К 2018 году соперничество между экранными технологиями свелось к тому, что на рынке осталось всего два достойных варианта. TN матрицы были вытеснены, VA в мобильных аппаратах не использовались, а чего-то нового еще не придумали. Поэтому конкуренция развернулась между IPS и AMOLED. Тут стоит напомнить, что IPS, LCD LTPS, PLS, SFT – это то же самое, как и OLED, Super AMOLED, P-OLED и т.д. являются лишь разновидностями светодиодной технологии.

На тему того, что же лучше, IPS или AMOLED, . Но технологии не стоят на месте, поэтому в 2018 году не будет лишним внести коррективы и сделать разбор с учетом сегодняшних реалий. Ведь оба типа матриц постоянно совершенствуются, избавляются некоторых недостатков или эти минусы становятся менее существенными.

Что лучше для смартфона, IPS или AMOLED, сейчас попробуем выяснить. Для этого взвесим все плюсы и минусы каждой из технологий, чтобы по перевесу сильных сторон выявить абсолютного лидера или, с учетом специфики, решить, что лучше в конкретных условиях.

Плюсы и минусы IPS дисплеев

Разработка и совершенствование IPS дисплеев длится уже два десятилетия, и за это время технология успела обзавестись рядом плюсов.

Преимущества матриц IPS

IPS матрицы являются лучшими среди всех типов ЖК-панелей благодаря ряду достоинств.

  • Доступность . За годы развития технологию массово освоили многие компании, сделав массовый выпуск экранов IPS недорогим. Стоимость экрана для смартфона с разрешением FullHD сейчас стартует с отметки около $10. Благодаря низкой цене такие экраны делают смартфоны более доступными.
  • Цветопередача . Хорошо откалиброванный IPS экран передает цвета с максимальной точностью. Именно поэтому профессиональные мониторы для дизайнеров, графиков, фотографов и т. д. выпускаются на IPS матрицах. Они обладают наибольшим охватом оттенков, что позволяет получить на экране реалистичные цвета объектов.
  • Фиксированное энергопотребление . Жидкие кристаллы, формирующие картинку на IPS экране, почти не потребляют ток, основным потребителем являются диоды подсветки. Поэтому расход энергии не зависит от изображения на дисплее и определяется уровнем подсветки. Благодаря фиксированному расходу энергии IPS экраны обеспечивают примерно одинаковую автономность при просмотре фильмов, веб-серфинге, письменном общении и т.д.
  • Долговечность . Жидкие кристаллы почти не подвержены процессу старения и износа, поэтому в плане надежности IPS лучше, чем AMOLED. Деградировать могут светодиоды подсветки, но срок службы таких LED весьма велик (десятки тысяч часов), поэтому даже за 5 лет экран почти не теряет в яркости.

Недостатки IPS матриц

Несмотря на весомые плюсы, есть у IPS и минусы. Эти недостатки являются фундаментальными, поэтому путем совершенствования технологии они не устраняются.

  • Проблема чистоты черного цвета . Жидкие кристаллы, которые отображают черный цвет, блокируют свет от подсветки не на 100%. Но так как подсветка IPS экрана общая для всей матрицы, ее яркость не снижается, панель остается подсвеченной, в итоге черный цвет получается не очень глубокий.

  • Низкая контрастность . Уровень контрастности ЖК-матриц (примерно 1:1000) приемлем для комфортного восприятия картинки, но по этому показателю AMOLED лучше IPS. Из-за того, что черный не очень глубокий, разница между самым ярким и самым темным пикселем у таких экранов заметно меньше, чем у светодиодных матриц.
  • Большое время отклика . Скорость реакции пикселей у IPS панелей невысока, порядка десятка миллисекунд. Этого хватает для нормального восприятия картинки при чтении или просмотре видео, но маловато для VR-контента и других требовательных задач.

Плюсы и минусы дисплеев AMOLED

В основе технологии OLED лежит использование массива миниатюрных светодиодов, расположенных на матрице. Они независимы, поэтому предлагают ряд преимуществ над IPS, но не лишены и минусов.

Преимущества AMOLED матриц

Технология AMOLED новее, чем IPS, и ее создатели позаботились об устранении минусов, характерных для ЖК-дисплеев.

  • Раздельное свечение пикселей . В AMOLED экранах каждый пиксель сам является источником света и управляется системой независимо от других. При отображении черного цвета он не светится, а при показе смешанных оттенков может выдавать повышенную яркость. За счет этого AMOLED экраны демонстрируют лучшую контрастность и глубину черного.

  • Почти мгновенная реакция . Скорость отклика пикселей на светодиодной матрице на порядки выше, чем у IPS. Такие панели способны отображать динамичную картинку с высокой частотой смены кадров, делая ее более гладкой. Эта возможность – плюс в играх и при взаимодействии с VR.
  • Сниженное потребление энергии при показе темных тонов . Каждый пиксель матрицы AMOLED светится независимо. Чем светлее его цвет – тем ярче пиксель, поэтому при показе темных тонов такие экраны потребляют меньше энергии, чем IPS. А вот в процессе отображения белого AMOLED панели демонстрируют схожий, или даже больший, чем у IPS, расход заряда батареи.
  • Малая толщина . Так как у AMOLED матриц нет слоя, рассеивающего свет подсветки на жидкие кристаллы, такие дисплеи имеют меньшую толщину. Это позволяет уменьшить габариты смартфона, сохранив его надежность и не жертвуя емкостью аккумулятора. Кроме того, в перспективе возможно создание гибких (а не только изогнутых) матриц AMOLED. Для IPS это невозможно.

Недостатки AMOLED-матриц

Свойственны AMOLED-матрицам и недостатки, причем виновник большинства бед один. Это – синие светодиоды. Освоение их производства дается сложнее, а по качеству они уступают зеленым и красным.

  • Синева или ШИМ . Выбирая смартфон с AMOLED экраном, приходится выбирать между широтно-импульсной регулировкой яркости и голубизной светлых тонов. Все из-за того, что при непрерывном свечении синие субпиксели воспринимаются сильнее, чем красные и зеленые. Исправить это можно с помощью использования ШИМ-регулировки яркости, но тогда всплывает другой недостаток. На максимальной яркости экрана ШИМ нет или частота регулировки достигает около 250 Гц. Этот показатель находится на границе восприятия и почти не влияет на глаза. А вот при снижении уровня подсветки – снижается и частота ШИМ, в итоге на низких уровнях мерцания с частотой около 60 Гц могут приводить к усталости глаз.
  • Выгорание синего . Тут тоже проблема в синих диодах. Их срок службы меньше, чем зеленых и красных, поэтому со временем возможно искажение цветопередачи. Экран уходит в желтизну, баланс белого сдвигается в сторону теплых тонов, общая цветопередача ухудшается.
  • Эффект памяти . Так как миниатюрные светодиоды склонны к выгоранию, места на экране, которые отображали яркую статичную картинку (например, часы или индикатор сети светлого цвета), со временем могут терять яркость. В результате даже если элемент не отображается, в этих местах виднеется силуэт этого элемента.

