоянное поддержание в работоспособном состоянии разбросанной по большой территории аппаратуры сети.

Типичными абонентами глобальной компьютерной сети являются локальные сети предприятий, расположенные в разных городах и странах, которым нужно обмениваться данными между собой. Услугами глобальных сетей пользуются также и отдельные компьютеры. Крупные компьютеры класса мэйнфреймов обычно обеспечивают доступ к корпоративным данным, в то время как персональные компьютеры используются для доступа к корпоративным данным и публичным данным Internet.

Глобальные сети обычно создаются крупными телекоммуникационными компаниями для оказания платных услуг абонентам. Такие сети называют публичными или общественными. Существуют также такие понятия, как оператор сети и поставщик услуг сети. Оператор сети (network operator) - это та компания, которая поддерживает нормальную работу сети. Поставщик услуг, часто называемый также провайдером (service provider), - та компания, которая оказывает платные услуги абонентам сети. Владелец, оператор и поставщик услуг могут объединяться в одну компанию, а могут представлять и разные компании.

Кроме вычислительных глобальных сетей существуют и другие виды территориальных сетей передачи информации. В первую очередь это телефонные и телеграфные сети, работающие на протяжении многих десятков лет, а также телексная сеть.

Ввиду большой стоимости глобальных сетей существует долговременная тенденция создания единой глобальной сети, которая может передавать данные любых типов: компьютерные данные, телефонные разговоры, факсы, телеграммы, телевизионное изображение, телетекс (передача данных между двумя терминалами), видеотекс (получение хранящихся в сети данных на свой терминал) и т. д., и т. п. На сегодня существенного прогресса в этой области не достигнуто, хотя технологии для создания таких сетей начали разрабатываться достаточно давно - первая технология для интеграции телекоммуникационных услуг ISDN стала развиваться с начала 70-х годов. Пока каждый тип сети существует отдельно и наиболее тесная их интеграция достигнута в области использования общих первичных сетей - сетей PDH и SDH, с помощью которых сегодня создаются постоянные каналы в сетях с коммутацией абонентов. Тем не менее каждая из технологий, как компьютерных сетей, так и телефонных, старается сегодня передавать «чужой» для нее трафик с максимальной эффективностью, а попытки создать интегрированные сети на новом витке развития технологий продолжаются под преемственным названием Broadband ISDN (B-ISDN), то есть широкополосной (высокоскоростной) сети с интеграцией услуг. Сети B-ISDN будут основываться на технологии АТМ, как универсальном транспорте, и поддерживать различные службы верхнего уровня для распространения конечным пользователям сети разнообразной информации - компьютерных данных, аудио- и видеоинформации, а также организации интерактивного взаимодействия пользователей.


1. Типы глобальных сетей

Глобальная вычислительная сеть работает в наиболее подходящем для компьютерного трафика режиме - режиме коммутации пакетов. Оптимальность этого режима для связи локальных сетей доказывают не только данные о суммарном трафике, передаваемом сетью в единицу времени, но и стоимость услуг такой территориальной сети. Обычно при равенстве предоставляемой скорости доступа сеть с коммутацией пакетов оказывается в 2-3 раза дешевле, чем сеть с коммутацией каналов, то есть публичная телефонная сеть.

Однако часто такая вычислительная глобальная сеть по разным причинам оказывается недоступной в том или ином географическом пункте. В то же время гораздо более распространены и доступны услуги, предоставляемые телефонными сетями или первичными сетями, поддерживающими услуги выделенных каналов. Поэтому при построении корпоративной сети можно дополнить недостающие компоненты услугами и оборудованием, арендуемыми у владельцев первичной или телефонной сети.

В зависимости от того, какие компоненты приходится брать в аренду, принято различать корпоративные сети, построенные с использованием:

· выделенных каналов;

· коммутации каналов;

· коммутации пакетов.

Последний случай соответствует наиболее благоприятному случаю, когда сеть с коммутацией пакетов доступна во всех географических точках, которые нужно объединить в общую корпоративную сеть. Первые два случая требуют проведения дополнительных работ, чтобы на основании взятых в аренду средств построить сеть с коммутацией пакетов.


1.1 Выделенные каналы

Выделенные (или арендуемые - leased) каналы можно получить у телекоммуникационных компаний, которые владеют каналами дальней связи (таких, например, как «РОСТЕЛЕКОМ»), или от телефонных компаний, которые обычно сдают в аренду каналы в пределах города или региона.

Использовать выделенные линии можно двумя способами. Первый состоит в построении с их помощью территориальной сети определенной технологии, например frame relay, в которой арендуемые выделенные линии служат для соединения промежуточных, территориально распределенных коммутаторов пакетов.

Второй вариант - соединение выделенными линиями только объединяемых локальных сетей или конечных абонентов другого типа, например мэйнфреймов, без установки транзитных коммутаторов пакетов, работающих по технологии глобальной сети (рис. 1). Второй вариант является наиболее простым с технической точки зрения, так как основан на использовании маршрутизаторов или удаленных мостов в объединяемых локальных сетях и отсутствии протоколов глобальных технологий, таких как Х.25 или frame relay. По глобальным каналам передаются те же пакеты сетевого или канального уровня, что и в локальных сетях.

Рис. 1 - Использование выделенных каналов

Сегодня существует большой выбор выделенных каналов - от аналоговых каналов тональной частоты с полосой пропускания 3,1 кГц до цифровых каналов технологии SDH с пропускной способностью 155 и 622 Мбит/с.

1.2 Глобальные сети с коммутацией каналов

Сегодня для построения глобальных связей в корпоративной сети доступны сети с коммутацией каналов двух типов - традиционные аналоговые телефонные сети и цифровые сети с интеграцией услуг ISDN. Достоинством сетей с коммутацией каналов является их распространенность, что характерно особенно для аналоговых телефонных сетей. В последнее время сети ISDN во многих странах также стали вполне доступны корпоративному пользователю, а в России это утверждение относится пока только к крупным городам.

Известным недостатком аналоговых телефонных сетей является низкое качество составного канала, которое объясняется использованием телефонных коммутаторов устаревших моделей, работающих по принципу частотного уплотнения каналов (FDM-технологии). На такие коммутаторы сильно воздействуют внешние помехи (например, грозовые разряды или работающие электродвигатели), которые трудно отличить от полезного сигнала. Правда, в аналоговых телефонных сетях все чаще используются цифровые АТС, которые между собой передают голос в цифровой форме. Аналоговым в таких сетях остается только абонентское окончание. Чем больше цифровых АТС в телефонной сети, тем выше качество канала, однако до полного вытеснения АТС, работающих по принципу FDM-коммутации, в нашей стране еще далеко. Кроме качества каналов, аналоговые телефонные сети также обладают таким недостатком, как большое время установления соединения, особенно при импульсном способе набора номера, характерного для нашей страны.

