Как известно, случайной величиной называется переменная величина, которая может принимать те или иные значения в зависимости от случая. Случайные величины обозначают заглавными буквами латинского алфавита (X, Y, Z), а их значения – соответствующими строчными буквами (x, y, z). Случайные величины делятся на прерывные (дискретные) и непрерывные.

Дискретной случайной величиной называется случайная величина, принимающая лишь конечное или бесконечное (счетное) множество значений с определенными ненулевыми вероятностями.

Законом распределения дискретной случайной величины называется функция, связывающая значения случайной величины с соответствующими им вероятностями. Закон распределения может быть задан одним из следующих способов.

1 . Закон распределения может быть задан таблицей:

где λ>0, k = 0, 1, 2, … .

в) с помощью функции распределения F(x) , определяющей для каждого значения x вероятность того, что случайная величина X примет значение, меньшее x, т.е. F(x) = P(X < x).

Свойства функции F(x)

3 . Закон распределения может быть задан графически – многоугольником (полигоном) распределения (смотри задачу 3).

Отметим, что для решения некоторых задач не обязательно знать закон распределения. В некоторых случаях достаточно знать одно или несколько чисел, отражающих наиболее важные особенности закона распределения. Это может быть число, имеющее смысл «среднего значения» случайной величины, или же число, показывающее средний размер отклонения случайной величины от своего среднего значения. Числа такого рода называют числовыми характеристиками случайной величины.

Основные числовые характеристики дискретной случайной величины :

  • Mатематическое ожидание (среднее значение) дискретной случайной величины M(X)=Σ x i p i .
    Для биномиального распределения M(X)=np, для распределения Пуассона M(X)=λ
  • Дисперсия дискретной случайной величины D(X)= M 2 или D(X) = M(X 2)− 2 . Разность X–M(X) называют отклонением случайной величины от ее математического ожидания.
    Для биномиального распределения D(X)=npq, для распределения Пуассона D(X)=λ
  • Среднее квадратическое отклонение (стандартное отклонение) σ(X)=√D(X) .

Примеры решения задач по теме «Закон распределения дискретной случайной величины»

Задача 1.

Выпущено 1000 лотерейных билетов: на 5 из них выпадает выигрыш в сумме 500 рублей, на 10 – выигрыш в 100 рублей, на 20 – выигрыш в 50 рублей, на 50 – выигрыш в 10 рублей. Определить закон распределения вероятностей случайной величины X – выигрыша на один билет.

Решение. По условию задачи возможны следующие значения случайной величины X: 0, 10, 50, 100 и 500.

Число билетов без выигрыша равно 1000 – (5+10+20+50) = 915, тогда P(X=0) = 915/1000 = 0,915.

Аналогично находим все другие вероятности: P(X=0) = 50/1000=0,05, P(X=50) = 20/1000=0,02, P(X=100) = 10/1000=0,01, P(X=500) = 5/1000=0,005. Полученный закон представим в виде таблицы:

Найдем математическое ожидание величины Х: М(Х) = 1*1/6 + 2*1/6 + 3*1/6 + 4*1/6 + 5*1/6 + 6*1/6 = (1+2+3+4+5+6)/6 = 21/6 = 3,5

Задача 3.

Устройство состоит из трех независимо работающих элементов. Вероятность отказа каждого элемента в одном опыте равна 0,1. Составить закон распределения числа отказавших элементов в одном опыте, построить многоугольник распределения. Найти функцию распределения F(x) и построить ее график. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение дискретной случайной величины.

Решение. 1. Дискретная случайная величина X={число отказавших элементов в одном опыте} имеет следующие возможные значения: х 1 =0 (ни один из элементов устройства не отказал), х 2 =1 (отказал один элемент), х 3 =2 (отказало два элемента) и х 4 =3 (отказали три элемента).

Отказы элементов независимы друг от друга, вероятности отказа каждого элемента равны между собой, поэтому применима формула Бернулли . Учитывая, что, по условию, n=3, р=0,1, q=1-р=0,9, определим вероятности значений:
P 3 (0) = С 3 0 p 0 q 3-0 = q 3 = 0,9 3 = 0,729;
P 3 (1) = С 3 1 p 1 q 3-1 = 3*0,1*0,9 2 = 0,243;
P 3 (2) = С 3 2 p 2 q 3-2 = 3*0,1 2 *0,9 = 0,027;
P 3 (3) = С 3 3 p 3 q 3-3 = р 3 =0,1 3 = 0,001;
Проверка: ∑p i = 0,729+0,243+0,027+0,001=1.

