Хотя 40 и 100 Gigabit Ethernet уже достигнутый уровень технологии, он на два порядка опережает текущий массовый спрос. Притом, что 10 Gigabit Ethernet доступен уже в течение пяти лет, большинство сетевых инженеров все еще считают его потенциальной возможностью для своих сетей. И как всякая потенциальная возможность, 10 Gigabit Ethernet скрывается за мифами, стоящими на пути ее воплощения.

Миф 1. Внедрение 10 Gigabit Ethernet слишком дорого.

Реальность: цена порта 10 Gigabit Ethernet, естественно, дороже, чем Gigabit Ethernet, однако ценовой разрыв сокращается. Решение с одним каналом 10 Gigabit Ethernet дешевле решения с 10 каналами Gigabit Ethernet.

По опыту компании «Эколан Тек» создание линии 10 Gigabit Ethernet категории 6А обходится Заказчику в 1,8 – 2,5 раза дороже линии Gigabit Ethernet категории 5е. Разница в цене оборудования еще меньше. При условии перехода на 10 Gigabit Ethernet в магистральной подсистеме два дополнительных 10 Gbit модуля увеличивают стоимость двух 24-портовых коммутаторов всего на 30%. Таким образом, полная стоимость решения магистрального канала, включая СКС и сетевое оборудование, возрастает всего в 1,5 - 2 раза. Принимая во внимание небольшую долю магистральных линий по сравнению с горизонтальными, разница в цене СКС с гигабитными и 10 гигабитными магистральными каналами оказывается несущественной в сравнении с общими инвестициями в создание системы.

Где возможно применение:

  • при создании новых и модернизации действующих сетей увеличение пропускной способности магистральной подсистемы целесообразно осуществлять не увеличением числа линий категории 5е, а переходом на линии 10 Gigabit Ethernet категории 6А и выше.
  • в центрах обработки данных (ЦОД), где требуется учитывать энергозатраты, в том числе, на охлаждение, ограничения пространства, заполнение панелей и шкафов, решение 10 GbitE может быть наиболее эффективным по цене.

Миф 2. 10 Gigabit Ethernet работает только на оптоволоконных каналах и оборудовании.

Реальность:

  • при выборе среды передачи для 10 GbitE существует несколько альтернатив. В локальных сетях оптоволоконные линии преимущественно используют для передачи данных на расстояния, превышающие 100 метров. Для меньших расстояний и соединений серверов можно использовать электропроводные кабели типа витая пара с интерфейсами RJ-45.
  • для ЦОД оптоволоконные линии являются приоритетным выбором, однако для оптимизации начальных инвестиций можно использовать более дешевое решение на основе витых пар. Более того, производители серверов и сетевых устройств готовят решения, позволяющие создавать сети с использование слаботочных кабелей с интерфейсами RJ-45 с длиной каналов, превышающей 100 метров.

Где возможно применение:

  • в большинстве СКС длина магистральных линий здания не превышает 100 метров. Как правило, для этих линий заказчики выбирают системы категории 5е или 6 с пределом скорости Gigabit Ethernet. Выбор категории 6А и выше обеспечит переход на 10 Gigabit Ethernet.
  • создание Центров обработки данных требует больших трудовых и финансовых затрат как для инвестиций, так и в процессе эксплуатации, поэтому менеджеры Центров выбирают среду передачи с учетом долгосрочных и краткосрочных перспектив. В краткосрочной перспективе разнотипные кабели и разъемы могут обеспечить экономию инвестиций, в долгосрочной – решение на оптоволокне обеспечивает защиту инвестиций при очередной модернизации сети.

Миф 3. Для перехода на 10 Gigabit Ethernet требуется полностью заменить или модернизировать существующее оборудование.

Реальность: модульные коммутаторы Gigabit Ethernet способны работать с модулями 10 GbE.

Где возможно применение: потребности в увеличении скорости передачи данных могут быстро выйти за пределы Центров обработки данных. Несколько точек доступа, потоковое видео высокого разрешения, доступ к архивам и другие приложения могут создать трафик свыше 1 Гбит/с и потребовать создания линий и каналов 10 Gigabit Ethernet.

Миф 4. 10 Gigabit Ethernet требуется только для создания ЦОД с параллельной коммутацией.

Реальность: многие изготовители сетевого оборудования предлагают параллельно работающие коммутаторы с портами как Gigabit Ethernet, так и 10 Gigabit Ethernet. Коммутаторы с портами Gigabit Ethernet, соединенные по принципу «каждый с каждым» обеспечивают выигрыш в скорости передачи данных и уменьшении задержек при подключении серверов, не имеющих 10 GbE сетевых карт.

Где возможно применение: в то время как ЦОД с параллельной коммутацией повышают эффективность использования гигабитных каналов, для работы виртуальных ЦОД потребуется внедрение данной технологии с каналами 10 Gigabit Ethernet. Эффект создания нескольких виртуальных серверов на одном работающем устройстве увеличивает нагрузку в сети на каждом из сетевых портов. Без достаточной полосы пропускания сеть может стать слабым звеном высокооптимизированного ЦОД.

Миф 5. Единственное применение 10 Gigabit Ethernet – это проекты объединения сетей и хранилищ данных.

Реальность: еще до прихода технологий виртуальных серверов и ЦОД с параллельной коммутацией многие производители оборудования начали продвигать идею конвергенции сетей. Для получения информации из баз данных по сети Интернет с помощью протоколов Fibre Channel over Ethernet (FCoE) или iSCSI требуются каналы 10 Gigabit Ethernet.

ISCSI (англ. Internet Small Computer System Interface) - протокол, который базируется на TCP/IP и разработан для установления взаимодействия и управления системами хранения данных, серверами и клиентами.

Где возможно применение: конвергенция сетей – это одна из потребностей перехода на технологии 10 Gigabit Ethernet. Виртуализация является другой, но не последней.

Миф 6. Зачем внедрять 10 Gigabit Ethernet, если существуют технологии и оборудование 40 и 100 Gigabit Ethernet?

Реальность: коммутаторы 40 и 100 Gigabit Ethernet только начали появляться на рынке. Однако многие из этих продуктов являются частными решениями или базируются на проектах стандартов. Хотя производители уверяют, что обеспечат модернизацию и поддержку своих изделий в будущем, такая поддержка касается только их собственных изделий. Кроме того, цена за порт 40 и 100 Gigabit Ethernet останется чрезвычайно высокой пока технология не будет массово востребована.