Телефонные сети, полностью построенные на цифровых коммутаторах, и сети ISDN свободны от многих недостатков традиционных аналоговых телефонных сетей. Они предоставляют пользователям высококачественные линии связи, а время установления соединения в сетях ISDN существенно сокращено.

1.3 Глобальные сети с коммутацией пакетов

В 80-е годы для надежного объединения локальных сетей и крупных компьютеров в корпоративную сеть использовалась практически одна технология глобальных сетей с коммутацией пакетов - Х.25. Сегодня выбор стал гораздо шире, помимо сетей Х.25 он включает такие технологии, как frame relay, SMDS и АТМ. Кроме этих технологий, разработанных специально для глобальных компьютерных сетей, можно воспользоваться услугами территориальных сетей TCP/IP, которые доступны сегодня как в виде недорогой и очень распространенной сети Internet, качество транспортных услуг которой пока практически не регламентируется и оставляет желать лучшего, так и в виде коммерческих глобальных сетей TCP/IP, изолированных от Internet и предоставляемых в аренду телекоммуникационными компаниями.

Технология SMDS (Switched Multi-megabit Data Service) была разработана в США для объединения локальных сетей в масштабах мегаполиса, а также предоставления высокоскоростного выхода в глобальные сети. Эта технология поддерживает скорости доступа до 45 Мбит/с и сегментирует кадры МАС - уровня в ячейки фиксированного размера 53 байт, имеющие, как и ячейки технологии АТМ, поле данных в 48 байт. Технология SMDS основана на стандарте IEEE 802.6, который описывает несколько более широкий набор функций, чем SMDS. Стандарты SMDS приняты компанией Bellcore, но международного статуса не имеют. Сети SMDS были реализованы во многих крупных городах США, однако в других странах эта технология распространения не получила. Сегодня сети SMDS вытесняются сетями АТМ, имеющими более широкие функциональные возможности, поэтому в данной книге технология SMDS подробно не рассматривается.


2. Интерфейсы DTE-DCE

Для подключения устройств DCE к аппаратуре, вырабатывающей данные для глобальной сети, то есть к устройствам DTE, существует несколько стандартных интерфейсов, которые представляют собой стандарты физического уровня. К этим стандартам относятся стандарты серии V CCITT, а также стандарты EIA серии RS (Recomended Standards). Две линии стандартов во многом дублируют одни и те же спецификации, но с некоторыми вариациями. Данные интерфейсы позволяют передавать данные со скоростями от 300 бит/с до нескольких мегабит в секунду на небольшие расстояния (15-20 м), достаточные для удобного размещения, например, маршрутизатора и модема.

Интерфейс RS-232C/V.24 является наиболее популярным низкоскоростным интерфейсом. Первоначально он был разработан для передачи данных между компьютером и модемом со скоростью не выше 9600 бит/с на расстояние до 15 метров. Позднее практические реализации этого интерфейса стали работать и на более высоких скоростях - до 115200 бит/с. Интерфейс поддерживает как асинхронный, так и синхронный режим работы. Особую популярность этот интерфейс получил после его реализации в персональных компьютерах (его поддерживают СОМ - порты), где он работает, как правило, только в асинхронном режиме и позволяет подключить к компьютеру не только коммуникационное устройство (такое, как модем), но и многие другие периферийные устройства - мышь, графопостроитель и т. д.

Интерфейс использует 25-контактный разъем или в упрощенном варианте - 9-контактный разъем (рис. 2).


Рис. 2 - Сигналы интерфейса RS-232C/V.24

Для обозначения сигнальных цепей используется нумерация CCITT, которая получила название «серия 100». Существуют также двухбуквенные обозначения EIA, которые на рисунке не показаны.

В интерфейсе реализован биполярный потенциальный код (+V, -V на линиях между DTE и DCE. Обычно используется довольно высокий уровень сигнала: 12 или 15 В, чтобы более надежно распознавать сигнал на фоне шума.

При асинхронной передаче данных синхронизирующая информация содержится в самих кодах данных, поэтому сигналы синхронизации TxClk и RxClk отсутствуют. При синхронной передаче данных модем (DCE) передает на компьютер (DTE) сигналы синхронизации, без которых компьютер не может правильно интерпретировать потенциальный код, поступающий от модема по линии RxD. В случае когда используется код с несколькими состояниями (например, QAM), то один тактовый сигнал соответствует нескольким битам информации.

Нуль-модемный интерфейс характерен для прямой связи компьютеров на небольшом расстоянии с помощью интерфейса RS-232C/V.24. В этом случае необходимо применить специальный нуль-модемный кабель, так как каждый компьютер будет ожидать приема данных по линии RxD, что в случае применения модема будет корректно, но в случае прямого соединения компьютеров - нет. Кроме того, нуль-модемный кабель должен имитировать процесс соединения и разрыва через модемы, в котором используется несколько линий (RI, СВ и т.д.). Поэтому для нормальной работы двух непосредственно соединенных компьютеров нуль-модемный кабель должен выполнять следующие соединения:

· RI-1+DSR-1- DTR-2;

· DTR-1-RI-2+DSR-2;

· CD-1-CTS-2+RTS-2;

· CTS-1+RTS-1-CD-2;

Знак «+» обозначает соединение соответствующих контактов на одной стороне кабеля.

Иногда при изготовлении нуль-модемного кабеля ограничиваются только перекрестным соединением линий приемника RxD и передатчика TxD, что для некоторого программного обеспечения бывает достаточно, но в общем случае может привести к некорректной работе программ, рассчитанных на реальные модемы.

Интерфейс RS-449/V.10/V.11 поддерживает более высокую скорость обмена данными и большую удаленность DCE от DTE. Этот интерфейс имеет две отдельные спецификации электрических сигналов. Спецификация RS-423/V.10 (аналогичные параметры имеет спецификация Х.26) поддерживает скорость обмена до 100000 бит/с на расстоянии до 10 ми скорость до 10000 бит/с на расстоянии до 100 м. Спецификация RS-422/V.11(X 27 поддерживает скорость до 10 Мбит/с на расстоянии до 10 ми скорость до 1 Мбит/с на расстоянии до 100 м. Как и RS-232C, интерфейс RS4 - 49 поддерживает асинхронный и синхронный режимы обмена между DTE и DCE. Для соединения используется 37-контактный разъем.

Интерфейс V.35 был разработан для подключения синхронных модемов. Он обеспечивает только синхронный режим обмена между DTE и DCE на скорости до 168 Кбит/с. Для синхронизации обмена используются специальные тактирующие линии. Максимальное расстояние между DTE и DCE не превышает 15 м, как и в интерфейсе RS-232C.

Интерфейс Х.21 разработан для синхронного обмена данными между DTE и DCE в сетях с коммутацией пакетов Х.25. Это достаточно сложный интерфейс, который поддерживает процедуры установления соединения в сетях с коммутацией пакетов и каналов. Интерфейс был рассчитан на цифровые DCE. Для поддержки синхронных модемов была разработана версия интерфейса Х.21 bis, которая имеет несколько вариантов спецификации электрических сигналов: RS-232C, V.10, V.I 1 и V.35.

