Процессы зарядки разрядки любых аккумуляторных батарей протекают в виде химической реакции. Однако заряд литий-ионных аккумуляторов — это исключение из правил. Научные исследования показывают энергетику таких батарей как хаотичное перемещение ионов. Утверждения учёных мужей заслуживают внимания. Если по науке правильно заряжать литий-ионные аккумуляторы, тогда эти приборы должны служить вечно.

Подтверждённые практикой факты утраты полезной ёмкости АКБ учёные видят в ионах, блокируемых так называемыми ловушками.

Поэтому, как и в случае с другими подобными системами, литий-ионные приборы не застрахованы от дефектов в процессе их применения на практике.

Зарядные устройства для конструкций Li-ion имеют некоторое сходство с приборами, предназначенными для кислотно-свинцовых систем.

Но главные отличия таких зарядных устройств видятся в подаче завышенных напряжений на ячейки. К тому же отмечаются более жесткие допуски по токам, плюс исключение заряда прерывистым или плавающим способом при полной зарядке батареи.


Относительно мощный прибор питания, который может применяться в качестве накопителя энергии для конструкций альтернативных источников энергии

Если отличаются некоторой гибкостью, с точки зрения подключений/отключений напряжения, производители литий-ионных систем категорически отвергают такой подход.

Аккумуляторы Li-ion и правила эксплуатации этих приборов не допускают возможности безграничного превышения заряда.

Поэтому не существует для литий-ионных аккумуляторов так называемого «чудесного» зарядного устройства, способного продлить срок службы на длительное время.

Невозможно получить дополнительную емкость Li-ion за счёт импульсного заряда или прочих известных трюков. Литий-ионная энергетика — это своего рода «чистая» система, принимающая строго ограниченное количество энергии.

Зарядка кобальто-купажированных АКБ

Классические конструкции литий-ионных батарей оснащены катодами, структуру которых составляют материалы:

  • кобальт,
  • никель,
  • марганец,
  • алюминий.

Все они обычно заряжаются напряжением до 4,20В/я. Допускаемое отклонение составляет не более +/- 50 мВ/я. Но есть также отдельные виды литий-ионных аккумуляторов на основе никеля, которые допускают величину заряда напряжением до 4.10В/я.


Кобальт-купажированные литий-ионные аккумуляторные батареи оснащаются внутренними защитными цепями, но этот момент редко спасает от взрыва аккумулятора в режиме чрезмерного заряда

Также есть разработки литий-ионных АКБ, где увеличена процентная доля лития. Для них напряжение заряда может достигать значения 4,30В/я и выше.

Что же, увеличение напряжения увеличивает емкость, но выход напряжения за пределы спецификации чреват разрушением структуры АКБ.

Поэтому в массе своей литий-ионные аккумуляторы оснащаются защитными цепями, цель которых держать установленную норму.

Полный или частичный заряд

Однако практика показывает: большинство мощных литий-ионных АКБ могут принимать более высокий уровень напряжения при условии его кратковременной подачи.

При таком варианте эффективность зарядки составляет около 99%, а ячейка остается холодной в процессе всего времени заряда. Правда, некоторые литий-ионные батареи всё таки нагреваются на 4-5C при достижении полного заряда.

Возможно, это связано с защитой или объясняется высоким внутренним сопротивлением. Для таких АКБ следует останавливать заряд при росте температуры более 10ºC на умеренной норме заряда.


Литий-ионные батареи в зарядном устройстве на зарядке. Индикатор показывает полную зарядку аккумуляторов. Дальнейший процесс грозит повредить батареи

Полная зарядка кобальто-купажированных систем наступает с пороговым значением напряжения. При этом ток падает на величину до 3 -5% от номинала.

Аккумулятор будет показывать полный заряд и при достижении какого-то уровня ёмкости, остающегося неизменным в течение продолжительного времени. Причиной этому может стать повышенный саморазряд батареи.

Увеличение тока заряда и заряд насыщения

Следует отметить: увеличение тока заряда не ускоряет достижение состояния полного заряда. Литий- достигнет пика напряжения быстрее, но заряд до полного насыщения ёмкости требует больше времени. Тем не менее, зарядка аккумулятора большим током быстро увеличивает ёмкость батареи примерно до 70 %.

Литий-ионные аккумуляторы не поддерживают обязательной полной зарядки, как в случае с кислотно-свинцовыми приборами. Мало того, именно такой вариант зарядки нежелателен для Li-ion. Фактически, лучше зарядить АКБ не полностью, потому что высокое напряжение «напрягает» аккумулятор.

Выбор порога более низкого напряжения или полного съёма заряда насыщения способствуют продлению срока службы литий-ионной батареи. Правда, такой подход сопровождается уменьшением времени отдачи энергии АКБ.

Здесь следует отметить: зарядные устройства бытового назначения, как правило, работают на максимальной мощности и не поддерживают регулировки зарядного тока (напряжения).

Производители бытовых зарядных устройств для литий-ионных аккумуляторов считают продолжительный срок службы менее важным фактором, чем затраты на усложнение схемных решений.

Зарядные устройства литий-ионных батарей

Некоторые дешевые зарядные устройства бытового назначения часто работают по упрощенной методике. Заряжают литий-ионный аккумулятор в течение одного часа и менее, без перехода на заряд насыщения.

Индикатор готовности на таких устройствах загорается, когда батарея достигает порога напряжения на первом этапе. Состояние заряда при этом составляет около 85%, что нередко удовлетворяет многих пользователей.


Это зарядное устройство отечественного производства предлагается для работы с разными аккумуляторами, в том числе с литий-ионными АКБ. Аппарат имеет систему регуляции напряжения и тока, что уже хорошо

Зарядные устройства профессионального назначения (дорогостоящие) отличаются тем, что устанавливают порог зарядного напряжения ниже, тем самым продлевая срок службы литий-ионной батареи.

В таблице показаны расчетные мощности при заряде такими устройствами на разных пороговых значениях напряжения, с зарядом насыщения и без такового:

Напряжение заряда, В/на ячейку Ёмкость при отсечке высокого напряжения, % Время заряда, мин Ёмкость при полном насыщении, %
3.80 60 120 65
3.90 70 135 75
4.00 75 150 80
4.10 80 165 90
4.20 85 180 100

Как только литий-ионный аккумулятор начинает заряжаться, отмечается быстрый рост напряжения. Такое поведение сравнимо с подъёмом груза резиновой лентой, когда имеет место эффект отставания.