Таким образом, искомый биномиальный закон распределения Х имеет вид:

По оси абсцисс откладываем возможные значения х i , а по оси ординат – соответствующие им вероятности р i . Построим точки М 1 (0; 0,729), М 2 (1; 0,243), М 3 (2; 0,027), М 4 (3; 0,001). Соединив эти точки отрезками прямых, получаем искомый многоугольник распределения.

3. Найдем функцию распределения F(x) = Р(Х

Для x ≤ 0 имеем F(x) = Р(Х<0) = 0;
для 0 < x ≤1 имеем F(x) = Р(Х<1) = Р(Х = 0) = 0,729;
для 1< x ≤ 2 F(x) = Р(Х<2) = Р(Х=0) + Р(Х=1) =0,729+ 0,243 = 0,972;
для 2 < x ≤ 3 F(x) = Р(Х<3) = Р(Х = 0) + Р(Х = 1) + Р(Х = 2) = 0,972+0,027 = 0,999;
для х > 3 будет F(x) = 1, т.к. событие достоверно.

График функции F(x)

4. Для биномиального распределения Х:
- математическое ожидание М(X) = np = 3*0,1 = 0,3;
- дисперсия D(X) = npq = 3*0,1*0,9 = 0,27;
- среднее квадратическое отклонение σ(X) = √D(X) = √0,27 ≈ 0,52.

На практике большинство случайных величин, на которых воздействует большое количество случайных факторов, подчиняются нормальному закону распределения вероятностей. Поэтому в различных приложениях теории вероятностей этот закон имеет особое значение.

Случайная величина $X$ подчиняется нормальному закону распределения вероятностей, если ее плотность распределения вероятностей имеет следующий вид

$$f\left(x\right)={{1}\over {\sigma \sqrt{2\pi }}}e^{-{{{\left(x-a\right)}^2}\over {2{\sigma }^2}}}$$

Схематически график функции $f\left(x\right)$ представлен на рисунке и имеет название «Гауссова кривая». Справа от этого графика изображена банкнота в 10 марок ФРГ, которая использовалась еще до появления евро. Если хорошо приглядеться, то на этой банкноте можно заметить гауссову кривую и ее первооткрывателя величайшего математика Карла Фридриха Гаусса.

Вернемся к нашей функции плотности $f\left(x\right)$ и дадим кое-какие пояснения относительно параметров распределения $a,\ {\sigma }^2$. Параметр $a$ характеризует центр рассеивания значений случайной величины, то есть имеет смысл математического ожидания. При изменении параметра $a$ и неизмененном параметре ${\sigma }^2$ мы можем наблюдать смещение графика функции $f\left(x\right)$ вдоль оси абсцисс, при этом сам график плотности не меняет своей формы.

Параметр ${\sigma }^2$ является дисперсией и характеризует форму кривой графика плотности $f\left(x\right)$. При изменении параметра ${\sigma }^2$ при неизмененном параметре $a$ мы можем наблюдать, как график плотности меняет свою форму, сжимаясь или растягиваясь, при этом не сдвигаясь вдоль оси абсцисс.

Вероятность попадания нормально распределенной случайной величины в заданный интервал

Как известно, вероятность попадания случайной величины $X$ в интервал $\left(\alpha ;\ \beta \right)$ можно вычислять $P\left(\alpha < X < \beta \right)=\int^{\beta }_{\alpha }{f\left(x\right)dx}$. Для нормального распределения случайной величины $X$ с параметрами $a,\ \sigma $ справедлива следующая формула:

$$P\left(\alpha < X < \beta \right)=\Phi \left({{\beta -a}\over {\sigma }}\right)-\Phi \left({{\alpha -a}\over {\sigma }}\right)$$

Здесь функция $\Phi \left(x\right)={{1}\over {\sqrt{2\pi }}}\int^x_0{e^{-t^2/2}dt}$ - функция Лапласа. Значения этой функции берутся из . Можно отметить следующие свойства функции $\Phi \left(x\right)$.

1 . $\Phi \left(-x\right)=-\Phi \left(x\right)$, то есть функция $\Phi \left(x\right)$ является нечетной.

2 . $\Phi \left(x\right)$ - монотонно возрастающая функция.