Интерфейс «токовая петля 20 л<Л» используется для увеличения расстояния между DTE и DCE. Сигналом является не потенциал, а ток величиной 20 мА, протекающий в замкнутом контуре передатчика и приемника. Дуплексный обмен реализован на двух токовых петлях. Интерфейс работает только в асинхронном режиме. Расстояние между DTE и DCE может составлять несколько километров, а скорость передачи - до 20 Кбит/с.

Интерфейс HSSI (High-Speed Serial Interface) разработан для подключения к устройствам DCE, работающим на высокоскоростные каналы, такие как каналы ТЗ (45 Мбит/с), SONET ОС-1 (52 Мбит/с). Интерфейс работает в синхронном режиме и поддерживает передачу данных в диапазоне скоростей от 300 Кбит/с до 52 Мбит/с.


ЗАКЛЮЧЕНИЕ

Итак, глобальные компьютерные сети (WAN) используются для объединения абонентов разных типов: отдельных компьютеров разных классов - от мэйнфреймов до персональных компьютеров, локальных компьютерных сетей, удаленных терминалов.

Ввиду большой стоимости инфраструктуры глобальной сети существует острая потребность передачи по одной сети всех типов трафика, которые возникают на предприятии, а не только компьютерного: голосового трафика внутренней телефонной сети, работающей на офисных АТС (РВХ), трафика факс-аппаратов, видеокамер, кассовых аппаратов, банкоматов и другого производственного оборудования.

Для поддержки мультимедийных видов трафика создаются специальные технологии: ISDN, B-ISDN. Кроме того, технологии глобальных сетей, которые разрабатывались для передачи исключительно компьютерного трафика, в последнее время адаптируются для передачи голоса и изображения. Для этого пакеты, переносящие замеры голоса или данные изображения, приоритезируются, а в тех технологиях, которые это допускают, для их переноса создается соединение с заранее резервируемой пропускной способностью. Имеются специальные устройства доступа - мультиплексоры «голос - данные» или «видео - данные», которые упаковывают мультимедийную информацию в пакеты и отправляют ее по сети, а на приемном конце распаковывают и преобразуют в исходную форму - голос или видеоизображение.

Глобальные сети предоставляют в основном транспортные услуги, транзитом перенося данные между локальными сетями или компьютерами. Существует нарастающая тенденция поддержки служб прикладного уровня для абонентов глобальной сети: распространение публично-доступной аудио, видео- и текстовой информации, а также организация интерактивного взаимодействия абонентов сети в реальном масштабе времени. Эти службы появились в Internet и успешно переносятся в корпоративные сети, что называется технологией intranet.

Все устройства, используемые для подключения абонентов к глобальной сети, делятся на два класса: DTE, собственно вырабатывающие данные, и DCE, служащие для передачи данных в соответствии с требованиями интерфейса глобального канала и завершающие канал.

Технологии глобальных сетей определяют два типа интерфейса: «пользователь-сеть» (UNI) и «сеть-сеть» (NNI). Интерфейс UNI всегда глубоко детализирован для обеспечения подключения к сети оборудования доступа от разных производителей. Интерфейс NNI может быть детализирован не так подробно, так как взаимодействие крупных сетей может обеспечиваться на индивидуальной основе.

Глобальные компьютерные сети работают на основе технологии коммутации пакетов, кадров и ячеек. Чаще всего глобальная компьютерная сеть принадлежит телекоммуникационной компании, которая предоставляет службы своей сети в аренду. При отсутствии такой сети в нужном регионе предприятия самостоятельно создают глобальные сети, арендуя выделенные или коммутируемые каналы у телекоммуникационных или телефонных компаний.

На арендованных каналах можно построить сеть с промежуточной коммутацией на основе какой-либо технологии глобальной сети (Х.25, frame relay, АТМ) или же соединять арендованными каналами непосредственно маршрутизаторы или мосты локальных сетей. Выбор способа использования арендованных каналов зависит от количества и топологии связей между локальными сетями.

Глобальные сети делятся на магистральные сети и сети доступа.


СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. www.yandex.ru

Можете зарегистрировать на себя новый домен и в дальнейшем, при переезде из города в город сохранять за собой эти имена. Будет меняться только организации, которые осуществляют ваш выход в Интернет, регистрируя эти имена в глобальной сети. 6.2. IP адрес Второй параметр, который будет уникально определять ваш компьютер в мире – это IP адрес. IP адрес – это четыре числа, каждое из которых может...





В настоящее время ATM предоставляется конечным пользователям только в виде постоянных виртуальных соединений. Однопротокольная среда ATM и в локальных, и в глобальных сетях упрощает управление. Благодаря тому, что межсетевым устройствам не нужно переводить один протокол в другой, задержка невелика и предсказуема. Если сравнивать frame relay и ATM, то последняя, как технология передачи ячеек, ...


Как и множество других технологических изобретений, глобальные компьютерные сети вышли из недр исследовательских проектов сугубо военного назначения. Запуск в Советском Союзе первого искусственного спутника Земли в 1957 году ознаменовал начало технологического соревнования между СССР и США. В 1958 году для проведения и координации научно-исследовательской деятельности в военной области при Министерстве обороны США было выделено специальное Агентство Передовых Исследовательских Проектов (Advanced Research Projects Agency - ARPA). В его ведении, в частности, находились и работы по обеспечению безопасности связи и коммуникации в случае начала ядерной войны. Такая система передачи данных должна была обладать максимальной устойчивостью к повреждениям и быть способной функционировать даже при полном выведении из строя большинства своих звеньев.

В 1967 году для создания сети передачи данных было решено использовать разбросанные по всей стране компьютеры ARPA, соединив их обычными телефонными проводами. Работы по созданию первой глобальной компьютерной сети, получившей название ARPANet, велись быстрыми темпами и уже к 1968 году появились ее узлы, первый из которых был построен в Калифорнийском университете в Лос-Анджелесе (University of California in Los-Angeles, UCLA), второй - в Стенфордском исследовательском институте (Stanford Research Institute, SRI). В сентябре 1969 года состоялась передача первого компьютерного сообщения между этими центрами, что фактически ознаменовало рождение сети ARPANet. К декабрю 1969 г. ARPANet насчитывала 4 узла, в июле 1970 г. - восемь, а в сентябре 1971 г. уже 15 узлов. В 1971 году программистом Рэем Томлисоном (Ray Tomlison) разработана система электронной почты, в частности, в адресации впервые использован значок @ ("коммерческая эт"). В 1974 году было открыто первое коммерческое приложение ARPANet - Telnet, обеспечивающее доступ к удаленным компьютерам в режиме терминала.

Схема узлов и каналов связи сети ARPANet в 1980 году. Мало кто мог тогда предположить, во что это превратится через каких-нибудь двадцать лет.

