1. Перехват пакетов.

Сниффер пакетов (от англ. sniff - нюхать) представляет собой прикладную программу, которая использует сетевой интерфейс, работающий в «неразборчивом» режиме (от англ. promiscuous mode). В этом режиме сетевой адаптер позволяет принимать все пакеты, полученные по физическим каналам, независимо от того кому они адресованы и отправляет приложению для обработки. В настоящее время снифферы используются в сетях на вполне законном основании. Они используются для диагностики неисправностей и анализа трафика. Однако из-за того, что некоторые сетевые приложения передают данные в текстовом формате (Telnet, FTP, SMTP, POP3 и т.д.), с помощью сниффера можно узнать полезную, а иногда и конфиденциальную информацию (например, имена пользователей и пароли).

Перехват логинов и паролей создает большую опасность. Если приложение работает в режиме «клиент-сервер», а аутентификационные данные передаются по сети в читаемом текстовом формате, то эту информацию с большой долей вероятности можно использовать для доступа к другим корпоративным или внешним ресурсам. В самом худшем случае злоумышленник получит доступ к пользовательскому ресурсу на системном уровне и с его помощью создает нового пользователя, которого можно в любой момент использовать для доступа в сеть и к ее ресурсам.

2. IP-спуфинг.

IP-спуфинг (от англ. spoof - мистификация) происходит в том случае, когда злоумышленник, находящийся внутри корпорации или вне ее, выдает себя за санкционированного пользователя. Этого можно достичь двумя способами:

а) использование IP-адреса, находящегося в пределах диапазона санкционированных IP-адресов;

Атаки IP-спуфинга часто являются начальным этапом для прочих атак. Классический пример -- атака DoS, которая начинается с чужого адреса, скрывающего истинную личность злоумышленника.

Как правило, IP-спуфинг ограничивается вставкой ложной информации или вредоносных команд в обычный поток данных, передаваемых между клиентским и серверным приложением или по каналу связи между одноранговыми устройствами. Для двусторонней связи злоумышленник должен изменить все таблицы маршрутизации, чтобы направить трафик на ложный IP-адрес.

Если же злоумышленник сумел поменять таблицы маршрутизации и направить сетевой трафик на ложный IP-адрес, то он получит все пакеты и сможет отвечать на них так, как будто является санкционированным пользователем.

3. Отказ в обслуживании.

Отказ в обслуживании (от англ. Denial of Service, сокращенно DoS), без сомнения, является наиболее известной формой сетевых атак. Кроме того, против атак такого типа труднее всего создать стопроцентную защиту. Для организации DoS требуется минимум знаний и умений. Тем не менее именно простота реализации и огромные масштабы причиняемого вреда привлекают злоумышленников к DoS-атакам.

Данная атака существенно отличается от других видов атак. Злоумышленники не имеют своей целью получение доступа к сети, а также получение из этой сети какой-либо информации, но атака DoS делает вашу сеть недоступной для обычного использования за счет превышения допустимых пределов функционирования сети, операционной системы или приложения. В случае использования некоторых серверных приложений (таких как Web-сервер или FTP-сервер) атаки DoS могут заключаться в том, чтобы занять все соединения, доступные для этих приложений, и держать их в занятом состоянии, не допуская обслуживания рядовых пользователей. В ходе атак DoS могут использоваться обычные интернет-протоколы, такие как TCP и ICMP.

Некоторые атаки сводят к нулю производительность сети, переполняя ее нежелательными и ненужными пакетами или сообщая ложную информацию о текущем состоянии сетевых ресурсов. Когда атака данного типа проводится одновременно через множество устройств, мы говорим о распределенной атаке DoS (от англ. distributed DoS, сокращенно DDoS).

4. Парольные атаки.

Злоумышленники могут проводить парольные атаки с помощью целого ряда методов, таких как простой перебор (brute force attack), троянский конь, IP-спуфинг и сниффинг пакетов. Не смотря на то, что логин и пароль зачастую можно получить при помощи IP-спуфинга и сниффинга пакетов, злоумышленники нередко пытаются подобрать пароль и логин, используя для этого многочисленные попытки доступа. Такой подход носит название простого перебора.

Для такой атаки используется специальная программа, которая пытается получить доступ к ресурсу общего пользования (например, к серверу). Если в результате злоумышленнику предоставляется доступ к ресурсам, то он получает его на правах пользователя, пароль которого был подобран. Если данный пользователь имеет значительные привилегии доступа, злоумышленник может создать себе «проход» для будущего доступа, который будет действовать, даже если пользователь изменит свой пароль.

5. Атаки типа «человек посередине».

Для атаки типа человек посередине (от англ. Man-in-the-Middle) злоумышленнику нужен доступ к пакетам, передаваемым по сети. Такой доступ ко всем пакетам, передаваемым от провайдера в любую другую сеть, может, к примеру, получить сотрудник этого провайдера. Для атак данного типа часто используются снифферы пакетов, транспортные протоколы и протоколы маршрутизации. Атаки проводятся с целью кражи информации, перехвата текущей сессии и получения доступа к частным сетевым ресурсам, для анализа трафика и получения информации о сети и ее пользователях, для проведения атак типа DoS, искажения передаваемых данных и ввода несанкционированной информации в сетевые сессии.

6. Атаки на уровне приложений.

Атаки на уровне приложений могут проводиться несколькими способами. Самый распространенный из них -- использование хорошо известных слабостей серверного программного обеспечения (sendmail, HTTP, FTP). Используя эти слабости, злоумышленники могут получить доступ к компьютеру от имени пользователя, работающего с приложением (обычно это бывает не простой пользователь, а привилегированный администратор с правами системного доступа). Сведения об атаках на уровне приложений широко публикуются, чтобы дать администраторам возможность исправить проблему с помощью коррекционных модулей (патчей). К сожалению, многие хакеры также имеют доступ к этим сведениям, что позволяет им совершенствоваться.