3 . ${\mathop{lim}_{x\to +\infty } \Phi \left(x\right)\ }=0,5$, ${\mathop{lim}_{x\to -\infty } \Phi \left(x\right)\ }=-0,5$.

Для вычисления значений функции $\Phi \left(x\right)$ можно также воспользоваться мастером функция $f_x$ пакета Excel: $\Phi \left(x\right)=НОРМРАСП\left(x;0;1;1\right)-0,5$. Например, вычислим значений функции $\Phi \left(x\right)$ при $x=2$.

Вероятность попадания нормально распределенной случайной величины $X\in N\left(a;\ {\sigma }^2\right)$ в интервал, симметричный относительно математического ожидания $a$, может быть вычислена по формуле

$$P\left(\left|X-a\right| < \delta \right)=2\Phi \left({{\delta }\over {\sigma }}\right).$$

Правило трех сигм . Практически достоверно, что нормально распределенная случайная величина $X$ попадет в интервал $\left(a-3\sigma ;a+3\sigma \right)$.

Пример 1 . Случайная величина $X$ подчинена нормальному закону распределения вероятностей с параметрами $a=2,\ \sigma =3$. Найти вероятность попадания $X$ в интервал $\left(0,5;1\right)$ и вероятность выполнения неравенства $\left|X-a\right| < 0,2$.

Используя формулу

$$P\left(\alpha < X < \beta \right)=\Phi \left({{\beta -a}\over {\sigma }}\right)-\Phi \left({{\alpha -a}\over {\sigma }}\right),$$

находим $P\left(0,5;1\right)=\Phi \left({{1-2}\over {3}}\right)-\Phi \left({{0,5-2}\over {3}}\right)=\Phi \left(-0,33\right)-\Phi \left(-0,5\right)=\Phi \left(0,5\right)-\Phi \left(0,33\right)=0,191-0,129=0,062$.

$$P\left(\left|X-a\right| < 0,2\right)=2\Phi \left({{\delta }\over {\sigma }}\right)=2\Phi \left({{0,2}\over {3}}\right)=2\Phi \left(0,07\right)=2\cdot 0,028=0,056.$$

Пример 2 . Предположим, что в течение года цена на акции некоторой компании есть случайная величина, распределенная по нормальному закону с математическим ожиданием, равным 50 условным денежным единицам, и стандартным отклонением, равным 10. Чему равна вероятность того, что в случайно выбранный день обсуждаемого периода цена за акцию будет:

а) более 70 условных денежных единиц?

б) ниже 50 за акцию?

в) между 45 и 58 условными денежными единицами за акцию?

Пусть случайная величина $X$ - цена на акции некоторой компании. По условию $X$ подчинена нормальному закону распределению с параметрами $a=50$ - математическое ожидание, $\sigma =10$ - стандартное отклонение. Вероятность $P\left(\alpha < X < \beta \right)$ попадания $X$ в интервал $\left(\alpha ,\ \beta \right)$ будем находить по формуле:

$$P\left(\alpha < X < \beta \right)=\Phi \left({{\beta -a}\over {\sigma }}\right)-\Phi \left({{\alpha -a}\over {\sigma }}\right).$$

$$а)\ P\left(X>70\right)=\Phi \left({{\infty -50}\over {10}}\right)-\Phi \left({{70-50}\over {10}}\right)=0,5-\Phi \left(2\right)=0,5-0,4772=0,0228.$$

$$б)\ P\left(X < 50\right)=\Phi \left({{50-50}\over {10}}\right)-\Phi \left({{-\infty -50}\over {10}}\right)=\Phi \left(0\right)+0,5=0+0,5=0,5.$$

$$в)\ P\left(45 < X < 58\right)=\Phi \left({{58-50}\over {10}}\right)-\Phi \left({{45-50}\over {10}}\right)=\Phi \left(0,8\right)-\Phi \left(-0,5\right)=\Phi \left(0,8\right)+\Phi \left(0,5\right)=$$

Распределение вероятностей - вероятностная мера на измеримом пространстве.