  • PenTile . Структура PenTile не является фундаментальным минусом всех панелей AMOLED, но пока характерна для большинства из них. При такой структуре матрица содержит неодинаковое число красных, зеленых и синих субпикселей (у Samsung синих вдвое меньше, у LG – вдвое больше). Основной мотив использования PenTile – желание компенсировать недостатки синих LED. Однако побочным эффектом данного решения становится снижение четкости картинки, особенно заметное в VR-гарнитурах.
.

С учетом всех особенностей обоих типов матриц можно отметить, что IPS с высоким разрешением лучше, если вас интересует VR и нужна максимальная четкость картинки. Ведь у AMOLED комфортному восприятию виртуальной реальности немного препятствует PenTile, и ШИМ подсветки пока нивелирует мгновенную скорость реакции. Также IPS лучше, если вам приходится больше работать со светлыми тонами (веб-серфинг, мессенджеры).

За экранами AMOLED будущее, но пока технология не идеальна. Однако можно смело покупать смартфон со светодиодным экраном, особенно если это флагман. Яркость, контрастность, глубокий черный и экономия энергии при показе темных тонов способны перекрыть все минусы OLED.

LTPS (низкотемпературная поликремневая) технология - это новейший производственный процесс изготовления TFT ЖКИ. В этой технологии используется лазерный отжиг, который позволяет производить кристаллизацию кремниевой пленки при температуре менее 400°C.

Поликристаллический кремний - материал на основе кремния, который содержит множество кристаллов кремния размером от 0.1 до нескольких микрон. При производстве полупроводников поликристаллический кремний обычно изготавливается при помощи LPCVD (Low Pressure Chemical Vapor Deposition - химическое осаждение при низком давлении из газообразной фазы), а затем отжигается при температуре более 900 C. Это так называемый SPC (Solid Phase Crystallization - кристаллизация твердой фазы) метод. Очевидно, что такой метод не может быть применен при производстве индикаторных панелей, так как температура плавления стекла порядка 650 C. Поэтому LTPS технология - новая технология, предназначенная для производства ЖКИ панелей.

На приведенном ниже рисунке показаны структуры однокристального, аморфного и поликристаллического кремния.

Теперь рассмотрим несколько методов формирования LTPS пленки на стеклянной или пластиковой подложке, которые используются в настоящее время:

1. MIC (Metal Induced Crystallization - кристаллизация, вызываемая металлом): Это разновидность SPC метода, но, по сравнению с обычным SPC методом, он позволяет получить поликристаллический кремний при более низкой температуре (приблизительно 500 - 600 C). Достигается это за счет металлизации пленки перед отжигом. Металл позволяет снизить энергию, необходимую для активизации процесса кристаллизации.

2. Cat-CVD: При этом методе осаждается уже поликристаллическая пленка, которая в дальнейшем не подвергается термической обработке (отжигу). В настоящее время уже имеется возможность выполнять осаждение при температуре ниже 300C. Однако, механизм выращивания при каталитическом взаимодействии приводит к растрескиванию смеси SiH4-H2.

3. Лазерный отжиг: Это - самый популярный метод, используемый в настоящее время. В качестве источника энергии используется эксимерный лазер. Он нагревает и расплавляет a-Si с низким содержанием водорода. После этого кремний повторно кристаллизуется в виде поликристаллической пленки.

Подготовка LTPS пленки очевидно более сложна, чем a-Si пленки, но LTPS TFT имеют в 100 раз большую надежность, чем тонкопленочные транзисторы, изготовленные по a-Si технологии, а кроме того LTPS технология позволяет на стеклянной подложке изготавливать в едином цикле и КМОП интегральные схемы. p-Si технология имеет следующие основные преимущества по сравнению с a-Si технологией:

1. Обеспечивает возможность изготовления на стеклянной подложке в едином технологическом цикле интегральные схемы драйверов, что позволяет уменьшить необходимое количество периферийных устройств и стоимость.

2. Более высокий апертурный коэффициент: более высокая подвижность носителей означает, что можно обеспечить требуемое время заряда пикселя при помощи меньшего тонкопленочного транзистора. Это ведет к тому, что большая площадь элемента может быть задействована под область пропускания света.

3. Носитель для OLED: Более высокая подвижность носителей означает, что тока питания вполне достаточно для управления OLED приборами.

4. Компактность модуля: За счет наличия встроенного драйвера требуется меньшая площадь печатной платы для схемы управления.

Характеристики получаемых таким образом TFT ЖКИ будут рассмотрены ниже, а пока рассмотрим основные аспекты LTPS технологии.

Лазерный отжиг

При лазерном отжиге кристаллизация a-Si пленки происходит уже при температуре менее 400°C. На рисунке показана структура a-Si до лазерного отжига и структура p-Si, полученная уже после лазерного отжига.

Подвижность электронов

Подвижность электронов в тонкопленочных транзисторах (TFT), изготовленных по технологи LTPS достигает ~200 см 2 /В*s, что намного выше, чем у транзисторов a-Si технологии (всего ~0.5 см2/В*s). Повышенная подвижность электронов позволяет увеличить степень интеграции формируемой на подложке ЖКИ интегральной схемы, а так же уменьшить размеры самого тонкопленочного транзистора.

Приведенный ниже рисунок упрощенно показывает к чему приводит повышенная подвижность электронов.

Апертурный коэффициент

Апертурный коэффициент - это отношение полезной площади ячейки к ее полной площади. Так как тонкопленочный транзистор LTPS ЖКИ имеет намного меньший размер, чем транзистор ЖКИ, изготовленного по a-Si технологии, то полезная площадь ячейки, а, следовательно, и апертурный коэффициент, такого ЖКИ будет выше. Как известно, при всех равных параметрах яркость ячейки с большим апертурным коэффициентом будет больше!

На приведенном ниже рисунке можно видеть, что эффективная площадь LTPS TFT больше, чем у тонкопленочного транзистора, изготовленного по a-Si технологии.

Встроенные драйверы

LTPS технология позволяет в едином цикле формировать непосредственно на подложке ЖКИ и интегральные схемы драйверов. Это позволяет существенно снизить количество необходимых внешних контактов и уменьшить размеры самой подложки. Это ведет к тому, что требуемая надежность устройства может быть достигнута при меньших затратах, а следовательно стоимость всего изделия также будет ниже.

На приведенном ниже рисунке упрощенно показаны ЖКИ, изготовленный по a-Si технологии и ЖКИ с интегрированным драйвером, изготовленный по LTPS технологии,. Как видно, количество контактов и площадь подложки у первого намного больше.

