CASE-средства проектирования информационных систем

В условиях современности сложность создания информационных систем очень высока. Поэтому при проектировании ИС в настоящее время стало широко использоваться CASE-технология.

CASE-технология – это программный комплекс, автомати­зирующий весь технологический процесс анализа, проектирования, разработки и сопровождения сложных программных средств.

Современные CASE-средства охватывают обширную область поддержки многочисленных технологий проектирования ИС: от простых средств анализа и документирования до полномасштабных средств автоматизации, покрывающих весь жизненный цикл ПО.

Наиболее трудоемкими этапами разработки ИС являются этапы анализа и проектирования, в процессе которых CASE-средства обеспечивают высокое качество принимаемых технических решений и подготовку проектной документации. При этом большую роль играют графические средства моделирования предметной области, которые позволяют разработчикам в наглядном виде изучать существующую ИС, перестраивать ее в соответствии с поставленными целями и имеющимися ограничениями.

Интегрированные CASE-средства обладают следующими характерными особенностями :

· обеспечение управления процессом разработки ИС;

· использование специальным образом организованного хранилища проектных метаданных (репозитория).

Интегрированные CASE-средства содержат следующие компоненты:

· графические средства анализа и проектирования, используемые для описания и документирования ИС;

· средства разработки приложений, включая языки программирования и генераторы кодов;

· репозиторий, который обеспечивает хранение версий разрабатываемого проекта и его отдельных компонентов, синхронизацию поступления информации от различных разработчиков при групповой разработке, контроль метаданных на полноту и непротиворечивость;

· средства управления процессом разработки ИС;

· средства документирования;

· средства тестирования;

· средства реинжиниринга, обеспечивающие анализ программных кодов и схем баз данных и формирование на их основе различных моделей и проектных спецификаций.

Все современные CASE-средства делятся на две группы. Первую группу организуют средства встроенные в систему реализации, в которых все решения по проектированию и реализации привязаны к выбранной системе управления базами данных. Вторую группу организуют средства независимые от системы реализации, в которых все решения по проектированию ориентированы на унификацию начальных этапов жизненного цикла и средств их документирования. Данные средства обеспечивают большую гибкость в выборе средств реализации.

Основное достоинство CASE-технологии – поддержка коллективной работы над проектом за счет возможности работы в локальной сети, экспорта и импорта отдельных фрагментов проекта между разработчиками, организованного управления проектом.

В качестве этапов создания программных продуктов для информационных систем можно выделить следующие:

1. Определяется среда функционирования. На этом этапе определяются набор процессов жизненного цикла ИС, определяется область примененияИС, определяется размер поддерживаемых приложений, т.е. задается ограничения на такие величины, как количество строк программного кода, размер базы данных, количество элементов данных, количество объектов управления и т.д.

2. Производится построение диаграмм и графический анализ. На этом этапе строятся диаграммы, устанавливающие связь с источниками информации и потребителями, определяющие процессы преобразования данных и места их хранения.

3. Определяются спецификации и требования, предъявляемые к системе (вид интерфейса, тип данных, структура системы, качества, производительности, технические средства, общие затраты и т.д.).

4. Выполняется моделирование данных, т.е. вводится информация, описывающая элементы данных системы и их отношения.

5. Выполняетсямоделирование процессов, т.е. вводится информация, описывающая процессы системы и их отношения.

Характеристики CASE средств

Основными характеристиками CASE средств, важными с точки зрения моделирования и оптимизации бизнес процессов, являются следующие:

  • Наличие графического интерфейса. Для представления моделей процессов CASE средства должны обладать возможностью отображать процессы в виде схем. Схемы много проще в использовании, чем различные текстовые и числовые описания. Это позволяет получать легко управляемые компоненты модели, обладающие простой и ясной структурой.
  • Наличие репозитория. Репозиторий это общая база данных, которая содержит описание элементов процессов и отношений между ними. Каждый объект репозитария должен обладать перечнем свойств, характерных только для этого объекта.
  • Гибкость применения. Эта характеристика дает возможность представлять бизнес процессы в различных вариантах, важных с точки зрения анализа. CASE средства должны позволять проводить анализ процессов и создавать модели, сфокусированные на различных аспектах деятельности предприятия.
  • Возможность коллективной работы. Анализ и моделирование процессов может требовать совместной работы нескольких человек. Для одновременной работы над моделями процессов CASE средства должны обеспечивать управление изменениями любыми фрагментами моделей и их модификацией при коллективном доступе.
  • Построение прототипов. Прототипы процессов необходимы для того, чтобы на ранних стадиях изменения процессов можно было понять, насколько процесс будет соответствовать требованиям.
  • Построение отчетов. CASE средства должны обеспечивать построение отчетов по всем моделям процессов с учетом взаимосвязи элементов. Такие отчеты необходимы для анализа моделей и определения возможностей по оптимизации. За счет отчетов обеспечивается контроль полноты и достаточности моделей, уровень декомпозиции процессов, правильность синтаксиса диаграмм и типов применяемых элементов.

Выбор CASE средств

Выбор CASE средств для анализа и моделирования процессов зависит от многих факторов – финансовых возможностей, функциональных характеристик, подготовки персонала, применяемых информационно-технических средств и пр. Приводить исчерпывающий состав этих факторов не имеет смысла, т.к. в ситуации выбора для каждого конкретного случая этот состав будет изменяться. Тем не менее, можно определить набор «базовых» факторов, на основании которых определяются критерии по выбору CASE средств.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

План

1. CASE средство: определения и общая характеристика

2. Применения CASE технологий: преимущества и недостатки

3. Внедрение CASE-средств

4. Примеры CASE-средств и их характеристики

1 . CASE средство: определения и общая характеристика

Аббревиатура CASE расшифровывается как Computer Aided Software Engineering. Этот термин широко используется в настоящее время. На этапе появления подобных средств, термин CASE употреблялся лишь в отношении автоматизации разработки программного обеспечения. Сегодня CASE средства подразумевают процесс разработки сложных ИС в целом: создание и сопровождение ИС, анализ, формулировка требований, проектирование прикладного ПО и баз данных, генерацию кода, тестирование, документирование, обеспечение качества, конфигурационное управление и управление проектом, а также другие процессы. Таким образом, CASE-технологии образуют целую среду разработки ИС. Итак, CASE-технология представляет собой методологию проектирования программных систем, а также набор инструментальных средств, позволяющих в наглядной форме моделировать предметную область, анализировать эту модель на всех этапах разработки и сопровождения ИС и разрабатывать приложения в соответствии с информационными потребностями пользователей. Большинство существующих CASE-средств основано на методологиях структурного или объектно-ориентированного анализа и проектирования, использующих спецификации в виде диаграмм или текстов для описания внешних требований, связей между моделями системы, динамики поведения системы и архитектуры программных средств. Главные составляющие CASE-продукта таковы:

· методология (Method Diagrams) , которая задает единый графический язык и правила работы с ним.

