This section contains some shortcodes that requries the Jannah Extinsions Plugin. You can install it from the Theme settings menu > Install Plugins.

Вы еще не знаете как сделать шлем виртуальной реальности? Тогда вы по адресу! Сегодня будем крафтить VR очки, под названием google cardboard . Он разработан инженерами «Google», чтобы продвинуть эту технологию в массы. А его конструкция настолько проста, что собрать его может любой школьник, не потратив ни копейки. Потому, что он сделан из картона и линз, взятых из канцелярских луп.

На рынке в последнее время появилось огромное количество устройств для просмотра контента в режиме VR. Сегодня только ленивый не выпускает такие устройства. Самые именитые из них Oculus Rift, Sony Playstation VR, Samsung Gear, HTC Vive и многие другие.

Но «гугл» как всегда, впереди планеты всей. Они смогли сделать очки из простой картонки и пары линз, и выложили чертежи в открытый доступ, чтобы каждый дома на коленках мог собрать такое устройство. За это коробочка от гугла и получила невероятную популярность.

Видео: как сделать очки виртуальной реальности своими руками

Как работает шлем виртуальной реальности

В полной версии установлены два OLED дисплея. Видео на них передается с компьютера по кабелю и обрабатывается встроенным процессором. Две линзы фокусирую изображение с двух экранов в одно, создавая эффект погруженности. За движение в пространстве отвечают: гироскоп, акселерометр и магнитометр. А инфракрасный трекер расположен перед игроком на столе, он используется в играх и позволяет определить положение человека в пространстве.

Мобильные очки работают по тому же принципу. Но вместо электронной начинки и экранов используется телефон. На экран которого выводится два синхронных изображения. А за ориентацию в пространстве отвечают датчики смартфона.

Как сделать google cardboard своими руками

Все намного проще, чем кажется. Если в доме есть картон и завалялась парочка небольших луп, а у вас есть Android или iOS устройство, то картонный шлем можно скрафтить своими руками за пол часа.

Понадобиться

  • Чертеж
  • Картон размером 60х40 см.
  • Две линзы диаметром 25мм
  • Смартфон

Дополнительно понадобится еще несколько компонентов, без которых можно обойтись.

  • Липучки для фиксации (можно купить в швейном магазине или снять с одежды)
  • Неодимовый кольцевой и дисковый керамический магниты (диаметр 19 мм и толщина 3мм)
  • NFC-стикер, для взаимодействия с телефоном

Как собрать?

  • Распечатать чертеж
  • Приклеить на картон
  • Вырезать и собрать коробочку как на картинке
  • Вытащить из лупы линзы и вставить в коробочку
  • Запустить игру или видео в режиме VR
  • Вставить смартфон в коробочку и наслаждаться

Чертеж google cardboard

Корпус очков от гугла сделаны из картона, но никто не запрещает использовать другие материалы: пластик, стекло, дерево или полимеры для 3D печати. Достаточно скачать чертеж и по нему вырезать корпус.

Скачать

Линзы для шлема google cardboard

Линзы для самодельного шлема виртуальной реальности можно купить в интернете или вытащить из канцелярских луп, бинокля или сделать самостоятельно (в книге Жюль Верна «Таинственный остров» Сайрус Смит склеил два стекла от часов глиной, наполнил водой и получил увеличительное стекло, чтобы разжечь огонь). Основные параметры:

  • Двояковыпуклые
  • Диаметр 25мм
  • Фокусное расстояние 45мм
  • Кратность 5-7х
  • Изготовлены из стекла для четкого изображения

Пошаговая инструкция

1. Распечатать шаблон.

2. Вырезать и приклеить заготовки на картон. Минимальная высота картона 40см, чтобы не склеивать части корпуса. Лучше взять размером 60х40 см, на нем поместятся все части.


3. Вырезать макет коробочки.

4. Собрать кнопку, которая будет нажимать на экран. Приклеить вырезанную кнопку как показано на схеме, а в качестве проводника использовать полоску пищевой фольги.