Где возможно применение: ИТ-специалисты должны постоянно соотносить цену новейших разработок с преимуществами их внедрения. Самые мощные ЦОД могут потребовать производительность, обеспечиваемую технологиями 40 и 100 Gigabit Ethernet, однако большинство заказчиков будут ожидать, как и в случае с 10 Gigabit Ethernet несколько лет назад, пока не снизятся ценовые барьеры и не будут доработаны стандарты.

По материалам сайта SearchNetworking.com

Технология

Технология 10GE, 10GbE или 10 GigE объединяет понятие 10 Gigabit Ethernet интерфейс, способный передавать данные со скоростью до10 ГБ в секунду. Первый стандартизированный 10GbE адаптер получил сертификат IEEE 802.3 AE-2002 в 2002 году, данная технология передачи данных получила широкое применение в крупных компаниях, предлагающих хостинговые услуги. Также 10GbE – адаптеры используются крупными корпоративными компаниями, нуждающиеся в многопоточной передаче и приеме данных.

В настоящее время технология 10 Gigabit Ethernet получила различные типы стандартов, которые используют оборудование с особыми конструктивными особенностями.

10GbE кабель может быть многомодовым и одномодовым. В первом случае пучок света из нескольких лучей распространяется, постоянно отражаясь от пограничных областей; лучи с разной длиной волны имеют различную траекторию движения. В качестве источника света используется светодиод. Подобный характер движения лучей приводит к дисперсии сигнала, закодированного в световой пучок – искажению его формы. Одномодовый кабель отличается меньшей толщиной, по нему передается только один луч света с определенной длинной волны без отражений. В качестве источника света используют лазер.

Характеристики используемых кабелей

Сетевая карта 10GbE

В настоящее время принято несколько стандартов технологии 10GbE, отличающихся скоростью передачи данных, расстоянием и конструктивными особенностями разъемов. стандартов 10Gbe. Одномодовые кабели в основном используются для передачи данных на большие расстояния, а многомодовые используют в локальных сетях, например, у хостинговых компаний. Стоимость одномодового кабеля дороже, как и его монтаж, приходится использовать отдельный кабель для каждого узла, многомодовый кабель можно использовать для разводки внутри монтажных шкафов хостинговых компаний. Внешнее отличие многомодового и одномодового кабеля заключается в его цвете, первый имеет оранжевую окраску, а второй желтую. Вот основные из них:

Стандарт

Среда передачи

Макс. расстояние

Оптика, одномод, 1,3 мкм

Оптика, одномод, 1,5 мкм

Оптика, многомод, 0,8 мкм

4-жильный медный кабель

Медная витая пара

10GBASE-LRM Оптика многомод 220 м SC/LC

Кабель

802.3-2005 2005 Пересмотр базового стандарта, включающий 802.3ae, 802.3ak и исправления 802.3an 2006 Приемопередатчик 10GBASE-T 10 Гбит/с Ethernet по медной витой паре 802.3ap 2007 Стандарты для объединительных плат, передача сигналов сетей Ethernet 1 и 10 Гбит/с по печатным платам (технологии 10GBASE-KR и 10GBASE-KX4) 802.3aq 2006 Приемопередатчик 10GBASE-LRM 10 Гбит/с Ethernet по многомодовым волокном с улучшенным уравниванием 802.3-2008 2008 Пересмотр базовых стандартов, включение 802.3an/ap/aq поправок и исправлений. Агрегирование каналов перенесено в стандарт 802.1ax. 802.3av 2009 Приемопередатчик 10GBASE-PR 10 Гбит/с Ethernet PHY для EPON, также известный как 10G-EPON 802.3-2015 2015 Последняя версия базового стандарта 802.3bz 2016 2.5- и 5-гигабитные варианты Ethernet по медной витой паре Категории 5 и Категории 6 (2.5 GBASE-T и 5GBASE-T)

Модули физического уровня [ | ]

Для реализации различных физических уровней стандартов 10GbE многие интерфейсы состоят из стандартного гнезда, в которое можно подключать различные PHY модули. Физические форматы модулей не указаны в официальных стандартах IEEE и описываются различными индустриальными многосторонними соглашениями, что позволяет ускорить выработку спецификаций. Популярными для 10GbE форматами модулей являются XENPAK (и связанные с ним Х2 и XPAK), XFP и SFP+ . На выбор форм-фактора PHY модулей влияет стоимость разработки, доступность модулей, типы носителей, потребляемая мощность и размер модулей. В рамках одного канала точка-точка стороны могут использоваться модули различных форм-факторов, пока они реализуют один и тот же физический уровень 10GbE (например, 10GBASE-SR для локальных сетей) и тип кабеля (оптический или медный).

Оптические модули подключаются к контроллеру при помощи электрических интерфейсов, XFI или SerDes Framer Interface (SFI). Приемопередатчики форматов XENPAK, Х2 и XPAK используют XAUI () - канал из четырех дифференциальных пар , определенный в IEEE 802.3 Clause 47. Приемопередатчики XFP используют интерфейс XFI, а SFP+ модули используют интерфейс SFI. В интерфейсах XFI и SFI сигнал передается по одной дифференциальной паре с применением, определенного в IEEE 802.3 Clause 49.

Модули SFP+ можно разделить на два типа по интерфейсу к контроллеру: линейные и лимитирующие. Лимитирующие используются для связи на больших расстояниях, например для 10GBASE-LRM, а в остальных случаях более предпочтительными являются линейные модули.