Характеристики LTPS технологии:

  • Более высокая реакция электронов
  • Меньшее количество соединений и элементов
  • Низкое потребление
  • Возможность интеграции на подложке интегральных схем драйверов

Производство LTPS TFT ЖКИ

На приведенном ниже рисунке показана структурная схема производства LTPS TFT ЖКИ.

Цветные ЖК-дисплеи делятся на два вида: активные и пассивные. - это «STN» (Super Twisted Nematic). Здесь «nematic» обозначает тип используемых жидких кристаллов: молекулам нематических кристаллов присущи наличие ориентационного и отсутствие позиционного порядка. Технология же «twisted nematic» (скрученных кристаллов) позволяет улучшить контрастность изображения.

Основной принцип работы STN: изображение формируется строка за строкой за счет последовательного подвода управляющего напряжения на отдельные ячейки, который делает их прозрачными.

STN-дисплеи - имеют худшие характеристики по сравнению с TFT: как правило, они имеют меньшее разрешение, и могут отображать значительно меньшее количество цветов. Серьезным недостатком STN-матриц является и маленький угол обзора экрана - на него лучше смотреть под определенным углом, тогда цвета будут казаться четкими. На ярком солнечном свете такие экраны "слепнут"- информация на дисплее становится плохо различимой

Однако STN-дисплеи примерно в три раза дешевле TFT-аналогов, поэтому они активно используются производителями телефонов в моделях бюджетной ценовой категории, например: , .

На графике приведено сравнение пропускания от напряжения на электродах ЖК дисплеев на основе типичного скрученного нематика (TN) и нематика с суперскручиванием (STN). (Собственно, увеличение угла закручивания эквивалентно увеличению мультиплексированию). Точки на графике V90 и V10 характеризуют напряжения при которых пропускание света составляет 90 % и 10 %, соответственно.

На рисунке видно, что крутизна характеристики STN-дисплея выше чем у TN, что позволяет первый тип дисплея выполнить с большим уровнем мультиплексирования. (супернематики были разработаны прежде всего для преодоления проблемы сложности увеличения уровня мультиплексирования TN дисплеев.)

Мультиплексное отношение эквивалентно числу строк, которое может быть отображено одновременно. Например, дисплей с мультиплексным отношением 400 до 400 строк информации может отображать одновременно.


Пассивная матрица

Этот тип матриц называется пассивным, поскольку он не способен достаточно быстро отображать информацию: из-за большой электрической емкости ячеек напряжение на них не может изменяться достаточно быстро, поэтому картинка обновляется медленно.

Пассивная матрица образована наложением слоев горизонтальных и вертикальных контактных полос. Ток подается на вертикальную и горизонтальную полоску, при этом задаются координаты. Там, где эти полоски скрещиваются, кристаллы изменяют структуру, и в соответствующем месте экрана появляется точка.

В зависимости от силы тока, кристаллы искажаются в большей или меньшей степени, пропуская, соответственно, больше или меньше света. В цветных дисплеях они еще и поляризуют свет. При поляризации из белого света электролюминесцентной лампы задней подсветки в нужных пропорциях «вырезаются» те или иные цветные составляющие, что в итоге и определяет цвет точки экрана. На принципе пассивной матрицы основана технология .


Модификация технологии . CSTN (Color Super Twist Nematic) - это технология на основе, которой делают дисплеи для портативных устройств. В дисплеях выполненных по технологии CSTN на каждый из пикселей приходится три отдельных пикселя разного цвета (Красный, Зеленый и Синий). Каждый пиксель управляется индивидуально чипом графического контролера. Фактически дисплей CSTN с разрешением 320 х 240 пикселей содержит 960 х 240 индивидуальных цветовых пикселей.

Первые CSTN-дисплеи имели большое время отклика и страдали от наводок. В настоящее же время дисплеи на базе CSTN-матриц предоставляют время отклика 100мс, широкий угол видимости (140 градусов) и высококачественные цвета, почти не уступающие TFT экранам по сочности.


Модификация технологии - FSTN (Film Super Twisted Nematic). Матрица с пленочной компенсацией, которая позволяет улучшить угол обзора. От STN-матриц технология отличается только тем, что у FSTN-матриц с внешней стороны есть специальная пленка, которая позволяет компенсировать цветовые сдвиги от синего на зеленый до черного на белый.

Если более подробно, то FSTN – суперскрученный нематик с пленочной компенсацией. ЖКИ с дополнительной пленкой, добавленной к внешней стороне ячейки для компенсации цветовых сдвигов от синего на зеленый до черного на белый. Пленка сделана из полимера с двойной рефракцией для исключения возможности интерференции цветов. В результате происходит замедление компенсации.

Пленка (верхний слой на рисунке) размещена на дисплее под или над верхним поляризатором. Некоторые системы пленочной компенсации используют две пленки, одна на тыльной стороне, которая служит как коллиматор, и одна на фронтальной стороне, которая служит как дисперсионная пленка, что позволяет расширить угол обзора. Пленочная компенсация улучшает угол обзора, но не улучшает быстродействие. FSTN - все стандартные STN-дисплеи с полимерной пленкой, приложенной к стеклу как компенсирующий слой вместо второй ячейки как у DSTN-дисплеев. Для этой технологии характерно более простое и более эффективное по стоимости получение преобладания черного над белым в изображении.


DSTN (Dual Super Twisted Nematic). Каждая ячейка этой матрицы состоит из двух ячеек STN. Отличительной особенностью матрицы является то, что все ее поле разбивается на несколько независимых полей матрицы, каждое из которых управляется отдельно.


Активная матрица

Активные матрицы обозначают аббревиатурой TFT (Thin Film Transistors) или AM (Active Matrix). В таких матрицах под поверхностью экрана располагается слой тонкопленочных транзисторов, полупроводников, каждый из которых управляет одной точкой экрана. Таким образом, в цветном дисплее телефона их количество может достигать нескольких десятков, а то и сотен тысяч.

Основной принцип работы матрицы заключается в управлении интенсивностью светового потока с помощью его поляризации. Изменение вектора поляризации осуществляют жидкие кристаллы в зависимости от приложенного к ним электрического поля.

На один пиксель приходится по три транзистора, каждый из которых соответствует одному из трех основных цветов - красному, зеленому или синему, и конденсатор, поддерживающий необходимое напряжение. Такой способ управления позволяет существенно ускорить работу дисплея, хотя и это не панацея - при воспроизведении видеоролика изображение может быть слегка «размытым», поскольку сами кристаллы не будут успевать поворачи-ваться с нужной быстротой.

Случается, что транзистор выходит из строя. Подобный дефект легко заметить невооруженным взглядом - точка экрана постоянно светится яркой «звездой» на фоне других или не светится вообще. Поэтому при покупке мобилки не поленитесь включить ее и внимательно присмотритесь к дисплею и, если заметите «битые» элементы, вовремя поменяйте аппарат.