Емкость, в конечном итоге, будет набрана, когда аккумулятор полностью зарядится. Такая характеристика заряда типична для всех АКБ.

Чем выше ток заряда, тем ярче эффект резиновой ленты. Низкая температура или наличие ячейки с высоким внутренним сопротивлением лишь усиливают эффект.


Структура литий-ионной аккумуляторной батареи в самом простейшем виде: 1- минусовая шина из меди; 2 — плюсовая шина из алюминия; 3 — анод из оксида кобальта; 4- катод из графита; 5 — электролит

Оценка состояния заряда путем считывания напряжения заряженной батареи нецелесообразна. Измерение напряжения разомкнутой цепи (холостой ход) после того, как батарея покоилась несколько часов, является лучшим оценочным индикатором.

Как и для других батарей, температура влияет на холостой ход точно так же, как влияет на активный материал литий-ионной АКБ. , ноутбуков и других устройств оценивается путем подсчета кулонов.

Литий-ионный АКБ: порог насыщения

Литий-ионный аккумулятор не способен поглощать избыточный заряд. Поэтому при полном насыщении аккумулятора ток заряда сразу необходимо снять.

Постоянный текущий заряд может привести к металлизации элементов лития, что нарушает принцип обеспечения безопасности эксплуатации таких АКБ.

Чтобы свести к минимуму образование дефектов, следует как можно быстрее отключать литий-ионный аккумулятор при достижении пика заряда.


Этот аккумулятор уже не возьмёт заряда ровно столько, сколько ему положено. По причине неправильной зарядки он утратил свои главные свойства накопителя энергии

Как только заряд прекращается, напряжение литий-ионного аккумулятора начинает падать. Проявляется эффект уменьшения физического напряжения.

Некоторое время напряжение холостого хода будет распределяться между неравномерно заряженными ячейками с напряжением 3,70 В и 3,90 В.

Здесь также обращает на себя внимание процесс, когда литий-ионная батарея, получившая полностью насыщенный заряд, начинает заряжать соседнюю (если таковая включена в схему), не получившую заряд насыщения.

Когда литий-ионные батареи требуется постоянно держать в зарядном устройстве с целью обеспечения их готовности, следует делать ставку на зарядные устройства, имеющие функцию кратковременного компенсационного заряда.

Зарядное устройство с функцией кратковременного компенсационного заряда включается, если напряжение разомкнутой цепи падает до 4.05 В/я и выключается при достижении напряжения 4.20 В/я.

Зарядные устройства, предназначенные для оперативной готовности или для работы в режиме ожидания, часто позволяют снизить напряжение батареи до 4,00В/я и заряжают литий-ионные АКБ только до уровня 4,05В/я, не давая достичь полного уровня 4.20В/я.

Подобная методика снижает напряжение физическое, неотъемлемо связанное с напряжением техническим, и способствует продлению срока службы батареи.

Заряд безкобальтовых аккумуляторов

Аккумуляторы в традиционном исполнении имеют номинальное напряжение ячейки равное 3,60 вольта. Однако для приборов, не содержащих кобальта, номинал другой.

Так, литий-фосфатные аккумуляторы обладают номиналом 3,20 вольта (зарядное напряжение 3,65В). А новые литий-титанатные аккумуляторы (производство Россия) имеют номинальное напряжение ячейки 2,40В (зарядное 2,85).


Литий-фосфатные аккумуляторные батареи относятся к накопителям энергии, которые не содержат в своей структуре кобальт. Этот факт несколько меняет условия зарядки таких аккумуляторов

Для таких батарей традиционные зарядные устройства не подходят, так как перегружают АКБ с угрозой взрыва. И наоборот, система зарядки для безкобальтовых батарей не обеспечит достаточным зарядом на 3,60В традиционный литий-ионный аккумулятор.

Превышенный заряда литий-ионного аккумулятора

Литий-ионный аккумулятор безопасно работает в пределах заданных рабочих напряжений. Однако работа батареи становится нестабильной, если она заряжается выше рабочих норм.

Длительная зарядка литий-ионной батареи напряжением выше 4,30В, предназначенной под рабочий номинал 4.20В, чревата металлизацией анода литием.

Материал катода, в свою очередь, приобретает свойства окислителя, утрачивает стабильность состояния, выделяет углекислый газ.

Давление аккумуляторной ячейки нарастает и если заряд продолжается, устройство внутренней защиты сработает при давлении от 1000 кПа до 3180 кПа.

Если же рост давления продолжается и после этого, открывается защитная мембрана при уровне давления 3,450 кПа. В таком состоянии ячейка литий-ионного аккумулятора находится на грани взрыва и в конечном итоге именно так и происходит.


Структура: 1 — верхняя крышка; 2 — верхний изолятор; 3 — стальная банка; 4 — нижний изолятор; 5 — вкладка анода; 6 — катод; 7 — сепаратор; 8 — анод; 9 — вкладка катода; 10 — отдушина; 11 — PTC; 12 — прокладка

Срабатывание защиты внутри литий-ионного аккумулятора связано с повышением температуры внутреннего содержимого. Полностью заряженная аккумуляторная батарея имеет более высокую внутреннюю температуру, чем частично заряженная.

Поэтому литий-ионные батареи видятся более безопасными при условии низкоуровневой зарядки. Вот почему власти некоторых стран требуют использовать в самолётах Li-ion АКБ, насыщенные энергией не выше 30% от их полной ёмкости.

Порог внутренней температуры батарей при полной загрузке составляет:

  • 130-150°C (для литий-кобальтовых);
  • 170-180°C (для никель-марганец-кобальтовых);
  • 230-250°C (для литий-марганцевых).

Следует отметить: литий-фосфатные аккумуляторы обладают лучшей температурной устойчивостью, чем литий-марганцевые АКБ. Литий-ионные батареи не единственные из числа тех, что представляют опасность в условиях энергетической перегрузки.

К примеру, свинцово-никелевые аккумуляторы также предрасположены к расплавлению с последующим возгоранием, если насыщение энергией выполняется с нарушениями паспортного режима.

Поэтому применение зарядных устройств, идеально подходящих к батарее, имеет первостепенное значение для всех литий-ионных аккумуляторов.

Некоторые выводы от анализа

Зарядка литий-ионных батарей отличается упрощённой методикой по сравнению с никелевыми системами. Схема зарядки прямолинейная, с ограничениями напряжения и тока.