К 1977 году Сеть объединяла уже десятки научных и военных организаций, как в США, так и в Европе, а для связи использовались уже не только телефонные, но также спутниковые и радиоканалы. 1 января 1983 года было ознаменовано принятием единых Протоколов Обмена Данными - TCP/IP (Transfer Control Protocol / Internet Protocol). Выдающееся значение этих протоколов заключалось в том, что с их помощью разнородные сети получили возможность производить обмен данными друг с другом. Именно этот день фактически явялется днем рождения Интернет, как сети, объединяющей глобальные компьютерные сети. Не даром одним из наиболее емких и точных определений Интернет является "сеть сетей".

В 1986 году Национальным Фондом Науки США (The National Science Foundation - NSF) была запущена в эксплуатацию NSFNet, связавшая компьютерные центры по всем Соединенным Штатам с "суперкомпьютерами". NSFNet изначально базировалась на TCP/IP, то есть была открыта для включения новых сетей, но первоначально была доступна лишь для зарегистрированных пользователей, в основном, университетов. Вся военная часть выделилась в MILNet, которая отошла исключительно в ведение американских военных организаций. NSFNet являлась высокоскоростной компьютерной сетью, базирующейся на суперкомпьютерах, соединенных оптоволоконными кабелями, радио- и спутниковой связью. До 1995 года она составляла основу Интернет в Соединенных Штатах - была "хребтом" (backbone) американской части глобальных компьютерных сетей (у других стран имелись собственные "хребты"). В 1996 году NSFNet была приватизирована, а научным организациям было предписано договариваться о доступе к информационным магистралям с коммерческими Интернет-провайдерами. В академических кругах это решение признано ошибочным, и практически с того же года ведутся эксперименты по воссозданию некоммерческой сети научных и образовательных учреждений, под условным названием Интернет-2.


Так выглядела NSFNet в середине 90-х годов. Мощное сочетание спутниковых и оптико-волоконных каналов позволило создать в США единое цифровое пространство.

До середины 1990 годов Интернет был доступен относительно узкому академическому сообществу, а его наполнение не отличалось богатством и разнообразием. Обмен электронными письмами, общение в группах новостей по интересам с помощью текстовых сообщений, доступ к ограниченному числу серверов по telnet и получение файлов по FTP (File Transfer Protocol - Протокол Передачи Файлов) были уделом энтузиастов до 1991 года, когда появился Gopher, приложение, впервые позволившее свободно перемещаться по глобальным сетям без предварительного знания адресов необходимых серверов. Поначалу не привлекло особого внимания и объявление о разработке нового приложения - Всемирной паутины (World Wide Web - WWW), сделанного в 1991 году в Европейском центре ядерных исследований (European Center for Nuclear Research, CERN). Созданный специалистом CERN Тимом Бернерсом-Ли (Tim Berners-Lee) Протокол Передачи Гипертекста (HyperText Transmission Protocol - HTTP) предназначался для обмена информацией среди физиков, трудившихся в удаленных друг от друга лабораториях. Однако в 1992-93 годах WWW еще по-прежнему представлял собой черно-белый текстовой ресурс. Ситуация значительно изменилась в 1993 году, после того как в Национальном центре суперкомпьютерных приложений (National Center for Supercomputing Applications, NCSA) был создан первый графический интерфейс к World Wide Web - браузер Mosaic. Mosaic оказался настолько популярен, что один из разработчиков программы Марк Андриссен (Mark Andreessen) основал компанию Netscape, занявшуюся разработкой аналога Mosaic - браузера Netscape Navigator.

Повсеместное использование Интернет широкими массами пользователей фактически началось в 1994 году с созданием нового браузера - Netscape Navigator. Его появление не только упростило доступ к информации Всемирной паутины, но, главное, позволило размещать в виртуальной вселенной практически все виды данных. На смену текстовым черно-белым приложениям пришла многокрасочная среда, наполненная графикой, анимацией, аудио- и видеоданными. Такая среда сразу же привлекла большее число пользователей, что в свою очередь стимулировало еще большее число организаций и частных граждан размещать в Сети свои данные. Получилась своеобразная замкнутая спираль, каждый последующий виток которой значительно превышает предшествующий.

Этот процесс продолжается и поныне, захватывая все новые и новые страны. Еще в июле 2002 года Сеть насчитывала более 172 миллионов хостов (компьютеров, имеющих оригинальный IP-адрес), а число пользователей равнялось 689 миллионам человек, из более чем 170 стран мира, что составляло на тот момент 9 % населения Земли. По прогнозам компании Nua.com рубеж в 1 миллиард будет преодолен в 2005 году.

В России, по данным фонда "Общественное мнение" на весну 2004 года, число пользователей Интернет оценивалось в 14,9 миллиона человек. Это составляет 13% населения России в возрасте от 18 лет и старше. Наибольшее количество пользователей (18 %) сосредоточено в Москве, порядка 15 % проживают в Северо-Западном регионе, 16 % - в Приволжском, 17 % - в Центральном (исключая Москву), 13 % - в Сибирском, 11 % - в Южном, 5 % - в Уральском и 4 % - в Дальневосточном регионах.

Степень "интернетизации" России становится более понятна в сравнении с данными по другим странам, полученными компанией Nielsen//NetRatings Inc. (http://www.nielsen-netratings.com). По ее сведениям набольший уровень "интернетизации" демонстрирует Швейцария, где Интернет пользуются 62 % населения, далее идут Австралия - 50%, Нидерланды - 47%, Франция - 37%, Великобритания - 36% и Германия 34%.

Объем российского сегмента Интернет на конец января 2004 года составлял порядка 970 тысяч сайтов (более 140 миллионов оригинальных документов). Для сравнения: в январе 2002 года число сайтов составляло всего 392 тысячи, в январе 2001 - 218 тысяч, а в январе 2000 - лишь 46 тысяч серверов (данные Яндекса).

Слайд 1

Описание слайда:

Слайд 2

Описание слайда:

Слайд 3

Описание слайда:

Слайд 4

Описание слайда:

Слайд 5

Описание слайда:

Слайд 6

Описание слайда:

Слайд 7

Описание слайда:

Слайд 8

Описание слайда:

Служба передачи файлов Служба передачи файлов FTP перемещает копии файлов с одного узлаИнтернет на другой в соответствии с протоколом FTP (File Transfer Protocol- "протокол передачи файлов"). При этом не имеет значения, где эти узлырасположены и как соединены между собой. Компьютеры, на которых естьфайлы для общего пользования, называются FTP-серверами. Например, для загрузки с сервера файловогоархива ftp.cuteftp.com компании GlobalScape файла cute4232.exe необходимоуказать URL-адрес этого файла. При указании URL-адреса протокол FTPзаписывается следующим образом: ftp://. В результате универсальный указатель ресурсов URL принимает вид:ftp://ftp.cuteftp.com/pub/cuteftp/cute4232.exe и состоит из трех частей: ftp:// - протокол доступа; ftp.cuteftp.com доменное имя сервера файлового архива; pub/cuteftp/cute4232.exe - путь к файлу и имя файла. WWW- Всемирная паутина World Wide Web (WWW) - гипертекстовая, а точнее, гипермедийнаяинформационная система поиска ресурсов Интернет и доступа к ним.