TFT (thin film transistor) — тип жидкокристаллического дисплея, в котором используется активная матрица, управляемая тонкоплёночными транзисторами, то есть TFT - тонкоплёночный транзистор. По сравнению с обычной, пассивной жидкокристалической матрицей, с помощью активной матрицы, управляемой тонкоплёночными транзисторами, удаётся значительно повысить быстродействие дисплея, а также повысить контрастность и чёткость изображения.

Устройство TFT-панели: жидкокристалическая матрица с разделителями (8); управляющая пластина (5,6 — горизонтальные и вертикальные управляющие шины; 9 — тонкоплёночные транзисторы; 11 — задние электроды); 10 — фронтальный электрод; 1 — стеклянные пластины; 2,3 — горизонтальный и вертикальный поляризаторы; 4 — RGB-светофильтр; 7 — слои прочного полимера; желтая стрелка — свет внешнeго источника.


TFD (Thin Film Diode) - технология производства жидкокристаллических дисплеев с использованием тонкопленочных диодов. Она аналогична технологии TFT, но здесь транзисторы заменены тонкопленочными управляющими диодами. Основной особенностью таких дисплеев является пониженное энергопотребление.


LTPS (Low Temperature Poly Silicon) - технология производства LCD TFT-дисплеев с использованием низкотемпературного поликристаллического кремния. Данная технология обеспечивает повышенную яркость индикатора изображения и пониженное энергопотребление.


UFB (Ultra Fine and Bright) - собственная технология Samsung, основанная на использовании пассивной матрицы. Такие экраны обладают повышенной яркостью и контрастностью, при этом потребляемая мощность снижена по сравнению с традиционными LCD. Дисплеи UFB, способные отображать 262 тысячи цветов, обладают контрастностью 100:1, яркостью 150 кд/кв. м, при этом потребляют не более 3 мВт. Вдобавок производство нового дисплея, по заверению разработчиков, обходится дешевле.


OLED (Organic Light Emitting Diodes) - электролюминесцентные дисплеи на органических светоизлучающих полупроводниках. Главное отличие - не нужны лампы подсветки, в новых дисплеях светятся непосредственно элементы поверхности. И светятся существенно ярче, чем экраны на ЖК (100000 кд/кв. м). При этом энергопотребление ниже, цветопередача лучше, контрастность выше (300:1), угол обзора больше (до 180 градусов), цветовой охват шире. В отличие от обычного ЖК-дисплея органика способна реагировать в 100–1000 раз быстрее. Толщина дисплея не превышает 1 мм (с учетом защитного стекла 2 мм), масса исчисляется граммами. Немаловажным параметром считается и диапазон рабочих температур: от -30 до +60 градусов. Из недостатков можно отметить только относительно низкое время жизни (порядка 5–8 тысяч часов), впрочем, для телефона этого вполне достаточно. Как устроены органические экраны? Когда-то изобретатели люминесцентных диодов обнаружили, что если совместить два слоя определенных органических материалов и в какой-либо точке пропустить через них электрический ток, то в этом месте появится свечение. При этом используя разные материалы и светофильтры, можно получать разные цвета. Существующие модели аналогично ЖК разделяются по типу управляющей матрицы. Есть OLED с пассивными и с активными матрицами. Принцип работы матриц такой же, но вместо слоя жидких кристаллов используется слой органических полупроводников.

Если сравнивать современные OLED-дисплеи и старые добрые LCD-экраны - сравнение будет явно не в пользу последних: ЖК-дисплеи работают уже на пределе своих возможностей, скорость смены кадров на экране невысока, а потребляемая мощность - напротив, оставляет желать меньшего. На цветных ЖК-экранах тяжело что-то разглядеть при солнечном свете, они весьма хрупкие.

Конечно, дисплеи с активными матрицами (LCD TFT) более яркие и контрастные, чем аналогичные дисплеи с пассивными матрицами, но они сложнее в производстве, дороже, и используются преимущественно в дорогих аппаратах.

Технология же органических дисплеев лишена практически всех недостатков, характерных для ЖК-дисплеев, и обеспечивает гораздо лучшие характеристики изображения. OLED-дисплей - Физически органический электролюминесцентный дисплей представляет собой цельное устройство, состоящее из нескольких очень тонких органических пленок, заключенных между двумя проводниками. Подача на эти проводники небольшого напряжения (порядка 2-8 вольт) и заставляет дисплей излучать свет. Основу OLED-матрицы составляют полимерные материалы, их постоянное совершенствование в немалой степени способствует улучшению дисплеев и развитию технологий изготовления матрицы. В настоящее время в основном развиваются две технологии, показавшие наибольшую эффективность. Различаются они используемыми органическими материалами, это полимеры (PLED) и микромолекулы (sm-OLED). Рассматривать их подробно не будем, поскольку для пользователя телефона это не имеет принципиального значения, да и производитель весьма редко в спецификациях телефона указывает технические нюансы изготовления дисплея. Что ж хорошего есть в OLED-дисплеях? Во-первых, это высокая яркость (до 100 тыс. кд/м2) и контрастность (до 300:1), что, по идее, должно обеспечивать читаемость дисплея в любых условиях. Далее идет компактность и легкость, толщина дисплея не превышает 1 мм (с учетом защитного стекла 2 мм), масса исчисляется граммами. Немаловажным параметром считается и диапазон рабочих температур. И в лютую зиму (до минус 30 градусов Цельсия), так и летом на пляже (до плюс 60) OLED-дисплей оказывается работоспособен. Отличаются OLED-дисплеи приличной механической прочностью, и даже… гибкостью. Впрочем, использование гибких подложек уже выделилось в отдельное направление FOLED. Ну и, наконец, в отличие от существующих TFT и STN дисплеев, OLED-дисплеи потребляют заметно меньше энергии. По аналогии с другими дисплеями здесь также возможно использование пассивной или активной матрицы. Чаще всего OLED-дисплеи используются в качестве внешних (или вспомогательных) дисплеев, поскольку делать основной дисплей телефона на основе OLED-технологии, по меньшей мере, дорого. По этой же причине эти дисплеи обычно ограничены воспроизведением 256 цветов. Например, такой дисплей с разрешением 94 х 94 пикселя используется в LG G7030, у Samsung SGH-E700 разрешение чуть поменьше (96 х 64 пикселя). В целом такие дисплеи смотрятся очень неплохо, обеспечивая яркую и читаемую картинку, но, к сожалению, на солнце рассмотреть что-либо на этом дисплее невозможно.


MEMS (Micro-Electro Mechanical Systems) - технология микроэлектромеханических систем.