Сравнение оптических и других физических транспортных уровней (TP-PHY)
MMF
FDDI
62,5/125 мкм
(1987)
MMF
OM1
62,5/125 мкм
(1989)
MMF
OM2
50/125 мкм
(1998)
MMF
OM3
50/125 мкм
(2003)
MMF
OM4
50/125 мкм
(2008)
MMF
OM5
50/125 мкм
(2016)
SMF
ОS1
9/125 мкм
(1998)
SMF
OS2
9/125 мкм
(2000)
160 МГц·км
@850 нм
200 МГц·км
@850 нм
500 МГц·км
@850 нм
1500 МГц·км
@850 нм
3500 МГц·км
@850 нм
3500 МГц·км
@850 нм и
1850 МГц·км
@950 нм
1 дБ/км
@1300/
1550 нм
0.4 дБ/км
@1300/
1550 нм
Название Стандарт Статус Среда передачи Разъём OFC или ВЧ-разъём Модули трансиверов Расстояния
(км)
Число волокон Линий
(⇅)
Примечания
10-гигабитный Ethernet (10 GbE) - (скорость передачи данных: 10 Гбит/с - : × - линейная скорость: 10.3125 Гбод - Полный дуплекс)
10GBASE
-CX4
802.3ak-2004
(CL48/54)
устаревший твинаксиальный кабель
балансные линии
CX4 (SFF-8470)
(IEC 61076-3-113)
()
XENPAK
X2
XFP
0.015 4 4 Для дата-центров ;

10GBASE
-KX4
802.3ap-2007
(CL48/71)
устаревший медные проводники на платах N/A N/A 0.001 4 4 Печатные платы ;
линейное кодирование: 8b/10b × NRZ
линейная скорость: 4x 3.125 Гбод = 12.5 Гбод
10GBASE
-LX4
802.3ae-2002
(CL48/53)
устаревший Fibre
1269.0 – 1282.4 нм
1293.5 – 1306.9 нм
1318.0 – 1331.4 нм
1342.5 – 1355.9 нм
SC XENPAK
X2
OM2: 0.3 1 4 WDM ;
линейное кодирование: 8b/10b × NRZ
линейная скорость: 4x 3.125 Гбод = 12.5 Гбод
Ширина моды: 500 МГц·км
OSx: 10
10GBASE
-SW
802.3ae-2002
(CL50/52)
актуальный волокно
850 нм
SC
LC
SFP+
XPAK
OM1: 0.033 2 1 WAN ;
WAN-PHY;
линейная скорость: 9.5846 Гбод
непосредственно отображается на потоки OC-192/STM-64 SONET/SDH.
-ZW: вариант -EW с более мощной оптической системой
OM2: 0.082
OM3: 0.3
OM4: 0.4
10GBASE
-LW
802.3ae-2002
(CL50/52)
актуальный волокно
1310 нм
SC
LC
SFP+
XENPAK
XPAK
OSx: 10 2 1
10GBASE
-EW
802.3ae-2002
(CL50/52)
актуальный волокно
1550 нм
SC
LC
SFP+ OSx: 40 2 1
10GBASE
-ZW
проприетарный
(не описан IEEE)
актуальный OSx: 80
10GBASE
-CR
прямого подключения
SFF-8431
(2006)
актуальный твинаксиальный
балансный
SFP+
(SFF-8431)
SFP+ 0.007
0.015
0.1
1 1 Дата-центра
Тип кабеля: пассивный твинаксиальный (до 7 м), активный (до 15 м), активный оптический (AOC): (до 100 м)
10GBASE
-KR
802.3ap-2007
(CL49/72)
актуальный Медь по платам N/A N/A 0.001 1 1 Для печатных плат и объединительных плат
10GBASE
-SR
802.3ae-2002
(CL49/52)
актуальный волокно
850 нм
SC
LC
SFP+
XENPAK
X2
XPAK
XFP
OM1: 0.033 2 1 Ширина моды: 160 МГц·км (26 м), 200 МГц·км (33 м),
400 МГц·км (66 м), 500 МГц·км (82 м), 2000 МГц·км (300 м),
4700 МГц·км (400 м)
OM2: 0.082
OM3: 0.3
OM4: 0.4
10GBASE
-SRL
проприетарный
(не описан IEEE)
актуальный волокно
850 нм
SC
LC
SFP+
XENPAK
X2
XFP
OM1: 0.1 2 1
OM2: 0.1
OM3: 0.1
OM4: 0.1
10GBASE
-LR
802.3ae-2002
(CL49/52)
актуальный волокно
1310 нм
SC
LC
SFP+
XENPAK
X2
XPAK
XFP
OSx: 10 2 1
10GBASE
-LRM
802.3aq-2006
(CL49/68)
актуальный волокно
1300 нм
SC
LC
SFP+
XENPAK
X2
OM2: 0.22 2 1 Ширина моды: 500 МГц·км
OM3: 0.22
10GBASE
-ER
802.3ae-2002
(CL49/52)
актуальный волокно
1550 нм
SC
LC
SFP+
XENPAK
X2
XFP
OSx: 40 2 1
10GBASE
-ZR
проприетарный (не описан IEEE) актуальный OSx: 80 -ER с более мощной оптикой
10GBASE
-PR
802.3av-2009 актуальный волокно
передача: 1270 нм
приём: 1577 нм }}
SC SFP+
XFP
OSx: 20 1 1 10G EPON

Оптические волокна [ | ]

Существует два основных типа оптического волокна для использования с 10-гигабитным Ethernet: (SMF) и (MMF). В одномодовом луч света следует по единому пути через волокно, а многомодовом - по нескольким путям, что приводит к различным задержкам мод (DMD). SMF используется для связи на больших расстояниях, а MMF - для расстояний менее 300 метров. SMF использует волокно с более узкой сердцевиной (диаметр 8.3 мкм), которое требует более точных работ по оснащению разъёмами, сварке и подключению. MMF применяет волокно с более широким диаметром сердцевины (50 или 62,5 мкм), его преимуществом является возможность использования недорогих поверхностно-излучающих лазеров с вертикальным резонатором (VCSEL) на коротких расстояниях. Кроме того, многомодовые разъёмы дешевле и проще в обработке. Преимуществом одномодовых кабелей является их работоспособность на больших расстояниях.

Стандарт 802.3 предполагает использование MMF волокон, соответствующий требованиям FDDI : они используют сердечник диаметром 62,5 мкм и минимальную в 160 МГц·км на 850 нм. Такие волокна использовались с начала 1990-х годов для сетей FDDI и 100BaseFX . Стандарты 802.3 также ссылается на ISO/IEC 11801 , в котором описаны многомодовые волокна OM1, OM2, OM3 и OM4. Тип OM1 также использует диаметр 62,5 мкм, а остальные - 50 мкм. Для света с длиной волны 850 нм минимальная модальная полоса пропускания составляет 200 МГц·км для OM1, 500 МГц·км для OM2, 2000 МГц·км для OM3 и 4700 МГц·км для ОМ4. Кабели FDDI-класса считаются устаревшими и новые структурированные кабельные системы используют волокна типов OM3 или OM4. Тип OM3 позволяет передавать сигналы 10GbE на расстояния до 300 метров с использованием недорогих модулей 10GBASE-SR (тип OM4 может работать на расстояниях до 400 метров).