· графические редакторы (Graphic Editors) , которые помогают рисовать диаграммы; возникли с распространением PC и GUI, так называемых "upper case технологий

· генератор : по графическому представлению модели можно сгенерировать исходный код для различных платформ (так называемая low case часть CASE-технологии).

· репозиторий , своеобразная база данных для хранения результатов работы программистов

2 . Применения CASE технологий: преимущества и недостатки

CASE-технология представляет собой совокупность методологий анализа, проектирования, разработки и сопровождения сложных систем и поддерживается комплексом взаимоувязанных средств автоматизации. CASE-технология - это инструментарий для системных аналитиков, разработчиков и программистов, заменяющий бумагу и карандаш компьютером, автоматизируя процесс проектирования и разработки ПО. При использовании методологий структурного анализа появился ряд ограничений (сложность понимания, большая трудоемкость и стоимость использования, неудобство внесения изменений в проектные спецификации и т.д.) С самого начала CASE-технологии и развивались с целью преодоления этих ограничений путем автоматизации процессов анализа и интеграции поддерживающих средств. Они обладают достоинствами и возможностями, перечисленными ниже. Е диный графический язык. CASE-технологии обеспечивают всех участников проекта, включая заказчиков, единым строгим, наглядным и интуитивно понятным графическим языком, позволяющим получать обозримые компоненты с простой и ясной структурой. При этом программы представляются двумерными схемами (которые проще в использовании, чем многостраничные описания), позволяющими заказчику участвовать в процессе разработки, а разработчикам - общаться с экспертами предметной области, разделять деятельность системных аналитиков, проектировщиков и программистов, облегчая им защиту проекта перед руководством, а также обеспечивая легкость сопровождения и внесения изменений в систему.

Единая БД проекта. Основа CASE-технологии - использование базы данных проекта (репозитория) для хранения всей информации о проекте, которая может разделяться между разработчиками в соответствии с их правами доступа. Содержимое репозитория включает не только информационные объекты различных типов, но и отношения между их компонентами, а также правила использования или обработки этих компонентов. Репозиторий может хранить свыше 100 типов объектов: структурные диаграммы, определения экранов и меню, проекты отчетов, описания данных, логика обработки, модели данных, их организации и обработки, исходные коды, элементы данных и т. п.

Интеграция средств. На основе репозитория осуществляется интеграция CASE-средств и разделение системной информации между разработчиками. При этом возможности репозитория обеспечивают несколько уровней интеграции: общий пользовательский интерфейс по всем средствам, передачу данных между средствами, интеграцию этапов разработки через единую систему представления фаз жизненного цикла, передачу данных и средств между различными платформами.

Поддержка коллективной разработки и управления проектом. CASE-технология поддерживает групповую работу над проектом, обеспечивая возможность работы в сети, экспорт-импорт любых фрагментов проекта для их развития и/или модификации, а также планирование, контроль, руководство и взаимодействие, т. е. Функции, необходимые в процессе разработки и сопровождения проектов. Эти функции также реализуются на основе репозитория. В частности, через репозиторий может осуществляться контроль безопасности (ограничения и привилегии доступа), контроль версий и изменений и др.

Макетирование . CASE-технология дает возможность быстро строить макеты (прототипы) будущей системы, что позволяет заказчику на ранних этапах разработки оценить, насколько она приемлема для будущих пользователей и устраивает его.

Генерация документации. Вся документация по проекту генерируется автоматически на базе репозитория (как правило, в соответствии с требованиями действующих стандартов). Несомненное достоинство CASE-технологии заключается в том, что документация всегда отвечает текущему состоянию дел, поскольку любые изменения в проекте автоматически отражаются в репозитории (известно, что при традиционных подходах к разработке ПО документация в лучшем случае запаздывает, а ряд модификаций вообще не находит в ней отражения). Верификация проекта. CASE-технология обеспечивает автоматическую верификацию и контроль проекта на полноту и состоятельность на ранних этапах разработки, что влияет на успех разработки в целом - по статистическим данным анализа пяти крупных проектов фирмы TRW (США) ошибки проектирования и кодирования составляют соответственно 64% и 32% от общего числа ошибок, а ошибки проектирования в 100 раз труднее обнаружить на этапе сопровождения ПО, чем на этапе анализа требований. Автоматическая генерация объектного код а. Генерация программ в машинном коде осуществляется на основе репозитория и позволяет автоматически построить до 85-90% объектного кода или текстов на языках высокого уровня. Сопровождение и реинжинирин г. Сопровождение системы в рамках CASE-технологии характеризуется сопровождением проекта, а не программных кодов. Средства реинжиниринга и обратного инжиниринга позволяют создавать модель системы из ее кодов и интегрировать полученные модели в проект, автоматически обновлять документацию при изменении кодов и т. п.

Таблица 1

Традиционная технология разработки

Разработка с помощью CASE-технологий

Основные усилия - на кодирование и тестирование

Основные усилия - на анализ и проектирование

"Бумажные" спецификации

Быстрое итеративное макетирование

Ручное кодирование

Автоматическая генерация машинного кода

Тестирование ПО

Автоматический контроль проекта

Сопровождение программного кода

Сопровождение проекта

При использовании CASE-технологий изменяются все фазы жизненного цикла ИС, причем наибольшие изменения касаются фаз анализа и проектирования. В табл. 1 приведены основные изменения жизненного цикла ИС при использовании CASE-технологий по сравнению с традиционной технологией разработки.