С ростом популярности развлекательных функций, в том числе и встроенных фотокамер с высокой разрешающей способностью, у мобильных телефонов обнаружился весьма серьёзный недостаток - высокое энергопотребление жидкокристаллических дисплеев. К тому же, с массовым распространением моды на камеры, мультимедийные плееры и мобильные игры, ЖК-экраны современных телефонов стали больше и ярче, и при этом они всё дольше остаются включёнными, что, в итоге, приводит к быстрой разрядке батареи. Еще один минус TFT-экранов - потеря «читабельности» отображаемой ими информации в условиях яркого солнечного света, что зачастую делает использование телефона на улице в солнечный день крайне неудобным.

Благодаря MEMS, а точнее, построенной на основе микроэлектромеханических систем инженерами компании Iridigm технологии iMoD (Interferometric Modulator - интерференционный модулятор), «слепнущие» на солнце и «гаснущие» в целях экономии заряда батареи дисплеи мобильных телефонов могут через какое-то время уйти в прошлое.

Принцип работы iMoD-дисплея заключается в том, что цветное изображение формируется благодаря интерференции световых волн, аналогично тому, как дневной свет приобретает определённый оттенок в покрытых пыльцой крыльях бабочки. Каждый пиксель iMoD представляет собой микромеханическую систему, состоящую из прозрачной плёнки и зеркальной мембраны, между которыми остаётся свободное воздушное пространство. Между световыми волнами, отразившиеся от плёнки, и волнами, прошедшими сквозь неё, а затем отразившимися от мембраны, возникает интерференция. В результате этого появляется излучение определенного цвета, который может меняться от красного до синего, в зависимости от величины зазора.

Структура интерференционного дисплея iMoD

Дисплеи, построенные на основе этой технологии, сохраняют «читабельность» при любом освещении. Они обладают в разы меньшим по сравнению со своими жидкокристаллическими конкурентами энергопотреблением, поскольку не требуют подсветки, и энергия в них тратится лишь на перевод пикселя из одного состояния в другое. Также нельзя не отметить их малую толщину - находку для производителей мобильных телефонов, для которых проблема экономии места крайне существенна, особенно в свете набирающих популярность ультратонких моделей.

Современные устройства оснащаются экранами различной конфигурации. Основными на данный момент являются дисплеи на базе но для них могут использоваться разные технологии, в частности речь идет о TFT и IPS, которые различаются по целому ряду параметров, хоть и являются потомками одного изобретения.

Сейчас существует огромное количество терминов, которые обозначают определенные технологии, скрывающиеся под аббревиатурами. К примеру, многие могли слышать или читать об IPS или TFT, однако мало кто понимает, в чем на самом деле разница между ними. Связано это с недостатком информации в каталогах электроники. Именно поэтому стоит разобраться с этими понятиями, а также решить, TFT или IPS - что лучше?

Терминология

Для определения того, что будет лучше или хуже в каждом отдельном случае, требуется узнать, за какие функции и задачи отвечает каждый IPS по факту представляет собой TFT, точнее ее разновидность, при изготовлении которой использовалась определенная технология - TN-TFT. Следует рассмотреть более подробно эти технологии.

Различия

TFT (TN) представляет собой один из способов производства матриц то есть экранов на тонкопленочных транзисторах, в которых элементы располагаются по спирали между парой пластин. При отсутствии подачи напряжения они будут повернуты друг к другу под прямым углом в горизонтальной плоскости. Максимальное напряжение вынуждает кристаллы поворачиваться так, чтобы проходящий сквозь них свет приводил к образованию черных пикселей, а при отсутствии напряжения - белых.

Если рассматривать IPS или TFT, то отличие первой от второй состоит в том, что матрица изготовлена на базе, описанной ранее, однако кристаллы в ней расположены не спирально, а параллельно единой плоскости экрана и друг другу. В отличие от TFT, кристаллы в данном случае не поворачиваются в условиях отсутствия напряжения.

Как мы это видим?

Если смотреть на IPS или то визуально отличие между ними состоит в контрастности, которая обеспечивается почти идеальной передачей черного цвета. На первом экране изображение будет выглядеть более четким. А вот качество цветопередачи в случае использования матрицы TN-TFT нельзя назвать хорошим. В данном случае у каждого пикселя имеется собственный оттенок, отличный от других. Из-за этого цвета сильно искажаются. Однако есть у такой матрицы и достоинство: она характеризуется самой высокой скоростью отклика среди всех существующих на данный момент. Для экрана IPS требуется определенное время, за которое все параллельные кристаллы совершат полный разворот. Однако человеческий глаз практически не улавливает разницу во времени отклика.

Важные особенности

Если говорить о том, что лучше в эксплуатации: IPS или TFT, то стоит отметить, что первые являются более энергоемкими. Это связано с тем, что для поворота кристаллов требуется немалое количество энергии. Именно поэтому, если перед производителем стоит задача сделать свое устройство энергоэффективным, в нем обычно применяется TN-TFT матрица.

Если выбирать экран TFT или IPS, то стоит отметить более широкие углы обзора второго, а именно 178 градусов в обеих плоскостях, это очень удобно для пользователя. Другие оказались неспособными обеспечить подобное. И еще одним существенным различием между двумя этими технологиями является стоимость изделий на их основе. TFT-матрицы на данный момент представляют собой наиболее дешевое решение, которое используется в большинстве бюджетных моделей, а IPS относится к более высокому уровню, но и он не является топовым.

Дисплей IPS или TFT выбрать?

Первая технология позволяет получать максимально качественное, четкое изображение, но требует больше времени для поворота используемых кристаллов. Это влияет на время отклика и прочие параметры, в частности скорость разрядки аккумулятора. Уровень цветопередачи TN-матриц гораздо ниже, однако их время отклика минимально. Кристаллы тут расположены по спирали.

На самом деле можно легко отметить невероятную пропасть в качестве экранов, работающих на базе двух этих технологий. Касается это и стоимости. Технология TN остается на рынке исключительно из-за цены, однако она не способна обеспечить сочную и яркую картинку.

IPS - это весьма удачное продолжение в развитии TFT-дисплеев. Высокий уровень контрастности и довольно большие углы обзора - это дополнительные преимущества данной технологии. К примеру, у мониторов на базе TN иногда черный цвет сам изменяет свой оттенок. Однако высокое потребление энергии устройствами, работающими на базе IPS, вынуждает многих производителей прибегать к использованию альтернативных технологий либо понижать этот показатель. Чаще всего матрицы данного типа встречаются у проводных мониторов, которые не работают от аккумулятора, что позволяет не быть устройству настолько энергозависимым. Однако постоянно ведутся разработки в этой области.

Сейчас многие смартфоны в плане аппаратной части похожи друг на друга. Одинаковые процессоры, графические ускорители, объем оперативной и долговременной памяти – все, как одно на подбор. И порой решающим фактором, который перевешивает наше решение в сторону определенной модели, становится экран устройства. Поэтому сегодня я хочу рассказать все, что знаю об этом сам. Надеюсь, что информация будет полезна тем, кто учитывает характеристики дисплея при покупке смартфона.