Оптоволоконные кабели разных типов выполняются с различным цветом внешней изоляции. Одномодовое волокно обычно использует жёлтый цвет, многомодовое - оранжевый (для типов OM1 и OM2) или сине-зелёный (типы OM3 и OM4). Однако в волоконнооптических системах нет обязательной цветовой маркировки в зависимости от скоростей и технологий (за исключением зеленого цвета хвостовиков разъёмов с угловой полировкой APC).

Также применяются активные оптические кабели (AOC), в которых оптоэлектронные преобразователи непосредственно подключены к оптическому кабелю, без использования обслуживаемых оптических разъёмов. Преобразователи подключаются непосредственно в модульные гнёзда сетевых карт и коммутирующих устройств. Подобные кабели дешевле, чем полноценные модульные оптические решения, поскольку производитель может подобрать электронные и оптические компоненты, соответствующие используемой длине кабеля и типу волокна.

Стандарт 10GBASE-SR [ | ]

Приемопередатчики стандарта 10GBASE-SR («short range») применяются с и используют лазеры на 850 нм. 64бит/66бит определен в IEEE 802.3 Clause 49, а в Clause 52. Стандарт обеспечивает передачу сериализованных данных на скорости в 10,3125 Гбод.

Расстояния зависят от типа многомодового волокна.

Инфраструктура MMF дешевле, чем для SMF за счет недорогих разъёмов. Цена на разъёмы ниже для волокон с большим диаметром сердцевины, так как им не требуется высокая точность изготовления.

Передатчики 10GBASE-SR реализуются с недорогими и маломощными лазерами типа VCSEL . При использовании оптических кабелей типа OM3 и OM4 (их иногда называют оптимизированными для лазеров) достигается дальность до 300-400 метров. Приемопередатчики 10GBASE-SR представляют собой оптические модули с самой низкой стоимостью, небольшой мощностью и имеют малый форм-фактор.

На 2011 год на модули 10GBASE-SR приходилось около четверти от общего объёма поставленных портов 10GbE.

Существуют нестандартные более недорогие варианты, иногда обозначаемые как 10GBASE-SRL (10GBASE-SR lite). Они взаимно совместимы с 10GBASE-SR, но работают на расстояниях только до 100 метров.

Стандарт 10GBASE-LR [ | ]

Стандарт 10GBASE-LR («long reach») применяется с одномодовым волокном и использует лазеры на 1310 нм. PCS 64бит/66бит определён в IEEE 802.3 п. 49, а PMD - в п. 52. Стандарт обеспечивает передачу сериализованных данных на скорости в 10,3125 Гбод.

В технологии 10GBASE-LR передача осуществляется лазерами на базе интерферометров Фабри-Перо или лазерами с распределенной обратной связью (DFB). Такие лазеры стоят дороже, чем VCSEL, но имеют высокую мощность и большую длину волны, что позволяет эффективно передавать сигналы по тонким одномодовым волокнам на большие расстояния. Типичные расстояния для 10GBASE-LR достигают 10 километров, хотя оно зависит от типа применяемого волокна.

Стандарт 10GBASE-LRM [ | ]

Вариант 10GBASE-LRM («long reach multi-mode») изначально определён в IEEE 802.3aq для многомодового волокна и 1310 нм лазеров. Типичные расстояния - до 220 или 300 метров. Применяется PCS 64бит/66бит из IEEE 802.3 п. 49 и PMD из 68. Стандарт обеспечивает передачу сериализованных данных на скорости в 10,3125 Гбод.

Приемопередатчики 10GBASE-LRM допускают использование на расстояниях до 220 метров по волокну класса FDDI и до 220 метров на типах OM1, OM2, OM3. 10GBASE-LRM не достигает расстояний, которые могут быть реализованы на более старых технологиях 10GBASE-LX4. Отдельные производители, например Cisco и HP заявляют, что их оптические модули могут работать на расстояния до 300 метров.

Некоторые приёмопередатчики 10GBASE-LRM работают на расстояниях до 300 метров, используя стандартное одномодовое волокно (SMF, G.652), однако такая комбинация не является частью стандарта IEEE или каких-либо соглашений.

Приёмники 10GBASE-LRM используют эквалайзер типа «electronic dispersion compensation» (EDC).

Стандарт 10GBASE-ER [ | ]

Стандарт 10GBASE-ER («extended reach») использует одномодовое волокно и мощные 1550 нм лазеры. Применяется PCS 64бит/66бит из IEEE 802.3 п. 49 и PMD из п. 52. Стандарт обеспечивает передачу сериализованных данных на скорости в 10,3125 Гбод.

В технологии 10GBASE-ER передача осуществляется лазером с внешней модуляцией (EML) .

Приемопередатчики 10GBASE-ER позволяют передавать 10-гигабитный Ethernet на расстояние до 30-40 километров.

10GBASE-ZR [ | ]

Некоторые производители предлагают модули для работы на расстояниях до 80 км под названием 10GBASE-ZR. Такие физические параметры не стандартизованы в рамках IEEE 802.3ae и обычно используются спецификации для 80 км среды из стандартов OC-192 / /SONET.

10GBASE-LX4 [ | ]

10GBASE-LX4 - тип портов с поддержкой многомодовых и одномодовых волокон. Применяется четыре отдельных лазера, каждый на скорости 3.125 Гбит/с и грубое WDM -уплотнение каналов: каждый лазер использует собственную длину волны в окне прозрачности 1310 нм. Используется PCS из IEEE 802.3 Clause 48 и PMD из Clause 53.

LX4 допускает работу на расстояниях до 300 метров при использовании многомодовых волокон класса FDDI, OM1, OM2 и OM3 (все эти типы имеют минимальную модальную полосу пропускания в 500 МГц×км в области 1300 нм).