5. Вставить линзы в подготовленные отверстия и зафиксировать их скотчем или «супер клеем».


6. На чертеже отмечены места куда необходимо приклеить липучки при помощи которых коробка собирается без использования клея и скотча. Но липучки не всегда есть под рукой, поэтому будем использовать старый добрый скотч.

7. Собрать картонную коробку.




8. Запустить контент на смартфоне, и установить его в коробку. ВУАЛЯ готово!

Еще одно преимущество такого варианта — его можно стилизировать под себя.

Контент

На данный момент на просторах интернета существует множество контента для VR очков. А большие компании делают невероятные инвестиции в развитие этой технологии. Так что недостатка в контенте точно не будет.

Официальное приложение

Если вы собрали устройство и еще не погрузились в этот мир, тогда можно начать с официального приложения для мобильных платформ.

Скачать Google Cardboard для iOS для Android

Видео YouTube в режиме 360

Откройте приложение YouTube на телефоне и в поисковике наберите «видео 360 ». Когда запустится видео, нажмите на кнопку картонных очков и поместите его в шлем.

Игры виртуальной реальности для смартфонов и компьютера

В магазинах на мобильных устройствах уже появились целые разделы для таких очков. Достаточно открыть магазин приложений и в поиске набрать «VR ».

Также можно стримить любой контент непосредственно с PC на Android или iOS и использовать беспроводной геймпад для управления.

  • Подробнее читайте об этом в статье Moonlight - cтриминг игр с ПК на Android и iOS
  • Инструкция — как подключить джойстик DUALSHOCK 4 к компьютеру или смартфону
  • Тоже интересно: как подключить PS4 к ПК по WiFi

Заключение

Присылайте чертежи очков из картона, пластика, 3D принтера. Делитесь идеями и опытом использования.

Люблю ребят из Google. Молодцы они. Правильно поставленные просветленные мозги и хорошая мотивация иногда способны выжать из человека совершенно гениальные идеи. Простые как 3 копейки и в то же время совершенно сногсшибательные. Примером такой гениальной сногсшибательной идеи несомненно являются очки виртуальной реальности Google Cardboard.

Все гениальное просто — кусок правильно согнутого картона, две копеечные линзы, смартфон с большим экраном и набором датчиков — вот вам и очки виртуальной реальности. Учитывая, что у многих людей такой смартфон уже в кармане, цена вопроса встает всего в 150 рублей и 2 часа свободного времени на сборку-склейку.

Казалось бы — как-то простенько... Но работает! Да еще как! Игры в 3D, фильмы в 3D, обучающие приложения и виртуальные путешествия — пожалуйста! Простотой, гениальностью подхода и ценой вопроса гугловцы заткнули за пояс всех разработчиков всяких там Oculus Rift"ов и прочее. Та же виртуальная реальность, только почти бесплатно. Пусть выглядит неказисто, но зато работает. А внешний вид, при желании, может быть и пластмассово-вылизанным, достаточно посмотреть на знаменитом китайском сайте — вариантов-аналогов масса, ценник от 700 рублей и далее, с разным функционалом, регулировками и дырками для воздуха...

Для очков подойдет любой смартфон на Android 4.1 Jelly Bean и выше, iOS 7 и выше или Windows Phone 7.0 и выше, с диагональю экрана не менее 4,5 дюймов. В смартфоне должны быть следующие датчики: гироскоп, акселерометр, магнитомер (цифровой компас). ВАЖНО! Гироскоп и акселлерометр необходимы для работы большинства приложений, иначе можно будет только смотреть 3D-фильмы. Оценить виртуальную реальность без гироскопа и акселерометра невозможно.

Рекомендую всем, у кого в наличии имеется такой смартфон попробовать эту штуку. Поверьте, это здорово. Для тех, кто не хочет заморачиваться с картоном и ножницами, могу порекомендовать купить готовый Google Cardboard на aliexpress.com. Тем же, кто легких путей не ищет — милости просим сюда, я расскажу как можно сделать такую штуку быстро и без подводных камней.

