Предел функции двух переменных.
Понятие и примеры решений

Добро пожаловать на третий урок по теме ФНП , где наконец-то начали сбываться все ваши опасения =) Как многие подозревали, понятие предела распространяется и на функцию произвольного количества аргументов, в чём нам сегодня и предстоит разобраться. Однако есть оптимистичная новость. Она состоит в том, что при предел в известной степени абстрактен и соответствующие задания крайне редко встречаются на практике. В этой связи наше внимание будет сосредоточено на пределах функции двух переменных или, как мы чаще её записываем: .

Многие идеи, принципы и методы схожи с теорией и практикой «обычных» пределов, а значит, на данный момент вы должны уметь находить пределы и самое главное ПОНИМАТЬ, что такое предел функции одной переменной . И, коль скоро судьба привела вас на эту страничку, то, скорее всего, уже немало понимаете-умеете. А если и нет – ничего страшного, все пробелы реально заполнить в считанные часы и даже минуты.

События этого занятия разворачиваются в нашем трёхмерном мире, и поэтому будет просто огромным упущением не принять в них живое участие. Сначала соорудим хорошо известную декартову систему координат в пространстве . Давайте встанем и немного походим по комнате… …пол, по которому вы ходите – это плоскость . Поставим где-нибудь ось … ну, например, в любом углу, чтобы не мешалась на пути. Отлично. Теперь, пожалуйста, посмотрите вверх и представьте, что там зависло расправленное одеяло. Это поверхность , заданная функцией . Наше перемещение по полу, как нетрудно понять, имитирует изменение независимых переменных , и мы можем передвигаться исключительно под одеялом, т.е. в области определения функции двух переменных . Но самое интересное только начинается. Прямо над кончиком вашего носа по одеялу ползает маленький тараканчик, куда вы – туда и он. Назовём его Фредди. Его перемещение имитирует изменение соответствующих значений функции (за исключением тех случаев, когда поверхность либо её фрагменты параллельны плоскости и высота не меняется) . Уважаемый читатель с именем Фредди, не обижайся, так надо для науки.

Возьмём в руки шило и проткнём одеяло в произвольной точке, высоту которой обозначим через , после чего строго под отверстием воткнём инструмент в пол – это будет точка . Теперь начинаем бесконечно близко приближаться к данной точке , причём приближаться мы имеем право ПО ЛЮБОЙ траектории (каждая точка которой, разумеется, входит в область определения) . Если ВО ВСЕХ случаях Фредди будет бесконечно близко подползать к проколу на высоту и ИМЕННО НА ЭТУ ВЫСОТУ, то функция имеет предел в точке при :

Если при указанных условиях проколотая точка расположена на краю одеяла, то предел всё равно будет существовать – важно, чтобы в сколь угодно малой окрестности острия шила были хоть какие-то точки из области определения функции. Кроме того, как и в случае с пределом функции одной переменной , не имеет значения , определена ли функция в точке или нет. То есть наш прокол можно залепить жвачкой (считать, что функция двух переменных непрерывна ) и это не повлияет на ситуацию – вспоминаем, что сама суть предела подразумевает бесконечно близкое приближение , а не «точный заход» в точку.

Однако безоблачная жизнь омрачается тем фактом, что в отличие от своего младшего брата, предел гораздо более часто не существует. Это связано с тем, что к той или иной точке на плоскости обычно существует очень много путей, и каждый из них должен приводить Фредди строго к проколу (опционально «залепленному жвачкой») и строго на высоту . А причудливых поверхностей с не менее причудливыми разрывами хоть отбавляй, что приводит к нарушению этого жёсткого условия в некоторых точках.

Организуем простейший пример – возьмём в руки нож и разрежем одеяло таким образом, чтобы проколотая точка лежала на линии разреза. Заметьте, что предел всё ещё существует, единственное, мы потеряли право ступать в точки под линией разреза, так как этот участок «выпал» из области определения функции . Теперь аккуратно приподнимем левую часть одеяла вдоль оси , а правую его часть, наоборот – сдвинем вниз или даже оставим её на месте. Что изменилось? А принципиально изменилось следующее: если сейчас мы будем подходить к точке слева, то Фредди окажется на бОльшей высоте, чем, если бы мы приближались к данной точке справа. Таким образом, предела не существует.

И, конечно же, замечательные пределы , куда без них. Рассмотрим поучительный во всех смыслах пример:

Пример 11

Используем до боли знакомую тригонометрическую формулу , где и стандартным искусственным приёмом организуем первые замечательные пределы :

Перейдём к полярным координатам:
Если , то

Казалось бы, решение идёт к закономерной развязке и ничто не предвещает неприятностей, однако в самом конце существует большой риск допустить серьёзный недочёт, о характере которого я уже чуть-чуть намекнул в Примере 3 и подробно расписал после Примера 6. Сначала концовка, затем комментарий:

Давайте разберёмся, почему будет плохо записать просто «бесконечность» или «плюс бесконечность». Посмотрим на знаменатель: так как , то полярный радиус стремится к бесконечно малому положительному значению: . Кроме того, . Таким образом, знак знаменателя и всего предела зависит только от косинуса:
, если полярный угол (2-я и 3-я координатные четверти: );
, если полярный угол (1-я и 4-я координатные четверти: ) .

Геометрически это означает, что если приближаться к началу координат слева, то поверхность, заданная функцией , простирается до бесконечности вниз:

При изучении многих закономерностей в естествознании и экономике приходится встречаться с функциями от двух (и более) независимых переменных.

Определение (для функции двух переменных). Пусть X , Y и Z - множества. Если каждой паре (x , y ) элементов из множеств соответственно X и Y в силу некоторого закона f ставится в соответствие один и только один элемент z из множества Z , то говорят, что задана функция двух переменных z = f (x , y ) .

В общем случае область определения функции двух переменных геометрически может быть представлена некоторым множеством точек (x ; y ) плоскости xOy .

Основные определения, относящиеся к функциям нескольких переменных, являются обобщением соответствующих определений для функции одной переменной .

Множество D называется областью определения функции z , а множество E множеством её значений . Переменные x и y по отношению к функции z называются её аргументами. Переменная z называется зависимой переменной.

Частным значениям аргументов

соответствует частное значение функции

Область определения функции нескольких переменных

Если функция нескольких переменных (например, двух переменных) задана формулой z = f (x , y ) , то областью её определения является множество всех таких точек плоскости x0y , для которых выражение f (x , y ) имеет смысл и принимает действительные значения . Общие правила для области определения функции нескольких переменных выводятся из общих правил для области определения функции одной переменной . Отличие в том, что для функции двух переменных областью определения является некоторое множество точек плоскости, а не прямой, как для функции одной переменной. Для функции трёх переменных областью определения является соответствующее множество точек трёхмерного пространства, а для функции n переменных - соответствующее множество точек абстрактного n -мерного пространства.