Таблица 2

В табл. 2 приведены оценки трудозатрат по фазам жизненного цикла программного обеспечения (ПО). Первая строка таблицы соответствует традиционной технологии разработки, вторая - разработке с использованием структурных методологий вручную, третья - разработке с использованием CASE-технологий. Для успешного внедрения CASE-средств организация должна обладать следующими качествами: * Технология. Понимание ограниченности существующих возможностей и способность принять новую технологию; * Культура. Готовность к внедрению новых процессов и взаимоотношений между разработчиками и пользователями; * Управление. Четкое руководство и организованность по отношению к наиболее важным этапам и процессам внедрения. Если организация не обладает хотя бы одним из перечисленных качеств, то внедрение CASE-средств может закончиться неудачей, независимо от степени тщательности следования различным рекомендациям по внедрению. Для того чтобы принять взвешенное решение относительно инвестиций в CASE-технологию, пользователи вынуждены производить оценку отдельных CASE-средств, опираясь на неполные и противоречивые данные. Эта проблема зачастую усугубляется недостаточным знанием всех возможных "подводных камней" использования CASE-средств. Среди наиболее важных проблем выделяют следующие: * достоверная оценка отдачи от инвестиций в CASE-средства затруднительна ввиду отсутствия приемлемых метрик и данных по проектам и процессам разработки ПО; * внедрение CASE-средств может представлять длительный процесс и не принести немедленной отдачи. Возможно даже краткосрочное снижение продуктивности в результате усилий, затрачиваемых на внедрение. Вследствие этого руководство организации-пользователя может утратить интерес к CASE-средствам и прекратить поддержку их внедрения; * отсутствие полного соответствия между теми процессами и методами, которые поддерживаются CASE-средствами, и теми, что используются в данной организации, может привести к дополнительным трудностям; * CASE-средства зачастую трудно использовать в комплексе с другими подобными средствами. Это объясняется как различными парадигмами, поддерживаемыми разнообразными средствами, так и проблемами передачи данных и управления от одного средства к другому; * некоторые CASE-средства требуют слишком много усилий для того, чтобы оправдать их использование в небольшом проекте, тем не менее, можно извлечь выгоду из той дисциплины, к которой обязывает их применение; * негативное отношение персонала к внедрению новой CASE-технологии может быть главной причиной провала проекта. Пользователи CASE-средств должны быть готовы к необходимости долгосрочных затрат на эксплуатацию, частому появлению новых версий и возможному быстрому моральному старению средств, а также постоянным затратам на обучение и повышение квалификации персонала. программный код репозиторий графический

3 . Внедрение CASE-средств

Процесс внедрения состоит из следующих этапов: * определение потребностей в CASE-средствах; * оценка и выбор CASE-средств; * выполнение пилотного проекта; * практическое внедрение CASE-средств. Определение потребностей в CASE-средствах можно проиллюстрировать следующей диаграммой. Данный этап включает достижение понимания потребностей организации и технологии последующего процесса внедрения CASE-средств. Он должен привести к выделению тех областей деятельности организации, в которых применение CASE-средств может принести реальную пользу. Результатом данного этапа является документ, определяющий стратегию внедрения. Процесс оценки и выбора CASE-средств можно рассмотреть в виде модели. Этот процесс может преследовать несколько целей и включать:* оценку нескольких CASE-средств и выбор одного или более из них; * оценку одного или более CASE-средств и сохранение результатов для последующего использования; * выбор одного или более CASE-средств с использованием результатов предыдущих оценок. Ниже приведена диаграмма, описывающая наиболее общую ситуацию оценки и выбора, а также показывает зависимость между ними. Входной информацией для процесса оценки является: * определение пользовательских потребностей; * цели и ограничения проекта; * данные о доступных CASE-средствах; * список критериев, используемых в процессе оценки. Результаты оценки могут включать результаты предыдущих оценок. При этом не следует забывать, что набор критериев, использовавшихся при предыдущей оценке, должен быть совместимым с текущим набором. Конкретный вариант реализации процесса (оценка и выбор, оценка для будущего выбора или выбор, основанный на предыдущих оценках) определяется перечисленными выше целями. Элементы процесса включают: * цели, предположения и ограничения, которые могут уточняться в ходе процесса; * потребности пользователей, отражающие количественные и качественные требования пользователей к CASE-средствам; * критерии, определяющие набор параметров, в соответствии с которыми производится оценка и принятие решения о выборе; * формализованные результаты оценок одного или более средств; * рекомендуемое решение (обычно либо решение о выборе, либо дальнейшая оценка). Перед полномасштабным внедрением выбранного CASE-средства в организации выполняется пилотный проект. Его цель - экспериментальная проверка правильности решений, принятых на предыдущих этапах, и подготовка к внедрению. Пилотный проект представляет собой первоначальное реальное использование CASE-средства и обычно подразумевает более широкий масштаб использования CASE-средства по отношению к тому, который был достигнут во время оценки. Пилотный проект должен обладать многими из характеристик реальных проектов, для которых предназначено данное средство. Он преследует следующие цели: * подтвердить достоверность результатов оценки и выбора;* определить, действительно ли CASE-средство годится для использования в данной организации, и если да, то определить наиболее подходящую область его применения; * собрать информацию, необходимую для разработки плана практического внедрения; * приобрести собственный опыт использования CASE-средства. Пилотный проект позволяет получить важную информацию, необходимую для оценки качества функционирования CASE-средства и его поддержки со стороны поставщика после того, как средство установлено. Его реализацию можно проиллюстрировать следующей схемой. Важной функцией пилотного проекта является принятие решения относительно приобретения или отказа от использования CASE-средства. Провал пилотного проекта позволяет избежать более значительных и дорогостоящих неудач в дальнейшем, поскольку он обычно связан с приобретением относительно небольшого количества лицензий и обучением узкого круга специалистов. Ну и, наконец, наступает переход к практическому использованию CASE-средств. Он начинается с разработки и последующей реализации плана перехода. План перехода должен включать следующее: * Информацию относительно целей, критериев оценки, графика и возможных рисков, связанных с реализацией плана. * Информацию относительно приобретения, установки и настройки CASE-средств. * Информацию относительно интеграции каждого средства с существующими средствами, включая как интеграцию CASE-средств друг с другом, так и их интеграцию в процессы разработки и эксплуатации ПО, существующие в организации. * Ожидаемые потребности в обучении и ресурсы, используемые в течение и после завершения процесса перехода. * Определение стандартных процедур использования средств. Реализация плана перехода требует постоянного мониторинга использования CASE-средств, обеспечения текущей поддержки, сопровождения и обновления средств по мере необходимости. Достигнутые результаты должны периодически подвергаться экспертизе в соответствии с графиком, а план перехода - корректироваться при необходимости. Необходимо постоянно уделять внимание удовлетворению потребностей организации и критериям успешного внедрения CASE-средств. Значимой и неотъемлемой частью реализации плана является также обучение и переобучение. Каждая категория сотрудников (например, администраторы средств, служба поддержки рабочих мест, интеграторы средств, служба сопровождения и разработчики приложений) нуждается в различном обучении. Обучение не должно замыкаться только на пользователях CASE-средств, обучаться должны и те сотрудники, на деятельность которых, так или иначе, оказывает влияние использование CASE-средств. При дальнейшем применении CASE-средств организация должна ориентироваться на обучение как сотрудников, вновь принятых на работу, так и специалистов, выполняющих проекты с использованием данных средств. Именно поэтому обучение должно стать неотъемлемой частью нормативных материалов, касающихся деятельности организации, которые предлагаются новым сотрудникам. Итогом данного этапа является внедрение CASE-средств в повседневную практику организации, при этом больше не требуется какого-либо специального планирования. Кроме того, поддержка CASE-средств включается в план текущей поддержки ПО в данной организации.