На текущий момент существует 2 версии Google Cardboard. Как собрать вторую версию я расскажу чуть позже, в отдельном посте, сейчас же речь пойдет о самой простой в изготовлении — первой версии. Google, как настоящая корпорация добра, не поскупилась и выложила в общий доступ всю информацию по этому изобретению.

Итак, что нам понадобится для изготовления сего замечательного устройства:

1. Лист твердого картона. Лучше всего использовать микрогофрокартон, который вовсю применяется для изготовления коробок, тары, упаковок и т.п. Выглядит он так:

Лично я использовал картонку, из которой хитрыми манипуляциями сгибается канцелярский короб для бумаг. Этот короб продается в канцтоварах именно в виде плоского картонного листа (из нее предлагается сгибать короб самостоятельно). Картон хороший, около 2 мм толщиной (толще брать не рекомендую), превосходно режется канцелярским ножом и гнется без особых трудностей. Вот как он выглядит:

Однако можно использовать любую упаковку, хоть от пиццы. Хорошо подходит коробка от материнской платы, например. Главное, чтобы картон был плотный, и не толстый (2-3 мм максимум), иначе начнутся проблемы с размерами.

2. Шаблон для вырезания очков , распечатанный на обычной канцелярской бумаге формата А4 (понадобится 3 листа). Данный шаблон можно найти на просторах интернета, либо скачать здесь: . Этот pdf-файлик печатается на любом лазерном принтере, детали вырезаются ножницами и наклеиваются на лист гофрокартона. Поскольку несобранный Google Cardboard длиннее листа А4, шаблон разрезан так, что разрезанные части нужно наложить друг на друга при склейке. Эти части отмечены кружком с цифрой. Накладывать надо светлый (незакрашенный) кружок на закрашенный с той же цифрой и следить за совпадением линий.

3. Линзы в количестве 2х штук . Это самый сложный момент. Параметры линз такие: асферические, диаметр 25 мм, фокусное расстояние 45 мм. Сложность момента состоит именно в том, где такие линзы взять. Рассмотрим варианты:

  1. aliexpress.com — лучший вариант по цене, но длительный по времени. Для своих вторых очков я заказывал там, пришли через 19 дней, это рекорд скорости, ибо обычно все тянется месяц-два-три. Если этот вариант вас устраивает — ищите там «google cardboard lens»
  2. Поиск того же в русском сегменте интернета. По скорости будет быстрее китая, но цена будет выше.
  3. Магазины «Оптика» вашего города. Да, там тоже можно поискать. Вероятно, это самый дорогой вариант, не знаю, не пробовал. Продавцы в оптике не поймут, если вы скажете «линзы асферические, диаметр 25 мм, фокусное расстояние 45 мм». Им надо говорить по-другому. Поскольку они все измеряют в диоптриях, вам нужно будет спрашивать именно линзы с диоптриями. Сейчас мы их посчитаем: есть формула F=1/D, где F — фокусное расстояние в метрах, а D — оптическая сила линзы в диоптриях. Таким образом D = 1/F = 1/0,045 = 22,2222. В общем, нужно спрашивать линзы «+22 диоптрий». Если таковые найдутся, то их можно обточить там же до нужного диаметра, либо, диаметром побольше, но тогда и шаблон надо будет слегка изменить.
  4. Магазины канцтоваров. В нем ищем подходящие по размеру лупы (т.е. увеличительные стекла), чем выше кратность, тем лучше. 10-кратные линзы должны подойти. Данный вариант самый ненадежный, ибо трудно найти 2 одинаковых лупы да еще так, чтобы они подошли по фокусному расстоянию. Однако, именно этот вариант был первым, который я попробовал
  5. Различного рода бинокли, детские игрушки, объективы, подзорные трубы, мужички-старьевщики на рынках, в общем, ищем где можем.