Главная проблема при атаках на уровне приложений заключается в том, что злоумышленники часто пользуются портами, которым разрешен проход через межсетевой экран (firewall). К примеру, злоумышленник, эксплуатирующий известную слабость Web-сервера, часто использует в ходе атаки ТСР порт 80. Поскольку web-сервер предоставляет пользователям Web-страницы, то межсетевой экран должен обеспечивать доступ к этому порту. С точки зрения межсетевого экрана атака рассматривается как стандартный трафик для порта 80.

7. Сетевая разведка.

Сетевой разведкой называется сбор информации о сети с помощью общедоступных данных и приложений. При подготовке атаки против какой-либо сети злоумышленник, как правило, пытается получить о ней как можно больше информации. Сетевая разведка проводится в форме запросов DNS, эхо-тестирования и сканирования портов. Запросы DNS помогают понять, кто владеет тем или иным доменом и какие адреса этому домену присвоены. Эхо-тестирование адресов, раскрытых с помощью DNS, позволяет увидеть, какие хосты реально работают в данной среде. Получив список хостов, злоумышленник использует средства сканирования портов, чтобы составить полный список услуг, поддерживаемых этими хостами. И наконец, он анализирует характеристики приложений, работающих на хостах. В результате он добывает информацию, которую можно использовать для взлома.

8. Злоупотребление доверием.

Собственно говоря, этот тип действий не является в полном смысле слова атакой или штурмом. Он представляет собой злонамеренное использование отношений доверия, существующих в сети. Классическим примером такого злоупотребления является ситуация в периферийной части корпоративной сети. В этом сегменте часто располагаются серверы DNS, SMTP и HTTP. Поскольку все они принадлежат к одному и тому же сегменту, взлом любого из них приводит к взлому всех остальных, так как эти серверы доверяют другим системам своей сети. Другим примером является установленная с внешней стороны межсетевого экрана система, имеющая отношения доверия с системой, установленной с его внутренней стороны. В случае взлома внешней системы злоумышленник может использовать отношения доверия для проникновения в систему, защищенную межсетевым экраном.

9. Переадресация портов.

Переадресация портов представляет собой разновидность злоупотребления доверием, когда взломанный хост используется для передачи через межсетевой экран трафика, который в противном случае был бы обязательно отбракован. Представим себе межсетевой экран с тремя интерфейсами, к каждому из которых подключен определенный хост. Внешний хост может подключаться к хосту общего доступа (DMZ), но не к тому, что установлен с внутренней стороны межсетевого экрана. Хост общего доступа может подключаться и к внутреннему, и к внешнему хосту. Если злоумышленник захватит хост общего доступа, он сможет установить на нем программное средство, перенаправляющее трафик с внешнего хоста прямо на внутренний. Хотя при этом не нарушается ни одно правило, действующее на экране, внешний хост в результате переадресации получает прямой доступ к защищенному хосту. Примером приложения, которое может предоставить такой доступ, является netcat.

10. Несанкционированный доступ.

Несанкционированный доступ не может быть выделен в отдельный тип атаки, поскольку большинство сетевых атак проводятся именно ради получения несанкционированного доступа. Чтобы подобрать логин Тelnet, злоумышленник должен сначала получить подсказку Тelnet на своей системе. После подключения к порту Тelnet на экране появляется сообщение «authorization required to use this resource» («Для пользования этим ресурсом нужна авторизация»). Если после этого злоумышленник продолжит попытки доступа, они будут считаться несанкционированными. Источник таких атак может находиться как внутри сети, так и снаружи.

11. Вирусы и приложения типа «троянский конь»

Рабочие станции конечных пользователей очень уязвимы для вирусов и троянских коней. Вирусами называются вредоносные программы, которые внедряются в другие программы для выполнения определенной нежелательной функции на рабочей станции конечного пользователя. В качестве примера можно привести вирус, который прописывается в файле command.com (главном интерпретаторе систем Windows) и стирает другие файлы, а также заражает все другие найденные им версии command.com.

Троянский конь -- это не программная вставка, а настоящая программа, которая на первый взгляд кажется полезным приложением, а на деле исполняет вредную роль. Примером типичного троянского коня является программа, которая выглядит, как простая игра для рабочей станции пользователя. Однако пока пользователь играет в игру, программа отправляет свою копию по электронной почте каждому абоненту, занесенному в адресную книгу этого пользователя. Все абоненты получают по почте игру, вызывая ее дальнейшее распространение .

Из класса сетевых атак можно выделить атаки, которые вызывают подозрительное, аномальное поведение сетевого трафика в корпоративной сети. Это так называемые сетевые аномалии. Сетевые аномалии можно также проклассифицировать. Их можно разделить на две основные группы: программно-аппаратные отклонения и проблемы безопасности (Рис. 1.2.1.)

1. Программно-аппаратные отклонения.

Ошибки программного обеспечения компонентов информационной системы могут повлечь за собой перевод в нештатный режим с последующим прекращением предоставления сервисов.

Ошибки конфигурирования переводят функциональные возможности компонентов информационной системы в несоответствие штатным проектным параметрам, что нарушает общую работоспособность.

Нарушения производительности влекут за собой выход параметров информационной сисетмы за пределы расчетных значений, что сопровождается нарушением обеспечения предоставления сервисов.

Аппаратные неисправности могут повлечь за собой как полный выход из строя отдельных компонентов информационной системы, так и деградирующее влияние отдельной подсистемы на весь комплекс.

2. Нарушения безопасности.

Сетевое сканирование (network scan) производится с целью анализа топологии сети и обнаружения доступных для атаки сервисов. В процессе сканирования производится попытка соединения с сетевыми сервисами методом обращения по определенному порту. В случае открытого сканирования сканер выполняет трехстороннюю процедуру квитирования, а в случае закрытого (stealth) - не завершает соединение. Так как при сканировании отдельного хоста происходит перебор сервисов (портов), то данная аномалия характеризуется попытками обращения с одного IP адреса сканера на определенный IP адрес по множеству портов. Однако, чаще всего сканированию подвергаются целые подсети, что выражается в наличии в атакованной сети множества пакетов с одного IP адреса сканера по множеству IP адресов исследуемой подсети, иногда даже методом последовательного перебора. Наиболее известными сетевыми сканерами являются: nmap, ISS, satan, strobe, xscan и другие.