4 . Примеры CASE-средств и их характеристики

Silverrun

CASE-средство Silverrun американской фирмы Computer Systems Advisers, Inc. используется для анализа и проектирования ИС бизнес-класса. Оно применимо для поддержки любой методологии, основанной на раздельном построении функциональной и информационной моделей. Silverrun имеет модульную структуру и состоит из четырех модулей, каждый из которых является самостоятельным продуктом и может приобретаться и использоваться без связи с остальными модулями: модуль построения моделей бизнес-процессов, модуль концептуального моделирования данных, модуль реляционного моделирования и менеджер репозитория рабочей группы. Платой за высокую гибкость и разнообразие изобразительных средств построения моделей является такой недостаток Silverrun, как отсутствие жесткого взаимного контроля между компонентами различных моделей

Средство разработки приложений JAM - продукт американской фирмы JYACC. Основной чертой JAM является его соответствие методологии RAD, поскольку он позволяет достаточно быстро реализовать цикл разработки приложения, заключающийся в формировании очередной версии прототипа приложения с учетом требований, выявленных на предыдущем шаге, и предъявить его пользователю. JAM имеет модульную структуру и состоит из следующих компонент:

· Ядро системы;

· JAM/DBi - специализированные модули интерфейса к СУБД (JAM/DBi-Oracle, JAM/DBi-Informix, JAM/DBi-ODBC и т.д.);

· JAM/RW - модуль генератора отчетов;

· JAM/CASEi - специализированные модули интерфейса к CASE-средствам (JAM/CASE-TeamWork, JAM/CASE-Innovator и т.д.);

· JAM/TPi - специализированные модули интерфейса к менеджерам транзакций (например, JAM/TPi-Server TUXEDO и т.д.);

· Jterm - специализированный эмулятор X-терминала.

Ядро системы (собственно, сам JAM) является законченным продуктом и может самостоятельно использоваться для разработки приложений. Все остальные модули являются дополнительными и самостоятельно использоваться не могут. При использовании JAM разработка внешнего интерфейса приложения представляет собой визуальное проектирование и сводится к созданию экранных форм путем размещения на них интерфейсных конструкций и определению экранных полей ввода/вывода информации.

Vantage Team Builder

Vantage Team Builder представляет собой интегрированный программный продукт, ориентированный на реализацию каскадной модели ЖЦ ПО и поддержку полного ЖЦ ПО. Наличие универсальной системы генерации кода, основанной на специфицированных средствах доступа к репозиторию проекта, позволяет поддерживать высокий уровень исполнения проектной дисциплины разработчиками: жесткий порядок формирования моделей; жесткая структура и содержимое документации; автоматическая генерация исходных кодов программ и т.д. - все это обеспечивает повышение качества и надежности разрабатываемых ИС.

Локальные средства (ERwin, BPwin, S-Designor)

ERwin - средство концептуального моделирования БД, использующее методологию IDEF1X. ERwin реализует проектирование схемы БД, генерацию ее описания на языке целевой СУБД и реинжиниринг существующей БД. ERwin выпускается в нескольких различных конфигурациях, ориентированных на наиболее распространенные средства разработки приложений 4GL. Для ряда средств разработки приложений (PowerBuilder, SQLWindows, Delphi, Visual Basic) выполняется генерация форм и прототипов приложений. BPwin - средство функционального моделирования, реализующее методологию IDEF0. S-Designor представляет собой CASE-средство для проектирования реляционных баз данных. По своим функциональным возможностям и стоимости он близок к CASE-средству ERwin, отличаясь внешне используемой на диаграммах нотацией. S-Designor реализует стандартную методологию моделирования данных и генерирует описание БД для таких СУБД, как ORACLE, Informix, Ingres, Sybase, DB/2, Microsoft SQL Server и др.

Объектно-ориентированные CASE-средства (Rational Rose)

Rational Rose - CASE-средство фирмы Rational Software Corporation - предназначено для автоматизации этапов анализа и проектирования ПО, а также для генерации кодов на различных языках и выпуска проектной документации. Rational Rose использует синтез-методологию объектно-ориентированного анализа и проектирования, основанную на подходах трех ведущих специалистов в данной области: Буча, Рамбо и Джекобсона. Разработанная ими универсальная нотация для моделирования объектов (UML - Unified Modeling Language) претендует на роль стандарта в области объектно-ориентированного анализа и проектирования. Конкретный вариант Rational Rose определяется языком, на котором генерируются коды программ (C++, Smalltalk, PowerBuilder, Ada, SQLWindows и ObjectPro). Основной вариант - Rational Rose/C++ - позволяет разрабатывать проектную документацию в виде диаграмм и спецификаций, а также генерировать программные коды на С++. Кроме того, Rational Rose содержит средства реинжиниринга программ, обеспечивающие повторное использование программных компонент в новых проектах.

Размещено на Allbest.ru

Подобные документы

    Этапы разработки модели базы данных: составление логической схемы и создание на ее основе физической формы графическим инструментарием Erwin. CASE-технологии для проектирования прикладного программного обеспечения и конфигурационного управления проектом.