Слайд 9

Описание слайда:

Гипертекст - информационная структура, позволяющаяустанавливать смысловые связи между элементами текста на экранекомпьютера таким образом, чтобы можно было легко осуществлятьпереходы от одного элемента к другому. Гипермедиа - это то, что получится, если в определении гипертекстазаменить слово "текст" на "любые виды информации": звук, графику,видео. Система WWW построена на специальном протоколе передачиданных, который называется протоколом передачи гипертекста HTTP(читается "эйч-ти-ти-пи", HyperText Transfer Protocol). WWW-cтраницы - гипермедийные документы системы World WideWeb. Создаются с помощью языка разметки гипертекста HTML(Hypertext markup language).

Слайд 10

Описание слайда:

Слайд 11

Описание слайда:

Слайд 12

Описание слайда:

Инструменты для разработки wеb-сайтов Web-сайт - это совокупность гипертекстовых документов, которые рассматриваются как единое целое и определяются одним URL-aдpecoм. Для создания сайта необязательно знать язык HTML. Сущест¬вует множество доступных визуальных НТМL-редакторов, их другое название - WYSIWYG-peдaк гopы, позволяющих созда¬вать сайты без знания данного языка. WYSIWYG расшифровыва-ете.я как: What You See Is What You Get - что видишь, то и по¬лучаешь. Работа в таких редакторах происходит с визуальными формами, а не с тегами. Например, чтобы сделать шрифт текста жирным, надо просто выделить этот текст и нажать соответствую¬щую кнопку в меню редактора. После этого редактор вставит в НТМL-код необходимые "l" еги, а разработчик сайта увидит на стра¬нице уже итоговый результат. Визуальные HTML редакторы: 1 . Adobe Dreamweaver - один из наиболее популярных ком¬мерческих программных продуктов, предназначенных для разра¬ботки сайтов. Изначально был разработан и поддерживался ком¬панией Macromedia (до 2005 г.). Следующие версии, начиная с Dreamweaver СSЗ (2007 г.), выпускает компания Adobe. Редактор содержит огромный выбор всевозможных инструментов, удобный интерфейс, тонкие настройки, позволяющие подогнать программу под нужды wеЬ-мастера, а также встроенный FТР-менеджер для загрузки файлов на сервер. 2. Microsoft Office SharePoint Designer 2007 - визуальныйНТМL-редактор и программа для web-дизайна от компании Microsoft.Является одним из компонентов пакета Microsoft Office 2007, но при этом требует отдельной установки. Данный пакет относится к числу достаточно сложных редакто¬ров, позволяющих создавать не только простейшие wеЬ-страницы,но и полноценные web-узлы, предназначенные для коллективной работы пользователей. Более новая версия программы Microsoft Office SharePoint Designer 2010 максимально завязана на совмест¬ную работу большого числа людей над одним проектом, что требу¬ет установки соответствующего программного обеспечения на сер-вере, где хранится данный проект. 3. WebPageMaker - простой, быстрый и удобный редактор для создания сайтов. Пользователь с помощью мышки перетаски¬вает в необходимые места на странице заранее заготовленные тек¬сты и графику. В состав программы входит большое количество готовых шаблонов, которые можно использовать как основу для будущего сайта. 4 . Nvu - свободно распространяемый визуальный НТМL-ре¬дактор. Преимущество редактора Nvu состоит в его кроссплатфор¬менности: есть версии под Linux, Microsoft Windows и MacOS. 5. KompoZer - ответвление от редактора Nvu.KompoZer является свободно распространяемой wеЬ-авторской сис¬темой, которая сочетает в себе менеджер для wеЬ-файлов и визуаль¬ный редактор. По сравнению с Nvu, KompoZer создает более корот¬кий код разметки. KompoZer чрезвычайно прост в использовании, что делает его привлекательным для пользователей, которые хотят создавать сайты без получения серьезных технических знаний. KornpoZer может рассматриваться в качестве редактора для созда¬ния небольших web-проектов.

Слайд 13

Глобальные сети. ^ Организация глобальных сетей . Глобальные компьютерные сети объединяют между собой ЭВМ, расположен­ные на больших расстояниях (в масштабах региона, страны, мира). Если локальную сеть ученики могут увидеть своими глазами, то знакомство с глобальными сетями будет носить более описатель­ный характер. Здесь, как и во многих других темах, приходит на помощь метод аналогий. Устройство глобальной сети можно срав­нить с устройством системы телефонной связи - телефонной сети. Телефоны абонентов связаны с узлами-коммутаторами. В свою очередь, все городские коммутаторы связаны между собой так, что между любыми двумя телефонами абонентов может быть ус­ыновлена связь. Вся эта система образует телефонную сеть города. Городские (региональные) сети связаны между собой по междугородним линиям. Выход на телефонные сети других стран происходит по международным линиям связи. Таким образом, весь мир «опутан» телефонными сетями. Два абонента в любой части света, подключенные к этой сети, могут связаться друг с другом.

Рассказав об этом, предложите ученикам представить, что у абонентов вместо телефонных аппаратов установлены персональные компьютеры; вместо коммутаторов - мощные компьютерные узлы и по такой сети циркулирует самая разнообразная информация: от текстовой до видео и звука. Это и есть, современна» мировая система глобальных компьютерных сетей.

Первая глобальная компьютерная сеть начала действовать 1969 г. в США, она называлась ARPANET и объединяла в себе всего 4 удаленных компьютера. Примером современной сети научно-образовательного назначения является BITNET. Она охватывает 35 стран Европы, Азии и Америки, объединяет более 800 университетов, колледжей, научных центров. Крупнейшей российской сетью является RELCOM, созданная в 1990 г, RELCOM входит в европейское объединение сетей EUNET, ко­торая, в свою очередь, является участником гигантского мирово­го сообщества INTERNET. Такая иерархичность характерна для организации глобальных сетей.

На рис. 12.3 представлена характерная архитектура глобальной сети. Сеть состоит из узловых хост-компьютеров (У1, У2, ...), ПК абонентов сети (All, All, ...), линии связи. Обычно узел сети содержит не один, а множество компьютеров. Функции серверов различных сетевых услуг могут выполнять разные компьютеры.

Хост-компьютеры постоянно находятся во включенном состоянии, постоянно готовы к приему-передаче информации. В таком случае говорят, что они работают в режиме on-line. Компьютеры абонентов выходят на связь с сетью (в режим on-line) лишь на определенное время - сеанс связи. Переслав и получив необ­ходимую информацию, абонент может отключиться от сети и да­лее работать с полученной информацией автономно - в режиме off-line. Маршрут передачи информации пользователю обычно неизвестен. Он может быть уверен лишь в том, что информация проходит через узел подключения и доходит до пункта назначения. Маршрутизацией передаваемых данных занимаются системные средства сети. В разных сеансах связь с одним и тем же корреспон­дентом может проходить по разным маршрутам.