Такая схема значительно проще, чем схема, анализирующая сложные сигнатуры напряжения, изменяющиеся по мере эксплуатации батареи.

Процесс насыщения энергией литий-ионных батарей допускает прерывания, эти аккумуляторы не нуждается в полном насыщении, как в случае с кислотно-свинцовыми АКБ.


Схема контроллера для маломощных литий-ионных аккумуляторов. Простое решение и минимум деталей. Но схема не обеспечивает условия цикла, при которых сохраняется длительный срок службы

Свойства литий-ионных аккумуляторов обещают преимущества в работе возобновляемых источников энергии (солнечных панелей и ветряных турбин). Как правило, или ветрогенератор редко обеспечивают полный заряд аккумулятора.

Для литий-иона отсутствие требований стабильной подзарядки упрощает схему контроллера заряда. Литий-ионный аккумулятор не требует контроллера, выравнивающего напряжение и ток, как того требуют свинцово-кислотные АКБ.

Все бытовые и большинство промышленных литий-ионных зарядных устройств полностью заряжают аккумулятор. Однако существующие устройства зарядки литий-ионных батарей в массе своей не обеспечивают регуляцию напряжения в конце цикла.


Допустимые диапазоны температур при заряде и разряде литий-ионных аккумуляторов

Особенности тестирования

Тесты на количество циклов проводились при разрядке током 1С, для каждого аккумулятора проводились циклы разрядки/зарядки до достижения 80% емкости. Такое число было выбрано исходя из сроков тесто и для возможного сравнения результатов впоследствии. Число полных эквивалентных циклов - до 7500 в некоторых тестах.
Тесты на срок службы проводились при различных уровнях заряда и температуре, каждые 40-50 дней проводились измерения напряжения для контроля разряда, длительность тестов составляла 400-500 дней.

Главной сложностью в экспериментах являются расхождения в заявленной емкости и реальной. Все аккумуляторы имеют емкость выше, чем заявленная, от 0,1% до 5%, что вносит дополнительный элемент непредсказуемости.

Наиболее часто использовались аккумуляторы NCA и NMC, но также тестировались литий-кобальт и литий-фосфатные аккумуляторы.

Немного терминов:
DoD - Depth of Discharge - глубина разряда.
SoC - State of Charge - уровень заряда.

Использование аккумуляторов

Количество циклов
На данный момент есть теория, что зависимость количества циклов, которые может выдержать аккумулятор от степени разряда аккумулятора в цикле имеет следующий вид (синим обозначены циклы разрядки, черным - эквивалентные полные циклы):

Данная кривая носит названия кривой Вёлера (Wöhler). Основная идея пришла из механики о зависимости числа растяжений пружины от степени растяжения. Начальное значение в 3000 циклов при 100% разряде батарей является средневзвешенным числом при разряде в 0,1С. Какие-то аккумуляторы показывают лучшие результаты, какие-то хуже. При токе 1С число полных циклов при 100% разряде падает с 3000 до 1000-1500 в зависимости от производителя.

В целом, данное соотношение, представленное на графиках, получило подтверждение по результатам экспериментов, потому целесообразным является зарядка аккумулятора при любой возможности .

Расчет суперпозиции циклов
При эксплуатации аккумуляторов возможна работа при одновременном наличии двух циклов (например, рекуперативное торможение в автомобиле):


Получается следующий комбинированный цикл:


Возникает вопрос, как это сказывается на эксплуатации аккумулятора, сильно ли уменьшается ресурс аккумулятора?

По результатам экспериментов комбинированный цикл показал результаты, как от сложения полных эквивалентных циклов двух независимых циклов. Т.е. относительная емкость аккумулятора в комбинированном цикле падала соответственно сумме разрядов на малом и большом циклах (линеаризованный график представлен ниже).


Влияние больших циклов разрядки более существенно, а значит подтверждается то, что аккумулятор лучше заряжать при каждой возможности.

Эффект памяти
Эффект памяти литий-ионных аккумуляторов по результатам экспериментов отмечен не был. При различных режимах его полная емкость все равно впоследствии не изменялась. В то же время есть ряд работ, которые подтверждают наличие данного эффекта в литий-фосфатных и литий-титановых аккумуляторах.

Хранение аккумуляторов

Температуры хранения
Тут никаких необычных открытий не было сделано. Температуры 20-25°C являются оптимальными (в обычной жизни) для хранения аккумулятора , если его не использовать. При хранении аккумулятора при температуре в 50°C деградация емкость идет практически в 6 раз быстрее.
Естественно более низкие температуры лучше для хранения, но в быту это означает специальное охлаждение. Так как температура воздуха в квартире, как правило, 20-25°C, то и хранение скорее всего будет при такой температуре.
Уровень заряда
Как показали испытания, чем меньше заряд тем медленнее идет саморазряд аккумулятора. Измерялась емкость аккумулятора, какой бы она была при его дальнейшем использовании после длительного хранения. Наилучший результат показали аккумуляторы, которые хранились с зарядом близким к нулю.
В целом хорошие результаты показали аккумуляторы, которые хранились не более чем с 60% уровнем заряда на момент начала хранения. Цифры отличаются от приведенных ниже для 100% заряда в худшую сторону (т.е. аккумулятор придет в негодность ранее, чем указано на рисунке):

Рисунок взят из статьи 5 практических советов по эксплуатации литий-ионных аккумуляторов
В то же время цифры для малого заряда более оптимистичны (94% после года при температуре 40°C для хранения при SOC 40%).
Так как 10% заряд непрактичен, так как время работы при таком уровне весьма маленькое, хранить аккумуляторы оптимально при SOC 60% , что позволит применить его в любой момент и не скажется критично на сроке его службы.

Основные проблемы результатов экспериментов

Никто не проводил тесты, которые можно считать на 100% достоверными. Выборка, как правило, не превышает пары тысяч аккумуляторов из миллионов произведенных. Большинство исследователей не могут представить достоверные сравнительные анализы по причинам недостаточной выборки. Также результаты этих экспериментов зачастую являются конфиденциальной информацией. Так что данные рекомендации не обязательно подходят к вашему аккумулятору, но могут считаться оптимальными.

Итоги экспериментов

Оптимальная частота зарядки - при каждой возможности.
Оптимальные условия хранения - 20-25°C при 60% заряде аккумулятора.