Анализаторы трафика или снифферы предназначены для перехвата и анализа сетевого трафика. В простейшем случае для этого производится перевод сетевого адаптера аппаратного комплекса в прослушивающий режим и потоки данных в сегменте, к которому он подключен, становятся доступны для дальнейшего изучения. Так как многие прикладные программы используют протоколы, передающие информацию в открытом, незашифрованном виде, работа снифферов резко снижает уровень безопасности. Отметим, что выраженных аномалий в работе сети снифферы не вызывают. Наиболее известными снифферами являются: tcpdump, ethereal, sniffit, Microsoft network monitor, netxray, lan explorer.

В компьютерной безопасности термин уязвимость (vulnerability) используется для обозначения слабозащищенного от несанкционированного воздействия компонента информационной системы. Уязвимость может являться результатом ошибок проектирования, программирования или конфигурирования. Уязвимость может существовать только теоретически или иметь эксплуатирующую программную реализацию - эксплоит. В сетевом аспекте уязвимостям могут быть подвержены информационные ресурсы, такие как операционные системы и ПО сервисов.

Вирусная сетевая активность является результатом попыток распространения компьютерных вирусов и червей, используя сетевые ресурсы. Чаще всего компьютерный вирус эксплуатирует какую-нибудь единственную уязвимость в сетевой прикладной службе, поэтому вирусный трафик характеризуется наличием множества обращений с одного зараженного IP адреса ко многим IP адресам по определенному порту, соответствующему потенциально уязвимому сервису.

В настоящее время DDoS — один из наиболее доступных и распространенных видов сетевых атак. Несколько недель назад были опубликованы результаты исследований о распространенности DDoS, проведенных компаниями Arbor Networks, Verisign Inc.

Результаты исследований впечатляют:
Каждый день злоумышленники проводят более 2000 DDoS-атак;
Стоимость недельной атаки на средней величины ЦОД составляет всего 150 долларов США;
Более половины участников опроса испытывали проблемы из-за DDoS;
Десятая часть участников опроса ответила, что их компании страдали от DDoS-атак более шести раз за год;
Около половины компаний испытывали проблемы из-за DDoS, время средней атаки — около 5 часов;
Атаки такого типа являются одной из основных причин остановки и простоя серверов.

Основные виды DDoS-атак

В общем-то, разновидностей DDoS довольно много, и ниже мы постарались перечислить большинство типовых атак, с описанием принципа действия кажого типа атаки.

UDP флуд

Один из наиболее действенных, и в то же время, простых видов атак. Используется UDP протокол, где не требуется установление сессии с отправкой любого типа ответа. В случайном порядке злоумышленник атакует порты сервера, отсылая огромное количество пакетов данных. В результате машина начинает проверять, используется ли порт, на который приходит пакет, каким-либо приложением. А поскольку таких пакетов — масса, то машина любой мощности просто не справляется с задачей. Как результат — все ресурсы машины «съедены», и сервер «ложится».

Наиболее простой способ защиты от такого типа атак — это блокирование UDP трафика.

ICMP флуд

Злоумышленник постоянно пингует сервер жертвы, в ходе чего последний постоянно отдает ответы. Пингов огромное количество, и, как результат — съедаются ресурсы сервера, и машина становится недоступной.

В качестве меры защиты можно использовать блокировку ICMP-запросов, на уровне брандмауэра. К сожалению, в таком случае пинговать машину не получится по понятным причинам.

SYN флуд

В этом типе атаки используется отправка SYN-пакета серверу жертвы. Как результат — сервер отвечает пакетом SYN-ACK, а машина злоумышленника должна отправить ACK-ответ, но он не отправляется. Результат — открытие и подвисание огромного количества соединений, которые закрываются только по истечению таймаута.

При превышении граничного количества запросов/ответов сервер жертвы перестает принимать пакеты любого типа, и становится недоступным.

MAC флуд

Необычный тип атаки, в котором объектом становится сетевое оборудование многих типов. Злоумышленник начинает отправлять большое количество Ethernet-пакетов с совершенно различными MAC-адресами. Как результат — свитч начинает резервировать под каждый из пакетов определенное количество ресурсов, и если пакетов много, то свитч выделяет все доступные запросы, и подвисает. Худший вариант — сбой таблицы маршрутизации.

Ping of Death

Сейчас этот тип атак не является сколько-нибудь серьезной проблемой, хотя раньше это был распространенный вариант атаки. Смысл такого типа атаки — переполнение буфера памяти из-за превышения максимально доступного размера IP пакета, и как результат — отказ сервера и сетевого оборудования от обслуживания любого типа пакетов.

Slowloris

Сфокусированная атака такого типа позволяет малыми силами добиться крупных результатов. Другими словами, используя не самый мощный сервер, можно «положить» гораздо более производительное оборудование. При этом не требуется задействовать другие протоколы. При таком типе атак сервер злоумышленника открывает максимальное количество НТТР-соединений, и старается держать их открытыми также как можно дольше.

Само собой, количество подключений на сервере, подверженному атаке, заканчивается, и полезные запросы перестают приниматься и обрабатываться.

Отражённые атаки

Необычный тип атаки, когда сервер злоумышленника отправляет пакеты с фальшивым IP отправителя, причем отправка идет по максимально возможному количеству машин. Все затронутые такими действиями сервера отправляют ответ на укзанный в пакете IP, в результате чего получатель не справляется с нагрузкой и «подвисает». При этом производительность сервера атакующего может быть в 10 раз ниже планируемой мощности атаки. Сервер, рассылающий 100 Мбит/сек ложных запросов, может полностью положить гигабитный канал сервера жертвы.