Шлюзом называют компьютер, организующий связь данной сети с другими глобальными сетями.

^ Информационные услуги глобальных сетей. Электронная почта. g истории глобальных сетей электронная почта (e-mail) появи­лась как самая первая информационная услуга. Эта услуга остает­ся основной и важнейшей в компьютерных телекоммуникациях. Можно сказать, что происходит процесс вытеснения традицион­ной бумажной почты электронной почтой. Преимущества после­дней очевидны: прежде всего, это высокая скорость доставки кор­респонденции (минуты, редко - часы), сравнительная дешевиз­на. Уже сейчас огромные объемы деловой и личной переписки идут через e-mail. Электронная почта в сочетании с факсимиль­ной связью обеспечивают абсолютное большинство потребностей в передаче писем и документов.

Для того чтобы абонент мог воспользоваться услугами элект­ронной почты, он должен:


  • иметь аппаратное подключение своего персонального компьютера к почтовому серверу узла компьютерной сети;

  • иметь на этом сервере свой почтовый ящик и пароль для обращения к нему;

  • иметь личный электронный адрес;

  • иметь на своем компьютере клиент-программу электронной почты (мэйлер).
Аппаратное подключение чаще всего происходит по телефон­ным линиям, поэтому пользователю необходим выход в телефон­ную сеть, т. е. свой телефонный номер. Организация - владелец узла глобальной сети, предоставляющая сетевые услуги, называ­ется провайдером. В последнее время их становится все больше, и пользователь имеет возможность выбрать того провайдера, усло­вия которого его в большей степени устраивают. Провайдер назна­чает для пользователя пароль, электронный адрес, создает для него на почтовом сервере почтовый ящик - папку для размещения кор­респонденции. Как правило, провайдер помогает пользователю установить и настроить почтовую клиент-программу.

Подготовка электронного письма производится пользователем в режиме off-line - отключения от сети. С помощью почтовой клиент-программы он формирует текст письма, указывает адрес по­лучателя, вкладывает в письмо различные приложения. Затем Пользователь переходит в режим on-line, т.е. соединяется с почто­вым сервером и отдает команду «доставить почту». Подготовлен­ная корреспонденция передается на сервер, а поступившая на адрес Пользователя переносится с сервера на его ПК. При этом полу­денные письма удаляются из почтового ящика, а переданные за­носятся в него. Почтовый сервер периодически просматривает ящики абонентов и, обнаружив там исходящую корреспонден­цию, организует ее отравление.

На примере электронной почты хорошо иллюстрируется суть технологии клиент-сервер, принятой в современных сетях. Эта тех­нология основана на разделении функций программного обеспе­чения, обслуживающего каждую информационную услугу, между компьютером клиента и сервером. Соответствующее ПО называ­ется клиент-программой и сервер-программой (часто говорят ко­роче: клиент и сервер). Популярными клиент-программами элект­ронной почты являются: MAIL для MS-DOS и Outlook Express для Windows.

В начальный период развития электронной почты передавае­мая корреспонденция могла иметь только текстовый формат. Дан­ные другого формата (двоичные файлы) перекодировались в тек­стовый формат с помощью специальной программы-перекодировщика UUDECOD. Сейчас в Internet используется стандарт MIME, позволяющий без такого перекодирования передавать в теле электронного письма самую разнообразную информацию. Согласно этому стандарту передающая машина помещает в заго­ловке электронного письма описания типов информационных единиц, составляющих письмо. Машина-получатель по этим опи­саниям правильно интерпретирует полученную информацию. Те­перь в электронном письме, помимо текста, можно помещать гра­фические образы (тип image), аудио-информацию (audio), видео­фильмы (video), любые приложения (application).

Наряду с электронной почтой в глобальных сетях существуют и другие виды информационных услуг для пользователей.

Telnet. Эта услуга позволяет пользователю работать в режиме терминала удаленного компьютера, т. е. использовать установлен­ные на нем программы так же, как программы на собственном компьютере.

FTP. Так называется сетевой протокол и программы, которые обслуживают работу с каталогами и файлами удаленной машины. Клиент FTP имеет возможность просматривать каталоги FTP-сер­веров, копировать интересующие его файлы.

Archie. Так называются специальные серверы, выполняющие роль поисковых программ в системе FTP-серверов. Они помогают быстро найти нужные вам файлы.

Gopher. Система поиска и извлечения информации из сети с развитыми средствами многоуровневых меню, справочных книг, индексных ссылок и пр.

^ WAIS. Сетевая информационно-поисковая система, основан­ная на распределенных базах данных и библиотеках.

Usenet. Система телеконференций. Другое название - группы новостей. Обслуживает подписчиков определенных тематических конференций, рассылая им материалы по электронной почте.

^ Аппаратные средства сетей. Хост-компьютеры (серверы). Хост-компьютер имеет собственный уникальный адрес в сети и выпол­няет роль узловой машины, обслуживающей абонентов. В качестве хост-компьютеров используются разные типы машин: от мощных ПК до мини-ЭВМ и даже мэйнфреймов (больших ЭВМ). Основ­ные требования - высокоскоростной процессор и большой объем дисковой памяти (десятки и сотни Гбайт). На хост-компьютерах в сети Internet используется операционная система Unix. Все сер­вер-программы, обслуживающие приложения, работают под уп­равлением Unix.

Из того, о чем уже говорилось выше, следует, что понятие «сер­вер» носит программно-аппаратный смысл. Например, хост-ком­пьютер, на котором в данный момент работает сервер-программа электронной почты, выполняет роль почтового сервера. Если на этой же машине начинает работать сервер-программа WWW, то она становится Web-сервером. Часто функции серверов различ­ных услуг разделены на узле сети между разными компьютерами.

^ Линии связи. Основные типы линий связи между компьютерами сети: телефонные линии, электрические кабели, оптоволокон­ный кабель и радиосвязь. Главными параметрами линий связи яв­ляются пропускная способность (максимальная скорость переда­чи информации), помехоустойчивость, стоимость. По параметру стоимости самыми дорогими являются оптоволоконные линии, самыми дешевыми - телефонные. Однако с уменьшением цены уменьшается и качество работы линии. В табл. 12.1 даны сравни­тельные характеристики линий по параметрам скорости и поме­хоустойчивости.

Таблица 12.1

Характеристики линий связи


Тип связи

Скорость, Мбит/с

Помехоустойчивость

Витая пара проводов

10 -100

Низкая

Коаксиальный кабель

До 10

Высокая

Телефонная линия

1 -2

Низкая

Оптоволоконный кабель

10 -200

Абсолютная

Чаще всего для связи между хост-компьютерами используются выделенные телефонные линии или радиосвязь. Если узлы сети Расположены сравнительно недалеко друг от друга (в пределах города), то связь между ними может быть организована по ка­бельным линиям - электрическим или оптоволоконным. В последнее время в сети Internet активно используется спутниковая ра­диосвязь.