Область определения функции двух переменных с корнем n -й степени

В случае, когда функция двух переменных задана формулой и n - натуральное число :

если n - чётное число, то областью определения функции является множество точек плоскости, соответствующих всем значениями подкоренного выражения, которые больше или равны нулю, то есть

если n - нечётное число, то областью определения функции является множество любых значений , то есть вся плоскость x0y .

Область определения степенной функции двух переменных с целым показателем степени

:

если a - положительное, то областью определения функции является вся плоскость x0y ;

если a - отрицательное, то областью определения функции является множество значений , отличных от нуля: .

Область определения степенной функции двух переменных с дробным показателем степени

В случае, когда функция задана формулой :

если - положительное, то областью определения функции является множество тех точек плоскости, в которых принимает значения большие или равное нулю: ;

если - отрицательное, то областью определения функции является множество тех точек плоскости, в которых принимает значения, большие нуля: .

Область определения логарифмической функции двух переменных

Логарифмическая функция двух переменных определена при условии, если её аргумент положителен, то есть, областью её определения является множество тех точек плоскости, в которых принимает значения, большие нуля: .

Область определения тригонометрических функций двух переменных

Область определения функции - вся плоскость x0y .

Область определения функции - вся плоскость x0y .

Область определения функции - вся плоскость x0y

Область определения функции - вся плоскость x0y , кроме пар чисел, для которых принимает значения .

Область определения обратных тригонометрических функций двух переменных

Область определения функции .

Область определения функции - множество таких точек плоскости, для которых .

Область определения функции - вся плоскость x0y .

Область определения функции - вся плоскость x0y .

Область определения дроби как функции двух переменных

Если функция задана формулой , то областью определения функции являются все точки плоскости, в которых .

Область определения линейной функции двух переменных

Если функция задана формулой вида z = ax + by + c , то область определения функции - вся плоскость x0y .

Пример 1.

Решение. По правилам для области определения составляем двойное неравенство

Умножаем всё неравенство на и получаем

Полученное выражение и задаёт область определения данной функции двух переменных.

Пример 2. Найти область определения функции двух переменных .

) мы уже неоднократно сталкивались с частными производными сложных функций наподобие и более трудными примерами. Так о чём же ещё можно рассказать?! …А всё как в жизни – нет такой сложности, которую было бы нельзя усложнить =) Но математика – на то и математика, чтобы укладывать многообразие нашего мира в строгие рамки. И иногда это удаётся сделать одним-единственным предложением:

В общем случае сложная функция имеет вид , где, по меньшей мере, одна из букв представляет собой функцию , которая может зависеть от произвольного количества переменных.

Минимальный и самый простой вариант – это давно знакомая сложная функция одной переменной, производную которой мы научились находить в прошлом семестре. Навыками дифференцирования функций вы тоже обладаете (взгляните на те же функции ) .

Таким образом, сейчас нас будет интересовать как раз случай . По причине великого разнообразия сложных функций общие формулы их производных имеют весьма громоздкий и плохо усваиваемый вид. В этой связи я ограничусь конкретными примерами, из которых вы сможете понять общий принцип нахождения этих производных:

Пример 1

Дана сложная функция , где . Требуется:
1) найти её производную и записать полный дифференциал 1-го порядка;
2) вычислить значение производной при .

Решение : во-первых, разберёмся с самой функцией. Нам предложена функция, зависящая от и , которые в свою очередь являются функциями одной переменной:

Во-вторых, обратим пристальное внимание на само задание – от нас требуется найти производнУЮ , то есть, речь идёт вовсе не о частных производных , которые мы привыкли находить! Так как функция фактически зависит только от одной переменной, то под словом «производная» подразумевается полная производная . Как её найти?

Первое, что приходит на ум, это прямая подстановка и дальнейшее дифференцирование. Подставим в функцию :
, после чего с искомой производной никаких проблем:

И, соответственно, полный дифференциал:

Это решение математически корректно, но маленький нюанс состоит в том, что когда задача формулируется так, как она сформулирована – такого варварства от вас никто не ожидает =) А если серьёзно, то придраться тут действительно можно. Представьте, что функция описывает полёт шмеля, а вложенные функции меняются в зависимости от температуры. Выполняя прямую подстановку , мы получаем лишь частную информацию , которая характеризует полёт, скажем, только в жаркую погоду. Более того, если человеку не сведущему в шмелях предъявить готовый результат и даже сказать, что это за функция, то он так ничего и не узнает о фундаментальном законе полёта!

Вот так вот совершенно неожиданно брат наш жужжащий помог осознать смысл и важность универсальной формулы:

Привыкайте к «двухэтажным» обозначениям производных – в рассматриваемом задании в ходу именно они. При этом следует быть очень аккуратным в записи: производные с прямыми значками «дэ» – это полные производные , а производные с округлыми значками – это частные производные . С последних и начнём:

Ну а с «хвостами» вообще всё элементарно:

Подставим найденные производные в нашу формулу:

Когда функция изначально предложена в замысловатом виде, то будет логичным (и тому дано объяснение выше!) оставить в таком же виде и результаты:

При этом в «навороченных» ответах лучше воздержаться даже от минимальных упрощений (тут, например, напрашивается убрать 3 минуса) – и вам работы меньше, и мохнатый друг доволен рецензировать задание проще.

Однако не лишней будет черновая проверка. Подставим в найденную производную и проведём упрощения:


(на последнем шаге использованы тригонометрические формулы , )

В результате получен тот же результат, что и при «варварском» методе решения.

Вычислим производную в точке . Сначала удобно выяснить «транзитные» значения (значения функций ) :

Теперь оформляем итоговые расчёты, которые в данном случае можно выполнить по-разному. Использую интересный приём, в котором 3 и 4 «этажа» упрощаются не по обычным правилам , а преобразуются как частное двух чисел:

И, конечно же, грех не проверить по более компактной записи :

Ответ :

Бывает, что задача предлагается в «полуобщем» виде:

«Найти производную функции , где »

То есть «главная» функция не дана, но её «вкладыши» вполне конкретны. Ответ следует дать в таком же стиле:

Более того, условие могут немного подшифровать:

«Найти производную функции »

В этом случае нужно самостоятельно обозначить вложенные функции какими-нибудь подходящими буквами, например, через и воспользоваться той же формулой:

К слову, о буквенных обозначениях. Я уже неоднократно призывал не «цепляться за буквы», как за спасательный круг, и сейчас это особенно актуально! Анализируя различные источники по теме, у меня вообще сложилось впечатление, что авторы «пошли вразнос» и стали безжалостно бросать студентов в бурные пучины математики =) Так что уж простите:))

Пример 2

Найти производную функции , если

Другие обозначения не должны приводить в замешательство! Каждый раз, когда вы встречаете подобное задание, нужно ответить на два простых вопроса:

1) От чего зависит «главная» функция? В данном случае функция «зет» зависит от двух функций («у» и «вэ»).