Источники

1.Курс «Battery Storage Systems», RWTH Aachen, Prof. Dr. rer. nat. Dirk Uwe Sauer

Большинство современных электронных устройств, таких как ноутбук, телефон или плеер, комплектуются литий ионными аккумуляторами, которые выступают автономными источниками питания. Данные ионные батареи были разработаны сравнительно недавно, но благодаря своим характеристикам завоевали большую популярность среди конструкторов и производителей гаджетов. Сейчас, кроме различных бытовых приборов, такими источниками питания оснащены многие инструменты для отделки и ремонта, шуруповерты или отрезные машинки. В данной статье рассмотрены виды литий ионных аккумуляторов, сферы их применения и принцип работы.

Виды литий ионных аккумуляторов

Аккумуляторные батареи, работающие по принципу накапливания энергии и выдачи ее на потребляемый прибор, бывают нескольких видов, которые можно объединить в один литий ионных блок. К таким батареям относятся:

  1. Литий кобальтовый аккумулятор. Такой прибор состоит из графитового анода и катода, изготовленных из оксида кобальта. Катод имеет пластинчатое строение с зазорами между деталями, поэтому при потреблении питания ионы лития подаются на пластины от анода, возникает электромагнитная реакция, и на клеммы поступает напряжение. Минусом такой системы является слабая устойчивость механизма к перепадам температуры, так как при отрицательных показателях происходит разрядка батареи, даже если она не подключена к потребителю. Во время подзарядки изделия направление тока меняется, и ионы лития поступают через катоды на аноды, происходит их накопление, и напряжение повышается. Категорически запрещается подключать зарядное устройство к батарее, номинальное напряжение которого выше показателя детали, в противном случае аккумулятор может перегреться, пластины расплавятся, а корпус треснет;
  2. Литий марганцевая батарея. Также относится к литий ионным аккумуляторам, рабочая среда которых изготовлена из марганцевой шпинели в виде трехмерных крестообразных тоннелей. В отличие от кобальтовой системы, такой тип основы обеспечивает беспрепятственное прохождение ионов лития от анода до катода и далее на контакты прибора. Основным преимуществом литий ионного марганцевого аккумулятора является низкое сопротивление материала, поэтому такие АКБ часто используются для гибридного автотранспорта, инструмента, потребляющего большое количество тока, или в медицинском оборудовании, работающем автономно. Допускается нагрев батареи во время подзарядки до 80 градусов, а номинальный ток может быть до 20-30 Ампер. Не рекомендуется воздействовать на АКБ током, напряжение которого выше 50А, более двух секунд, иначе шпинели могут перегреться и выйти из строя;

  1. Литий ионные аккумуляторные батареи с железо-фосфатным катодом. Такая батарея встречается редко из-за сравнительно высокой стоимости производства, ее конечная цена немного выше, чем у других литий ионных аккумуляторов. Фосфатный катод имеет большое преимущество: это срок службы изделия и значительно превосходящая аналогичные приборы периодичность подзарядки. Чаще всего данные АКБ имеют гарантию от 10 до 50 лет или около 500 циклов зарядки. Благодаря таким показателям, батареи с фосфатом железа часто применяются в промышленности, когда необходимо получить высокое напряжение на выходе;
  2. Литий никель марганец кобальт оксидные ионные аккумуляторные батареи. Это самая практичная, с точки зрения стоимости производства и надежности готового изделия, комбинация материалов для изготовления катода. Благодаря электрохимическим свойствам перечисленных веществ, выполненный из них катод обладает низкими показателями сопротивления, поэтому во время долгого простоя батареи, разряжение будет минимальными. Также с помощью увеличения размера стакана или ячейки катода можно повысить общую емкость аккумулятора или увеличить напряжение тока. Секрет кроется в сочетании марганца и никеля, которое при правильном комбинировании создает цепочку с высокими показателями электрохимических свойств;
  3. Литий титанатный аккумулятор. Разработан в начале 80-х годов, в отличие от ионных батарей с графитовым сердечником, катод этого прибора изготавливается из нанокристаллов титаната лития. Катод из этого материала позволяет осуществлять подзарядку батареи за короткий промежуток времени и сохранять напряжение с нулевым сопротивлением. Данный агрегат часто используется в автономных системах уличного освещения, когда за короткий срок необходимо накопить энергию и отдавать ее на потребителя долгое время. Минусом такой системы является сравнительно высокая стоимость готового аккумулятора, но она быстро окупается за счет повышенного срока эксплуатации детали.

Важно! Все перечисленные литий ионные батареи относятся к не обслуживаемым аккумуляторам, поэтому в случае повреждения или выхода из строя отремонтировать или выполнить сервисные работы по добавлению электролита не получится. Любые манипуляции по вскрытию крышки АКБ приведут к разрушению пластин батареи и полному выходу из строя.

Принцип работы литий ионных батарей

Все литий ионные аккумуляторы имеют схожую структуру, которая имеет несколько незначительных отличий, не влияющих на принцип работы детали. Наружная оболочка изготавливается из композитного материала, пластика или тонкого цветного металла, что встречается очень редко. Чаще всего, аккумулятор состоит из пластикового корпуса, металлических клемм для контакта с потребителем и внутренних стержней с положительным и отрицательным напряжением. Заряд внутреннего лития осуществляется путем подключения внешнего прибора со стабильным током, но каждое изделие имеет первичную зарядку, которая возникает вследствие химической реакции между анодом и катодом.

Процессы на отрицательном электроде, выполненном из углеродистого материала, который имеет вид природного слоеного графита, беспорядочны, заряженные электричеством атомы движутся по матрице, не теряя при этом напряжение. Все показатели в этом секторе имеют отрицательное значение.

Положительный электрод литиевого аккумулятора изготавливается исключительно из оксидов кобальта или никеля, а также из литий марганцевых шпинелей. Во время разряда ионы лития отходят от углеродного сердечника и, вступив в реакцию с кислородом, проникают сквозь катод и устремляются наружу, но при этом они не могут покинуть тело батареи. Заряженные ионы лития теряют свое напряжение и остаются на поверхности анода до момента зарядки лития. Во время заряда весь процесс происходит в обратной последовательности.