Пусть W - непустое множество произвольной природы и Ƒ -s- алгебра на W, то есть совокупность подмножеств W, содержащая само W, пустое множество Æ, и замкнутая относительно не более, чем счетного множества теоретико-множественных операций (это означает, что для любого A Î Ƒ множество = W\A вновь принадлежит Ƒ и если A 1 , A 2 ,…Î Ƒ , то Ƒ и Ƒ ). Пара (W,Ƒ ) называется измеримым пространством. Неотрицательная функция P(A ), определенная для всех A Î Ƒ , называется вероятностной мерой, вероятностью, Р. вероятностей или просто Р., если P(W) = 1 и P является счетно-аддитивной, то есть для любой последовательности A 1 , A 2 ,…Î Ƒ такой, что A i A j = Æ для всех i ¹ j , справедливо равенство P() = P(A i ). Тройка (W, Ƒ , P) называется вероятностным пространством. Вероятностное пространство является исходным понятием аксиоматической теории вероятностей , предложенной А.Н. Колмогоровым в начале 1930 гг.

На каждом вероятностном пространстве можно рассматривать (действительные) измеримые функции X = X (w), wÎW, то есть такие функции, что {w: X (w) Î B } Î Ƒ для любого борелевского подмножества B действительной прямой R . Измеримость функции X эквивалентна тому, что {w: X (w) < x } Î Ƒ для любого действительного x . Измеримые функции называются случайными величинами. Каждая случайная величина X , опреде-ленная на вероятностном пространстве (W, Ƒ , P), порождает Р. вероятностей

P X (B ) = P(X ÎB ) = P({w: X (w) Î B }), B ÎƁ ,
на измеримом пространстве (R , Ɓ ), где Ɓ R , и функцию распределения

F X (x ) = P(X < x ) = P({w: X (w) < x }), -¥ < x <¥,
которые называются Р. вероятностей и функцией распределения случайной величины X .

Функция распределения F любой случайной величины обладает свойствами

1. F (x ) неубывает,

2. F (- ¥) = 0, F (¥) = 1,

3. F (x ) непрерывна слева в каждой точке x .

Иногда в определении функции распределения неравенство < заменяется неравенством £; в этом случае функция распределения является непрерывной справа. В содержательных утверждениях теории вероятностей не важно, непрерывна функция распределения слева или справа, важны лишь положения ее точек разрыва x (если они есть) и величины приращений F (x +0) - F (x -0) в этих точках; если F X , то это приращение есть P(X = x ).

Любая функция F , обладающая свойствами 1. - 3. называется функцией распреде-ления. Соответствие между распределениями на (R , Ɓ ) и функциями распределения взаимно однозначно. Для любого Р. P на (R , Ɓ ) его функция распределения определяется равенством F (x ) = P ((-¥, x )), -¥ < x <¥, а для любой функции распределения F соответствующее ей Р. P определяется на алгебре £ множеств, состоящей из объединений конечного числа непересекающихся промежутков функция F 1 (x ) линейно возрастает от 0 до 1. Для построения функции F 2 (x ) отрезок разбиваеся на отрезок , интервал (1/3, 2/3) и отрезок . Функция F 2 (x ) на интервале (1/3, 2/3) равна 1/2 и линейно возрастает от 0 до 1/2 и от 1/2 до 1 на отрезках и соответственно. Этот процесс продолжается и функция F n +1 получается с помощью следующего преобразования функции F n , n ³ 2. На интервалах, где функция F n (x ) постоянна, F n +1 (x ) совпадает с F n (x ). Каждый отрезок , где функция F n (x ) линейно возрастает от a до b , разбивается на отрезок , интервал (a + (a - b)/3, a + 2(b - a)/3) и отрезок . На указанном интервале F n +1 (x ) равна (a + b )/2, а на указанных отрезках F n +1 (x ) линейно возрастает от a до (a + b )/2и от (a + b )/2 до b соответственно. Для каждого 0 £ x £ 1 последовательность F n (x ), n = 1, 2,..., сходится к некоторому числу F (x ). Последо-вательность функций распределения F n , n = 1, 2,..., равностепенно непрерывна, поэтому предельная функция распределения F (x ) является непрерывной. Эта функция постоянна на счетном множестве интервалов (значения функции на разных интервалах различны), на которых нет ее точек роста, а суммарная длина этих интервалов равна 1. Поэтому мера Лебега множества supp F равна нулю, то есть F сингулярна.

Каждая функция распределения может быть представлена в виде

F (x ) = p ac F ac (x ) + p d F d (x ) + p s F s (x ),
где F ac , F d и F s абсолютно непрерывная, дискретная и сингулярная функции распреде-ления, а сумма неотрицательных чисел p ac , p d и p s равна единице. Это представление называется разложением Лебега, а функции F ac , F d и F s - компонентами разложения.