Основная терминология

  • LCD (Liquid Crystal Display) - жидкокристаллический дисплей.
  • TFT (Thin Film Transistor) - технология изготовления матриц, основанная на использовании тонкопленочных транзисторов.
  • IPS (In-Plane Switching) - улучшенная по характеристикам технология изготовления матриц, основанная на использовании тонкопленочных транзисторов.
  • OLED (Organic Light-Emitting Diode) - технология изготовления матриц, основанная на использовании полупроводниковых приборов.
  • AMOLED (Active Matxrix Organic Light-Emitting Diode) - тип активной матрицы, основанный на использовании одиночных транзисторов.
  • Super AMOLED - улучшенная модификация матрицы AMOLED, в которой отсутствует воздушная прослойка между сенсором и экраном.

Матрицы

Чаще всего именно этот показатель красуется на сайтах интернет-магазинов МТС, Связного, Билайна, Мегафона и других компаний. Так и пишется: “тип матрицы”. А за двоеточием скрываются очень страшные английские аббревиатуры. Такие, например, как TFT TN , IPS , AMOLED и так далее. А теперь давайте разложим все из этой области, как говорится, по полочкам.

Прежде всего я хочу упомянуть о разделении матриц на жидкокристаллические и светодиодные. К первым относятся TFT TN и IPS , ко вторым – AMOLED и SuperAMOLED . Что представляют собой матрицы типа TFT ? С английского языка эта аббревиатура расшифровывается как Thin -Film Transistor . С точки зрения схемо- и электротехники, это – тонкопленочные транзисторы. Их в смартфонах используют для того, чтобы управлять работой субпикселей. Считается, что базовые принципы технологии TFT применяются абсолютно во всех видах матриц. Только где-то в большей, а где-то – в меньшей степени. Тем не менее, этот вопрос остается открытым, о чем пользователи, собственно, и спорят уже не первый год.

До недавнего времени производители TFT -матриц для соответствующих операций использовали аморфный кремний. Но, как известно, прогресс не стоит на месте: в ходу уже поликристаллический кремний, и благодаря его использованию, такие матрицы носят новое название (LTPS -TFT ). Сразу следует отметить, что основным преимуществом подобной матрицы является снижение размеров транзисторов и, как следствие, уменьшение энергетического потребления. Несложно сделать логичный вывод: этот факт позволяет добиться более высокого значения PPI (плотность пикселей).

Это познавательно: как вообще работают матрицы? Первично к молекулам жидких кристаллов прикладывается ток. Это приводит к тому, что задается угол поляризации света. К слову, угол непосредственно влияет на то, какой уровень яркости будет иметь каждый отдельный субпиксель. На пути поляризованного света стоит специальный светофильтр. Проходя через него, свет меняет длину волны, вследствие чего меняется цвет, прикладываемый позднее к субпикселю (при подсветке экрана).

Первый тип матрицы, установленный в смартфоне, носит название TN . Опорные сведения о матрице следующие: малый угол обзора, низкая контрастность, чрезвычайно низкий по сегодняшним меркам уровень цветовой передачи. Если говорить об угле подробнее, то он составляет не более 60 градусов в случае отклонения в вертикальной плоскости. Из-за столь низкого показателя даже при небольших отклонениях заметна инверсия цвета. В данный момент мы можем уверенно говорить о том, что эпоха TN -матриц подходит к концу, потому как они остались только в наиболее старых и/или дешевых смартфонах.

На смену TFT TN пришла TFT IPS . Практически во всех бюджетных смартфонах установлена именно эта матрица. Она распространена больше всего. Альтернативное название IPS – это SFT . Дебют этого типа матрицы состоялся два десятка лет тому назад. С тех пор разные производители неустанно работали над улучшением характеристик и выпуск модификаций. Их число, кстати, тоже почти достигло отметки в два десятка. Согласно последним данным, наибольшей популярностью пользуются наиболее технологичные из них: PLS производства компании Samsung и AH -IPS производства компании LG .

Они близки друг к другу в плане свойств, поэтому вопрос выбора здесь подменяется, скорее, на вопрос о разделении сфер влияния фирм. Интересно то, что подобные схожести технологического плана в свое время стали камнем преткновения между двумя компаниями, что привело к жесткому судебному разбирательству. Ну а что поделать, если у Samsung судьба такая: сегодня судится с LG , завтра с Apple .

Основные преимущества матриц типа IPS заключаются в следующем: они могут похвастаться широкими углами обзора, реалистичной цветопередачей и довольно высоким показателем PPI. Угол обзора может достигать 180 градусов. Однако зачастую производители смартфонов не сообщают информацию о том, какая модификация IPS -матрицы установлена в аппарате. А, между тем, различия можно будет заметить даже невооруженным глазом. Недостатком IPS является выцветание изображения при сильных наклонах.

Принципиальные различия существуют между жидкокристаллическими и светодиодными матрицами, носящими наименование OLED . Источник света в таких матрицах – субпиксели. Они, если так можно выразиться, и есть органические светодиоды НУ ОЧЕНЬ маленького размера. В смартфонах для создания дисплеев используется AMOLED . Важно, что при этом используется также TFT -матрица, позволяющая управлять субпикселями. Это – как раз повод дискуссий между пользователями.

Именно AMOLED -дисплеи лучше всего демонстрируют черный цвет. Его бесподобная глубина объяснима технологической особенностью: чтобы имитировать оттенок черного, матрице достаточно просто отключить или не задействовать светодиоды. Думаю, что это опять приведет читателей к логичному выводу: раз так, то и энергопотребление AMOLED лучше, нежели у LCD . И это на самом деле так. Был в свое время у этого типа матрицы свой недостаток: светодиоды разных цветов имели различные сроки службы. Но с тех пор, как его повысили минимум до трех лет, проблема ушла в небытие.

Влияет ли на восприятие рисунок субпикселей?

Однозначно. Мы привыкли думать, что все дело заключается только в том, по какой технологии изготовлена матрица экрана. Ан-нет, дело обстоит несколько по-другому. Давайте начнем с простейшего, а именно, с жидкокристаллических матриц. В них имеются RGB -пиксели. Каждый из таких пикселей состоит из трех субпикселей. Они могут быть вытянуты в одной из двух форм: либо галочка, либо прямоугольник.

А что тогда бывает в AMOLED -экранах? Я уже рассказывал о том, что источник света в AMOLED ’ах – это сами субпиксели. Так сложилось, что к красному и синему цвету человеческий глаз менее чувствителен, нежели к зеленому. Учитывая этот фактор, можно говорить о том, что подобный рисунок в случае использования его в AMOLED ухудшит цветопередачу по сравнению с IPS . Картинка будет нереалистичной, если говорить совсем просто.