Идеологически верным являются первые 3 варианта, ибо они подразумевают точное совпадение с конструкцией, предложенной Google. Остальные варианты дают линзы неточные, поэтому потребуют изменения конструкции самих очков. Нагляднее показать на рисунке:

Из этой картинки следует, что чем больше фокусное расстояние, тем дальше нужно отодвигать смартфон от линзы. Таким образом, если вам достались не родные линзы, вносите изменения в конструкцию. Именно это мне и пришлось сделать в первый раз, когда я купил линзы в канцтоварах. Это несложно, я опишу подробности в следующем посте, целиком посвященному моему первому варианту Google Cardboard.

Что делать если фокусное расстояние ваших линз неизвестно? Два пути: либо делать конструкцию изначально с регулировкой расстояния от линзы до смартфона, как сделал я в своем первом варианте, либо измерить. Измерить фокусное расстояние можно простым дедовским способом:

Выжигали в детстве стеклышком? Во-во, то же самое. Берем линзу и фокусируем солнце в маленькую точку на поверхности. Расстояние от поверхности до линзы равно фокусному. Поверхность должна быть перпендикулярна оптической оси.

Итак, про линзы пока все.

4. Магнитики. Данный пункт для начала необязательный. В конструкции используется 2 магнита, которые работают как кнопка. Один магнит, круглый плоский, обычный, из ферромагнетика, вставляется внутрь конструкции, второй, кольцеобразный неодимовый, лепится снаружи и удерживается там магнитным полем внутреннего магнита:

Для того, чтобы управлять виртуальной реальностью и используется это недокнопка. Когда нам нужно как-то воздействовать на виртуальный мир, мы должны сдвинуть внешний магнитик пальцем вниз и вернуть его назад. Смартфон должен обладать магнитометром (должен быть встроенный компас, грубо говоря), чтобы отловить изменение магнитного поля и воспринять его как нажатие на кнопку.

Сразу говорю — бредовая идея и в самом гугле это поняли, потому вторая версия очков имеет уже механическую кнопку, но об этом — в соответствующем посте. Пока же скажу, что обойтись можно и без этих магнитиков, тем более, что работает эта идея так себе — люди жалуются на то, что не все смартфоны корректно улавливают изменения магнитного поля этой квазикнопки, а у некоторых смартфонов вообще нет магнитометра.

В общем, оставляю это на ваше усмотрение, я себе магнитики не ставил. Когда мой первый вариант заработал, я сделал механическую кнопку.

5. Одежные липучки. Ну, тут все просто — идем в ателье и покупаем там застежку-липучку, продаются в виде ленты, метражом, цена сущие копейки.

6. Канцелярский нож и двусторонний скотч.

Процесс пошел!

Итак, все купили/наковыряли/насобирали. Приступаем.
1. Печатаем шаблон и наклеиваем его на картон.

2. Вырезаем детали, делаем необходимые прорези

3. Собираем. Для облегчения сборки прикладываю видео:

Сегодня я расскажу вам, как сделать HTC Vive из очков виртуальной реальности для смартфона cardboard своими руками, потратив при этом всего лишь 7 тысяч рублей, в то время как оригинальные виртуальные очки HTC Vive стоят около 70 тысяч рублей. Большим преимуществом этих дорогих очков виртуальной реальности является наличие пультов, но это не проблема, так как на сегодняшний день их можно заменить другим устройством. Например, тем же сенсором LeapMotion, с помощью которого ваши руки будут заменять пульты.

Итак, для того, чтобы сделать шлем за 7 тысяч рублей, из устройств на понадобится:

  • ПК с процессором не менее Intel Core i5 и видеокартой не менее Nvidia GeForce 750,
  • смартфон со встроенным датчиком гироскопа,
  • сенсор LeapMotion,
  • очки виртуальной реальности для смартфона cardboard
  • и желательно два USB удлинителя.
  • Смартфон вы можете использовать свой, сенсор LeapMotion вы сможете купить приблизительно за 5 тысяч рублей, и виртуальные очки с хорошим эффектом погружения обойдутся вам в районе 2 000 – 3 000 рублей. Таким образом, вы сделаете себе собственный HTC Vive, который будет стоить в 10 раз меньше, чем оригинальный.