Функция распределения называется симметричной, если F (-x ) = 1 - F (x + 0) для
x > 0. Если симметричная функция распределения абсолютно непрерывна, то ее плотность - четная функция. Если случайная величина X имеет симметричное распределение, то случайные величины X и -X одинаково распределены. Если симметричная функция распределения F (x ) непрерывна в нуле, то F (0) = 1/2.

Среди часто используемых в теории вероятностей абсолютно непрерывных Р. - равномерное Р., нормальное Р. (Р. Гаусса), экспоненциальное Р. и Р. Коши.

Р. называется равномерным на интервале (a , b ) (или на отрезке [a , b ], или на промежутках [a , b ) и (a , b ]), если его плотность постоянна (и равна 1/(b - a )) на (a , b ) и равна нулю вне (a , b ). Чаще всего используется равномерное Р. на (0, 1), его функция распределения F (x ) равна нулю при x £ 0, равна единице при x >1 и F (x ) = x при 0 < x £ 1. Равномерное Р. на (0, 1) имеет случайная величина X (w) = w на вероятностном прост-ранстве, состоящем из интервала (0, 1), совокупности борелевских подмножеств этого интервала и меры Лебега. Это вероятностное пространство соответствует эксперименту «бросание точки w наудачу на интервал (0, 1)», где слово «наудачу» означает равноправие («равновозможность») всех точек из (0, 1). Если на вероятностном пространстве (W, Ƒ , P) существует случайная величина X с равномерным Р. на (0, 1), то на нем для любой функ-ции распределения F существует случайная величина Y , для которой функция распределе-ния F Y совпадает с F . Например, функция распределения случайной величины Y = F -1 (X ) совпадает с F . Здесь F -1 (y ) = inf{x : F (x ) > y }, 0 < y < 1; если функция F (x ) непрерывна и строго монотонна на всей действительной прямой, то F -1 - функция, обратная F .

Нормальным Р. с параметрами (a , s 2), -¥ < a < ¥, s 2 > 0, называется Р. с плотностью, -¥ < x < ¥. Чаще всего используется нормальное Р. с параметрами a = 0 и s 2 = 1, которое называется стандартным нормальным Р., его функция распределения F(x ) через суперпозиции элементарные функций не выражается и приходится использовать ее интегральное представление F(x ) =, -¥ < x < ¥. Для фунции распределения F(x ) составлены подробные таблицы, которые были необходимы до того как появилась современная вычислительная техника (значения функции F(x ) можно получать и с помощью таблиц спец. функции erf(x )), значения F(x ) для x > 0 можно получать с помощью суммы ряда

,
а для x < 0 можно воспользоваться симметричностью F(x ). Значения нормальной функции распределения с параметрами a и s 2 можно получать, пользуясь тем, что она совпадает с F((x - a )/s). Если X 1 и X 2 независимые нормально распределенные с параметрами a 1 , s 1 2 и a 2 , s 2 2 случайные величины, то распределение их суммы X 1 + X 2 также нормально с параметрами a = a 1 + a 2 и s 2 = s 1 2 + s 2 2 . Верно и утверждение, в некотором смысле, обратное: если случайная величина X нормально распределена с параметрами a и s 2 , и
Х = X 1 + X 2 , где X 1 и X 2 - независимые случайные величины, отличные от постоянных, то X 1 и X 2 имеют нормальные распределения (теорема Крамера). Параметры a 1 , s 1 2 и a 2 , s 2 2 распределений нормальных случайных величин X 1 и X 2 связаны с a и s 2 равенствами, приведенными выше. Стандартное нормальное распределение является предельным в центральной предельной теореме .