2) От каких переменных зависят вложенные функции? В данном случае оба «вкладыша» зависят только от «икса».

Таким образом, у вас не должно возникнуть трудностей, чтобы адаптировать формулу к этой задаче!

Краткое решение и ответ в конце урока.

Дополнительные примеры по первому виду можно найти в задачнике Рябушко (ИДЗ 10.1) , ну а мы берём курс на функцию трёх переменных :

Пример 3

Дана функция , где .
Вычислить производную в точке

Формула производной сложной функции , как многие догадываются, имеет родственный вид:

Решайте, раз догадались =)

На всякий случай приведу и общую формулу для функции :
, хотя на практике вы вряд ли встретите что-то длиннее Примера 3.

Кроме того, иногда приходится дифференцировать «урезанный» вариант – как правило, функцию вида либо . Оставляю вам этот вопрос для самостоятельного исследования – придумайте какую-нибудь простенькие примеры, подумайте, поэкспериментируйте и выведите укороченные формулы производных.

Если что-то осталось недопонятым, пожалуйста, неторопливо перечитайте и осмыслите первую часть урока, поскольку сейчас задача усложнится:

Пример 4

Найти частные производные сложной функции , где

Решение : данная функция имеет вид , и после прямой подстановки и мы получаем привычную функцию двух переменных:

Но такой страх не то чтобы не принято, а уже и не хочется дифференцировать =) Поэтому воспользуемся готовыми формулами. Чтобы вы быстрее уловили закономерность, я выполню некоторые пометки:

Внимательно просмотрите картинку сверху вниз и слева направо….

Сначала найдём частные производные «главной» функции:

Теперь находим «иксовые» производные «вкладышей»:

и записываем итоговую «иксовую» производную:

Аналогично с «игреком»:

и

Можно придерживаться и другого стиля – сразу найти все «хвосты» и потом записать обе производные.

Ответ :

О подстановке что-то как-то совсем не думается =) =), а вот причесать результаты немножко можно. Хотя, опять же, зачем? – только усложните проверку преподавателю.

Если потребуется, то полный дифференциал тут записывается по обычной формуле, и, кстати, как раз на данном шаге становится уместной лёгкая косметика:


Такой вот... ....гроб на колёсиках.

Ввиду популярности рассматриваемой разновидности сложной функции пара заданий для самостоятельного решения. Более простой пример в «полуобщем» виде – на понимание самой формулы;-):

Пример 5

Найти частные производные функции , где

И посложнее – с подключением техники дифференцирования:

Пример 6

Найти полный дифференциал функции , где

Нет, я вовсе не пытаюсь «отправить вас на дно» – все примеры взяты из реальных работ, и «в открытом море» вам могут попасться какие угодно буквы. В любом случае потребуется проанализировать функцию (ответив на 2 вопроса – см. выше) , представить её в общем виде и аккуратно модифицировать формулы частных производных. Возможно, сейчас немного попутаетесь, но зато поймёте сам принцип их конструирования! Ибо настоящие задачи только начинаются:)))

Пример 7

Найти частные производные и составить полный дифференциал сложной функции
, где

Решение : «главная» функция имеет вид и по-прежнему зависит от двух переменных – «икса» и «игрека». Но по сравнению с Примером 4, добавилась ещё одна вложенная функция, и поэтому формулы частных производных тоже удлиняются. Как и в том примере, для лучшего вИдения закономерности, я выделю «главные» частные производные различными цветами:

И снова – внимательно изучите запись сверху вниз и слева направо.

Так как задача сформулирована в «полуобщем» виде, то все наши труды, по существу, ограничиваются нахождением частных производных вложенных функций:

Справится первоклассник:

И даже полный дифференциал получился вполне себе симпатичный:

Я специально не стал предлагать вам какую-то конкретную функцию – чтобы лишние нагромождения не помешали хорошо разобраться в принципиальной схеме задачи.

Ответ :

Довольно часто можно встретить «разнокалиберные» вложения, например:

Здесь «главная» функция хоть и имеет вид , но всё равно зависит и от «икс», и от «игрек». Поэтому работают те же самые формулы – просто некоторые частные производные будут равны нулю. Причём, это справедливо и для функций вроде , у которых каждый «вкладыш» зависит от какой-то одной переменной.

Похожая ситуация имеет место и в двух заключительных примерах урока:

Пример 8

Найти полный дифференциал сложной функции в точке

Решение : условие сформулировано «бюджетным» образом, и мы должны сами обозначить вложенные функции. По-моему, неплохой вариант:

Во «вкладышах» присутствуют (ВНИМАНИЕ! ) ТРИ буквы – старые-добрые «икс-игрек-зет», а значит, «главная» функция фактически зависит от трёх переменных. Её можно формально переписать в виде , и частные производные в этом случае определяются следующими формулами:

Сканируем, вникаем, улавливаем….

В нашей задаче:

Частные производные функции трёх переменных

Продолжаем всеми любимую тему математического анализа – производные. В данной статье мы научимся находить частные производные функции трёх переменных : первые производные и вторые производные. Что необходимо знать и уметь для освоения материала? Не поверите, но, во-первых, нужно уметь находить «обычные» производные функции одной переменной – на высоком или хотя бы среднем уровне. Если с ними совсем туго, то начните с урока Как найти производную? Во-вторых, очень важно прочитать статью и осмыслить-прорешать если не все, то бОльшую часть примеров. Если это уже сделано, то уверенной походкой идём со мной, будет интересно, даже удовольствие получите!

Методы и принципы нахождения частных производных функции трёх переменных на самом деле очень похожи на частные производные функции двух переменных . Функция двух переменных, напоминаю, имеет вид , где «икс» и «игрек» – независимые переменные. Геометрически функция двух переменных обычно представляет собой некоторую поверхность в нашем трёхмерном пространстве.

Функция трёх переменных имеет вид , при этом переменные называются независимыми переменными или аргументами , переменная называется зависимой переменной или функцией . Например: – функция трёх переменных

А теперь немного о фантастических фильмах и инопланетянах. Часто можно услышать о четырехмерном, пятимерном, десятимерном и т.д. пространствах. Чушь или нет?
Ведь функция трёх переменных подразумевает четырехмерное пространство
(и действительно, переменных же три + сама функция). График функции трёх переменных представляет собой так называемую гиперповерхность . Представить её невозможно, поскольку мы живём в трехмерном пространстве (длина/ширина/высота). Чтобы вам со мной не было скучно, предлагаю викторину. Я задам несколько вопросов, а желающие могут попробовать на них ответить:

– Существует ли в мире четвертое, пятое и т.д. измерения в смысле обывательского понимания пространства (длина/ширина/высота)?

– Можно ли построить четырехмерное, пятимерное и т.д. пространство в широком понимании этого слова? То есть, привести пример такого пространства в нашей жизни.