Чтобы устранить этот недостаток, производители попробовали использовать технологию под название PenTile . Она предполагала наличие пикселей двух типов. Первый из них – красно-зеленый, второй – сине-зеленый. Каждый, заметьте, разбивался на два субпикселя соответствующих оттенков. Параллельно этому, субпиксели имели разную форму. Красные и синие были представлены почти идеальным квадратами, а вот зеленые – вытянутыми прямоугольниками. В итоге все привело к тому, что инженеры получили нечистый белый цвет, а также видимые зазубрины на границах цветов. В общем, получили едва не больше проблем, чем было до этого.

Но не все так плохо, как кажется. Samsung решила устранить выявленные проблемы, и ей это удалось. Современные экраны компании построены по принципу системы RG -BG , но теперь там используется новый тип рисунка. Его после успешных испытаний окрестили Diamond PenTile . Если перевести, кстати, то получится символично. Но по делу: технология делает белый оттенок натуральнее, зазубренные края “ликвидируются” за счет увеличения PPI до такого показателя, когда неровности уже просто не заметны.

Особенности конструкции

Хорошо, мы разобрались с типами матриц, принципом их работы и особенностями восприятия человеческого глаза. Теперь пришло время поговорить о том, как конструктивные особенности могут повлиять на качество отображения и выбор потенциальных покупателей, как следствие. Начнем опять же с самого простого фактора.

Производители, задавшиеся вопросом о том, что еще можно улучшить, в первую очередь принялись за воздушную прослойку между сенсором и дисплеем. Именно здесь начинается жизнь технологии под названием OGS . Если говорить опосредовано и грубо, то это есть не что иное, как технический сэндвич. В нем сенсор и матрица объединены в одно стеклянное целое. И такой эксперимент дал свои плоды: качество изображения было значительно улучшено благодаря увеличению углов обзора и повышению уровня цветопередачи. Кроме того, этот “сэндвич” смогли уменьшить в размерах, что положительно сказалось на габаритах смартфонов. Что касается недостатков: если пользователь разбил стекло, то менять придется весь пакет. Отделить составляющую от дисплея не представляется возможным. Хотя это – тот самый случай, когда плюсов больше чем минусов.

Наибольший успех в этой области был снова замечен у южнокорейского гиганта Samsung . Инженеры решили разместить между субпикселями емкостные датчики. К чему это привело? К еще большему сокращению толщины “сэндвича”. Я бы сказал, что сейчас активно распространяется технология 2,5D -дисплеев. Суть заключается в загнутом по краям стекле. Этот принцип позволяет сделать смартфон более привлекательным и комфортным, поскольку грани становятся максимально гладкими.

Как логичное продолжение процедуры, появились не только загнуты стекла, но и загнутые дисплеи. У какой компании они есть? Конечно, тут и так все ясно! Ох уж эти Edge … Хоть первыми на эту своеобразную дорожку вылезли в Samsung , LG тоже внесла свою лепту. Хотя с точки зрения технологий, их способ немного отличается от предложенного “другими корейцами”. В случае LG приходится говорить более об изогнутом смартфоне, а не дисплее.

Технологии создания экранов

1. LTPS (Low-Temperature Poly Silicon или технология низкотемпературного поликремния). Эта технология позволяет получить экран, построенный на поликристаллах кремния. Поликристаллы получают за счет использования (относительно) низких температур. Лазерное прожигание позволяет завершить процесс кристаллизации на отметке интервала 300-400 градусов. Встраивая полупроводниковые элементы прямиком на экран посредством лазерного прожига, мы можем сэкономить на подложках, ведь все транзисторы будут расположены вместе жидкими кристаллами. Мы также экономим энергию, ведь конструкция приводит к меньшему выделению тепла. Этой же цели добиваются инженеры, которые понижают технологический стандарт процессоров. Подробнее об этом можно прочитать здесь. Учтем, что дисплей с технологией LTPS будет демонстрировать повышенную яркость, а также более компактные размеры.

2. GFF (Glass-to-film-to-film full lamination или полное ламинирование стекла от пленки до пленки). Эта технология заключается в том, что экран собирается по схеме бутерброда, где “начинка” - это стекло, а “булочки” - это пленки. Если сравнивать GFF с другими технологиями, то она может не единожды проиграть им в цветопередаче, диапазоне яркости и других параметрах. С другой стороны, не стоит думать, что GFF обеспечивает плохие эксплуатационные характеристики, нет. Все познается в сравнении. А козырем данной технологии является меньшая себестоимость. Для многих пользователей, которые не являются любителями просмотров фильмов на смартфоне, это важный критерий. Ибо он непосредственно влияет на конечную стоимость аппарата.

3. In-Cell. Впервые в мире умных телефонов эта технология была продемонстрирована компанией Apple на примере практически канувшего в Лету iPhone 5. Следом за Купертино свои наработки представили корейцы из LG. Суть технологии заключается в следующем. Внутри дисплея формируется слой, который состоит из смеси оксидов индия и оксидов кремния. Эта убойная химическая смесь оказывает влияние на пропускную способность экрана. Причем сюда входит не только цветопередача, но и преломление падающего на дисплей света. В то же время, использование In-Cell приводит к повышению компактности экрана. А это значит, что и само устройство станет более тонким и легким.

4. OGS (One Glass Solution или решение с одним стеклом). Смысл заключается в том, что матрица и тачскрин представляют собой монолитную нераздельную конструкцию. Сейчас в среднем и высшем ценовом сегменте эта технология пользуется заметной популярностью. Принято считать, что отсутствие OGS можно простить только бюджетнику, да и то наличие этой технологии пользователи временами требуют и от них. В любом случае, смысл использования OGS заключается в необходимости получения лучшей цветопередачи, расширенных углов обзора, малой толщины экрана. Вторично удается улучшить энергоэффективность (из-за отсутствия буферного слоя, где обычно и бывают потери). Кроме того, между тачскрином и матрицей априори не может попасть пыль или грязь. Недостатки технологии очевидны: во-первых, это высокая стоимость изготовления. Во-вторых, при поломке придется менять модуль целиком, что опять-таки выйдет дороже.

Отдельно об IPS

Раз уж так сложилось, что IPS - наиболее распространенный матрицы в современных смартфонах, нужно поговорить о них отдельно. Особенно учитывая тот факт, что на сегодняшний день их выпускают разные компании, да и вообще счет различных модификаций уже почти достиг двух десятков единиц. Если вам удастся уточнить, какой именно тип IPS-матрицы установлен в аппарате, который вы рассматриваете для покупки, это даст большой бонус. Потому как подобное знание - ключ к выбору. Я назову не все виды, а только те, что чаще всего устанавливаются в мобльных устройствах.

1) "Чистая" IPS . База, стандарт - называйте, как хотите. Чистая IPS обладает хорошими углами обзора, и довольно реалистичной цветопередачей (на уровне 8 бит на один канал).

2) S-IPS (Super-IPS) . Улучшение обыкновенной матрицы, в котором вдобавок уменьшается время отклика.