    контрольная работа , добавлен 03.01.2011

    Исследование объектно-ориентированного подхода к проектированию программного обеспечения будильника. Модель программного обеспечения. Взаимодействие между пользователями и системой. Диаграммы и генерация программного кода при помощи средств Rational Rose.

    курсовая работа , добавлен 26.09.2014

    Типы документации на программное обеспечение. Особенности создания документации в EA. Изучение метода генерации документации в формате RTF. Шаблоны как инструмент для настройки пользовательских требований и стилизации документации программного продукта.

    реферат , добавлен 31.05.2013

    Оснащенность предприятия системным программным обеспечением, используемым для организации производственного процесса. Проектирование, внедрение и эксплуатация системного и прикладного программного обеспечения. Тестирование и отладка программного продукта.

    отчет по практике , добавлен 29.12.2014

    Сущность и значение средств управления базами данных предприятия. Методика разработки базы данных и прикладного программного обеспечения автобусного парка, позволяющее структурировать информацию об автобусных маршрутах, остановках и автобусах парка.

    курсовая работа , добавлен 20.01.2010

    История возникновения тестирования программного обеспечения, основные цели и особенности его проведения. Виды и типы тестирования, уровни его автоматизации. Использование и исследование необходимых технологий. Полный цикл прогона всей системы мониторинга.

    дипломная работа , добавлен 03.05.2018

    Особенности разработки кода программного модуля на современных языках программирования. Отладка и тестирование программы, оформление документации на программные средства. Применение инструментальных средств для автоматизации оформления документации.

    отчет по практике , добавлен 12.04.2015

    Разработка программно-аппаратного комплекса на базе ПЭВМ типа Pentium IV, включающего в себя периферийное устройство для генерации сигнала в виде напряжения, меняющегося во времени, и программного обеспечения для управления процессом генерации.

    дипломная работа , добавлен 30.06.2012

    Тестирование как составляющая часть процесса отладки программного обеспечения, его роль для обеспечения качества продукта. Обнаружение ошибок в программах, выявление причин их возникновения. Подходы к формулированию критериев полноты тестирования.

    курсовая работа , добавлен 20.12.2012

    Автоматизация промежуточного и финального контроля результатов обучения учащихся различных учебных заведений. Тестирование, основанное на диалоге вычислительной системы с пользователем. Реализация приложения генерации тестов из базы данных на языке РНР.

Обзор некоторых CASE-систем.

Список производителей CASE - инструментов и ряд полезных ссылок можно найти по адресу http://sunny.aha.ru/~belikov/index.htm, вопросам использования CASE посвящена русскоязычная конференция news://fido7.su.dbms.case/, в Internet также доступна книга Вендрова А.М. CASE-технологии. Современные методы и средства проектирования информационных систем..

Power Designer компании Sybase.

В состав Power Designer входят следующие модули:

· Process Analyst - средство для функционального моделирования, поддерживает нотацию Йордона - ДеМарко, Гейна - Сарсона и несколько других. Имеется возможность описать элементы данных (имена, типы, форматы), связанные с потоками данных и хранилищами данных. Эт элементы передаются на следующий этап проектирования, причем хранилища данных могут быть автоматически преобразованыв сущности.

· Data Analyst - инструмент для построения модели "сущность-связь" и автоматической генерации на ее основе реляционной структуры. Исходные данные для модели "сущность-связь" могут быть получены из DFD-моделей, созданных в модуле Process Analyst. В ER-диаграммах допускаются только бинарные связи, задание атрибутов у связей не поддерживается. Поддерживаются диалекты языка SQL примерно для 30 реляционных СУБД, при этом могут быть сгенерированы таблицы, представления, индексы, триггеры и т.д. В результате порождается SQL-сценарий (последовательность команд CREATE), выполнение которого создает спроектированную схему базы данных. Имеется также возможность установить соединение с СУБД через интерфейс ODBC. Другие возможности: автоматическая проверка правильности модели, расчет размера базы данных, реинжиниринг (построение модельных диаграмм для уже существующих баз данных) и т.д.

· Application Modeler - инструмент для автоматической генерации прототипов программ обработки данных на основе реляционных моделей, построенных в Data Analyst. Может быть получен код для Visual Basic, Delphi, а также для таких систем разработки в архитектуре "клиент-сервер" как PowerBuilder, Uniface, Progress и др. Генерация кода осуществляется на основе шаблонов, соответственно управлять генерацией можно за счет изменения соответствующего шаблона.

Ознакомительную версию Power Designer, в которой заблокированы функции сохранения построенных моделей, можно получить с российского web-сервера комании Sybase.

Silverrun компании Silverrun Technologies Ltd.

CASE-система Silverrun состоит из следующих инструментов:

· BPM - построение DFD-диаграмм. Поддерживает нотации Йордона-ДеМарко, Гейна - Сарсона, Уорда-Меллора и многие другие. Данный инструмент позволяет автоматически проверить целостность построенной модели, причем список критериев проверки определяется пользователем (например: отсутствие имен у элементов модели, потоки данных типа "хранилище - хранилище" или "внешняя сущность - внешняя сущность" и т.д.)

· ERX - построение диаграмм "сущность-связь". Поддерживаются не только бинарные связи, но и связи более высоких порядков, имеется возможность определения атрибутов у связей. Построенные ER-модели с помощью внешней утилиты могут быть сконвертированы в реляционный структуры (в той версии, с которой я работал, при этом, к сожалению, терялись атрибуты связей).

· RDM - инструмент реляционного моделирования, позволяет генерировать SQL-скрипты для создания таблиц и индексов примерно для 25 целевых СУБД.

Следует отметить, что компания Silverrun Technologies Ltd является не только разработчиком CASE - инструментария, но также создала собственную методологию создания информационных систем, получившую название Datarun. Эта методология включает описание всех этапов жизненного цикла информационной системы, перечень и последовательность работ, требования к содержанию и оформлению документов и многое другое.

Ознакомительную версию Silverrun, можно скачать с сервера комании Argussoft. В этой версии имеются ограничения на количество элементов в создаваемых моделях.

BPWin и ERWin компании LogicWorks.