Конструкция литий ионной батареи

Как щелочной элемент питания, литиевый аккумулятор производится в виде цилиндра или может иметь призматическую форму. В цилиндрической батарее в качестве сердечника используются свернутые в рулон электроды, изолированные специальной оболочкой и помещенные в металлический корпус, который связан с отрицательно заряженными элементами. Для соблюдения полярности минусовый контакт располагается снизу, а плюсовой – на верху детали, причем данные элементы между собой не должны соприкасаться, иначе ток будет циркулировать по проводнику, что приведет к самопроизвольному разряжению.

Призматическая форма литий ионной батареи встречается весьма часто. В данной конструкции сердечник формируется путем складывания друг на друга специальных пластин, которые находятся на минимальном расстоянии между собой. Такая система позволяет обеспечить более высокие технические характеристики, но из-за плотного прилегания пластин во время того, как аккумуляторы заряжаются, возможны перегрев сердечника и оплавление сетки, что приводит к снижению продуктивности детали.

Нередко можно встретить комбинированную систему устройства литий ионной батареи, когда скручиваемые в рулон электроды формируются в овальный цилиндр. При этом соблюдаются правила плавности перехода, и в то же время прямой участок имитирует пластинчатую форму. Такие аккумуляторы обладают характеристиками обоих видов изделий, срок их эксплуатации намного выше.

Во время химической реакции и работы аккумулятора внутри корпуса образуются газы, которые содержат в себе вредные вещества. Для оперативного отвода этих паров в корпусе литий ионных батарей имеется выпускное отверстие, которое имеет связь с банками и вовремя отводит скопившейся газ из полости АКБ. Некоторые батареи с высокой мощностью оборудованы специальным клапаном, который срабатывает во время критического скопления паров.

Проверка литий ионной батареи

Заряды лития внутри АКБ нуждаются в периодической проверке, несмотря на то, что указанная батарея считается не обслуживаемой, так как ее корпус запаян, элемент питания все равно необходимо проверять с помощью специального прибора.

Проверка всегда начинается с наружного осмотра, во время которого проверяется корпус детали на наличие трещин и деформаций. Также осматриваются клеммы АКБ, производится очистка от окисления и других загрязнений.

Важно! Необходимо содержать батарею в чистоте, не допуская замыкания между собой контактов, так как это может привести к полной разрядке аккумулятора, восстановить его будет весьма проблематично.

Для проверки внутреннего состояния сердечника используется нагрузочная вилка, которая подключается к клеммам и измеряет номинальное напряжение в сети. Затем на АКБ подается разряд, и прибор считывает показатели по удержанию тока внутри детали. Важно учитывать, что на момент проверки батарея должна быть полностью заряжена, иначе показатели будут неточными.

Применение литий ионных аккумуляторов

Литий ионные батареи используются во многих сферах в зависимости от их комплектации, формы и номинального напряжения. Самое распространённое применение АКБ – это автомобилестроение, в каждом транспортном средстве имеется свой источник питания, который отвечает за запуск авто и исполняет другие функции.

Также указанные батареи применяются в мобильных устройствах, ноутбуках и других гаджетах. Устройство подобных элементов питания схоже с автомобильными, единственное отличие заключается в габаритах изделий, которые могут быть размером со спичечную коробку.

В последнее время стало популярным внедрять литий ионные аккумуляторы в системы бесперебойного питания дома и в качестве аварийных источников электричества, при этом на постоянной основе батарея подключена к центральной сети. Во время работы приборов от простой электростанции производится зарядка АКБ, а когда питание отключается, она автоматически начинает отдавать ток на потребителя. При этом перезаряжаемую батарею необходимо правильно расположить и обеспечить ее системами защиты от перегрева.

Видео

Когда говорят о литиевых батарейках или аккумуляторах, то чаще всего даже не догадываются, что их в последние пару лет появилось чуть ли не десяток , каждая из которых представляет из себя литий с различными добавками других химических элементов, в итоге существенно отличающихся друг от друга.

Давайте разберёмся в их типах и начнём с классики:

Литий-ионные аккумуляторы - это классические перезаряжаемые аккумуляторов, в которой ионы лития перемещаются от отрицательного электрода к положительному электроду во время разряда и обратно при зарядке. Литий-ионные АКБ широко распространены в бытовой электронике. Они являются одним из самых популярных типов аккумуляторных батарей для портативной электроники, с одной из лучших энергетической плотностью, отсутствие эффекта памяти и медленной потери заряда, когда он не используется (низкий саморазряд).

Эта серия охватывает цилиндрические и призматические типоразмеры аккумуляторов. Li-ion имеет наивысшую плотность мощности среди любого аккумулятора старого типа. Очень легкий вес и большой цикл жизни делает его идеальным продуктом для многих решений.

Литий-титанат (титанат лития) - это относительно новый класс литий-ионных АКБ - (подробнее ). Он характеризуется очень длинным жизненным циклом, который измеряется в тысячах циклов. Литий-титанат свинца является также очень безопасным и сравним в этом плане с фосфатом железа. Энергетическая плотность ниже, чем у других литий-ионных источников тока и его номинальное напряжение 2.4 В.

Эта технология отличается очень быстрой зарядкой, низким внутренним сопротивлением, очень высоким жизненным циклом и отличной выносливостью (также безопасностью). LTO нашел свое применение в основном в электромобилях и наручных часах. В последнее время она начинает находить применение в мобильных медицинских устройствах, благодаря своей высокой безопасности. Одна из особенностей технологии заключается в том, что используются нанокристаллы на аноде вместо углерода, что обеспечивает гораздо более эффективную площадь поверхности. К сожалению, эта батарея имеет более низкие напряжения, чем другие типы литиевых АКБ.

Особенности:

  • Удельная энергия: около 30-110Wh/кг
  • Плотность энергии: 177 Вт * ч/л
  • Удельная мощность: 3,000-5,100 Вт/кг
  • Разряд КПД: примерно 85%; зарядки эффективность более 95%
  • Энергия-цена: 0.5 Вт/доллар
  • Срок годности: >10 лет
  • Саморазряд: 2-5 %/месяц
  • Долговечность: 6000 циклов до 90% емкости
  • Номинальное напряжение: от 1,9 до 2,4 В
  • Температура: от -40 до +55°C
  • Метод зарядки: используется стабильный постоянный ток, затем постоянное напряжение до тех пор, пока не достигнет порога.