3) A-SIPS (Advanced Super-IPS) . Созданием этой модификации занималась корпорация под названием Hitachi. Улучшения коснулись контрастности, цветовой гаммы.

4) H-IPS (Horizontal IPS) . Как косвенно вытекает из названия, разработчикам удалось улучшить визуальную однородность картинки, выводимой на экран, в горизонтальной плоскости. Вторично улучшена контрастность.

5) H-IPS A-TW (Horizontal IPS with Advanced True Wide Polarizer) . Заказчиком таких матриц стала корпорация NEC, сама матрица была разработана и поставлена специалистами корейской LG. По сути дела, это - панель модификации H-IPS, в которой используется цветовой фильтр True White (в переводе "настоящий белый"). Это приводит к увеличению углов обзора, поскольку белый цвет становится более реалистичным. Использование технологии Advanced True Wide Polarizer (технологически применяется поляризационная пленка) позволяет достигнуть еще больших углов обзора. В итоге получаем дисплей, который можно крутить без потери качества изображения, как только угодно.

6) IPS-Pro (IPS-Provectus) . Улучшения по большей части касаются уровня контрастности и цветовой гаммы.

7) S-IPS Pro (она же Advanced Fringe Field Switching) . Имеются случа использования в смартфонах, но большинство таких матриц интегрированы в планшетные компьютеры. В них используется более мощное электрическое поле, что позволяет достичь рекордных показателей в плане яркости. Вторично повышаются углы обзора и уменьшается расстояние между пикселями. Это делает картинку более однородной, стирая острые межпиксельные границы.

8) E-IPS (Enhanced IPS) . Снижено время отклика (составляет 5 миллисекунд), увеличен диагональный угол обзора. По сравнению со своими аналогами, матрицы E-IPS используют более выгодные в технологическом плане лампы подсветки. И дело не в том, что их производство обходится дешевле, а в том, что они обладают меньшим энергопотреблением.

9) P-IPS (Professional IPS) . Матрицы такого типа обладают 30-битной глубиной цвета, обладая способностью передавать до 1,07 млрд. оттенков.

1 0) AH-IPS (Advanced High Perfomance IPS) . Главные аргументы "за": повышенное разрешение картинки, увеличенное значение PPI, минимальное энергопотребление, высокая яркость и улучшенная цветопередача.

Кто производит матрицы?

Основными поставщиками матриц для смартфонов являются такие компании, как LG и Samsung. Им вторят Phillips, NEC, Dell. Однако бесспорным лидером в этой области так и остается компания LG. На сегодняшний день именно ее матрицы наиболее востребованы. Оно и понятно: фирма отвечает за качество. Нередко эти матрицы используются в аппаратах компании. При всем этом Samsung ориентируется на выпуск AMOLED и Super AMOLED для своих устройств. Phillips и Dell выпускают среднячковую продукцию. А вот NEC больше работает именно над проектированием и выпуском матриц для профессиональных компьютерных мониторов.

Помощь в выборе

Я рассказал о том, какие бывают типы матриц, как они работают и что оказывает влияние на цветовую передачу изображения, выводимого на дисплей смартфона. А теперь пришло время сделать конечные выводы, которые помогут пользователям определиться с покупкой аппаратов. Обратить внимание нужно на следующие показатели:

1) Тип матрицы . Наверное, самый главный показатель. Если наткнетесь на IPS, старайтесь по возможности уточнить ее модификацию. Неплохие AMOLED-матрицы предлагает компания Samsung в довольно дешевом ценовом сегменте (до 15 000 рублей).

2) Диагональ экрана . Да-да, она оказывает внияние на время автономной работы и производительность в целом. Сегодня стандартом считаются 5 дюймов, хотя переход на "лопаты" с диагоналями от 5.5 дюймов происходит активно. Помните: чем больше диагональ, тем больше расход энергии при прочих равных условиях, поэтому не забудьте проверить данные аккумулятора.

3) Разрешение экрана . Многим может это показаться странным, но разрешение экрана влияет на производительность. Чтобы понять смысл этого высказывания, достаточно вспомнить влияние разрешения на производительность тех же самых ПК в играх. Грубо говоря, устройству приходится тратить больше ресурсов на обработку пикселей, что может привести к подтормаживаниям. С другой стороны, рядовым пользователям хватит обыкновенного HD, а киноманам стоит призадуматься над покупкой устройства, обладающего Full HD. Смотреть дальше вряд ли стоит, поскольку для нашего глаза эта разница будет практически неуловимой.

4) Плотность пикселей . Для бюджетных устройств приемлемым показателем является цифра, попадающая в интервал от 250 до 300 пикселей на дюйм. У более дорогостоящих представителей этого класса цифра может подняться вплоть до 400 PPI. Ну а дальше идут уже предтоповые и топовые конфигурации. Не забываем, что плотность пикселей неразрывно связана с диагональю экрана и его разрешением. Из опыта могу сказать, что в повседневном использовании 5 дюймов с разрешением HD и плотностью чуть выше 300 PPI достаточно, но в VR-очках картинка будет ужасающе пиксельной.

5) Уровень подсветки . Учитывая то, что многие из нас проводят за экранами смартфонов уже едва ли не больше времени, чем перед дисплеями компьютеров и ноутбуков, это - важный параметр. Во-первых, здесь как никогда важно наличие антибликового покрытия или стекла (что, несомненно, лучше). Во-вторых, диапазон регулировки яркости должен быть таким, чтобы на солнце текст оставался читаемым, а в темноте при минимальном уровне подсветки экран не слепил глаза.

6) Технологии . Чем дороже устройство, тем больше в нем будет приятностей в виде самых разных технологий. Более подробно о том, какие технологии могут применяться при изготовлении экранов, мы уже говорили в специально отведенном разделе.

7) Защита экрана . Если у аппарата нет конструкционного защитного стекла, нужно бежать за наклеиваемым в магазин. Во-вторую очередь важно наличие олеофобного покрытия. Сейчас его довольно часто наносят на экраны в том числе и бюджетников. Один плюс олеофобки заключается в том, что по такому покрытию палец скользит ну просто как нож по маслу. Второй плюс, более важный - покрытие защищает экран от жирных разводов. Конечно, с течением времени даже нанесенное олеофобное покрытие начнет стираться.

Что нас ждет?

Компании активно работают не только над улучшением производительности смартфонов. Наивно думать, что аккумуляторы и процессоры являются приоритетным направлением. Нет, фирмы распределяют усилия равномерно. И одной из веток развития являются как раз экраны. Возможно, что в скором времени мы увидим в действии технологию QLED , основанную на использовании квантовых точек. Она позволит еще раз снизить энергопотребление, параллельно повысив уровень цветопередачи. Высокой остается вероятность создания гибких дисплеев. Но пока этого не произошло, будем опираться на итоги этой статьи.