Деградация

При таком типе атаки сервер злоумышленника симулирует действия реального человека или целой аудитории. Как пример самого простого варианта — можно отсылать запросы для одной и той же страницы ресурса, причем делать это тысячи раз. Наиболее простой способ решения проблемы — временное сообщение об ошибки с блокированием атакуемой страницы.

Более сложный тип атаки — запрос большого количества различных ресурсов сервера, включая медиафайлы, страницы и все прочее, в результате чего сервер жерты перестает работать.

Сложные атаки такого типа довольно сложно отфильтровать, как результат — приходится использовать специализированные программы и сервисы.

Атака нулевого дня

Так называют атаки, где используются неизвестные доселе уязвимости/слабые места сервиса. Для борьбы с проблемой необходимо изучить такой тип атаки, чтобы можно было что-то предпринять.

Вывод: наиболее сложным типом атаки являются комбинированные, где используются различные виды DDoS. Чем сложнее комбинация, тем сложнее от нее защититься. Общей проблемой для DDoS, вернее, для жертв DDoS, является общедоступность такого типа атак. В Сети есть большое количество приложений и сервисов, позволяющих бесплатно или почти бесплатно осуществлять мощнейшие атаки.

Kaspersky Internet Security защищает ваш компьютер от сетевых атак.

Сетевая атака – это вторжение в операционную систему удаленного компьютера. Злоумышленники предпринимают сетевые атаки, чтобы захватить управление над операционной системой, привести ее к отказу в обслуживании или получить доступ к защищенной информации.

Сетевыми атаками называют вредоносные действия, которые выполняют сами злоумышленники (такие как сканирование портов, подбор паролей), а также действия, которые выполняют вредоносные программы, установленные на атакованном компьютере (такие как передача защищенной информации злоумышленнику). К вредоносным программам, участвующим в сетевых атаках, относят некоторые троянские программы, инструменты DoS-атак, вредоносные скрипты и сетевые черви.

Сетевые атаки можно условно разделить на следующие типы:

  • Сканирование портов . Этот вид сетевых атак обычно является подготовительным этапом более опасной сетевой атаки. Злоумышленник сканирует UDP- и TCP-порты, используемые сетевыми службами на атакуемом компьютере, и определяет степень уязвимости атакуемого компьютера перед более опасными видами сетевых атак. Сканирование портов также позволяет злоумышленнику определить операционную систему на атакуемом компьютере и выбрать подходящие для нее сетевые атаки.
  • DoS-атаки , или сетевые атаки, вызывающие отказ в обслуживании. Это сетевые атаки, в результате которых атакуемая операционная система становится нестабильной или полностью неработоспособной.

    Существуют следующие основные типы DoS-атак:

    • Отправка на удаленный компьютер специально сформированных сетевых пакетов, не ожидаемых этим компьютером, которые вызывают сбои в работе операционной системы или ее остановку.
    • Отправка на удаленный компьютер большого количества сетевых пакетов за короткий период времени. Все ресурсы атакуемого компьютера используются для обработки отправленных злоумышленником сетевых пакетов, из-за чего компьютер перестает выполнять свои функции.
  • Сетевые атаки-вторжения . Это сетевые атаки, целью которых является "захват" операционной системы атакуемого компьютера. Это самый опасный вид сетевых атак, поскольку в случае ее успешного завершения операционная система полностью переходит под контроль злоумышленника.

    Этот вид сетевых атак применяется в случаях, когда злоумышленнику требуется получить конфиденциальные данные с удаленного компьютера (например, номера банковских карт или пароли) либо использовать удаленный компьютер в своих целях (например, атаковать с этого компьютера другие компьютеры) без ведома пользователя.

  1. На закладке Защита в блоке Защита от сетевых атак снимите флажок .

Вы также можете включить Защиту от сетевых атак в Центре защиты . Отключение защиты компьютера или компонентов защиты значительно повышает риск заражения компьютера, поэтому информация об отключении защиты отображается в Центре защиты.

Важно: Если вы выключили Защиту от сетевых атак, то после перезапуска Kaspersky Internet Security или перезагрузки операционной системы она не включится автоматически и вам потребуется включить ее вручную.

При обнаружении опасной сетевой активности Kaspersky Internet Security автоматически добавляет IP-адрес атакующего компьютера в список заблокированных компьютеров, если этот компьютер не добавлен в список доверенных компьютеров.

  1. В строке меню нажмите на значок программы.
  2. В открывшемся меню выберите пункт Настройки .

    Откроется окно настройки программы.

  3. На закладке Защита в блоке Защита от сетевых атак установите флажок Включить Защиту от сетевых атак .
  4. Нажмите на кнопку Исключения .

    Откроется окно со списком доверенных компьютеров и списком заблокированных компьютеров.

  5. Откройте закладку Заблокированные компьютеры .
  6. Если вы уверены, что заблокированный компьютер не представляет угрозы, выберите его IP-адрес в списке и нажмите на кнопку Разблокировать .

    Откроется окно подтверждения.

  7. В окне подтверждения выполните одно из следующих действий:
    • Если вы хотите разблокировать компьютер, нажмите на кнопку Разблокировать .

      Kaspersky Internet Security разблокирует IP-адрес.

    • Если вы хотите, чтобы Kaspersky Internet Security никогда не блокировал выбранный IP-адрес, нажмите на кнопку Разблокировать и добавить к исключениям .

      Kaspersky Internet Security разблокирует IP-адрес и добавит его в список доверенных компьютеров.

  8. Нажмите на кнопку Сохранить , чтобы сохранить изменения.

Вы можете сформировать список доверенных компьютеров. Kaspersky Internet Security не блокирует IP-адреса этих компьютеров автоматически при обнаружении исходящей с них опасной сетевой активности.

При обнаружении сетевой атаки Kaspersky Internet Security сохраняет информацию о ней в отчете.

  1. Откройте меню Защита .
  2. Выберите пункт Отчеты .