– Возможно ли путешествие в прошлое?

– Возможно ли путешествие в будущее?

– Существуют ли инопланетяне?

На любой вопрос можно выбрать один из четырёх ответов:
Да / Нет (наукой это запрещено) / Наукой это не запрещено / Не знаю

Кто правильно ответит на все вопросы, тот, скорее всего, обладает некоторой вещью;-)

Ответы на вопросы я постепенно буду выдавать по ходу урока, не пропускайте примеры!

Собственно, полетели. И сразу хорошая новость: для функции трёх переменных справедливы правила дифференцирования и таблица производных . Именно поэтому вам необходимо хорошо управляться с «обычными» производными функций одной переменной. Отличий совсем немного!

Пример 1

Решение : Нетрудно догадаться –для функции трёх переменных существуют три частных производных первого порядка, которые обозначаются следующим образом:

Или – частная производная по «икс»;
или – частная производная по «игрек»;
или – частная производная по «зет».

В ходу больше обозначение со штрихом, но составители сборников, методичек в условиях задач очень любят использовать как раз громоздкие обозначения – так что не теряйтесь! Возможно, не все знают, как правильно читать вслух эти «страшные дроби». Пример: следует читать следующим образом: «дэ у по дэ икс».

Начнём с производной по «икс»: . Когда мы находим частную производную по , то переменные и считаются константами (постоянными числами) . А производная любой константы, о, благодать, равна нулю:

Сразу обратите внимание на подстрочный индекс – никто вам не запрещает помечать, что являются константами. Так даже удобнее, начинающим рекомендую использовать именно такую запись, меньше риск запутаться.

(1) Используем свойства линейности производной, в частности, выносим все константы за знак производной. Обратите внимание, что во втором слагаемом константу выносить не нужно: так как «игрек» является константой, то – тоже константа. В слагаемом за знак производной вынесена «обычная» константа 8 и константа «зет».

(2) Находим простейшие производные, не забывая при этом, что – константы. Далее причесываем ответ.

Частная производная . Когда мы находим частную производную по «игрек», то переменные и считаются константами :

(1) Используем свойства линейности. И снова заметьте, что слагаемые , являются константами, а значит, за знак производной выносить ничего не нужно.

(2) Находим производные, не забывая, что константы. Далее упрощаем ответ.

И, наконец, частная производная . Когда мы находим частную производную по «зет», то переменные и считаются константами :

Общее правило очевидно и незатейливо: Когда мы находим частную производную по какой-либо независимой переменной, то две другие независимые переменные считаются константами.

При оформлении данных задач следует быть предельно внимательным, в частности, нельзя терять подстрочные индексы (которые указывают, по какой переменной проводится дифференцирование). Потеря индекса будет ГРУБЫМ НЕДОЧЁТОМ. Хммм…. забавно, если после такого устрашения я их сам где-нибудь пропущу)

Пример 2

Найти частные производные первого порядка функции трёх переменных

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Рассмотренные два примера достаточно просты и, решив несколько подобных задачек, даже чайник приноровится расправляться с ними устно.

Для разгрузки вернемся к первому вопросу викторины: Существует ли в мире четвертое, пятое и т.д. измерения в смысле обывательского понимания пространства (длина/ширина/высота)?

Верный ответ: Наукой это не запрещено . Вся фундаментальная математическая аксиоматика, теоремы, математический аппарат прекрасно и непротиворечиво работают в пространстве любой размерности. Не исключено, что где-нибудь во Вселенной существуют неподвластные нашему разуму гиперповерхности, например, четырёхмерная гиперповерхность, которая задается функцией трех переменных . А может быть гиперповерхности рядом с нами или даже мы находимся прямо в них, просто наше зрение, другие органы чувств, сознание способны на восприятие и осмысление только трёх измерений.

Вернемся к примерам. Да, если кто сильно загрузился викториной, ответы на следующие вопросы лучше прочитать после того, как научитесь находить частные производные функции трёх переменных, а то я вам по ходу статьи вынесу весь мозг =)

Помимо простейших Примеров 1,2 на практике встречаются задания, которые можно назвать небольшой головоломкой. Такие примеры, к моей досаде, выпали из поля зрения, когда я создавал урок Частные производные функции двух переменных . Навёрстываем упущенное:

Пример 3


Решение : вроде бы тут «всё просто», но первое впечатление обманчиво. При нахождении частных производных многие будут гадать на кофейной гуще и ошибаться.

Разберём пример последовательно, чётко и понятно.

Начнём с частной производной по «икс». Когда мы находим частную производную по «икс», то переменные считаются константами. Следовательно, показатель нашей функции – тоже константа. Для чайников рекомендую следующий приём решения: на черновике поменяйте константу на конкретное положительное целое число, например, на «пятерку». В результате получится функция одной переменной:
или ещё можно записать так:

Это степенная функция со сложным основанием (синусом). По :

Теперь вспоминаем, что , таким образом:

На чистовике, конечно, решение следует оформить так:

Находим частную производную по «игрек», считаются константами. Если «икс» константа, то – тоже константа. На черновике проделываем тот же трюк: заменим, например, на 3, «зет» – заменим той же «пятёркой». В результате снова получается функция одной переменной:

Это показательная функция со сложным показателем. По правилу дифференцирования сложной функции :

Теперь вспоминаем нашу замену:

Таким образом:

На чистовике, понятно, оформление должно выглядеть, благообразно:

И зеркальный случай с частной производной по «зет» ( – константы):

При определенном опыте проведенный анализ можно проводить мысленно.

Выполняем вторую часть задания – составим дифференциал первого порядка. Это очень просто, по аналогии с функцией двух переменных, дифференциал первого порядка записывается по формуле:

В данном случае:

И делов то. Отмечу, что в практических задачах полный дифференциал 1-го порядка функции трёх переменных требуют составить значительно реже, чем для функции двух переменных.

Забавный пример для самостоятельного решения:

Пример 4

Найти частные производные первого порядка функции трёх переменных и составить полный дифференциал первого порядка

Полное решение и ответ в конце урока. Если возникнут затруднения, используйте рассмотренный «чайниковский» алгоритм, он гарантированно должен помочь. И ещё полезный совет – не спешите . Такие примеры быстро не решаю даже я.

Отвлекаемся и разбираем второй вопрос: Можно ли построить четырехмерное, пятимерное и т.д. пространство в широком понимании этого слова? То есть, привести пример такого пространства в нашей жизни.

Верный ответ: Да . Причём, очень легко. Например, добавляем к длине/ширине/высоте четвёртое измерение – время. Популярное четырехмерное пространство-время и всем известная теория относительности, аккуратно скомпилированная Эйнштейном по материалам трудов Лобачевского, Пуанкаре, Лоренца и Минковского. Тоже не все знают. За что у него Нобелевская премия? В научном мире был нешуточный скандал, и Нобелевский комитет сформулировал заслугу троечника Эйнштейна примерно следующим образом: «За общий вклад в развитие физики». Дальнейшее, что называется, раскрутка и пиар.