Также приемопередатчики 10GBASE-LX4 могут работать на расстояниях до 10 км на одномодовых волокнах.

10GBASE-PR [ | ]

10GBASE-CX4 [ | ]

10GBASE-CX4 - первый вариант передачи 10-гигабитного Ethernet при помощи медных технологий, описанный в 802.3 (стандарт 802.3ak-2004). Используется PCS XAUI с 4 парами (Clause 48) и медных кабели, сходные с кабелями для технологии InfiniBand. Максимальные расстояния составляют около 15 метров. Каждая дифференциальная пара передает 3.125 Гбод сигналов.

Преимущества 10GBASE-CX4 заключаются в потребляемой мощности, невысокой стоимости и низкой. Однако разъёмы CX4 имеют большой форм-фактор, используются более громоздкие кабели, чем для более новых однопарных кабелей с модулями SFP+. CX4 также предлагает более короткие расстояния чем 10GBASE-T, а применяемый кабель более жесткий и значительно более дорогой, чем неэкранированная витая пара (UTP) категории 5 или категории 6.

Поставки оборудования с портами 10GBASE-CX4 очень малы , однако некоторые поставщики предлагают СХ-4 интерфейсы для 10GBASE Ethernet или для объединения нескольких коммутаторов в единый стек, отмечая чуть более низкую латентность CX4.

Кабели SFP+ прямого подключения [ | ]

Два устройства с портами для подключения модулей форм-фактора SFP+ могут быть соединены специальным кабелем, разъемы которого имеют неразъёмные окончания в форме SFP+ модулей. Такие кабели называют «Direct Attach» (DA), «Direct Attach Copper» (DAC), 10GSFP+Cu, 10GBASE-CR, 10GBASE-CX1, SFP+, «10GbE Cu SFP cable». Короткое кабели прямого подключения используют сборку на основе пассивных твинаксиальных кабелей , в то время как более длинные, иногда называемые активными оптическими кабеля ми (AOC) используют коротковолновые оптические приёмопередатчики, интегрированные с оптическим кабелем. Оба типа кабеля подключаются непосредственно в разъём SFP+. Такие кабели прямого подключения имеет фиксированную длину кабеля, обычно от 1 до 7 м (в случае пассивных кабелей) или до 15 м (), или до 100 м в длину (активные оптические кабели). Аналогично варианту 10GBASE-CX4 эти кабели имеют низкий уровень потребления энергии, невысокую стоимость и низкие задержки передачи данных. В отличие от CX4 используются менее громоздкие кабели и более компактный форм-фактор SFP+. Кабели SFP+ прямого подключения сегодня является чрезвычайно популярными, они используются в большем числе портов, чем 10GBASE-SR .

Передача по объединительным платам [ | ]

Рабочая целевая группа 802.3ap разработала способы передачи 10 гигабитного Ethernet через объединительные платы, например в блейд-серверах и в маршрутизаторах и коммутаторах, применяющих сменные. 802.3ap позволяет передавать сигнал на расстояния до 1 метра по медным проводникам печатных плат, допускается использование двух разъёмов. Стандарт определяет два типа портов для 10 Гбит/с (10GBASE-KX4 и 10GBASE-KR ) и один тип для 1 Гбит/с (1000Base-KX). Опционально могут реализовываться: дополнительный слой для прямой коррекции ошибок (FEC) , протокол автоматического согласования, оценка качества линии для 10GBASE-KR (настройка приемного КИХ-фильтра с тремя выводами). Протокол автосогласования позволяет переключаться между 1000Base-KX, 10GBASE-KX4, 10GBASE-KR или 40GBASE-KR4 (802.3ba).

Современные конструкции объединительных панелей используют 10GBASE-KR вместо 10GBASE-KX4 .

10GBASE-KX4 [ | ]

Используются 4 параллельных канала передачи данных, физическое кодирование совпадает с 10GBASE-CX4 (пункт 48 стандарта IEEE 802.3).

10GBASE-KR [ | ]

Используется одна дифференциальная пара и физическое кодирование 10GBASE-LR/ER/SR (пункт 49 стандарта IEEE 802.3).

10GBASE-T [ | ]

10GBASE-T (IEEE 802.3an-2006 ) - стандарт 2006 года, позволяющий передавать 10 Гбит/с Ethernet посредством неэкранированной или экранированной витой пары на расстояния до 100 метров (330100 метров (330 футов). Для достижения полной дальности в 100 метров требуется применение кабеля категория 6а, тогда как кабель категории 6 позволяет передавать данные на расстояния порядка 55 метров (в зависимости от качества установки и характеристик передачи сигналов до 500 МГц). Кабельная инфраструктура для 10GBASE-T обратно совместима с гигабитным стандартом Ethernet 1000Base-T, что позволяет производить постепенное обновление оборудования с 1 гигабита до 10. Оборудование с 10 гигабитными портами 10GBASE-T способно работать в стандарте 1000Base-T, используя скорости. В 10 гигабитном стандарте применяется дополнительное линейное кодирование , из-за чего локальные сети 10GBASE-T чуть более высокую латентность по сравнению с другими 10 гигабитными стандартами. Задержка передачи пакетов составляет от 2 до 4 микросекунд, по сравнению с 1-12 микросекундами в 1000Base-T (в зависимости от размера пакета ). Микросхемы с поддержкой локальных сетей 10GBASE-T доступны от нескольких компаний с 2010 года , они потребляют мощность порядка 3-4 Вт.

Технологии 10GBASE-T использует широко распространенный модульный разъём IEC 60603-7 8P8C, применявшийся для более медленных стандартов Ethernet по витой паре. Передаваемый по кабелю сигнал использует частоты до 500 МГц, для достижения этой частоты необходим сбалансированный кабель «витая пара» категории 6a или лучше (ИСО/МЭК 11801 поправка 2 или ANSI/TIA-568-С.2) для работы на расстояниях в 100 м. Кабели категории 6 могут передавать сигнал 10GBASE-T на более короткие расстояния, в случае соответствия ISO TR 24750 или TIA-155-A.