    Откроется окно отчетов Kaspersky Internet Security.

  3. Откройте закладку Защита от сетевых атак .

Примечание: Если компонент Защита от сетевых атак завершил работу с ошибкой, вы можете просмотреть отчет и попробовать перезапустить компонент. Если вам не удается решить проблему, обратитесь в Службу технической поддержки.

Порядок действий при обнаружении сетевых атак.

1. Классификация сетевых атак

1.1. Снифферы пакетов

Сниффер пакетов представляет собой прикладную программу, которая использует сетевую карту, работающую в режиме promiscuous mode (в этом режиме все пакеты, полученные по физическим каналам, сетевой адаптер отправляет приложению для обработки ). При этом сниффер перехватывает все сетевые пакеты, которые передаются через определенный домен.

1.2. IP-спуфинг

IP-спуфинг происходит, когда хакер, находящийся внутри системы или вне ее выдает себя за санкционированного пользователя. Это можно сделать двумя способами. Во-первых, хакер может воспользоваться IP-адресом, находящимся в пределах диапазона санкционированных IP-адресов, или авторизованным внешним адресом, которому разрешается доступ к определенным сетевым ресурсам. Атаки IP-спуфинга часто являются отправной точкой для прочих атак. Классический пример — атака DoS, которая начинается с чужого адреса, скрывающего истинную личность хакера.

Обычно IP-спуфинг ограничивается вставкой ложной информации или вредоносных команд в обычный поток данных, передаваемых между клиентским и серверным приложением или по каналу связи между одноранговыми устройствами. Для двусторонней связи хакер должен изменить все таблицы маршрутизации, чтобы направить трафик на ложный IP-адрес. Некоторые хакеры, однако, даже не пытаются получить ответ от приложений. Если главная задача состоит в получении от системы важного файла, ответы приложений не имеют значения.

Если же хакеру удается поменять таблицы маршрутизации и направить трафик на ложный IP-адрес, хакер получит все пакеты и сможет отвечать на них так, будто он является санкционированным пользователем.

1.3. Отказ в обслуживании (Denial of Service — DoS )

DoS является наиболее известной формой хакерских атак. Против атак такого типа труднее всего создать стопроцентную защиту.

Наиболее известные разновидности DoS:

  • TCP SYN Flood Ping of Death Tribe Flood Network (TFN );
  • Tribe Flood Network 2000 (TFN2K );
  • Trinco;
  • Stacheldracht;
  • Trinity.

Атаки DoS отличаются от атак других типов. Они не нацелены на получение доступа к сети или на получение из этой сети какой-либо информации. Атака DoS делает сеть недоступной для обычного использования за счет превышения допустимых пределов функционирования сети, операционной системы или приложения.

В случае использования некоторых серверных приложений (таких как Web-сервер или FTP-сервер ) атаки DoS могут заключаться в том, чтобы занять все соединения, доступные для этих приложений и держать их в занятом состоянии, не допуская обслуживания обычных пользователей. В ходе атак DoS могут использоваться обычные Интернет-протоколы, такие как TCP и ICMP (Internet Control Message Protocol ). Большинство атак DoS опирается не на программные ошибки или бреши в системе безопасности, а на общие слабости системной архитектуры. Некоторые атаки сводят к нулю производительность сети, переполняя ее нежелательными и ненужными пакетами или сообщая ложную информацию о текущем состоянии сетевых ресурсов. Этот тип атак трудно предотвратить, так как для этого требуется координация действий с провайдером. Если трафик, предназначенный для переполнения вашей сети, не остановить у провайдера, то на входе в сеть вы это сделать уже невозможно, потому что вся полоса пропускания будет занята. Когда атака этого типа проводится одновременно через множество устройств, атака является распределенной DoS (DDoS — distributed DoS ).

1.4. Парольные атаки

Хакеры могут проводить парольные атаки с помощью целого ряда методов, таких как простой перебор (brute force attack ), троянский конь, IP-спуфинг и сниффинг пакетов. Хотя логин и пароль часто можно получить при помощи IP-спуфинга и снифинга пакетов, хакеры часто пытаются подобрать пароль и логин, используя для этого многочисленные попытки доступа. Такой подход носит название простого перебора (brute force attack ). Часто для такой атаки используется специальная программа, которая пытается получить доступ к ресурсу общего пользования (например, к серверу ). Если в результате хакер получает доступ к ресурсам, он получает его на правах обычного пользователя, пароль которого был подобран. Если этот пользователь имеет значительные привилегии доступа, хакер может создать для себя «проход» для будущего доступа, который будет действовать даже если пользователь изменит свой пароль и логин.

Еще одна проблема возникает, когда пользователи применяют один и тот же (пусть даже очень хороший ) пароль для доступа ко многим системам: корпоративной, персональной и системам Интернет. Поскольку устойчивость пароля равна устойчивости самого слабого хоста, хакер, узнавший пароль через этот хост, получает доступ ко всем остальным системам, где используется тот же пароль.

1.5. Атаки типа Man-in-the-Middle

Для атаки типа Man-in-the-Middle хакеру нужен доступ к пакетам, передаваемым по сети. Такой доступ ко всем пакетам, передаваемым от провайдера в любую другую сеть, может, к примеру, получить сотрудник этого провайдера. Для атак этого типа часто используются снифферы пакетов, транспортные протоколы и протоколы маршрутизации. Атаки проводятся с целью кражи информации, перехвата текущей сессии и получения доступа к частным сетевым ресурсам, для анализа трафика и получения информации о сети и ее пользователях, для проведения атак типа DoS, искажения передаваемых данных и ввода несанкционированной информации в сетевые сессии.