К рассмотренному четырехмерному пространству легко добавить пятое измерение, например: атмосферное давление. И так далее, так далее, так далее, сколько зададите измерений в своей модели – столько и будет. В широком смысле слова мы живём в многомерном пространстве.

Разберём еще пару типовых задач:

Пример 5


Решение : Задание в такой формулировке часто встречается на практике и предполагает выполнение следующих двух действий:
– нужно найти частные производные первого порядка;
– нужно вычислить значения частных производных 1-го порядка в точке .

Решаем:

(1) Перед нами сложная функция, и на первом шаге следует взять производную от арктангенса. При этом мы, по сути, невозмутимо используем табличную формулу производной арктангенса . По правилу дифференцирования сложной функции результат необходимо домножить на производную внутренней функции (вложения): .

(2) Используем свойства линейности.

(3) И берём оставшиеся производные, не забывая, что – константы.

По условию задания необходимо найти значение найденной частной производной в точке . Подставим координаты точки в найденную производную:

Преимуществом данного задания является тот факт, что другие частные производные находятся по очень похожей схеме:

Как видите, шаблон решения практически такой же.

Вычислим значение найденной частной производной в точке :

И, наконец, производная по «зет»:

Готово. Решение можно было оформить и по другому: сначала найти все три частные производные, а потом вычислить их значения в точке . Но, мне кажется, приведенный способ удобнее – только нашли частную производную, и сразу, не отходя от кассы, вычислили её значение в точке.

Интересно отметить, что геометрически точка – вполне реальная точка нашего трехмерного пространства. Значения же функции , производных – уже четвертое измерение, и где оно геометрически находится, никто не знает. Как говорится, по Вселенной никто с рулеткой не ползал, не проверял.

Коль скоро снова философская тема пошла, рассмотрим третий вопрос: Возможно ли путешествие в прошлое?

Верный ответ: Нет . Путешествие в прошлое противоречит второму закону термодинамики о необратимости физических процессов (энтропии). Так что не ныряйте, пожалуйста, в бассейн без воды, событие можно открутить назад только в видеозаписи =) Народная мудрость не зря придумала противоположный житейский закон: «Семь раз отмерь, один раз отрежь». Хотя, на самом деле грустная штука, время однонаправлено и необратимо, никто из нас завтра не помолодеет. А различные фантастические фильмы вроде «Терминатора» с научной точки зрения – полная чушь. Абсурд и с точки зрения философии – когда Следствие, вернувшись в прошлое, может уничтожить собственную же Причину.

Пример 6

Найти частные производные первого порядка в точке

Пример 7

Найти частные производные первого порядка в точке

Это два несложных примера для самостоятельного решения. Полное решение и ответ в конце урока.

Но вы не расстраивайтесь из-за второго закона термодинамики, сейчас я всех приободрю более сложными примерами:

Пример 8

Найти частные производные первого порядка функции трёх переменных

Решение : Найдем частные производные первого порядка:

(1) Начиная находить производную, следует придерживаться того же подхода, что и для функции одной переменной. Используем свойства линейности, в данном случае выносим за знак производной константы .

(2) Под знаком производной у нас находится произведение двух функций, каждая из которых зависит от нашей «живой» переменной «икс». Поэтому необходимо использовать правило дифференцирования произведения .

(3) С производной сложностей никаких, а вот производная является производной сложной функции: сначала необходимо найти, по сути, табличный логарифм и домножить его на производную от вложения.

(4) Думаю, все уже освоились с простейшими примерами вроде – тут у нас «живой» только , производная которого равна

Практически зеркален случай с производной по «игрек», его я запишу короче и без комментариев:

Интереснее с производной по «зет», хотя, всё равно почти то же самое:

(1) Выносим константы за знак производной.

(2) Здесь опять произведение двух функций, каждая из которых зависит от «живой» переменной «зет». В принципе, можно использовать формулу производной частного, но проще таки пойти другим путём – найти производную от произведения.

(3) Производная – это табличная производная. Во втором слагаемом – уже знакомая производная сложной функции.

Пример 9

Найти частные производные первого порядка функции трёх переменных

Это пример для самостоятельного решения. Подумайте, как рациональнее находить ту или иную частную производную. Полное решение и ответ в конце урока.

Перед тем как перейти к заключительным примерам урока и рассмотреть частные производные второго порядка функции трёх переменных, всех еще раз взбодрю четвертым вопросом:

Возможно ли путешествие в будущее?

Верный ответ: Наукой это не запрещено . Парадоксально, но не существует математического, физического, химического или другого естественнонаучного закона, который бы запрещал путешествие в будущее! Кажется чушью? Но практически у каждого в жизни бывало предчувствие (причём, не подкрепленное никакими логическими доводами), что произойдет то или иное событие. И оно происходило! Откуда пришла информация? Из будущего? Таким образом, фантастические фильмы о путешествии в будущее, да и, к слову, предсказания всевозможных гадалок, экстрасенсов нельзя назвать таким уж бредом. По крайне мере, наука этого не опровергла. Всё возможно! Так, когда я учился в школе, то компакт диски и плоские мониторы из фильмов казались мне невероятной фантастикой.

Известная комедия «Иван Васильевич меняет профессию» – выдумка наполовину (как максимум). Никакой научный закон не запрещал Ивану Грозному оказаться в будущем, но невозможно, чтобы два перца оказались в прошлом и исполняли обязанности царя.

Частные производные второго порядка функции трёх переменных

Общий принцип нахождения частных производных второго порядка функции трёх переменных аналогичен принципу нахождения частных производных 2-го порядка функции двух переменных. Поэтому, если вы хорошо проработали урок Частные производные функции двух переменных , то будет всё очень просто.

Для того чтобы найти частные производные второго порядка, сначала необходимо найти частные производные первого порядка или в другой записи: .

Частных производных второго порядка девять штук.

Первая группа – это вторые производные по тем же переменным:
или – вторая производная по «икс»;
или – вторая производная по «игрек»;
или – вторая производная по «зет».

Вторая группа – это смешанные частные производные 2-го порядка, их шесть:
или – смешанная производная «икс по игрек»;
или – смешанная производная «игрек по икс»;
или – смешанная производная «икс по зет»;
или – смешанная производная «зет по икс»;
или – смешанная производная «игрек по зет»;
или – смешанная производная «зет по игрек».

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

1.ОСНОВНЫЕ ПОНЯТИЯ

Пусть: z - переменная величина с областью изменения R; R- числовая прямая; D - область на координатной плоскости R2.

Любое отображение D->R называют функцией двух переменных с областью определения D и пишут z = f(x;y).