В стандарте 802.3an определяется модуляция физического уровня для 10GBASE-T. Используется (THP) и амплитудно-импульсная манипуляция с 16 дискретными уровнями (PAM-16), кодируемыми в рамках сигнального созвездия DSQ128 с символьной скоростью 800 млн символов в секунду. Перед кодированием применяется код прямой коррекции ошибок (FEC) по схеме 2 с малой плотностью проверок (LDPC). Кодируется 1723 бит, применяется матрица контроля четности на основе обобщенного кода Рида-Соломона над полем (2 6). Ещё 1536 бит не кодируются. В каждом блоке размером 1723+1536 битов, используется 1+50+8+1 битов для сигнализации и обнаружения ошибок и 3200 битов данных (время передачи блока составляет 320 нс). Эта схема является значительным усложнением по сравнению с тривиальным кодированием, используемым в стандарте 1000Base-T гигабитного Ethernet по витой паре.

Линейное кодирование из технологии 10GBASE-T послужило основой для разработки кодирования в новых стандартах 2.5 GBASE-T и 5GBASE-T (802.3bz) , которые реализуют скорости 2.5 или 5.0 Гбит/с при использовании медной кабельной инфраструктуры категорий 5e и 6 . Такие кабели не позволяют использовать 10GBASE-T, но могут применяться для 2.5 GBASE-T или 5GBASE-T, в случае, если эти скорости реализованы в оборудовании сетевых адаптеров и коммутаторов .

приемопередатчик SFP+ 10GBASE-T поддерживает максимальное расстояние передачи 30 метров на кабеле CAT6A & CAT7. Он подходит для верхней части стойки, середина строки (Мор), конец строки (ПНП). Это позволяет передачу 10G пропускной способности над существующей медной инфраструктурой без использования дорогих волокон SFP+ трансиверов.

Физические уровни WAN (10GBASE-W) [ | ]

Во время разработки стандартов 10-гигабитного Ethernet высокий интерес к использованию 10GbE в качестве транспорта в глобальных сетях (WAN) привёл к описанию физического уровня WAN для 10GbE. Этот уровень инкапсулирует Ethernet-пакеты в кадры SONET OC-192с и работает на чуть более низкой скорости 9.95328 Гбит/с, чем варианты для локальных сетей .

Физические уровни WAN используют те же оптические PMD технологии 10GBASE-S, 10GBASE-L, 10GBASE-E и обозначаются как 10GBASE-SW, 10GBASE-LW и 10GBASE-EW соответственно. PCS кодирование - 64бит/66бит по IEEE 802.3 п. 49 и PMD из п. 52. Также используется подслой совместимости WAN Interface Sublayer (WIS), определенный в п. 50, который добавляет дополнительную инкапсуляцию для совместимости с форматом фрейма данных SONET STS-192c .

Физические уровни WAN были разработаны для взаимодействия с OC-192/STM-64 SDH/SONET оборудованием с использованием облегченных кадров SDH/SONET на скорости 9.953 Гбит/с.

WAN PHY позволяет передавать сигнал на расстояния до 80 км в зависимости от типа волокна.

См. также [ | ]

Примечания [ | ]

  1. Michael Palmer. Hands-On Networking Fundamentals, 2nd ed. . - Cengage Learning. - P. 180. - ISBN 978-1-285-40275-8 .
  2. IEEE 802.3-2012 44.1.1 Scope
  3. Sharma, Anil . LightCounting forecasts CAGR of Over 300 Percent for 10GBASE-T Port Shipments Through 2014 , TMCnet (19 January 2011). Проверено 7 мая 2011.
  4. Кабель категории 6 может использоваться на расстояниях до 55 метров. Категория 6a или лучше позволяет передавать сигнал на расстояние до 100 метров
  5. Dell"Oro press release (неопр.) (недоступная ссылка - история ) . Проверено 29 марта 2011. Архивировано 19 июля 2011 года.
  6. Intel blog about Interop 2011 (неопр.) . Проверено 20 сентября 2011.
  7. https://www.wired.com/wiredenterprise/2012/03/google-microsoft-network-gear/
  8. , 2012-11-21
  9. , 2013-01-03
  10. IEEE P802.3ae 10Gb/s Ethernet Task Force (неопр.) . Проверено 19 марта 2013.
  11. LightCounting"s LightTrends April 2010 (неопр.) . Проверено 3 мая 2010. (недоступная ссылка)
  12. 10GbE Optical Component and SFP+ Modules: This Time It"s Different by Andrew Schmitt (неопр.) . Проверено 11 марта 2008.
  13. The road to SFP+: Examining module and system architectures (неопр.) . Архивировано 16 мая 2008 года.
  14. Charles E. Spurgeon. Ethernet: The Definitive Guide. - 2nd. - O"Reilly Media, 2014. - ISBN 978-1-4493-6184-6 .
  15. Cisco 10-Gigabit Ethernet Transceiver Modules Compatibility Matrix (неопр.) . Cisco (19 августа 2018). Проверено 26 августа 2018.
  16. Confused by 10GbE optics modules? (неопр.) . Network World (12 июня 2010). Проверено 26 августа 2018.
  17. Common 10G Fiber Transceiver: 10G XENPAK, 10G X2, 10G XFP, 10G SFP+ (неопр.) . Blog of Fiber Transceivers (18 июня 2013). Проверено 26 августа 2018.
  18. End-of-Sale and End-of-Life Announcement for the Cisco 10GBASE XENPAK Modules (неопр.) . Cisco (1 апреля 2015). Проверено 26 августа 2018.
  19. Network Topologies and Distances (неопр.) . MC Communications (14 ноября 2007). Проверено 25 августа 2018.
  20. 10-Gigabit Ethernet Transceiver Modules Compatibility Matrix
  21. Optical Fiber and 10 gigabit Ethernet white paper by the 10GEA (неопр.) . Архивировано 14 июня 2008 года.
  22. Why choose Multimode fiber? by Corning (неопр.) (недоступная ссылка - история ) . Проверено 28 сентября 2018. Архивировано 30 июля 2014 года.
  23. IEEE 802.3 standard (неопр.) .
  24. 10 Gigabit Ethernet over Multimode Fiber by John George (неопр.) (недоступная ссылка -

Основой гигабитного Ethernet является стандарт IEEE 802.3z , который был утвержден в 1998 году. Однако в июне 1999 года к нему вышло дополнение - стандарт гигабитного Ethernet по медной витой паре 1000BaseT .