Экспоненциальным Р. называется распределение с плотностью p (x ) = 0 при x < 0 и p (x ) = le - lx при x ³ 0, где l > 0 - параметр, его функция распределения F (x ) = 0 при x £ 0 и F (x ) = 1 - e - lx при x > 0 (иногда используются экспоненциальные Р., отличающиеся от указанного сдвигом по действительной оси). Это Р. обладает свойством, которое называ-ется отсутствием последействия: если X - случайная величина с экспоненциальным Р., то для любых положительных x и t

P(X > x + t | X > x ) = P(X > t ).
Если X - время работы некоторого прибора до отказа, то отсутствие последействия озна-чает, что вероятность того, что прибор, включенный в момент времени 0, не откажет до момента x + t при условии, что он не отказал до момента x , не зависит от x . Это свойство интерпретируется как отсутствие «старения». Отсутствие последействия является харак-теризационным свойством экспоненциального Р.: в классе абсолютно непрерывных распределений указанное выше равенство справедливо только для экспоненциального Р. (с некоторым параметром l > 0). Экспоненциальное Р. появляется как предельное Р. в схеме минимума. Пусть X 1 , X 2 ,… - неотрицательные независимые одинаково распреде-ленные случайны величины и для их общей функция распределения F точка 0 является точкой роста. Тогда при n ®¥ распределения случайных величин Y n = min(X 1 ,…, X n ) слабо сходятся к вырожденному распределению с единственной точкой роста 0 (это - аналог закона больших чисел). Если дополнительно предположить, что для некоторого e > 0 функция распределения F (x ) на интервале (0, e) допускает представление и p (u )®l при u ¯ 0, то функции распределения случайных величин Z n = n min(X 1 ,…, X n ) при n ®¥ равномерно по -¥ < x < ¥ сходятся к экспоненциальной функции распределения с параметром l (это - аналог центральной предельной теоремы).

Р. Коши называется Р. с плотностью p (x ) = 1/(p(1 + x 2)), -¥ < x < ¥, его функция рас-пределения F (x ) = (arctg x + p/2)/p. Это Р. появилось в работе С.Пуассона в 1832 г. в связи с решением следующей задачи: существуют ли независимые одинаково распределенные случайные величины X 1 , X 2 ,… такие, что средние арифметические (X 1 + … + X n )/n при каждом n имеют то же Р., что и каждая из случайных величин X 1 , X 2 ,…? С. Пуассон обна-ружил, что таким свойством обладают случайные величины с указанной плотностью. Для этих случайных величин не выполняется утверждение закона больших чисел, в котором средние арифметические (X 1 +…+ X n )/n при росте n вырождаются. Однако, это не проти-воречит закону больших чисел, поскольку в нем на распределения исходных случайных величин налагаются ограничения, которые для указанного распределения не выполнены (для этого распределения существуют абсолютные моменты всех положительных поряд-ков, меньших единицы, но математическое ожидание не существует). В работах О.Коши Р., носящее его имя, появилось в 1853 г. Р. Коши имеет отношение X /Y независимых случайных величин со стандартным нормальным Р.

Среди часто используемых в теории вероятностей дискретных Р. - Р. Бернулли, биномиальное Р. и Р. Пуассона.

Р. Бернулли называется любое распределение с двумя точками роста. Чаще всего используется Р. случайной величины X , принимающей значения 0 и 1 с вероятностями
q = 1 - p и p соответственно, где 0 < p < 1 - параметр. Первые формы закона больших чисел и центральной предельной теоремы были получены для случайных величин, имею-щих Р. Бернулли. Если на вероятностном пространстве (W, Ƒ , P) существует последова-тельность X 1 , X 2 ,… независимых случайных величин, принимающих значения 0 и 1 с вероятностями 1/2 каждое, то на этом вероятностном пространстве существует слчайная величина с равномерным Р. на (0, 1). В частности, случайная величина имеет равномерное распределение на (0, 1).

Биномиальным Р. с параметрами n и p , n - натуральное, 0 < p < 1, называется Р., с точками роста 0, 1,..., n , в которых сосредоточены вероятности C n k p k q n -k , k = 0, 1,…, n ,
q = 1 - p . Оно является Р. суммы n независимых случайных величин, имеющих Р. Бернулли с точками роста 0 и 1, в которых сосредоточены вероятности q и p . Изучение этого распределения привело Я.Бернулли к открытию закона больших чисел, а А.Муавра - к открытию центральной предельной теоремы.