1.6. Атаки на уровне приложений

Атаки на уровне приложений могут проводиться несколькими способами. Самый распространенный из них состоит в использовании слабостей серверного программного обеспечения (sendmail, HTTP, FTP ). Используя эти слабости, хакеры могут получить доступ к компьютеру от имени пользователя, работающего с приложением (обычно это бывает не простой пользователь, а привилегированный администратор с правами системного доступа ). Сведения об атаках на уровне приложений широко публикуются, чтобы дать возможность администраторам исправить проблему с помощью коррекционных модулей (патчей ). Главная проблема с атаками на уровне приложений состоит в том, что они часто пользуются портами, которым разрешен проход через межсетевой экран. К примеру, хакер, эксплуатирующий известную слабость Web-сервера, часто использует в ходе атаки ТСР порт 80. Поскольку Web-сервер предоставляет пользователям Web-страницы, межсетевой экран должен предоставлять доступ к этому порту. С точки зрения межсетевого экрана, атака рассматривается как стандартный трафик для порта 80.

1.7. Сетевая разведка

Сетевой разведкой называется сбор информации о сети с помощью общедоступных данных и приложений. При подготовке атаки против какой-либо сети хакер, как правило, пытается получить о ней как можно больше информации. Сетевая разведка проводится в форме запросов DNS, эхо-тестирования (ping sweep) и сканирования портов. Запросы DNS помогают понять, кто владеет тем или иным доменом и какие адреса этому домену присвоены. Эхо-тестирование (ping sweep ) адресов, раскрытых с помощью DNS, позволяет увидеть, какие хосты реально работают в данной среде. Получив список хостов, хакер использует средства сканирования портов, чтобы составить полный список услуг, поддерживаемых этими хостами. И, наконец, хакер анализирует характеристики приложений, работающих на хостах. В результате добывается информация, которую можно использовать для взлома.

1.8. Злоупотребление доверием

Этот тип действий не является «атакой» или «штурмом» . Он представляет собой злонамеренное использование отношений доверия, существующих в сети. Примером является система, установленная с внешней стороны межсетевого экрана, имеющая отношения доверия с системой, установленной с его внутренней стороны. В случае взлома внешней системы, хакер может использовать отношения доверия для проникновения в систему, защищенную межсетевым экраном.

1.9. Переадресация портов

Переадресация портов представляет собой разновидность злоупотребления доверием, когда взломанный хост используется для передачи через межсетевой экран трафика, который в противном случае был бы обязательно отбракован. Примером приложения, которое может предоставить такой доступ, является netcat.

1.10. Несанкционированный доступ

Несанкционированный доступ не может считаться отдельным типом атаки. Большинство сетевых атак проводятся ради получения несанкционированного доступа. Чтобы подобрать логин telnet, хакер должен сначала получить подсказку telnet на своей системе. После подключения к порту telnet на экране появляется сообщение «authorization required to use this resource» (для пользования этим ресурсов нужна авторизация ). Если после этого хакер продолжит попытки доступа, они будут считаться «несанкционированными» . Источник таких атак может находиться как внутри сети, так и снаружи.

1.11. Вирусы и приложения типа «троянский конь»

Рабочие станции клиентов очень уязвимы для вирусов и троянских коней. «Троянский конь» — это не программная вставка, а настоящая программа, которая выглядит как полезное приложение, а на деле выполняет вредную роль.

2. Методы противодействия сетевым атакам

2.1. Смягчить угрозу сниффинга пакетов можно с помощью следующих средств:

2.1.1. Аутентификация - Сильные средства аутентификации являются первым способом защиты от сниффинга пакетов. Под «сильным» мы понимаем такой метод аутентификации, который трудно обойти. Примером такой аутентификации являются однократные пароли (OTP — One-Time Passwords ). ОТР — это технология двухфакторной аутентификации, при которой происходит сочетание того, что у вас есть, с тем, что вы знаете. Под «карточкой» (token ) понимается аппаратное или программное средство, генерирующее (по случайному принципу ) уникальный одномоментный однократный пароль. Если хакер узнает этот пароль с помощью сниффера, эта информация будет бесполезной, потому что в этот момент пароль уже будет использован и выведен из употребления. Этот способ борьбы со сниффингом эффективен только для борьбы с перехватом паролей.

2.1.2. Коммутируемая инфраструктура - Еще одним способом борьбы со сниффингом пакетов в сетевой среде является создание коммутируемой инфраструктуры, при этом хакеры могут получить доступ только к трафику, поступающему на тот порт, к которому они подключены. Коммутируемая инфраструктуры не ликвидирует угрозу сниффинга, но заметно снижает ее остроту.

2.1.3. Анти-снифферы - Третий способ борьбы со сниффингом заключается в установке аппаратных или программных средств, распознающих снифферы, работающие в вашей сети. Эти средства не могут полностью ликвидировать угрозу, но, как и многие другие средства сетевой безопасности, они включаются в общую систему защиты. Так называемые «анти-снифферы» измеряют время реагирования хостов и определяют, не приходится ли хостам обрабатывать «лишний» трафик.

2.1.4. Криптография - Самый эффективный способ борьбы со сниффингом пакетов не предотвращает перехвата и не распознает работу снифферов, но делает эту работу бесполезной. Если канал связи является криптографически защищенным, это значит, что хакер перехватывает не сообщение, а зашифрованный текст (то есть непонятную последовательность битов).

2.2. Угрозу спуфинга можно ослабить (но не устранить) с помощью следующих мер:

2.2.1. Контроль доступа - Самый простой способ предотвращения IP-спуфинга состоит в правильной настройке управления доступом. Чтобы снизить эффективность IP-спуфигна, контроль доступа настраивается на отсечение любого трафика, поступающего из внешней сети с исходным адресом, который должен располагаться внутри вашей сети. Это помогает бороться с IP-спуфингом, когда санкционированными являются только внутренние адреса. Если санкционированными являются и некоторые адреса внешней сети, данный метод становится неэффективным.

2.2.2. Фильтрация RFC 2827 - пресечение попытки спуфинга чужих сетей пользователями корпоративной сети. Для этого необходимо отбраковывать любой исходящий трафик, исходный адрес которого не является одним из IP-адресов Банка. Этот тип фильтрации, известный под названием «RFC 2827», может выполнять и провайдер (ISP ). В результате отбраковывается весь трафик, который не имеет исходного адреса, ожидаемого на определенном интерфейсе.