Обычно абоненты (клиенты) подключаются к узлу своего про­вайдера через телефонную линию. Все чаще для этих целей начи­нает применяться радиосвязь.

Для передачи информации по каналам связи необходимо пре­образовывать ее из той формы, в которой она существует в ком­пьютере, в сигналы, передаваемые по линиям связи. Такие преоб­разования осуществляют специальные устройства, которые назы­ваются сетевыми адаптерами. Существуют адаптеры для кабельной, для оптоволоконной связи. Адаптер вставляется в свободное гнез­до материнской платы и соединяется кабелем с адаптером друго­го компьютера. Так обычно делается в локальных сетях.

В глобальных сетях, связанных по телефонным линиям, в каче­стве устройства сопряжения используются модемы. Назначение модема состоит в преобразовании информации из двоичного ком­пьютерного кода в телефонный сигнал и обратно. Помимо этого, модем выполняет еще ряд функций. Например, модем клиента сети должен дозваниваться до узла, к которому он подключается.

Основной характеристикой модема является предельная ско­рость передачи данных. В настоящее время она колеблется от 1200 бит/с до 112 000 бит/с. Однако реальная скорость зависит не только от модема, но и от качества телефонных линий. В российс­ких городских сетях приемлемая скорость передачи невелика и составляет 2400-14400 бит/с. В будущем, когда произойдет пол­ный переход телефонных линий на цифровую связь, потребность в использовании модемов исчезнет.

Интернет. На вопрос, что такое Интернет, в литературе можно прочитать разные варианты ответов. Чаще всего на этот вопрос отвечают так: Интернет - это суперсеть, охватывающая весь мир, представляющая из себя совокупность многих (более 2000) сетей, поддерживающих единый протокол TCP/IP (Transmission Control Protocol/Internet Protocol).

Протокол - это стандарт на представление, преобразование и пересылку информации в компьютерной сети. Образно можно сказать так: протокол - это определенный сетевой язык. Пока различные глобальные сети работали автономно, они «разговари­вали на разных языках». Для их объединения понадобилось приду­мать общий язык (своеобразный сетевой эсперанто), которым стал протокол TCP/IP. Этот протокол поддерживается как программ­ными, так и аппаратными средствами сети. Сводится он к стан­дартизации следующих процедур:


  • разбиение передаваемых данных на пакеты (части);

  • адресация пакетов и передача их по определенным маршрутам в пункт назначения;

  • сборка пакетов в форму исходных данных.
При этом происходит контроль правильности приема-переда-пакета, правильности сборки всех переданных пакетов в нужном месте.

На базе протокола TCP/IP реализованы другие прикладные протоколы Интернет, составляющие основу сервиса в сети.

Основой Интернет является система так называемых IР-адресов. Каждый хост-компьютер, включенный в Интернет, получает уникальный в рамках всей сети адрес. IP-адрес - это последова­тельность из четырех целых десятичных чисел, разделенных точ­ками. Например: 195.205.31.47. Поскольку Интернет - это сеть се­тей, то первое число определяет сеть, к которой принадлежит компьютер, следующие числа уточняют координаты компьютера в этой сети.

Цифровая адресация является «внутренним делом» системы. Для пользователей она неудобна. Поэтому для пользователей исполь­зуется буквенная форма записи адресов - доменные адреса. До­мены - это символьные имена, разделяемые точками. Пример доменного адреса: www.psu.ru. Адрес читается справа налево. Пер­вый справа домен называется суффиксом. Чаще всего он опреде­ляет страну, в которой находится компьютер (таким образом, компьютер является элементом национальной сети). Например, ru - Россия, uk - Великобритания, fr - Франция. Адреса хост-компьютеров США обычно имеют суффикс, обозначающий их принадлежность к корпоративным сетям: edu - научные и учеб­ные организации, gov - правительственные организации, mil - военные и пр.

Следующие домены (их может быть больше одного) определяют хост-компьютер в данной сети (PSU - Internet-центр Пермского госуниверситета). Последний домен - имя сервера (Web - сервер). С помощью специальной серверной программы устанавливает­ся связь между числовыми и доменными адресами.

Все перечисленные выше характеристики Интернет чаще все­го пользователю неизвестны. С точки зрения пользователя, Ин­тернет - это определенное множество информационных услуг, которые он может получать от сети. В число услуг входят: элект­ронная почта, телеконференции (списки рассылки), архивы файлов, справочники и базы данных, Всемирная паутина - WWW и пр. Интернет - это неограниченные информационные ресурсы. Влияние, которое окажет Интернет на развитие человеческого общества, еще до конца не осознано.

^ Информационные услуги Интернет. Наряду с перечисленными gillie информационными услугами (электронной почтой, телеконференциями и др.), предоставляемыми пользователям глобальных сетей, существуют услуги, появление и развитие которых связано включительно с развитием мировой сети Интернет. Наиболее заметной среди них является WWW.

WWW - World Wide Web - Всемирная паутина. Это гипертекстовая информационная система в Интернет. В последнее время WWW и ее программное обеспечение становится универсальный средством информационных услуг в Интернет. Они обеспечивав пользователям доступ практически ко всем перечисленным выше ресурсам (FTP, e-mail, WAIS, Gopher и др.). Основные понятия, связанные с WWW: Web-страница - основная информационная единица в WWW имеющая свой адрес;

Web-сервер - компьютер, хранящий Web-страницы и соответствующее программное обеспечение для работы с ними;

Web-браузер - клиент-программа, позволяющая извлекать и просматривать Web-страницы;

Web-сайт - раздел данных на Web-сервере, принадлежащий какой-то организации или лицу. В этом разделе его владелец размещает свою информацию в виде множества взаимосвязанных Web-страниц. Обычно сайт имеет титул - головную страницу, от ко­торой по гиперссылкам или указателям «вперед-назад» можно двигаться по страницам сайта.

Наиболее популярными Web-браузерами являются Internet Explorer и Netscape Navigator. Основная задача браузера - обра­щение к Web-серверу за искомой страницей и вывод страницы на экран. Простейший способ получения нужной информации из Интернет - указание адреса искомого ресурса.

Для хранения и поиска информации в Интернет используется универсальная адресация, которая носит название URL - Uniform Resource Locator. URL-адрес содержит информацию не только о том, где находится ресурс, но и по какому протоколу к нему сле­дует обращаться. URL-адрес состоит из двух частей: первая (ле­вая) указывает используемый протокол, а вторая (справа) - где именно в сети расположен данный ресурс (имя соответствующего сервера). Разделяются эти части двоеточием, например:

Http://имя севера/путь/файл

Ftp:// - используется протокол ftp при обращении к ftp-серверам;

Gopher:// - подключение к серверам Gopher;

Http:// - использование протокола работы с гипертекстом (Нурer Text Transfer Protocol), который лежит в основе WWW. Этот тип связи надо указывать при обращении к любому WWW-серверу.