57. 10 Гигабит Ethernet

Новый стандарт 10 Гигабит Ethernet включает в себя семь стандартов физической среды для LAN , MAN и WAN . В настоящее время он описывается поправкой IEEE 802.3ae и должен войти в следующую ревизию стандарта IEEE 802.3 .

    10GBASE-CX4 - Технология 10 Гигабит Ethernet для коротких расстояний (до 15 метров ), используется медный кабель CX4 и коннекторы InfiniBand .

    10GBASE-SR - Технология 10 Гигабит Ethernet для коротких расстояний (до 26 или 82 метров , в зависимости от типа кабеля), используется многомодовое оптоволокно. Он также поддерживает расстояния до 300 метров с использованием нового многомодового оптоволокна (2000 МГц/км).

    10GBASE-LX4 - использует уплотнение по длине волны для поддержки расстояний от 240 до 300 метров по многомодовому оптоволокну. Также поддерживает расстояния до 10 километров при использовании одномодового оптоволокна.

    10GBASE-T , IEEE 802.3an-2006 - принят в июне 2006 года после 4 лет разработки. Использует экранированную витую пару. Расстояния - до 100 метров.

Стандарт 10 Гигабит Ethernet ещё слишком молод, поэтому потребуется время, чтобы понять, какие из вышеперечисленных стандартов передающих сред будут реально востребованы на рынке.

58. Сравнение Ethernet, Fast Ethernet, Gigabit и 10Gigabit Ethernet . Применение ge и 10ge.

    Потребности в высокоскоростной и в то же время недорогой технологии для подключения к сети мощных рабочих станций привели в начале 90-х годов к созданию инициативной группы, которая занялась поисками нового Ethernet - такой же простой и эффективной технологии, но работающей на скорости 100 Мбит/с.

    1995 год: комитет 802.3 утвердил стандарт Fast Ethernet, почти полностью повторяющий технологию Ethernet 10 Мбит/с, а специально созданный комитет 802.12 утвердил стандарт технологии l00VG-AnyLAN, которая сохраняла формат кадра Ethernet, но существенно изменяла метод доступа.

    Технология Fast Ethernet сохранила в неприкосновенности метод доступа CSMA/CD, оставив в нем тот же алгоритм и те же временные параметры в битовых интервалах (сам битовый интервал уменьшился в 10 раз). Все отличия Fast Ethernet от Ethernet проявляются на физическом уровне.

    Стандарты l00Base-TX/FX могут работать в полнодуплексном режиме.

    Максимальный диаметр сети Fast Ethernet равен приблизительно 200 м, а более точные значения зависят от спецификации физической среды. В домене коллизий Fast Ethernet допускается не более одного повторителя класса I (позволяющего транслировать коды 4В/5В в коды 8В/6Т и обратно) и не более двух повторителей класса II (не позволяющих выполнять трансляцию кодов).

    Технология Fast Ethernet при работе на витой паре позволяет за счет процедуры автопереговоров двум портам выбирать наиболее эффективный режим работы - скорость 10 Мбит/с или 100 Мбит/с, а также полудуплексный или полнодуплексный режим.

    В технологии l00VG-AnyLAN арбитром, решающим вопрос о предоставлении станциям доступа к разделяемой среде, является концентратор, поддерживающий метод Demand Priority - приоритетные требования. Метод Demand Priority оперирует с двумя уровнями приоритетов, выставляемыми станциями, причем приоритет станции, долго не получающей обслуживания, повышается динамически.

    Концентраторы VG могут объединяться в иерархию, причем порядок доступа к среде не зависит от того, к концентратору какого уровня подключена станция, а зависит только от приоритета кадра и времени подачи заявки на обслуживание.

    Технология l00VG-AnyLAN поддерживает кабель UTP категории 3, причем для обеспечения скорости 100 Мбит/с передает данные одновременно по 4-м парам. Имеется также физический стандарт для кабеля UTP категории 5, кабеля STP Type 1 и волоконно-оптического кабеля.

Fast EtherNet

IEEE 802.3u

Все отличия FastEtherNet и EtherNet сосредоточены на физическом уровне. Уровни MAC и LLC вFastEtherNet остались без изменения.

Для технологии Fast Ethernet разработаны различные варианты физического уровня, отличающиеся не только типом кабеля и электрическими параметрами импульсов, как это сделано в технологии 10 Мб/с Ethernet, но и способом кодирования сигналов, и количеством используемых в кабеле проводников.
Организация физического уровня технологии EtherNet является более сложной, чем классический Ethernet.

Физический уровень включает три элемента:

  • Уровень согласования нужен для того, чтобы уровень MAC, рассчитанный на интерфейс AUI мог работать с физическим уровнем через интерфейс MII
  • Независимый от среди интерфейс (MediaIndependentInterface, MII) поддерживает независимый от используемой физической среды способ обмена данными между MAC-подуровнем и подуровнем PHY. Интерфейс MII располагается между MAC-подуровнем и подуровнями кодирования сигнала, которых в стандарте FastEthernetтри - FX, TX и T4.
  • Устройство физического уровня (PhysicalLayerDevice, PHY) обеспечивает кодирование данных, поступающих от MAC-подуровня для передачи их по кабелю определенного типа, синхронизацию передаваемых по кабелю данных, а также прием и декодирование данных в узле-приемнике.

Поскольку одной из целей разработки было обеспечение максимальной преемственности, было принято решение увеличить скорость за счет сокращения до 10 нс битового интервала (против100 нс в Ethernet). При этом максимально допустимое время оборота сигнала составило 2,6 мкс, поэтому максимальный диаметр сегмента Fast Ethernet составляет 205 м.

