Some cookies are required for secure log-ins but others are optional for functional activities. Our data collection is used to improve our products and services. We recommend you accept our cookies to ensure you’re receiving the best performance and functionality our site can provide. For additional information you may view the . Read more about our .

The cookies we use can be categorized as follows:

Strictly Necessary Cookies: These are cookies that are required for the operation of analog.com or specific functionality offered. They either serve the sole purpose of carrying out network transmissions or are strictly necessary to provide an online service explicitly requested by you. Analytics/Performance Cookies: These cookies allow us to carry out web analytics or other forms of audience measuring such as recognizing and counting the number of visitors and seeing how visitors move around our website. This helps us to improve the way the website works, for example, by ensuring that users are easily finding what they are looking for. Functionality Cookies: These cookies are used to recognize you when you return to our website. This enables us to personalize our content for you, greet you by name and remember your preferences (for example, your choice of language or region). Loss of the information in these cookies may make our services less functional, but would not prevent the website from working. Targeting/Profiling Cookies: These cookies record your visit to our website and/or your use of the services, the pages you have visited and the links you have followed. We will use this information to make the website and the advertising displayed on it more relevant to your interests. We may also share this information with third parties for this purpose.

По сравнению со светом обычных светодиодов лазерный свет имеет высокую концентрацию, он имеет более узкий угол обзора. Для подключения лазерного диода к электронной цепи понадобится специальная схема, называемая драйвером лазерного диода. В данном материале будет показано, как самостоятельно собрать простой драйвер лазерного диода на основе LM317.



Драйвер лазерного диода – это схема, которая используется для ограничения тока и затем подачи его на лазерный диод, чтобы он работал должным образом. Если мы напрямую подключим его к источнику питания, из-за потребности в большем токе он может не заработать или даже привести к некоторым повреждениям цепи.


Если ток будет небольшим, лазерный светодиод не будет работать из-за отсутствия достаточной мощности для включения. Таким образом, необходима схема драйвера для обеспечения правильного значения тока, при котором лазерный диод перейдет в рабочее состояние. Простому светодиоду нужен только резистор для ограничения тока, но в случае с лазерным диодом нам нужна правильная схема для ограничения и регулирования тока. Для регулирования мощности в цепи драйвера лазерного диода можно использовать LM317.


Трехвыводная микросхема LM317 представляет собой стабилизатор напряжения. На своем выходе он может выдавать от 1.25 до 37 вольт. Внешний вид LM317 с подписанными выводами представлен на изображении ниже.



LM317 является регулируемым стабилизатором, иными словами можно изменять значение напряжения на выходе в зависимости от потребностей, используя два внешних резистора, подключенных к линии регулировки (Adjust). Эти два резистора работают как цепь делителя напряжения, используемая для увеличения или уменьшения выходного напряжения. LM317 обеспечивает ограничение тока и защиту от тепловой перегрузки.


Схема драйвера лазерного диода на основе стабилизатора напряжения LM317 показана на рисунке ниже.



Ее довольно быстро можно собрать на макетной плате.



Работает схема следующим образом. Когда батарея начинает подавать напряжение, оно сначала протекает через керамический конденсатор (0.1 мкФ). Этот конденсатор используется для фильтрации высокочастотного шума от нашего источника постоянного тока и обеспечивает входной сигнал для LM317. Потенциометр (10 КОм) и резистор (330 Ом), подключенные к линии регулировки, используются в качестве схемы ограничения напряжения. Выходное напряжение полностью зависит от значения этого резистора и потенциометра. Выходное напряжение стабилизатора попадает на фильтр второго конденсатора (1 мкФ). Этот конденсатор ведет себя как балансировщик мощности для фильтрации флуктуирующих сигналов. В итоге можно регулировать интенсивность лазерного излучения, вращая ручку потенциометра.

— это усовершенствованная схема защиты лазерного диода от бросков напряжения. Дорогие полупроводниковые лазеры не обладают устойчивостью к быстрым скачкам напряжения или тока. Для снижения риска их повреждения используются стандартные схемы ограничения на полевых транзисторах с р-n переходом. Именно они в отсутствие напряжения закорачивают лазер, защищая его от таких бросков (Рисунок 1).

Когда на отрицательной шине питания появляется напряжение, полевой транзистор закрывается. Схема эффективна для защиты маломощных лазерных диодов, но плохо подходит для диодов с током потребления более 150 мА. Этот предел обусловлен значением максимального тока полевого транзистора. Если в аварийном режиме возникает необходимость ограничения тока лазерного диода, выбранный полевой транзистор может не справиться с этой задачей. Правда, существуют и сильноточные полевые транзисторы с р-n переходом, однако они существенно дороже, и их сложно найти в продаже.

Схема на Рисунке 2 позволяет избежать этих недостатков. Она похожа на стандартную схему с полевым транзистором. Но дополнена биполярным транзистором, который шунтирует большую часть отрицательных токов, когда полевой транзистор открыт. Резистор R2 фиксирует потенциал затвора транзистора Qb a R3 обеспечивает быстрое выключение транзистора Q2. Диод 1 N914 принимает на себя любые положительные броски тока. RC-цепочка устанавливает
достаточно низкую скорость отклика, сглаживая переходы от открытого состояния к закрытому.

Я решил его переосмыслить и дополнить. Основная идея - установить лазер не вместо, а вместе с экструдером и заставить все это работать без перестановок железа, создания отдельного координатного стола и без модификаций оригинальной прошивки принтера.