Р. Пуассона называется Р., носитель которого - последовательность точек 0, 1,..., в которых сосредоточены вероятности l k e - l /k !, k = 0, 1,…, где l > 0 - параметр. Сумма двух независимых случайных величин, имеющих Р. Пуассона с параметрами l и m вновь имеет Р. Пуассона с параметром l + m. Р. Пуассона является предельным для Р. Бернулли с пара-метрами n и p = p (n ) при n ®¥, если n и p связаны соотношением np ®l при n ®¥ (теорема Пуассона). Если последовательность 0 < T 1 < T 2 < T 3 <… есть последовательность моментов времени, в которые происходят некоторые события (так. наз поток событий) и величины T 1 , T 2 -T 1 , T 3 - T 2 ,… являются независимыми одинаково распределенными случайными величинами и их общее Р. - экспоненциальное с параметром l > 0, то случайная величина X t , равная числу событий, наступивших на интервале (0, t ), имеет Р. Пуассона с параметром.lt (такой поток называется пуассоновским).

Понятие Р. имеет многочисленные обобщения, в частности, оно распространяется на многомерный случай и на алгебраические структуры.

Назначение сервиса . Онлайн-калькулятор используется для построения таблицы распределения случайной величины X – числа произведенных опытов и вычисления всех характеристик ряда: математического ожидания, дисперсии и среднеквадратического отклонения. Отчет с решением оформляется в формате Word .
Пример 1 . В урне белых и черных шара. Шары наудачу достают из урны без возвращения до тех пор, пока не появится белый шар. Как только это произойдет, процесс прекращается.
Данный тип заданий относится к задаче построения геометрического распределения .

Пример 2 . Два Три стрелка делают по одному выстрелу в мишень. Вероятность попадания в нее первым стрелком равна , вторым – . Составить закон распределения случайной величины Х – числа попаданий в мишень.

Пример 2a . Стрелок делает по два три четыре выстрела. Вероятность попадания при соответствующем выстреле равна , . При первом промахе стрелок в дальнейших состязаниях не участвует. Составить закон распределения случайной величины Х - число попаданий в мишень.

Пример 3 . В партии из деталей бракованных стандартных. Контролер наудачу достает детали. Составить закон распределения случайной величины Х – числа бракованных годных деталей в выборке.
Аналогичное задание : В корзине m красных и n синих шаров. Наудачу вынимают k шаров. Составить закон распределения ДСВ X – появление синих шаров.
см. другие примеры решений .

Пример 4 . Вероятность появления события в одном испытании равна . Производится испытаний. Составить закон распределения случайной величины Х – числа появлений события.
Аналогичные задания для этого вида распределения :
1. Составить закон распределения случайной величины Х числа попаданий при четырех выстрелах, если вероятность попадания в цель при одном выстреле равна 0.8 .
2. Монету подбрасывают 7 раз. Найти математическое ожидание и дисперсию числа появлений герба. Составить таблицу распределения Х – числа появлений герба.

Пример №1 . Бросаются три монеты. Вероятность выпадения герба при одном бросании равна 0.5. Составьте закон распределения случайной величины X - числа выпавших гербов.
Решение.
Вероятность того, что не выпало ни одного герба: P(0) = 0,5*0,5*0,5= 0,125
P(1) = 0,5 *0,5*0,5 + 0,5*0,5 *0,5 + 0,5*0,5*0,5 = 3*0,125=0,375
P(2) = 0,5 *0,5 *0,5 + 0,5 *0,5*0,5 + 0,5*0,5 *0,5 = 3*0,125=0,375
Вероятность того, что выпало три герба: P(3) = 0,5*0,5*0,5 = 0,125

Закон распределения случайной величины X:

X 0 1 2 3
P 0,125 0,375 0,375 0,125
Проверка: P = P(0) + P(1) + P(2) + P(3) = 0,125 + 0,375 + 0,375 + 0,125 = 1

Пример №2 . Вероятность попадания в мишень одного стрелка при одном выстреле для первого стрелка равна 0.8, для второго стрелка – 0.85. Стрелки произвели по одному выстрелу в мишень. Считая попадание в цель для отдельных стрелков событиями независимыми, найти вероятность события А – ровно одно попадание в цель.
Решение.
Рассмотрим событие A - одно попадание в цель. Возможные варианты наступления этого события следующие:

  1. Попал первый стрелок, второй стрелок промахнулся: P(A/H1)=p 1 *(1-p 2)=0.8*(1-0.85)=0.12
  2. Первый стрелок промахнулся, второй стрелок попал в мишень: P(A/H2)=(1-p 1)*p 2 =(1-0.8)*0.85=0.17
  3. Первый и второй стрелки независимо друг от друга попали в мишень: P(A/H1H2)=p 1 *p 2 =0.8*0.85=0.68
Тогда вероятность события А – ровно одно попадание в цель, будет равна: P(A) = 0.12+0.17+0.68 = 0.97

Случайное событие – это любой факт, который в результате испытания может произойти или не произойти. Случайное событие – это результат испытания. Испытание – это эксперимент, выполнение определенного комплекса условий, в которых наблюдается то или иное явление, фиксируется тот или иной результат.