Вот пример адреса файла, содержащего дистанционный курc немецкого языка:

Http://www.scholar.urc.ac.ru/Teaher/German/main.html

Кроме прямой адресации поиск информации в Internet может осуществляться по гиперссылкам.

В помощь пользователю в Интернет действует ряд специальных поисковых программ. Еще их называют поисковыми серверами, поисковыми машинами, поисковыми системами. Такая система постоянно находится в работе. С помощью специальных программ-роботов она производит периодический обход всех Web-серверов в сети и собирает сводную информацию об их содержании. По результатам таких просмотров организуются справочники, индекс­ные списки с указанием документов, где встречаются определен­ие ключевые слова. Затем по этим спискам обслуживаются запросы пользователей на поиск информации. Поисковая система выдает пользователю список адресов документов, в которых встре­чаются указанные пользователем ключевые слова.

Ниже приведены адреса наиболее популярных российских по­исковых серверов:

Http://yandex.ru/ http://www.altavista.telia.com/

Http://www.list.ru/

Поиск информации по ключевым словам требует от пользова­теля определенных навыков. Алгоритмы поиска в сети, подобно поиску информации в базах данных, основаны на логике. Рас­смотрим этот вопрос на примере организации поиска по несколь­ким ключевым словам, принятого в поисковой системе Alta Vista.


  1. Несколько ключевых слов, разделенных пробелом, соответствуют операции логического сложения: ИЛИ (OR). Например, указав ключ: , мы получим список всех документов, в которых встречается слово «Школьная» или слово «информатика». Очевидно, таких документов окажется слишком много и большинство из них не нужны пользователю.

  2. Несколько слов, заключенных в кавычки, воспринимаются как единое целое. Указав в запросе «Школьная информатика» мы получим документы, содержащие такую строку.

  3. Знак «+» между словами равносилен операции логического Умножения: И (AND). Указав в запросе ключ, получим все документы, в которых имеются эти два слова одновременно, но они могут быть расположены в любом порядке и вразброс.
Очевидно, второй вариант запроса в большей степени соответ­ствует цели. Однако ключевых слов в таком сочетании в списках поисковой программы может не оказаться.

Кроме WWW, среди относительно новых услуг в Интернет су­ществуют следующие:

^ IRC. Internet Relay Chat - «болтовня» в реальном времени. Позволяет вести письменный диалог удаленным собеседникам в режиме on-line;

Internet-телефония. Услуга, поддерживающая голосовое общение клиентов сети в режиме on-line.

При наличии возможности выхода в Интернет, практическая работа учащихся может быть организована по таким направлениям:


  • подготовка, отправление и прием электронной почты;

  • работа с Web-браузером, просмотр Web-страниц;

  • обращение в FTP - серверам, извлечение файлов;

  • поиск информации в системе WWW с помощью поисковых программ.
Знакомство с каждым новым видом прикладного программно­го обеспечения, обслуживающим соответствующую информаци­онную услугу (почтовая программа, Web-браузер, поисковая про­грамма) следует проводить по стандартной методической схеме: данные, среда, режимы работы, система команд.

Задания для выполнения учащимися практических работ в сети Internet содержатся в пособии .

Назначение и структура глобальных сетей

Глобальная компьютерная сеть, ГКС (англ. Wide Area Network, WAN) - компьютерная сеть, охватывающая большие территории и включающая в себя большое число компьютеров.

Глобальные сети позволяют организовать взаимодействие между абонентами в тысячи км. В основе передачи данных в глобальных сетях лежит технология коммутации пакетов.

Каждый передаваемый файл разбивается на небольшие порции, которые помещаются в пакет, содержащий адреса как отправляющего, так и принимающего компьютера.

Пакеты путешествуют по сети самостоятельно: при потере одного пакета он может быть легко переслан повторно. Поскольку каждый пакет пересылается независимо от других и вперемешку с тысячами подобных, это, помимо прочего, обеспечивает относительную дешевизну передачи данных по Интернет. Например, стоимость посылки электронного письма ничтожна по сравнению со стоимостью пересылки по факсу сообщения равного объема.

Глобальные сети также называют территориальными компьютерными сетями , служат для того, чтобы предоставлять свои сервисы большому количеству конечных абонентов, разбросанных по большой территории - в пределах области, региона, страны, континента или всего земного шара.

Ввиду большой протяженности каналов связи построение глобальной сети требует очень больших затрат, в которые входит стоимость кабелей и работ по их прокладке, затраты на коммутационное оборудование и промежуточную усилительную аппаратуру, обеспечивающую необходимую полосу пропускания канала, а также эксплуатационные затраты на постоянное поддержание в работоспособном состоянии разбросанной по большой территории аппаратуры сети.

Типичными абонентами глобальной компьютерной сети являются локальные сети предприятий , расположенные в разных городах и странах, которым нужно обмениваться данными между собой. Услугами глобальных сетей пользуются также и отдельные компьютеры. Крупные компьютеры класса мэйнфреймов обычно обеспечивают доступ к корпоративным данным, в то время как персональные компьютеры используются для доступа к корпоративным данным и публичным данным Internet.

Глобальные сети обычно создаются крупными телекоммуникационными компаниями для оказания платных услуг абонентам. Такие сети называют публичными или общественными . Существуют также такие понятия, как оператор сети и поставщик услуг сети.

Оператор сети (network operator) - это та компания, которая поддерживает нормальную работу сети. Поставщик услуг , часто называемый также провайдером (service provider), - та компания, которая оказывает платные услуги абонентам сети. Владелец, оператор и поставщик услуг могут объединяться в одну компанию, а могут представлять и разные компании.

Гораздо реже глобальная сеть полностью создается какой-нибудь крупной корпорацией (такой, например, как Dow Jones или «Транснефть») для своих внутренних нужд. В этом случае сеть называется частной. Очень часто встречается и промежуточный вариант - корпоративная сеть пользуется услугами или оборудованием общественной глобальной сети, но дополняет эти услуги или оборудование своими собственными. Наиболее типичным примером здесь является аренда каналов связи, на основе которых создаются собственные территориальные сети.

Кроме вычислительных глобальных сетей существуют и другие виды территориальных сетей передачи информации. В первую очередь это телефонные и телеграфные сети, работающие на протяжении многих десятков лет, а также телексная сеть.

Ввиду большой стоимости глобальных сетей существует долговременная тенденция создания единой глобальной сети, которая может передавать данные любых типов : компьютерные данные, телефонные разговоры, факсы, телеграммы, телевизионное изображение, телетекс (передача данных между двумя терминалами), видеотекс (получение хранящихся в сети данных на свой терминал) и т. д., и т. п.

Хотя в основе локальных и глобальных вычислительных сетей лежит один и тот же метод - метод коммутации пакетов, глобальные сети имеют достаточно много отличий от локальных сетей..