Другими словами:

Если каждой паре (х; у) двух независимых перемен­ных из области D по некоторому правилу ста­вится в соответствие одно определенное значение z из R, то переменную величину z называют функцией двух не­зависимых переменных х и у с областью определения D и пишут

http://pandia.ru/text/78/481/images/image002_44.jpg" width="215" height="32 src=">

П р и м е р 1.

http://pandia.ru/text/78/481/images/image005_28.jpg" width="157" height="29 src=">

http://pandia.ru/text/78/481/images/image007_16.jpg" align="left" width="110" height="89">

Область определения – есть часть плоско­сти, лежащая внутри круга радиуса г = 3 , с центром в начале координат, см. рисунок.

П р и м е р 3. Найти и изобразить область определения функции

http://pandia.ru/text/78/481/images/image009_11.jpg" width="86" height="32 src=">

http://pandia.ru/text/78/481/images/image011_10.jpg" width="147" height="30 src=">

2.ГЕОМЕТРИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ ФУНКЦИИ ДВУХ

ПЕРЕМЕННЫХ

2.1.График функции двух переменных

Рассмотрим в пространстве прямоугольную систему координат и область D на плоскости хОу. В каждой точке М(х;у) из этой области восстановим перпендикуляр к плос­кости хОу и отложим на нем значение z = f(x; у). Геомет­рическое место полученных точек

http://pandia.ru/text/78/481/images/image013_10.jpg" width="106" height="23 src=">

http://pandia.ru/text/78/481/images/image015_6.jpg" width="159" height="23 src=">

Это окружности с центром в начале координат, радиусом R = C1/2 и уравнением

x2 + y2 = R2, см. рисунок.

Линии уровня позволяют представить рассматриваемую поверхность, дающую в сечении плоскостями z = C концентрические окружности.

http://pandia.ru/text/78/481/images/image017_16.gif" width="88" height="29"> и найти .

Решение. Воспользуемся методом сечений.

http://pandia.ru/text/78/481/images/image020_11.gif" width="184 height=60" height="60">– в плоскости – парабола.

– в плоскости –парабола.

http://pandia.ru/text/78/481/images/image025_5.gif" width="43" height="24 src=">– окружность.

Искомая поверхность – параболоид вращения.

Расстоянием между двумя произвольными точками и (евклидова) пространства называется число

http://pandia.ru/text/78/481/images/image030_5.gif" width="153 height=24" height="24"> называется открытым кругом радиуса с центром в точке r.

Открытый круг радиуса ε с центром в точке A называется - ε - окрестностью точки А.

3адание

Найти и изобразить графически область определения функции:

Построить линии уровня функций:

3. ПРЕДЕЛ ФУНКЦИИ ДВУХ ПЕРЕМЕННЫХ

Основные понятия математического анализа, введен­ные для функции одной переменной, распространяются и на функции нескольких переменных.

О п р е д е л е н и е:

Постоянное число А называется пределом функции двух переменных z = f(x;у) при х -> х0, у -> у0, если для лю­бого

ε >0 существует δ >0 такое, что |f(х; у) - А| < ε , как только

|x - x0| < δ и |у – у0| < δ.

Этот факт обозначается так:

http://pandia.ru/text/78/481/images/image042_2.jpg" width="160" height="39 src=">

http://pandia.ru/text/78/481/images/image044_2.gif" width="20" height="25 src=">. Для функции двух переменных стремление к предельной точке на плоскости может происходить по бесконечному числу направлений (и необязательно по прямой), и потому требование существования предела у функции двух (или нескольких) переменных «жестче» по сравнению с функцией одной переменной.

П р и м е р 1. Найти .

Решение. Пусть стремление к предельной точке http://pandia.ru/text/78/481/images/image048_2.gif" width="55 height=24" height="24">. Тогда

http://pandia.ru/text/78/481/images/image050_2.gif" width="72 height=48" height="48"> зависит от .

П р и м е р 2. Найти .

Решение. По любой прямой предел один и тот же:

http://pandia.ru/text/78/481/images/image054_2.gif" width="57" height="29">. Тогда

http://pandia.ru/text/78/481/images/image056_1.gif" width="64" height="21">, (остальное – по аналогии).

О п р е д е л е н и е. Число называют пределом функции при и , если для такое, что из неравенств и следует неравенство . Этот факт коротко записывают так:

http://pandia.ru/text/78/481/images/image065_1.gif" width="124" height="48">.gif" width="236" height="48 src=">;

http://pandia.ru/text/78/481/images/image069_1.gif" width="247" height="60 src=">,

где предельная точка http://pandia.ru/text/78/481/images/image070_1.gif" width="85" height="24 src="> с областью определения и пусть – предельная точка множества , т. е точка, к которой стремятся аргументы х и у .

О п р е д е л е н и е 1. Говорят, что функция непрерывна в точке, если:

1) ;

2) , т. е. .

Сформулируем определение непрерывности в эквивалентной форме..gif" width="89" height="25 src=">.gif" width="85 height=24" height="24">непрерывна в точке, если выполняется равенство

http://pandia.ru/text/78/481/images/image079_0.gif" width="16" height="20 src=">.gif" width="15 height=16" height="16"> придадим произвольное приращение . Функция получит частное приращение по х

http://pandia.ru/text/78/481/images/image084_0.gif" width="35" height="25 src="> является функцией одной переменной . Аналогично,

http://pandia.ru/text/78/481/images/image058_1.gif" width="85" height="24"> называется непрерывной в точке по переменной (по переменной ), если

http://pandia.ru/text/78/481/images/image087.gif" width="101" height="36">).

Теорема. Если функция определена в некоторой окрестности точки и непрерывна в этой точке, то она непрерывна в этой точке по каждой из переменных.

Обратное утверждение неверно.

П р и м е р. Докажем, что функция

непрерывна в точке http://pandia.ru/text/78/481/images/image081_0.gif" width="15 height=16" height="16">.gif" width="57" height="24"> в точке , соответствующее приращению http://pandia.ru/text/78/481/images/image081_0.gif" width="15" height="16 src=">:

http://pandia.ru/text/78/481/images/image092_0.gif" width="99" height="36 src=">, а это означает, что непрерывна в точке по переменной .

Аналогично можно доказать непрерывность в точке по переменной .

Покажем, что предел не существует. Пусть точка стремиться к точке по прямой , проходящей через точку . Тогда получим

.

Таким образом, приближаясь к точке http://pandia.ru/text/78/481/images/image051_1.gif" width="15" height="20">, получаем разные предельные значения. Отсюда следует, что предел данной функции в точке не существует, а значит, функция http://pandia.ru/text/78/481/images/image097.jpg" width="351" height="48 src=">

Другие обозначения

http://pandia.ru/text/78/481/images/image099.jpg" width="389" height="55 src=">

Другие обозначения

http://pandia.ru/text/78/481/images/image101_0.gif" width="60" height="28 src=">.