2.2.3. Наиболее эффективный метод борьбы с IP-спуфингом тот же, что и в случае со сниффингом пакетов: необходимо сделать атаку абсолютно неэффективной. IP-спуфинг может функционировать только при условии, что аутентификация происходит на базе IP-адресов. Поэтому внедрение дополнительных методов аутентификации делает этот вид атак бесполезными. Лучшим видом дополнительной аутентификации является криптографическая. Если она невозможна, хорошие результаты может дать двухфакторная аутентификация с использованием одноразовых паролей.

2.3. Угроза атак типа DoS может снижаться следующими способами:

2.3.1. Функции анти-спуфинга - правильная конфигурация функций анти-спуфинга на ваших маршрутизаторах и межсетевых экранах поможет снизить риск DoS. Эти функции, как минимум, должны включать фильтрацию RFC 2827. Если хакер не сможет замаскировать свою истинную личность, он вряд ли решится провести атаку.

2.3.2. Функции анти-DoS - правильная конфигурация функций анти-DoS на маршрутизаторах и межсетевых экранах может ограничить эффективность атак. Эти функции ограничивают число полуоткрытых каналов в любой момент времени.

2.3.3. Ограничение объема трафика (traffic rate limiting ) – договор с провайдером (ISP ) об ограничении объем трафика. Этот тип фильтрации позволяет ограничить объем некритического трафика, проходящего сети. Обычным примером является ограничение объемов трафика ICMP, который используется только для диагностических целей. Атаки (D ) DoS часто используют ICMP.

2.3.4. Блокирование IP адресов – после анализа DoS атаки и выявления диапазона IP адресов, с которых осуществляется атака, обратиться к провайдеру для их блокировки.

2.4. Парольных атак можно избежать, если не пользоваться паролями в текстовой форме. Одноразовые пароли и/или криптографическая аутентификация могут практически свести на нет угрозу таких атак. Не все приложения, хосты и устройства поддерживают указанные выше методы аутентификации.

При использовании обычных паролей, необходимо придумать такой пароль, который было бы трудно подобрать. Минимальная длина пароля должна быть не менее восьми символов. Пароль должен включать символы верхнего регистра, цифры и специальные символы (#, %, $ и т.д. ). Лучшие пароли трудно подобрать и трудно запомнить, что вынуждает пользователей записывать пароли на бумаге.

2.5. Эффективно бороться с атаками типа Man-in-the-Middle можно только с помощью криптографии. Если хакер перехватит данные зашифрованной сессии, у него на экране появится не перехваченное сообщение, а бессмысленный набор символов. Заметим, что, если хакер получит информацию о криптографической сессии (например, ключ сессии ), это может сделать возможной атаку Man-in-the-Middle даже в зашифрованной среде.

2.6. Полностью исключить атаки на уровне приложений невозможно. Хакеры постоянно открывают и публикуют в Интернете все новые уязвимые места прикладных программ. Самое главное — хорошее системное администрирование.

Меры, которые можно предпринять, чтобы снизить уязвимость для атак этого типа:

  • чтение и/или анализ лог-файлов операционных систем и сетевые лог-файлов с помощью специальных аналитических приложений;
  • своевременное обновление версий операционных систем и приложений и установка последних коррекционных модулей (патчей );
  • использование систем распознавания атак (IDS ).

2.7. Полностью избавиться от сетевой разведки невозможно. Если отключить эхо ICMP и эхо-ответ на периферийных маршрутизаторах, вы избавитесь от эхо-тестирования, но потеряете данные, необходимые для диагностики сетевых сбоев. Кроме того, сканировать порты можно и без предварительного эхо-тестирования. Просто этой займет больше времени, так как сканировать придется и несуществующие IP-адреса. Системы IDS на уровне сети и хостов обычно хорошо справляются с задачей уведомления администратора о ведущейся сетевой разведке, что позволяет лучше подготовиться к предстоящей атаке и оповестить провайдера (ISP ), в сети которого установлена система, проявляющая чрезмерное любопытство.

2.8. Риск злоупотребления доверием можно снизить за счет более жесткого контроля уровней доверия в пределах своей сети. Системы, расположенные с внешней стороны межсетевого экрана, никогда не должны пользоваться абсолютным доверием со стороны защищенных экраном систем. Отношения доверия должны ограничиваться определенными протоколами и, по возможности, аутентифицироваться не только по IP-адресам, но и по другим параметрам.

2.9. Основным способом борьбы с переадресацией портов является использование надежных моделей доверия (см. п. 2.8 ). Кроме того, помешать хакеру установить на хосте свои программные средства может хост-система IDS (HIDS ).

2.10. Способы борьбы с несанкционированным доступом достаточно просты. Главным здесь является сокращение или полная ликвидация возможностей хакера по получению доступа к системе с помощью несанкционированного протокола. В качестве примера можно рассмотреть недопущение хакерского доступа к порту telnet на сервере, который предоставляет Web-услуги внешним пользователям. Не имея доступа к этому порту, хакер не сможет его атаковать. Что же касается межсетевого экрана, то его основной задачей является предотвращение самых простых попыток несанкционированного доступа.

2.11. Борьба с вирусами и «троянскими конями» ведется с помощью эффективного антивирусного программного обеспечения, работающего на пользовательском уровне и на уровне сети. Антивирусные средства обнаруживают большинство вирусов и «троянских коней» и пресекают их распространение.

3. Алгоритм действий при обнаружении сетевых атак

3.1. Большая часть сетевых атак блокируется автоматически установленными средствами защиты информации (межсетевые экраны, средства доверенной загрузки, сетевые маршрутизаторы, антивирусные средства и т.п. ).

3.2. К атакам, требующим вмешательства персонала для их блокировки или снижения тяжести последствий относятся атаки типа DoS.