Химическая формула: Li4Ti5O12 + 6LiCoO2 < > Li7Ti5O12 + 6Li0.5CoO2 (Е=2,1 В)

Литий-полимер имеет бОльшую плотность энергии в плане веса, чем литий-ионные АКБ. В очень тонких ячейках (до 5 мм) литий-полимер обеспечивает высокую объемную плотность энергии. Великолепная стабильность в перенапряжениях и высоких температурах.

Эта серия аккумуляторов может производиться в диапазоне от 30 до 23000 мА/ч, корпуса призматического и цилиндрического типов. Литий-полимерные аккумуляторы имеют ряд преимуществ: большую плотность энергии по объему, гибкость в размерах ячеек и более широкий запас прочности, с превосходной стабильностью напряжения даже на высокой температуре. Основные области применения: портативные плееры, Bluetooth, беспроводные устройства, КПК и цифровые камеры, электрические велосипеды, GPS навигаторы, ноутбуки, электронные книги.

Особенности:

  • Номинальное напряжение: 3,7 В
  • Зарядное напряжение: 4,2±0,05 В
  • Ток заряда, скорость: 0.2-10С
  • Предельное напряжение разряда: 2.5 В
  • Скорость разряда: до 50С
  • Выносливость в циклах: 400 циклов

Литий-фосфат железа имеет хорошие характеристики безопасности, длительный срок службы (до 2000 циклов), и невысокую стоимость производства. LiFePO4 батареи хорошо подходят для высоких токов разрядки, например военной техники, электроинструментов, электровелосипедов, мобильных компьютеров, ИБП и солнечных энергетических систем.

В качестве нового анодного материала для литий-ионных аккумуляторов, lifepo4 был впервые представлен в 1997 году и постоянно совершенствуется до настоящего времени. Он привлек внимание экспертов благодаря его надежной безопасности, долговечности, низкого воздействия на окружающую среду при утилизации, и удобных зарядно-разрядных характеристик. Многие специалисты утверждают, что lifepo4 аккумуляторы являются на сегодняшний день лучшим вариантом для автономного питания электроники.

Литий диоксид серы (батарея Li и SO2) - эти батареи имеют высокую плотность энергии и хорошую устойчивость к разряду на высокой мощности. Такие элементы используются в основном в военке, метеорологии и космонавтике.

Аккумуляторы на базе литий диоксида серы с металлическим литиевым анодом (самый легкий из всех металлов) и жидким катодом, содержащим пористый углеродный токосъемник с наполнением диоксида серы (SO2) выдают напряжение 2.9 В и имеют цилиндрическую форму.

Особенности:

  • Высокое рабочее напряжение, стабильное на протяжении большей части разряда
  • Чрезвычайно низкий саморазряд
  • Работоспособность в экстремальных условиях
  • Широкий рабочий температурный диапазон (-55°C до +65°С)

Литий-диоксид марганца (батарея Li-MnO2) - такие аккумуляторы обладают легким металлическим литиевым анодом и твердым катодом из диоксида марганца, погруженный в неагрессивный, нетоксичный органический электролит. Этот тип батареи соответствуют RoHS ЕС и характеризуется большой емкостью, высокой допустимой разрядкой и длинной продолжительностью службы.

Li-MnO2 широко используется в резервных источниках питания, аварийных радиобуях, пожарных сигнализациях, электронных системах контроля доступа, цифровых фотоаппаратах, медицинском оборудовании.

Особенности:

  • Высокая плотность энергии
  • Очень стабильное напряжение разрядки
  • Более чем 10-ти летний срок хранения
  • Рабочая температура: -40 до +60°С

Хлорида тионил лития (литий-SOCl2) батареи обладают легким металлическим литиевым анодом и жидким катодом, содержащий пористый углеродный токосъемник наполненный тионилхлоридом (SOCl2). Батарея Li-SOCL2 идеально подходят для автомобильных устройств, медицинской техники, а также военных и аэрокосмических устройств. Они имеют самый широкий диапазон рабочих температур от -60 до + 150°С.

Особенности:

  • Высокая плотность энергии
  • Долгий срок годности при хранении
  • Широкий температурный диапазон
  • Хорошая герметизация
  • Стабильное разрядное напряжение

Li-FeS2 батареи

Аккумуляторы и батареи Li-FeS2 расшифровываются как литий-железодисульфидные. Информация про них будет добавлена позже.

В современных мобильных телефонах, ноутбуках, планшетах используются литий─ионные аккумуляторы. Постепенно они вытеснили щелочные аккумуляторы с рынка портативной электроники. Раньше во всех этих устройствах использовались никель─кадмиевые и никель─металлгидридные аккумуляторные батареи. Но их времена прошли, поскольку Li─Ion батареи имеют лучшие характеристики. Правда, они могут заменить щелочные не по всем параметрам. Например, для них недостижимы токи, которые могут отдавать никель─кадмиевые АКБ. Для питания смартфонов и планшетов это некритично. Однако в области портативного электроинструмента, который потребляет большой ток, щелочные аккумуляторы по-прежнему в ходу. Тем менее, работы по разработке аккумуляторов с высокими токами разряда без кадмия продолжаются. Сегодня мы поговорим о литий─ионных аккумуляторных батареях, их устройстве, эксплуатации и перспективах развития.

Самые первые аккумуляторные элементы с анодом из лития были выпущены в семидесятых годах прошлого столетия. У них была высокая удельная энергоёмкость, что сразу сделало их востребованными. Специалисты давно стремились разработать источник на основе щелочного металла, который имеет высокую активность. Благодаря этому было достигнуто высокое напряжение этого типа батарей и удельная энергия. При этом сама разработка конструкции таких элементов была выполнена довольно быстро, а вот их практическое использование вызвало сложности. С ними удалось справиться только в 90-е годы прошлого века.


На протяжении этих 20 лет исследователи пришли к выводу, что основной проблемой является литиевый электрод. Этот металл очень активный и при эксплуатации протекал ряд процессов, приводивших в итоге к воспламенению. Это стали называть вентиляцией с образованием пламени. Из-за этого в начале 90-х годов производители были вынуждены отозвать батареи, выпущенные для мобильных телефонов.

Это случилось после ряда несчастных случаев. В момент разговора ток, потребляемый от аккумулятора, выходил на максимум и началась вентиляция с выбросом пламени. В результате произошло много случаев получения пользователями ожогов лица. Поэтому учёным пришлось дорабатывать конструкцию литий─ионных аккумуляторов.