Решение . Имеем:

,

П р и м е р 2.

http://pandia.ru/text/78/481/images/image105.jpg" width="411" height="51 src=">

П р и м е р 3. Найти частные производные функции

http://pandia.ru/text/78/481/images/image107.jpg" width="477" height="58 src=">

Пример 4. Найти частные производные функции

http://pandia.ru/text/78/481/images/image109.jpg" width="321" height="54 src=">

5.2. Дифференциалы первого порядка функции двух переменных

Частные дифференциалы функции z = f(x, у) по переменным х и у определяются, соответственно по формулам х(x;y) и f"у{x;y) сущест­вуют в точке (х0;у0) и в некоторой ее окрестности и не­прерывны в этой точке, то по аналогии с функцией одной переменной устанавливается формула для полного при­ращения функции двух переменных

http://pandia.ru/text/78/481/images/image112_0.gif" width="364" height="57 src=">

где http://pandia.ru/text/78/481/images/image114_0.gif" width="154" height="39 src=">

Другими словами, функция z = f(x, y) дифференцируема в точке, (х, у), если ее приращение Δz эквивалентно функции:

Выражение

http://pandia.ru/text/78/481/images/image116.jpg" width="192" height="57 src=">

С учетом того, что Δх = dx, Δy=dy:

http://pandia.ru/text/78/481/images/image090_0.gif" width="57" height="24 src="> дифференцируема в точке , то она непрерывна в этой точке.

Обратное утверждение неверно, т. е. непрерывность является только необходимым, но не достаточным условием дифференцируемости функции. Покажем это.

П р и м е р. Найдем частные производные функции http://pandia.ru/text/78/481/images/image120.gif" width="253" height="57 src=">.

Полученные формулы теряют смысл в точке http://pandia.ru/text/78/481/images/image121.gif" width="147" height="33 src="> не имеет частных производных в точке . В самом деле, . Эта функция одной переменной , как известно, не имеет производной в точке http://pandia.ru/text/78/481/images/image124.gif" width="25" height="48"> в точке не существует. Аналогично, не существует частная производная . При этом функция , очевидно, непрерывна в точке .

Итак, мы показали, что непрерывная функция может не иметь частных производных. Осталось установить связь между дифференцируемостью и существованием частных производных.

5.4. Связь между дифференцируемостью и существованием частных производных.

Теорема 1. Необходимое условие дифференцируемости.

Если функция z = f(x, y) дифференцируема в точке M(x, y), то она имеет в точке M частные производные по каждой переменной и .

Обратная теорема не верна, т. е. существование частных производных является необходимым, но не является достаточным условием дифференцируемости функции.

Теорема 2. Достаточное условие дифференцируемости. Если функция z = f(x, y) имеет непрерывные частные производные и в точке , то она дифференцируема в точке (и ее полный дифференциал в этой точке выражается формулой http://pandia.ru/text/78/481/images/image130.gif" width="101 height=29" height="29">

Пример 2. Вычислить 3,021,97

3адание

Вычислить приближенно при помощи дифференциа­ла:

5.6. Правила дифференцирования сложных и неявных функций. Полная производная.

Случай 1.

z=f(u, v); u=φ(x, y), v=ψ(x, y)

Функции u и v непрерывные функции от аргументов х, у.

Таким образом, функция z есть сложная функция от аргументов х и у: z=f(φ(x, y),ψ(x, y))

Предположим, что функции f(u, v), φ(x, y), ψ(x, y) имеют непрерывные частные производные по всем своим аргументам.

Поставим задачу вычислить http://pandia.ru/text/78/481/images/image140.gif" width="23" height="44 src=">.

Дадим аргументу x приращение Δx, фиксируя значение аргумента y. Тогда функции двух переменных u= φ(x, y) и

v= φ(x, y) получат частные приращения Δxu и Δxv. Следовательно, z=f(u, v) получит полное приращение, определяемое в п.5.2 (дифференциалы первого порядка функции двух переменных):

http://pandia.ru/text/78/481/images/image142.gif" width="293" height="43 src=">

Если xu→ 0, то Δxu → 0 и Δxv → 0 (в силу непрерывности функций u и v). Переходя к пределу при Δx→ 0, получим:

http://pandia.ru/text/78/481/images/image144.gif" width="147" height="44 src="> (*)

П р и м е р.

Z=ln(u2+v), u=ex+y ² , v=x2 + y;

http://pandia.ru/text/78/481/images/image146.gif" width="81" height="41 src=">.

http://pandia.ru/text/78/481/images/image148.gif" width="97" height="44 src=">.gif" width="45" height="44 src=">.

Тогда по формуле (*) получим:

http://pandia.ru/text/78/481/images/image152.gif" width="219" height="44 src=">.

Для получения окончательного результата в две последние формулы вместо u и v необходимо подставить еx+y² и x2+y, соответственно.

Случай 2.

Функции х и у непрерывные функции.

Таким образом, функция z=f(x, у) зависит через посредство х и у от одной независимой переменной t, т. е. допустим, что х и у суть не незави­симые переменные, но функции независимой переменной t, и определим производную http://pandia.ru/text/78/481/images/image155.gif" width="235" height="44 src=">

Разделим обе части этого равенства на Δt:

http://pandia.ru/text/78/481/images/image157.gif" width="145" height="44 src="> (**)

Случай 3.

Предположим, теперь, что роль независимой переменной t играет переменная х, т. е. что функция z=f(x, у) зависит от неза­висимой переменной х как непосредственно, так и через посредство переменной у, которая является непрерывной функцией от х.

Принимая во внима­ние, что http://pandia.ru/text/78/481/images/image160.gif" width="120" height="44 src="> (***)

Производная x(x, у)=http://pandia.ru/text/78/481/images/image162.gif" width="27" height="27 src=">, y=sin x.

Находим частные производные

http://pandia.ru/text/78/481/images/image164.gif" width="72" height="48 src=">.gif" width="383" height="48 src=">

Доказанное правило дифференцирования сложных функций при­меняется для нахождения производной, неявной функции.

Производная от функции, заданной неявно.

Положим, что уравнение

определяет у как неявную функцию от х, имеющую производную

у’ = φ’(x)_

Подставляя у = φ (х) в уравнение F(x, y) = 0, мы должны были бы получить тождество 0 = 0, так как у = φ(х) есть решение этого уравнения. Мы видим, таким образом, что постоянную нуль можно рассматривать как сложную функцию от х, которая зависит от х как непосредственно, так и через посредство у =φ(х).

Производная по х от этой постоянной должна равняться нулю; применяя правило (***), получим

F’x(x, y) + F’y(x, y)·y’ = 0,

http://pandia.ru/text/78/481/images/image168.gif" width="64" height="41 src=">

Следовательно,

http://pandia.ru/text/78/481/images/image171.gif" width="20" height="24"> справедливо как для одной, так и для другой функции.