LogickWorks выпускает два взаимнодополняющих инструмента проектирования информационных систем:

· BPWin - функциональное моделирование на основе методологии IDEF0. Допускается также использовние нотации IDEF3 и DFD в нотации Йордона - ДеМарко. Имеется возможность экспорта построенных моделей в системы функционально-стоимостного анализа (ABC - Activity Based Costing) и информационного моделирования ERWin.

· ERWin - средство информационного моделирования, используется нотация IDEF1X. Поддерживаются свыше 20 целевых СУБД, имеется возможность генерации прототипов прикладных программ для Visual Basic, Delphi и т.д.

Использование SilverRun

Методология

Планирование и разработка комплексных информационных систем невозможны без тщательно обдуманного методологического подхода. Какие этапы необходимо пройти, какие методы и модели использовать, как организовать контроль за продвижением проекта и качеством выполнения работ - эти вопросы решаются методологиями программной инженерии. Методологий существует много, и главное в них - единая дисциплина работы на всех этапах жизненного цикла системы. Если учитываются все критические задачи и контролируется их решение, качество создаваемых систем значительно возрастает. При этом, в общем случае, не важно, какие конкретно методы были выбраны для решения этих задач.

Для различных классов систем используются свои методы разработки. Они определяются как типом создаваемой системы, так и средствами реализации. Вероятно, самыми распространенными по объемам разработок являются информационные системы бизнес-класса. Практически в каждой организации имеются специалисты, разрабатывающие или сопровождающие информационные системы. Спецификация этих систем в большинстве случаев состоит из двух основных компонентов: функционального и информационного. По способу сочетания этих компонентов подходы к представлению информационных систем можно разбить на два основных типа - структурный и объектно-ориентированный. Разумеется, объектно-ориентированные методы также являются структурными в прямом понимании этого слова. Но исторически в программной инженерии этот термин закрепился за рядом дисциплин: структурное программирование, структурный дизайн, структурный анализ. В структурных технологиях функциональная и информационная модели строятся отдельно, чаще всего в виде диаграмм потоков данных и диаграмм "сущность-связь". Объектно-ориентированные технологии рассматривают информацию неотъемлемо от процедур ее обработки. Модели объектно-ориентированных технологий описывают структуру, поведение и реализацию систем в терминах классов объектов.

Объектно-ориентированные технологии доминируют в области создания операционных систем, средств разработки и исполнения приложений, систем реального времени. Концепция объекта помогает бороться с быстро растущей сложностью систем. Кроме того, взаимодействующие электронные устройства, как и элементы программ, естественно представляются объектами.

В области создания бизнес-систем лидируют структурные технологии, так как они максимально приспособлены для взаимодействия с заказчиками и пользователями, не являющимися специалистами в области информационных технологий. А анализ опыта разработок информационных систем показал, что активное привлечение пользователей на этапах выявления требований и постановки задачи является критическим фактором успеха крупных проектов. При разработке систем бизнес-класса основные усилия затрачиваются именно на понимание и спецификацию требований пользователя, а для реализации используются покупные средства разработки приложений (чаще всего языки четвертого поколения) и системы управления базами данных (чаще всего реляционные).

В терминах вышесказанного, место системы SILVERRUN в технологиях программной инженерии можно определить следующим образом: это CASE-система верхнего уровня, предназначенная для инструментальной поддержки структурных методологий создания информационных систем бизнес-класса. Таким образом, эта система может быть использована специалистами, занимающимися анализом и моделированием деятельности предприятий, разработчиками информационных систем, администраторами баз данных.

Методология RAD

Одним из возможных подходов к разработке ПО в рамках спиральной модели ЖЦ является получившая в последнее время широкое распространение методология быстрой разработки приложений RAD (Rapid Application Development). Под этим термином обычно понимается процесс разработки ПО, содержащий 3 элемента:

· небольшую команду программистов (от 2 до 10 человек);

· короткий, но тщательно проработанный производственный график (от 2 до 6 мес.);

· повторяющийся цикл, при котором разработчики, по мере того, как приложение начинает обретать форму, запрашивают и реализуют в продукте требования, полученные через взаимодействие с заказчиком.

Команда разработчиков должна представлять из себя группу профессионалов, имеющих опыт в анализе, проектировании, генерации кода и тестировании ПО с использованием CASE-средств. Члены коллектива должны также уметь трансформировать в рабочие прототипы предложения конечных пользователей.

Жизненный цикл ПО по методологии RAD состоит из четырех фаз:

· фаза анализа и планирования требований;

· фаза проектирования;

· фаза построения;

· фаза внедрения.

На фазе анализа и планирования требований пользователи системы определяют функции, которые она должна выполнять, выделяют наиболее приоритетные из них, требующие проработки в первую очередь, описывают информационные потребности. Определение требований выполняется в основном силами пользователей под руководством специалистов-разработчиков. Ограничивается масштаб проекта, определяются временные рамки для каждой из последующих фаз. Кроме того, определяется сама возможность реализации данного проекта в установленных рамках финансирования, на данных аппаратных средствах и т.п. Результатом данной фазы должны быть список и приоритетность функций будущей ИС, предварительные функциональные и информационные модели ИС.

На фазе проектирования часть пользователей принимает участие в техническом проектировании системы под руководством специалистов-разработчиков. CASE-средства используются для быстрого получения работающих прототипов приложений. Пользователи, непосредственно взаимодействуя с ними, уточняют и дополняют требования к системе, которые не были выявлены на предыдущей фазе. Более подробно рассматриваются процессы системы. Анализируется и, при необходимости, корректируется функциональная модель. Каждый процесс рассматривается детально. При необходимости для каждого элементарного процесса создается частичный прототип: экран, диалог, отчет, устраняющий неясности или неоднозначности. Определяются требования разграничения доступа к данным. На этой же фазе происходит определение набора необходимой документации.

После детального определения состава процессов оценивается количество функциональных элементов разрабатываемой системы и принимается решение о разделении ИС на подсистемы, поддающиеся реализации одной командой разработчиков за приемлемое для RAD-проектов время - порядка 60 - 90 дней. С использованием CASE-средств проект распределяется между различными командами (делится функциональная модель). Результатом данной фазы должны быть:

· общая информационная модель системы;

· функциональные модели системы в целом и подсистем, реализуемых отдельными командами разработчиков;

· точно определенные с помощью CASE-средства интерфейсы между автономно разрабатываемыми подсистемами;

· построенные прототипы экранов, отчетов, диалогов.