Металлический литий крайне нестабилен, особенно проявляется при зарядке и разрядке. Поэтому исследователи стали создавать аккумуляторную батарею литиевого типа без использования лития. Стали использоваться ионы этого щелочного металла. Отсюда и пошло их название.

Литий─ионные батареи имеют меньшую удельную энергию, чем . Но они безопасны при соблюдении норм заряда и разряда.

Реакции, происходящие в Li─Ion аккумуляторе

Рывком в направлении внедрения литий─ионных аккумуляторных батарей в бытовую электронику стала разработка АКБ, у которых минусовой электрод был выполнен из углеродного материала. Кристаллическая решётка углерода очень хорошо подошла в качестве матрицы для интеркаляции ионов лития. Чтобы увеличить напряжение аккумулятора, положительный электрод был выполнен из оксида кобальта. Потенциал литерованного оксида кобальта составляет примерно 4 вольта.

Величина рабочего напряжения большинства литий─ионных аккумуляторов составляет 3 вольта и более. В процессе разряда на минусовом электроде происходит деинтеркаляция лития из углерода и его интеркаляция в оксид кобальта плюсового электрода. В процесс зарядки процессы происходят наоборот. Получается, что металлического лития в системе нет, а работают его ионы, которые перемещаются с одного электрода на другой, создавая электрический ток.

Реакции на отрицательном электроде

Все современные коммерческие модели литий─ионных аккумуляторов имеют минусовой электрод из углеродосодержащего материала. От природы этого материала, а также вещества электролита во многом зависит сложный процесс интеркаляции лития в углерод. Матрица углерод на аноде имеет слоистую структуру. Структура может быть упорядоченной (натуральный или синтетический графит) или частично упорядоченной (кокс, сажа и т. п.).

При интеркаляции ионы лития раздвигают слои углерода, внедряясь между них. Получаются различные интеркалаты. При интеркаляции и деинтеркаляции удельный объем матрицы углерода меняется несущественно. В отрицательный электрод, помимо углеродного материала, могут использоваться серебро, олово и их сплавы. Также пробуют использовать композитные материалы с кремнием, сульфидами олова, соединениями кобальта и т. п.

Реакции на положительном электроде

В первичных литиевых элементах (батарейках) для изготовления плюсового электрода часто используются самые разные материалы. В аккумуляторах этого сделать не получается и выбор материала ограничен. Поэтому плюсовой электрод Li─Ion аккумулятора выполняется из литированного оксида никеля или кобальта. Также могут применяться литий─марганцевые шпинели.

Сегодня ведутся исследования материалов из смешанных фосфатов или оксидов для катода. Как удалось доказать специалистам, такие материалы улучшают электрические характеристики литий─ионных АКБ. Также разрабатываются способы нанесения оксидов на поверхность катода.

Реакции, протекающие в литий─ионном аккумуляторе при заряде, можно описать следующими уравнениями:

положительный электрод

LiCoO 2 → Li 1-x CoO 2 + xLi + + xe —

отрицательный электрод

С + xLi + + xe — → CLi x

В процессе разряда реакции идут в обратном направлении.

На рисунке ниже схематично показаны процессы, протекающие в литий─ионном аккумуляторе при заряде и разряде.


Устройство литий─ионных аккумуляторов

По своему исполнению Li─Ion аккумуляторы выполняются в цилиндрическом и призматическом исполнении. Цилиндрическая конструкция представляет рулон электродов с сепараторным материалом для разделения электродов. Этот рулон помещён в корпус из алюминия или стали. С ним соединён минусовой электрод.

Положительный контакт выводится в виде контактной площадки на торец аккумулятора.

Li─Ion аккумуляторы призматической конструкции делаются с помощью укладывания пластин прямоугольной формы друг на друга. Такие батареи дают возможность сделать упаковку более плотной. Сложность заключается в поддержке сжимающего усилия на электродах. Есть призматические АКБ с рулонной сборкой электродов, скручиваемых в спираль.

В конструкции любых литий─ионных аккумулятор предусмотрены меры для обеспечения их безопасной работы. В первую очередь это касается предотвращения разогрева и воспламенения. Под крышкой батареи устанавливается механизм, который увеличивает сопротивление аккумулятора при увеличении температурного коэффициента. При возрастании давления внутри АКБ выше допустимого предела, механизм разрывает положительный вывод и катод.

Кроме того, для увеличения безопасности эксплуатации в Li-Ion аккумуляторах в обязательном порядке используется электронная плата. Её назначение – это контроль за процессами заряда и разряда, исключение перегрева и короткого замыкания.

Сейчас выпускается много призматических литий─ионных аккумуляторов. Они находят применение в смартфонах и планшетах. Конструкция призматических батарей часто может отличаться у различных производителей, поскольку не имеет единой унификации. Электроды противоположной полярности разделяются сепаратором. Для его производства используется пористый полипропилен.

Конструкция Li-Ion и прочих разновидностей литиевых АКБ всегда выполняется герметичной. Это обязательное требование, поскольку вытекания электролита не допустимо. Если он вытечет, то электроника будет повреждена. Кроме того, герметичное исполнение не допускает попадания внутрь АКБ воды и кислорода. Если они попадут внутрь, то в результате реакции с электролитом и электродами разрушат аккумулятор. Производство комплектующих для литиевых аккумуляторов и их сборка находится в специальных сухих боксах в атмосфере аргона. При этом используются сложные приёмы сваривания, герметизации и т. п.

Что касается количества активной массы Li-Ion аккумулятора, то здесь производители всегда ищут компромисс. Им нужно добиться максимальной ёмкости и обеспечить безопасность функционирования. За основу принимается отношение:

А о / А п = 1,1, где

А о – активная масса отрицательного электрода;

А п — активная масса положительного электрода.

Такой баланс не допускает образование лития (чистого металла) и исключает возгорание.

Параметры Li-Ion аккумуляторов

Выпускаемые сегодня литий─ионные аккумуляторы имеют высокую удельную энергоёмкость и рабочее напряжение. Последнее в большинстве случаев составляет от 3,5 до 3,7 вольта. Энергоёмкость составляет от 100 до 180 ватт-час на килограмм или от 250 до 400 на литр. Некоторое время назад производители не могли выпустить АКБ с ёмкостью выше нескольких ампер-час. Сейчас проблемы, сдерживающие развитие в этом направлении, устранены. Так, что в продаже стали встречаться аккумуляторы литиевого типа с ёмкостью в несколько сотен ампер-час.