События обозначаются заглавными буквами латинского алфавита А,В,С.

Численная мера степени объективности возможности наступления события называется вероятностью случайного события.

Классическое определение вероятности события А:

Вероятность события А равна отношению числа случаев, благоприятствующих событию A(m), к общему числу случаев (n).

Статистическое определение вероятности

Относительная частота событий – это доля тех фактически проведенных испытаний, в которых событие А появилось W=P*(A)= m/n. Это опытная экспериментальная характеристика, где m – число опытов, в которых появилось событие А; n – число всех проведенных опытов.

Вероятностью события называется число, около которого группируются значения частоты данного события в различных сериях большого числа испытаний P(A)=.

События называются несовместными , если наступление одного из них исключает появление другого. В противном случае события – совместные .

Сумма двух событий – это такое событие, при котором появляется хотя бы одно из этих событий (А или В).

Если А и В совместные события, то их сумма А+В обозначает наступление события А или события В, или обоих событий вместе.

Если А и В несовместные события, то сумма А+В означает наступление или события А или события В.

2. Понятие о зависимых и независимых событиях. Условная вероятность, закон (теорема) умножения вероятностей. Формула Байеса.

Событие В называется независимым от события А, если появление события А не изменяет вероятности появления события В. Вероятностью появления нескольких независимых событий равна произведению вероятностей этих:

P(AB) = P(A)*P(B)

Для зависимых событий:

P(AB) = P(A)*Р(B/A).

Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого, найденную в предположении, что первое событие произошло.

Условная вероятность события В - это вероятность события В, найденная при условии, что событие А произошло. Обозначается Р(В/А)

Произведение двух событий – это событие, состоящее в совместном появлении этих событий (А и В)

Формула Байеса служит для переоценки случайных событий

P(H/A) = (P(H)*P(A/H))/P(A)

P(H) – априорная вероятность события Н

P(H/A) – апостериорная вероятность гипотезы H при условии, что событие А уже произошло

P(A/H) – экспертная оценка

P(A) – полня вероятность события А

3. Распределение дискретных и непрерывных случайных величин и их характеристики: математическое ожидание, дисперсия, среднее квадратичное отклонение. Нормальный закон распределения непрерывных случайных величин.

Случайная величина – это величина, которая в результате испытания в зависимости от случая принимает одно из возможного множества своих значений.

Дискретная случайная величина это случайная величина, когда принимает отдельное изолированное, счетное множество значений.

Непрерывная случайная величина – это случайная величина, принимающая любые значения из некоторого интервала. Понятие непрерывной случайной величины возникает при измерениях.

Для дискретной случайной величины закон распределения может быть задан в виде таблицы , аналитически (в виде формулы) и графически .

Таблица это простейшая форма задания закона распределения

Требования:

для дискретных случайных величин

Аналитический:

1)F(x)=P(X

Функция распределения = интегральная функция распределения. Для дискретный и непрерывных случайных величин.

2)f(x) = F’(x)

Плотность распределения вероятностей = дифференциальная функция распределения только для непрерывной случайной велечины.

Графический:

С-ва: 1) 0≤F(x)≤1

2) неубывающая для дискретных случайных величин

С-ва: 1) f(x)≥0 P(x)=

2) площадь S=1

для непрерывных случайных величин

Характеристики:

1.математическое ожидание – среднее наиболее вероятное событие

Для дискретных случайных величин.

Для непрерывных случайных величин.

2)Дисперсия – рассеяние вокруг математического ожидания

Для дискретных случайных величин:

D(x)=x i -M(x)) 2 *p i

Для непрерывных случайных величин:

D(x)=x-M(x)) 2 *f(x)dx

3)Среднее квадратическое отклонение :

σ(х)=√(D(x))

σ – стандартное отклонение или стандарт

х – арифметическое значение корня квадратного из ее дисперсии

Нормальный закон распределения (НЗР) – закон Гаусса

НЗР – это распад вероятностей непрерывной случайной величины, который описывается дифференциальной функцией