3.2.1. Выявление DoS атаки осуществляется путем анализа сетевого трафика. Начало атаки характеризуется «забиванием » каналов связи с помощью ресурсоемких пакетов с поддельными адресами. Подобная атака на сайт интернет-банкинга усложняет доступ легитимных пользователей и веб-ресурс может стать недоступным.

3.2.2. В случае выявления атаки системный администратор выполняет следующие действия:

  • осуществляет ручное переключение маршрутизатора на резервный канал и обратно с целью выявления менее загруженного канала (канала с более широкой пропускной способностью);
  • выявляет диапазон IP – адресов, с которых осуществляется атака;
  • отправляет провайдеру заявку на блокировку IP адресов из указанного диапазона.

3.3. DoS атака, как правило, используется для маскировки успешно проведенной атаки на ресурсы клиента с целью затруднить ее обнаружение. Поэтому при выявлении DoS атаки необходимо провести анализ последних транзакций с целью выявления необычных операций, осуществить (при возможности) их блокировку, связаться с клиентами по альтернативному каналу для подтверждения проведенных транзакций.

3.4. В случае получения от клиента информации о несанкционированных действиях осуществляется фиксация всех имеющихся доказательств, проводится внутреннее расследование и подается заявление в правоохранительные органы.

Скачать ZIP файл (24151)

Пригодились документы - поставь «лайк»:

переполнение буферов, являются составной частью многих видов вредоносных атак. Атаки переполнения имеют, в свою очередь , много разновидностей. Одна из наиболее опасных предполагает ввод в диалоговое окно , помимо текста, присоединенного к нему исполняемого кода. Такой ввод может привести к записи этого кода поверх исполняемой программы, что рано или поздно вызовет его исполнение . Последствия нетрудно себе представить.

"Пассивные" атаки с помощью, например, sniffer , особенно опасны, так как, во-первых, практически не детектируемы, во-вторых, предпринимаются из локальной сети (внешний Firewall бессилен).

Вирусы - вредоносные программы, способные к самокопированию и к саморассылке. Еще в декабре 1994 года я получил предупреждение о распространении сетевых вирусов (good times и xxx-1) по Интернет :

С момента создания до момента обнаружения вируса проходят часы, дни, недели, а иногда и месяцы. Это зависит от того, насколько быстро проявляются последствия заражения. Чем это время больше, тем большее число ЭВМ оказывается заражено. После выявления факта заражения и распространения новой разновидности вируса требуется от пары часов (например, для Email_Worm.Win32.Bagle.bj) до трех недель (W32.Netsky.N@mm) на выявление сигнатуры, создания противоядия и включения его сигнатуры в базу данных противовирусной программы. Временная диаграмма жизненного цикла вируса представлена на рис. 12.1 (" Network Security ", v.2005, Issue 6, June 2005, p 16-18). Только за 2004 год зарегистрировано 10000 новых сигнатур вирусов . Червь Blaster заразил 90% машин за 10 минут. За это время антивирусная группа должна обнаружить объект , квалифицировать и разработать средство противодействия. Понятно, что это нереально. Так что антивирусная программа является не столько средством противодействия, сколько успокоительным . Эти же соображения справедливы и для всех других видов атак. Когда сигнатура атаки становится известной, сама атака обычно не опасна, так как уже выработаны средства противодействия и уязвимость перекрыта. Именно по этой причине такое внимание уделяется системе управления программными обновлениями (пэтчами).

Некоторые вирусы и черви имеют встроенные SMTP-программы, предназначенные для их рассылки, и люки для беспрепятственного проникновения в зараженную машину. Новейшие версии снабжены средствами подавления активности других вирусов или червей. Таким образом могут создаваться целые сети зараженных машин (BotNet ), готовых по команде начать, например, DDoS -атаку. Для управления такими машинами-зомби может использоваться протокол IRC ( Internet Relay Chart ). Эта система рассылки сообщений поддерживается большим числом серверов и поэтому такой канал обычно трудно отследить и запротоколировать. Этому способствует также то, что большинство систем более тщательно контролируют входной трафик, а не выходной. Следует иметь в виду, что зараженная машина может служить, помимо DoS-атак , для сканирования других ЭВМ и рассылки SPAM , для хранения нелегальных программных продуктов, для управления самой машиной и кражи документов, хранящихся там, для выявления паролей и ключей, используемых хозяином. Ущерб от вируса Blaster оценивается в 475000$.

К сожалению, пока не придумано надежных средств обнаружения новых вирусов (сигнатура которых не известна) .


Рис. 12.1.

В 2005 году выявлена еще одна угроза – распространение вирусов и сетевых червей с помощью программ-роботов поисковых систем ( bots ), базирующихся на IRC .

Программы bots не всегда опасны, некоторые их разновидности применяются для сбора данных, в частности, о предпочтениях клиентов, а в поисковой системе Google они работают для сбора и индексации документов. Но в руках хакера эти программы превращаются в опасное оружие. Наиболее известная атака была предпринята в 2005 году, хотя подготовка и "первые опыты" начались в сентябре 2004 года. Программа искала машины со специфическими уязвимостями, в частности, LSASS ( Local Security Authority Subsystem Service , Windows ). Подсистема LSASS, призванная способствовать обеспечению безопасности, оказалась сама уязвимой для атак типа переполнения буфера. Хотя уязвимость уже ликвидирована, число машин с необновленной версией остается значительным. После вторжения хакер обычно использует IRC для выполнения нужных ему операций (открытие определенного порта, рассылка SPAM , запуск сканирования других потенциальных жертв). Новой особенностью таких программ является их встраивание в операционную системы таким образом (rootkit ), что они не могут быть обнаружены, так как размещаются в зоне ядра ОС. Если антивирусная программы попытается получить доступ к определенной области памяти с целью выявления вредоносного кода, rootkit перехватывает такой запрос и отправляет тестирующей программе уведомление, что все в порядке. Что еще хуже, bot-программы могут модифицировать содержимое