Ток разряда современных Li─Ion аккумуляторов составляет от 2С до 20С. Они работают в интервале температур окружающей среды от -20 до +60 Цельсия. Есть модели работоспособные при -40 Цельсия. Но сразу стоит сказать, что при отрицательных температурах работают специальные серии АКБ. Обычные литий─ионные батарейки для мобильных телефонов при отрицательных температурах становятся неработоспособными.

Саморазряд этого типа батарей равен 4─6 процента в течение первого месяца. Далее он уменьшается и в год составляет до процентов. Это значительно меньше, чем у никель─кадмиевых и никель─металлогидридных батарей. Срок службы примерно 400─500 циклов заряд-разряд.

Теперь поговорим об особенностях эксплуатации литий─ионных аккумуляторов.

Эксплуатация литий─ионных батарей

Зарядка Li─Ion аккумуляторов

Заряд литий─ионных АКБ обычно комбинированный. Сначала они заряжаются при постоянном токе величиной 0,2─1С пока не наберут напряжение 4,1─4,2 вольта. А затем зарядка ведётся при постоянном напряжении. Первая ступень продолжается примерно около часа, а вторая около двух. Чтобы зарядить аккумулятор быстрее, используется импульсный режим. Первоначально выпускались Li─Ion аккумуляторы с графитом и для них устанавливалось ограничение напряжения 4,1 вольта на одну банку. Дело в том, что при более высоком напряжении в элементе начинались побочные реакции, сокращающие срок эксплуатации этих аккумуляторов.

Постепенно эти минусы удалось устранить за счёт легирования графита различными добавками. Современные литий─ионные элементы без проблем заряжают до 4,2 вольта. Погрешность составляет 0,05 вольта на элемент. Существуют группы Li─Ion аккумуляторных батарей для военной и промышленной сферы, где требуется повышенная надёжность и длительный срок службы. Для таких АКБ выдерживают максимальное напряжение на элемент 3,90 вольта. У них несколько ниже энергетическая плотность, но увеличенный срок службы.

Если заряжать литий─ионную батарею током величиной 1С, то время полного набора ёмкости составит 2─3 часа. Аккумулятор считается полностью заряженным, когда напряжение возрастает до максимального, а ток снижается до 3 процентов от величины в начале процесса зарядки. Это можно видеть на графике ниже.

На графике ниже представлены этапы зарядки Li─Ion батареи.



Процесс зарядки состоит из следующих этапов:

  • Этап 1. На этой стадии через аккумуляторную батарею течёт максимальный ток заряда. Он продолжается до момента достижения порогового напряжения;
  • Этап 2. При постоянном напряжении на АКБ ток зарядки постепенно уменьшается. Этот этап прекращается, когда величина тока уменьшается до 3 процентов от начального значения;
  • Этап 3. Если аккумулятор ставится на хранение, то на этом этапе идёт периодический заряд для компенсации саморазряда. Делается ориентировочно через каждые 500 часов.
    Из практики известно, что увеличение тока заряда не сокращает время зарядки батареи. При повышении тока напряжение растёт быстрее до порогового значения. Но тогда потом второй этап зарядки длится дольше. Некоторые зарядные устройства (ЗУ) могут зарядить Li─Ion аккумулятор за час. В таких ЗУ отсутствует второй этап, но реально аккумулятор в этой точке заряжается где-то на 70 процентов.

Что касается струйной подзарядки, то для литий─ионных батарей она неприменима. Это объясняется тем, что этот тип АКБ не может при перезарядке поглощать избыточную энергию. Струйная подзарядка может привести к переходу части ионов лития в металлическое состояние (валентность 0).

А непродолжительный заряд хорошо компенсирует саморазряд и потери электрической энергии. Зарядка на третьем этапе может делаться каждые 500 часов. Как правило, выполняется при снижении напряжения АКБ до 4,05 вольта на одном элементе. Заряд ведётся до поднятия напряжения до 4,2 вольта.

Стоит отметить слабую стойкость литий─ионных аккумуляторов к перезаряду. В результате подачи лишнего заряда на углеродной матрице (минусовой электрод) может начаться осаждение металлического лития. Он имеет очень высокую химическую активность и взаимодействует с электролитом. В результате на катоде начинается выделение кислорода, что грозит ростом давления в корпусе и разгерметизацией. Поэтому если вы заряжаете Li─Ion элемент в обход контроллера, не допускайте подъёма напряжения при заряде выше, чем рекомендует производитель батареи. Если постоянно перезаряжать аккумулятор, срок его службы сокращается.

Безопасности Li-Ion АКБ производители уделяют серьёзное внимание. Заряд прекращается при увеличении напряжения выше допустимого уровня. Также установлен механизм выключения заряда при увеличении температуры батареи выше 90 Цельсия. Некоторые современные модели батарей имеют в своей конструкции выключатель механического типа. Он срабатывает при росте давления внутри корпуса АКБ. Механизм контроля напряжения электронной платы отключает банку от внешнего мира по минимальному и максимальному напряжению.

Существуют литий─ионные батареи без защиты. Это модели, содержащие в своём составе марганец. Этот элемент при перезаряде способствует торможению металлизации лития и выделению кислорода. Поэтому в таких аккумуляторах защита становится не нужна.

Хранение и разрядные характеристики литий─ионных АКБ

Аккумуляторы литиевого типа хранятся достаточно хорошо и саморазряд в год составляет всего 10─20% в зависимости от условий хранения. Но при этом деградация элементов батареи продолжается даже, если она не используется. Вообще, все электрические параметры литий─ионного аккумулятора могут отличаться для каждого конкретного экземпляра.

К примеру, напряжение при разряде меняется в зависимости от степени зарядки, тока, температуры окружающей среды и т. п. На срок эксплуатации АКБ оказывают влияние токи и режимы цикла разряд-заряд, температура. Один из главных недостатков Li-Ion батарей ─ это чувствительность к режиму заряд-разряд, из-за чего в них и предусматривается много разных видов защит.

На графиках ниже представлены разрядные характеристики литий─ионных аккумуляторов. На них рассмотрена зависимость напряжения от тока разряда и температуры окружающей среды.



Как можно видеть, при увеличении разрядного тока падение ёмкости незначительно. Но при этом рабочее напряжение заметно уменьшается. Аналогичная картина наблюдается при температуре меньше 10 градусов Цельсия. Стоит также отметить начальную просадку напряжения аккумулятора.