Все модели и прототипы должны быть получены с применением тех CASE-средств, которые будут использоваться в дальнейшем при построении системы. Данное требование вызвано тем, что в традиционном подходе при передаче информации о проекте с этапа на этап может произойти фактически неконтролируемое искажение данных. Применение единой среды хранения информации о проекте позволяет избежать этой опасности.

В отличие от традиционного подхода, при котором использовались специфические средства прототипирования, не предназначенные для построения реальных приложений, а прототипы выбрасывались после того, как выполняли задачу устранения неясностей в проекте, в подходе RAD каждый прототип развивается в часть будущей системы. Таким образом, на следующую фазу передается более полная и полезная информация.

На фазе построения выполняется непосредственно сама быстрая разработка приложения. На данной фазе разработчики производят итеративное построение реальной системы на основе полученных в предыдущей фазе моделей, а также требований нефункционального характера. Программный код частично формируется при помощи автоматических генераторов, получающих информацию непосредственно из репозитория CASE-средств. Конечные пользователи на этой фазе оценивают получаемые результаты и вносят коррективы, если в процессе разработки система перестает удовлетворять определенным ранее требованиям. Тестирование системы осуществляется непосредственно в процессе разработки.

После окончания работ каждой отдельной команды разработчиков производится постепенная интеграция данной части системы с остальными, формируется полный программный код, выполняется тестирование совместной работы данной части приложения с остальными, а затем тестирование системы в целом. Завершается физическое проектирование системы:

· определяется необходимость распределения данных;

· производится анализ использования данных;

· производится физическое проектирование базы данных;

· определяются требования к аппаратным ресурсам;

· определяются способы увеличения производительности;

· завершается разработка документации проекта.

Результатом фазы является готовая система, удовлетворяющая всем согласованным требованиям.

На фазе внедрения производится обучение пользователей, организационные изменения и параллельно с внедрением новой системы осуществляется работа с существующей системой (до полного внедрения новой). Так как фаза построения достаточно непродолжительна, планирование и подготовка к внедрению должны начинаться заранее, как правило, на этапе проектирования системы. Приведенная схема разработки ИС не является абсолютной. Возможны различные варианты, зависящие, например, от начальных условий, в которых ведется разработка: разрабатывается совершенно новая система; уже было проведено обследование предприятия и существует модель его деятельности; на предприятии уже существует некоторая ИС, которая может быть использована в качестве начального прототипа или должна быть интегрирована с разрабатываемой.

Следует, однако, отметить, что методология RAD, как и любая другая, не может претендовать на универсальность, она хороша в первую очередь для относительно небольших проектов, разрабатываемых для конкретного заказчика. Если же разрабатывается типовая система, которая не является законченным продуктом, а представляет собой комплекс типовых компонент, централизованно сопровождаемых, адаптируемых к программно-техническим платформам, СУБД, средствам телекоммуникации, организационно-экономическим особенностям объектов внедрения и интегрируемых с существующими разработками, на первый план выступают такие показатели проекта, как управляемость и качество, которые могут войти в противоречие с простотой и скоростью разработки. Для таких проектов необходимы высокий уровень планирования и жесткая дисциплина проектирования, строгое следование заранее разработанным протоколам и интерфейсам, что снижает скорость разработки.

Методология RAD неприменима для построения сложных расчетных программ, операционных систем или программ управления космическими кораблями, т.е. программ, требующих написания большого объема (сотни тысяч строк) уникального кода.

Не подходят для разработки по методологии RAD приложения, в которых отсутствует ярко выраженная интерфейсная часть, наглядно определяющая логику работы системы (например, приложения реального времени) и приложения, от которых зависит безопасность людей (например, управление самолетом или атомной электростанцией), так как итеративный подход предполагает, что первые несколько версий наверняка не будут полностью работоспособны, что в данном случае исключается.

Оценка размера приложений производится на основе так называемых функциональных элементов (экраны, сообщения, отчеты, файлы и т.п.) Подобная метрика не зависит от языка программирования, на котором ведется разработка. Размер приложения, которое может быть выполнено по методологии RAD, для хорошо отлаженной среды разработки ИС с максимальным повторным использованием программных компонентов, определяется следующим образом:

В качестве итога перечислим основные принципы методологии RAD:

· разработка приложений итерациями;

· необязательность полного завершения работ на каждом из этапов жизненного цикла;

· обязательное вовлечение пользователей в процесс разработки ИС;

· необходимое применение CASE-средств, обеспечивающих целостность проекта;

· применение средств управления конфигурацией, облегчающих внесение изменений в проект и сопровождение готовой системы;

· необходимое использование генераторов кода;

· использование прототипирования, позволяющее полнее выяснить и удовлетворить потребности конечного пользователя;

· тестирование и развитие проекта, осуществляемые одновременно с разработкой;

· ведение разработки немногочисленной хорошо управляемой командой профессионалов;

· грамотное руководство разработкой системы, четкое планирование и контроль выполнения работ.

Структурный подход

Сущность структурного подхода к разработке ИС заключается в ее декомпозиции (разбиении) на автоматизируемые функции: система разбивается на функциональные подсистемы, которые в свою очередь делятся на подфункции, подразделяемые на задачи и так далее. Процесс разбиения продолжается вплоть до конкретных процедур. При этом автоматизируемая система сохраняет целостное представление, в котором все составляющие компоненты взаимоувязаны. При разработке системы "снизу-вверх" от отдельных задач ко всей системе целостность теряется, возникают проблемы при информационной стыковке отдельных компонентов.

Все наиболее распространенные методологии структурного подхода базируются на ряде общих принципов. В качестве двух базовых принципов используются следующие:

· принцип "разделяй и властвуй" - принцип решения сложных проблем путем их разбиения на множество меньших независимых задач, легких для понимания и решения;

· принцип иерархического упорядочивания - принцип организации составных частей проблемы в иерархические древовидные структуры с добавлением новых деталей на каждом уровне.

Выделение двух базовых принципов не означает, что остальные принципы являются второстепенными, поскольку игнорирование любого из них может привести к непредсказуемым последствиям (в том числе и к провалу всего проекта). Основными из этих принципов являются следующие:

· принцип абстрагирования - заключается в выделении существенных аспектов системы и отвлечения от несущественных;

· принцип формализации - заключается в необходимости строгого методического подхода к решению проблемы;

· принцип непротиворечивости - заключается в обоснованности и согласованности элементов;

· принцип структурирования данных - заключается в том, что данные должны быть структурированы и иерархически организованы.