Спецификации физической среды Fast Ethernet

  • 100BASE-TX - задействована витая пара категории 5, фактически используются только две неэкранированные пары проводников, поддерживается дуплексная передача данных, расстояние до 100 м.
  • 100BASE-T4 - стандарт, использующий витую пару категории 3. Задействованы все четыре пары проводников, передача данных идёт в полудуплексе. Максимальная длина сегмента 100 метров. Практически не используется.
  • 100BASE-T2 - стандарт, использующий витую пару категории 3. Задействованы только две пары проводников. Поддерживается полный дуплекс, когда сигналы распространяются в противоположных направления по каждой паре. Скорость передачи в одном направлении - 50 Мбит/с. Практически не используется.
  • 100BASE-SX - стандарт, использующий многомодовое оптоволокно (2 жилы). Максимальная длина сегмента 400 метров в полудуплексе (для гарантированного обнаружения коллизий) или 2000 метров в полном дуплексе.
  • 100BASE-FX - стандарт, использующий одномодовое оптоволокно. Максимальная длина ограничена только величиной затухания в оптоволоконном кабеле и мощностью передатчиков.
  • 100BASE-FX WDM -стандарт, использующий одномодовое оптоволокно. Максимальная длина ограничена только величиной затухания в оптоволоконном кабеле и мощностью передатчиков. Интерфейсы бывают двух видов, отличаются длиной волны передатчика и маркируются одной латинской буквой: T (пере-датчик 1550 нм, приемник 1310нм) или R (передатчик 1310нм, приемник 1550нм). В паре могут работать только парные интерфейсы: с одной стороны пер е-датчик на 1310 нм, а с другой -на 1550 нм.

Gigabit Ethernet

Основное новшество состояло в десятикратном (по сравнению с Fast Ethernet) уменьшении длительности битового интервала– до 1 нс.

В связи с ограничениями, накладываемыми методом CSMA/CD на длину кабеля, версия GigabitEtherNetдля разделяемой среды допускала бы длину сегмента всего в 25м. Для увеличения длины сегмента до 200м изменили:

  • Минимальный размер кадра был увеличен с 64 до 512 байт;
  • Соответственно время оборота увеличено до 4095 битовых интервалов.

GMII интерфейс. Среданезависимый интерфейс GMII (gigabit media independent interface) обеспечивает взаимодействие между уровнем MAC и физическим уровнем.

GMII интерфейс является расширением интерфейса MII и может поддерживать скорости 10, 100 и 1000 Мбит/с. Он имеет отдельные 8 битные приемник и передатчик, и может поддерживать как полудуплексный, так и дуплексный режимы.

Спецификации физической среды Gigabit Ethernet

  • 1000BASE-T, IEEE 802.3ab -использует витую пару категорий 5e. В передаче данных участвуют все 4 пары со скоростью 250 Мбит/с по одной паре. Используется метод кодирования PAM5, частота основной гармоники 62,5 МГц.
  • 1000BASE-TX, использует раздельную приёмо-передачу (2 пары на передачу, 2 пары на приём, по каждой паре данные передаются со скоростью 500 Мбит/с), кабеля 6 категории. На основе данного стандарта практически не было создано продуктов, хотя 1000BASE-TX использует более простой протокол, чем стандарт 1000BASE-T
  • 1000BASE-SX, IEEE 802.3z - стандарт, использующий многомодовое оптоволокно. Длина сегмента до 550 метров.
  • 1000BASE-LX, IEEE 802.3z - стандарт, использующий одномодовое или многомодовое оптоволокно. Длина сегмента до 5000 метров.
  • 1000BASE-LX10, IEEE 802.3ah - стандарт, использующий одномодовое оптоволокно. Дальность прохождения сигнала без повторителя до 10 километров.
  • 1000BASE-CX - стандарт для коротких расстояний (до 25 метров), использующий твинаксиальный кабель с волновым сопротивлением 150 Ом. Заменён стандартом 1000BASE-T и сейчас не используется.
  • 1000BASE-LX WDM - расширение стандарта LX, позволяющее по одному оптическому волокну одномодового кабеля передавать сигнал до 40км. Интерфейсы бывают двух видов, отличаются длиной волны передатчика и маркируются одной латинской буквой T (передатчик 1550 нм, приемник 1310нм) или R(передатчик 1310нм, приемник 1550 нм).
  • 1000BASE-ZX не стандартизированный, однако использующееся расширение стандарта LX. Позволяет передавать сигнал на расстояние до 80 км по одномодовому оптоволокну.
  • 1000BASE-LH (Long Haul) - стандарт, использующий одномодовое оптоволокно. Дальность прохождения сигнала без повторителя до 100 километров.

10Gigabit Ethernet

Строение физического интерфейса вполне типично, он состоит из трех уровней: PCS (Physical Coding Sublayer), отвечающий за управление передаваемыми битовыми последовательностями, PMA (Physical Medium Attachment) -преобразование группы кодов в последовательный поток бит и обратно, плюс синхронизация, и PMD (Physical Media Dependent), преобразующий биты в оптические сигналы. Традиционно, они выполнены логически независимыми друг от друга частями.

Спецификации физической среды 10Gigabit Ethernet

  • 10GBASE-SR - Технология 10 Гигабит Ethernet для коротких расстояний (до 300метров), используется многомодовое оптоволокно.
  • 10GBASE-LR и 10GBASE-ER - эти стандарты поддерживают расстояния до 10 и 40 (80) километров соответственно. 10GBASE-LR использует лазеры 1310 нм, а 10GBASE-ER лазеры 1550 нм.
  • 10GBASE-LX4 -использует уплотнение по длине волны для поддержки расстояний от 240 до 300 метров по многомодовому оптоволокну, IEEE 802.3 Clause 48 PCSи технологию «грубый» WDM. Данная спецификация позволяет поддерживать два типа оптоволокна. При использовании многомодового оптоволокна длина участка может достигать до 300 м, при скорости 10 Гбит/с, а при использовании одномодового оптоволокна расстояние увеличивается до 10 километров. Это достигается использованием 4-х лазерных источников, работающих на уникальных длинах волн в диапазоне 1300 нм.
  • 10GBASE-LRM (Long Reach Multimode) также известный как IEEE 802.3aq, использует IEEE 802.3 Clause 49 64B/66BPCSи 1310 нм лазерные излучатели. Это обеспечивает передачу данных, используя многомодовый оптический кабель, со скоростью 10.3125 Гбит/с. 10GBASE-LRM поддерживает расстояния в 220 метров, при использовании многомодового оптического кабеля
  • 10GBASE-ZR. Некоторые производители создали сменные интерфейсные устройства, для работы на расстоянии до 80 км. Так как эти устройства не определены стандартом IEEE 802.3ae, изготовители создали свою спецификацию 10GBASE-ZR, описанную в спецификации OC-192/STM-64 SDH/SONET.