В этой части опишу все железо, необходимое для подобной модификации, нюансы выбора, установки и настройки, но прежде всего:

И помните, что очки защищают только от отраженного света, так что не направляйте лазерный луч себе в глаз. Для синего лазера нужны красные очки. Например, такие .

Лазерный диод

Начну с самого дорогого компонента. Опустим бесчисленное множество параметров, приведенных в даташите и обратим внимание лишь на некоторые:

Мощность. Самый главный параметр. Чем больше мощность - тем быстрее можно резать/выжигать. тем больше глубина реза за проход и прочее. Для себя я решил, что меньше 1,6Вт рассматривать не стоит, ибо всегда должен быть запас, и чем больше - тем лучше.

Длина волны. Для самодельных резаков чаще всего используются лазеры с длиной волны в 445-450нм. Для них полно линз, и их свечение находится в видимом спектре. От выбора цвета зависит то, как хорошо лазер будет резать материалы определенных цветов. Например, синий лазер не очень хорошо справляется с синим оргстеклом и прочими синими поверхностями, т.к. его излучение не поглощается материалом.

Номинальный рабочий ток. Обычно пропорционален мощности. Для 1,6вт-диодов характерен ток 1,2А. У 3,5Вт номинальный ток 2,3А. Этот параметр важен при выборе драйвера. За более точной информацией стоит нужно посмотреть datasheet конкретного лазерного диода.

Тип корпуса. Наиболее распространенные - TO-5 (9мм), TO-18 (5,6мм - его иногда называют To-56). Влияет на подбор лазерного модуля.

Приведу несколько типичных лазерных диодов:

Крепление. Оно же - радиатор. С обдувом даже для 3,5Вт-лазера такого радиатора достаточно, он греется где-то до 50 градусов.

Установка

Вариантов установки крепления для лазера великое множество. Тут стоит даль волю инженерной мысли и чего-нибудь придумать. Обязательно предусмотрите вентилятор над лазером, он нужен как для его охлаждения, так и для того, чтобы сдувать дым из рабочей области. О подключении и управлении доп.вентиляторами читайте .
Можно примотать стяжками, но лучше сделать жесткое болтовое крепление с переходной пластиной, наподобие того, как это сделал я:

Универсального варианта тут нет, но есть несколько критичных моментов, которые нужно соблюсти:
1. Нужно закрепить модуль как можно ниже, на уровне сопла, точнее, чуть выше его, оставив место для регулировки линзы (около 1см). Это связано с фокусным расстоянием - отдалить модуль по Z мы можем всегда, а вот приблизить будет проблемой, если регулировки не хватит. Я об этом не знал, и регулировки хватило едва-едва.
2. Лучше всего закрепить модуль соосно с экструдером - тогда пострадает размер рабочего хода только одной из осей. И чем ближе к экструдеру - тем меньше "штраф".

С подключением все просто, питание на драйвер согласно полярности, подключение диода согласно полярности. Соблюдайте полярность , в общем. Управляющий TTL провод - к контакту D4, D5, или D6 в случае, если у вас RAMPS. Покажу на примере, как это выглядит у меня (TTL-управление на D6):

Настройка тока лазерного диода

После того, как все установлено и подключено, можно заняться настройкой тока. Для этого выкрутите линзу у лазера и/или подложите под него кусок кафельной плитки, чтобы он чего-нибудь не прожег. Также нужно включить в разрыв "минусового" провода лазерного диода амперметр (см. схему выше). Можно временно подключить мультиметр, а можно поставить отдельную измерительную головку, как это сделал я. И не забудьте одеть защитные очки. Алгоритм такой:
1. Включаем принтер.
2. В Pronterface пишем M42 P* S255 , где * - номер контакта, к которому подключен управляющий TTL провод драйвера
3. Берем отвертку и начинаем медленно вращать маленький подстроечный резистор на плате драйвера, попутно поглядывая на показания амперметра. Если это этот драйвер, то ток до включения лучше выкрутить в 0 (против часовой стрелки до щелчков), т.к. в нем по умолчанию выставлено 2А, что может спалить 1,6Вт-диод.
4. Выставляем по амперметру номинальный ток своего диода и пишем M42 P* S0 для его отключения. (* - см. выше)
5. Отключаем мультиметр от цепи (опционально).

Настройка фокуса лазера

Тут все достаточно индивидуально. Фокус можно настраивать как перед каждой операцией резки, так и единожды, потом просто передвигая каретку по Z в зависимости от толщины обрабатываемого материала. Также есть разные подходы к настройке фокуса по детали: можно выставлять фокус по верху заготовки, а можно по середине. Я выставляю по верху, т.к. редко что-либо режу и меня не беспокоит расфокусировка при опускании луча в материал.
Настраивается так:
1. Загоняем все оси в home (G28).
2. Поднимаем каретку. Величина поднятия зависит от толщины обрабатываемого листа. Я не предполагал на своем принтере обрабатывать ничего толще 6мм (по фанере выжигать), поэтому поднял каретку чуть выше - на 8мм. Команда для поднятия - G1 Z8, ну или просто потыкайте стрелочки в Pronterface.
3. Кладем заготовку, закрепляем канцелярскими зажимами, наводим лазер на нее.
4. Включаем лазер. Много мощности на этом этапе не требуется, должна быть четко видна точка. M42 P* S1
5. Крутим линзу до тех пор, пока луч не сфокусируется в маленькую точку. Если не хватает регулировки - поднимите каретку еще где-нибудь на 5-10мм, и снова покрутите линзу.

Итого сборка, подключение и настройка завершены. В следующей статье будет руководство по подготовительным командам и обзор софта для работы с лазером.