В структурном анализе используются в основном две группы средств, иллюстрирующих функции, выполняемые системой и отношения между данными. Каждой группе средств соответствуют определенные виды моделей (диаграмм), наиболее распространенными среди которых являются следующие:

· SADT (Structured Analysis and Design Technique) модели и соответствующие функциональные диаграммы;

· DFD (Data Flow Diagrams) диаграммы потоков данных;

· ERD (Entity-Relationship Diagrams) диаграммы "сущность-связь".

На стадии проектирования ИС модели расширяются, уточняются и дополняются диаграммами, отражающими структуру программного обеспечения: архитектуру ПО, структурные схемы программ и диаграммы экранных форм.

Перечисленные модели в совокупности дают полное описание ИС независимо от того, является ли она существующей или вновь разрабатываемой. Состав диаграмм в каждом конкретном случае зависит от необходимой полноты описания системы.

Лекция 8. Case средства разработки информационных систем

За последнее десятилетие сформировалось новое направление в программотехнике - CASE (Computer-Aided Software/System Engineering) - в дословном переводе - разработка программного обеспечения информационных систем при поддержке (с помощью) компьютера. В настоящее время не существует общепринятого определения CASE, термин CASE используется в весьма широком смысле. Первоначальное значение термина CASE, ограниченное вопросами автоматизации разработки только лишь программного обес­печения, в настоящее время приобрело новый смысл, охватывающий процесс разработки сложных автоматизированных информационных систем в целом. Теперь под термином CASE-средства понимаются программные средства, поддерживающие процессы создания и сопровождения ИС, включая анализ и формулировку требований, проектирование прикладного программного обеспечения (ПО) (приложений) и баз данных, генерацию кода, тести­рование, документирование, обеспечение качества, конфигурационное управление и управление проектом, а также другие процессы. CASE-средства вместе с системным ПО и техническими средствами образуют полную среду разработки ИС.

CASE-средства позволяют не только создавать "правильные" продукты, но и обеспечить "правильный" процесс их создания. Основная цель CASE состоит в том, чтобы отделить проектирование ИС от его кодирования и последующих этапов разработки, а также скрыть от разработчиков все детали среды разработки и функционирования ИС. При использовании CASE-технологий изменяются все этапы жизненного цикла программного обеспечения (подробнее об этом будет сказано ниже) информационной системы, при этом наибольшие изменения касаются этапов анализа и проектирования. Большинство существующих CASE-средств основано на методологиях структурного (в основном) или объектно-ориентированного анализа и проектирования, использующих специ­фикации в виде диаграмм или текстов для описания внешних требований, связей между моделями системы, динамики поведения системы и архитектуры программных средств. Такие методологии обеспечивают строгое и наглядное описание про­ектируемой системы, которое начинается с ее общего обзора и затем детализируется, приобретая иерархическую структуру со все большим числом уровней. CASE-технологии успешно применяются для построения практически всех типов ИС, однако устойчивое положение они занимают в следующих областях:

    обеспечение разработки деловых и коммерческих ИС, широкое применение CASE-технологий обусловлены массовостью этой прикладной области, в которой CASE применяется не только для разработки ИС, но и для создания моделей систем, помогающих решать задачи стратегического планирования, управления финансами, определения политики фирм, обучения персонала и др. (это направление получило свое собственное на­звание - бизнес-анализ);

    разработка системного и управляющих ИС. Активное применение CASE-технологий связано с большой сложностью данной проблематики и со стремлением повысить эффективность работ.

CASE - не революция в программотехнике, а результат естественного эволюционного развития всей отрасли средств, называемых ранее инструментальными или технологическими. С самого начала CASE-технологии развивались с целью преодоления ограничений при использовании структурных методологий проектирования 60-70-х гг. XX в. (сложности понимания, большой трудоемкости и стоимости использова­ния, трудности внесения изменений в проектные спецификации и т. д.) за счет их автоматизации и интеграции поддержи­вающих средств. Таким образом, CASE-технологии не могут считаться самостоятельными методологиями, они только развивают структурные методологии и делают более эффективным их применение за счет автоматизации.

Помимо автоматизации структурных методологий и, как следствие, возможности применения современных методов системной и программной инженерии, CASE-средства обладают следующими основными достоинствами:

    улучшают качество создаваемых ИС за счет средств автоматического контроля (прежде всего контроля проекта);

    позволяют за короткое время создавать прототип будущей системы, что позволяет на ранних этапах оценить ожидаемый результат;

    ускоряют процесс проектирования и разработки;

    освобождают разработчика от рутинной работы, позволяя ему целиком сосредоточиться на творческой части разработки;

    поддерживают развитие и сопровождение разработки;

    поддерживают технологии повторного использования компонента разработки.

Появлению CASE-технологии и CASE-средств предшествовали исследования в области методологии программирования. Программирование обрело черты системного подхода с разработкой и внедрением языков высокого уровня, методов структурного и модульного программирования, языков проектирования и средств их поддержки, формальных и неформальных языков описаний системных требований и спецификаций и т. д. В 70-80-х гг. стала на практике применять­ся структурная методология, предоставляющая в распоря­жение разработчиков строгие формализованные методы описания ИС и принимаемых технических решений. Она основана на наглядной графической технике: для описания раз­личного рода моделей ИС используются схемы и диаграммы. Наглядность и строгость средств структурного анализа позволяла разработчикам и будущим пользователям системы с самого начала неформально участвовать в ее создании, обсуждать и закреплять понимание основных технических решений. Однако широкое применение этой методологии и следование ее рекомендациям при разработке контактных ИС встречалось достаточно редко, поскольку при неавтоматизированной (ручной) разработке это практически невозможно. Это и способствовало появлению программно-технических средств особого класса - CASE-средств, реализующих CASE-технологию создания и сопровождения ИС.

Необходимо понимать, что успешное применение CASE-средств невозможно без понимания базовой технологии, на которой эти средства основаны. Сами по себе программные CASE-средства являются средствами автоматизации процес­сов проектирования и сопровождения информационных систем. Без понимания методологии проектирования ИС невозможно применение CASE-средств.