5.7. Полный дифференциал первого порядка. Инвариантность формы дифференциала первого порядка

Подставим выражения для http://pandia.ru/text/78/481/images/image173.gif" width="23" height="41 src="> определенные равенствами (*) (см. случай 1 в п.5.6 «Правила дифференцирования сложных и неявных функций. Полная производная») в формулу полного дифференциала

Gif" width="33" height="19 src=">.gif" width="33" height="19 src=">.gif" width="140" height="44 src=">

Тогда формула полного дифференциала первого порядка функции двух переменных имеет вид

http://pandia.ru/text/78/481/images/image180.gif" width="139" height="41 src=">

Сравнивая последнее равенство с формулой для первого дифференциала функции двух независимых переменных, можем сказать, что выражение полного дифференциала первого порядка функции нескольких переменных имеет тот же вид, которое он имел бы, если бы u и v были бы независимыми переменными.

Иначе говоря, форма первого дифференциала инвариантна, то есть не зависит от того, являются ли переменные u и v независимыми переменными, или зависят от других переменных.

П р и м е р.

Найти полный дифференциал первого порядка сложной функции

z=u2v3, u=x2·sin y , v=x3·ey.

Р е ш е н и е. По формуле для полного дифференциала первого порядка имеем

dz = 2uv3·du+3u2v2·dv =

2uv3·(2x·siny ·dx+x2·cosy ·dy)+3u2v2·(3x2·ey·dx+x3·ey·dy).

Это выражение можно переписать так

dz=(2uv3·2x·siny+3u2v2·3x2·ey)·dx+(2uv3x2·cosy+3u2v2x3·ey)·dy=

Свойство инвариантности дифференциала позволяет распространить правило нахождения дифференциала суммы, произведения и частного на случай функции от нескольких переменных:

http://pandia.ru/text/78/481/images/image183.jpg" width="409" height="46 src=">

http://pandia.ru/text/78/481/images/image185.gif" width="60" height="41 src=">. Эта

функция будет однородной третьей степени при всех вещественных х, у и t. Такой же функцией будет и любой однородный многочлен от х и у третьей степени, т. е. такой многочлен, в каждом члене которого сумма показателей хну равна трем:

http://pandia.ru/text/78/481/images/image187.jpg" width="229" height="47 src=">

суть однородные функции степеней соответственно 1, 0 и (- 1)..jpg" width="36" height="15">. Действительно,

http://pandia.ru/text/78/481/images/image191.jpg" width="363" height="29 src=">

Полагая t=1, находим

http://pandia.ru/text/78/481/images/image193.jpg" width="95" height="22 src=">

Частные производные http://pandia.ru/text/78/481/images/image195.jpg" width="77" height="30 src=">), вообще го-

воря, являются функциями переменных х и у. Поэтому от них можно снова находить частные производные. Следовательно, частных про­изводных второго порядка от функции двух переменных четыре, так как каждую из функций и можно дифференцировать как по х, так и по у.

Вторые частные производные обозначают так:

есть производная n - го порядка; здесь функция z сначала р раз дифференцировалась по х, а потом n - р раз по у.

Для функции любого числа переменных частные производите высших порядков определяются аналогично.

П р и м е р 1. Вычислить частные производные второго порядка от функции

http://pandia.ru/text/78/481/images/image209.jpg" width="600" height="87 src=">

П р и м е р 2. Вычислить и http://pandia.ru/text/78/481/images/image212.jpg" width="520" height="97 src=">

П р и м е р 3. Вычислить , если

http://pandia.ru/text/78/481/images/image215.jpg" width="129" height="36 src=">

x, f"y, f"xy и f"yx определены и непрерывны в точке М(х, у) и в некоторой ее окрестности, то в этой точке

http://pandia.ru/text/78/481/images/image218.jpg" width="50 height=28" height="28">.jpg" width="523" height="128 src=">

Следовательно,

http://pandia.ru/text/78/481/images/image222.jpg" width="130" height="30 src=">

Решение.

Смешанные производные равны.

5.10. Дифференциалы высших порядков функции n переменных .

Полный дифференциал du функции от нескольких переменных есть в свою очередь функ­ция тех же переменных, и мы можем определить полный дифферен­циал этой последней функции. Таким образом, мы получим дифферен­циал второго порядка d2u первоначальной функции и, который также будет функцией тех же переменных, а его полный дифференциал приведет нас к дифференциалу третьего порядка d3u первоначальной функции и т. д.

Рассмотрим подробнее случай функции u=f(x, у) двух пере­менных х и у и будем предполагать, что переменные х и у суть независимые переменные. По определению

http://pandia.ru/text/78/481/images/image230.jpg" width="463" height="186 src=">

Вычисляя точно так же d3u, мы получим

http://pandia.ru/text/78/481/images/image232.jpg" width="347" height="61 src="> (*)-

причем формулу эту надо понимать так: сумму, стоящую в круглых скобках, надо возвести в степень n, применяя Формулу бинома Ньютона, после чего показатели степеней у и http://pandia.ru/text/78/481/images/image235.jpg" width="22" height="21 src=">.gif" width="22" height="27"> с направляющими косинусами cos α, cos β (α + β = 90°). На векторе рассмотрим точку М1(х + Δх; у + Δу). При перехо­де от точки М к точке М1 функция z = f(x; у) получит пол­ное приращение

http://pandia.ru/text/78/481/images/image239.jpg" width="133 height=27" height="27"> стремящемся к нулю (см. рис.).

http://pandia.ru/text/78/481/images/image241.jpg" width="324" height="54 src=">

где http://pandia.ru/text/78/481/images/image243.gif" width="76" height="41 src=">, а потому получаем:

http://pandia.ru/text/78/481/images/image245.gif" width="24" height="41 src="> при Δs->0 называется произ-

водной функции z = f(х; у) в точке (х; у) по направлению вектора и обозначается

http://pandia.ru/text/78/481/images/image247.jpg" width="227" height="51 src="> (*)

Таким образом, зная част­ные производные функции

z = f(x; у) можно найти произ­водную этой функции по любому направлению, а каждая частная производная является частным случаем произ­водной по направлению.

П р и м е р. Найти производную функции

http://pandia.ru/text/78/481/images/image249.jpg" width="287" height="56 src=">

http://pandia.ru/text/78/481/images/image251.jpg" width="227" height="59 src=">

http://pandia.ru/text/78/481/images/image253.gif" width="253 height=62" height="62">

Следовательно, функция z = f(x;y) в данном направлении возрастает.

5. 12 . Градиент

Градиентом функции z = f(x; у) называется вектор , координатами которого являются соответствующие частные производные данной функции

http://pandia.ru/text/78/481/images/image256.jpg" width="205" height="56 src=">

т. е..jpg" width="89" height="33 src=">

в точке М(3;4).

Р е ш е н и е.

http://pandia.ru/text/78/481/images/image259.jpg" width="213" height="56 src=">