    Из программного обеспечения нам потребуется:

  • и желательно чтобы операционная система была Windows 10.
  • Для начала необходимо установить программу Vridge RiftCat на ПК и соответствующее приложение на смартфоне. Данная программа поможет вам соединить компьютер со смартфоном и эмулировать подключенные VR очки HTC Vive. Для этого подключаем телефон к ПК USB кабелем, на смартфоне заходим в настройки, активируем режим USB-модем. После чего компьютер со смартфоном войдут в общую локальную сеть. Можно конечно не подключать смартфон к ПК при помощи USB кабеля, а просто использовать Wi-Fi. Почему я выбрал именно подключение через USB? Так, вы сможете добиться наилучшего качества изображения передаваемого с ПК на смартфон, через Wi-Fi качество картинки будет относительно хуже. Теперь открываем RiftCat на вашем смартфоне и подключаемся к RiftCat на ПК.

    Дальше необходим сенсор LeapMotion, который уже упоминался, также подключаем его с помощью USB-провода к ПК и устанавливаем драйвера Leap Motion VR Orion Driver и Leap Motion Desktop Software указанные выше.

    Вам так же потребуется установить на ПК программу Steam и создать себе аккаунт. В Steam перейти на вкладку «Библиотека» и перейти в раздел «Инструменты», найти в списке SteamVR и установить.

    И в конце устанавливаем Leap Motion Steam VR Driver.

    После подключения всех наших устройств и установки всех необходимых программ, в программе Vridge RiftCat на ПК нажимаем Play SteamVR Games, в этот момент появится окошко, запустится эмулятор, после чего автоматически запустится программа Steam VR и если все правильно настроено, то значки очков и пультов в SteamVR будут светиться зеленым. После чего можно нажать на заголовок окна SteamVR и выполнить «Настройку комнаты» выбрав маленькую комнату, а расстояние от пола можно указать 180см. Вот у нас все подключено и работает. Теперь в Steam запускаем любую VR игру совместимую с очками виртуальной реальности HTC Vive. Для того чтобы начать играть, необходимы пульты, но в нашем случае, как я уже говорил, их заменят мои руки. Дальше вставляем смартфон в очки виртуальной реальности и приклеиваем сенсор LeapMotion спереди на крышку очков.

    Запустив игру, мои руки стали эмитировать пульты. Сгибая указательные пальцы, вы будете эмитировать нажатие на курок. Есть минимальная задержка по времени, то есть на компьютере действие будет происходить немного позже, чем вы на самом деле сгибаете пальцы, но это не страшно. Также, в отличие от пультов виртуальных очков HTC Vive, руки должны находиться перед вами, в пределах видимости сенсорной камеры. Разводя руки в стороны, камера будет терять их из виду, а в игре будут пропадать пульты, поэтому рекомендуем держать руки в поле зрения сенсорной камеры. Стрелять в играх можно будет, сгибая указательные пальцы. Целиться в играх руками, конечно, не очень удобно, но к этому в принципе можно быстро приловчиться. Рекомендуем вам ознакомиться с доступными жестами на этом сайте.

    Я считаю, что такая технология подойдет для тех, кто хочет ознакомиться с очками виртуальной реальности на компьютере, не потратив при этом 70 тысяч рублей. Конечно, данная схема требует достаточно мощный компьютер, с процессором Intel Core i5 и видеокартой не менее Nvidia GeForce 750. Не советую пытаться подключить очки к ноутбуку, за исключением случаев, если у вас игровой ноутбук. В основном виртуальные очки вообще не будут работать с ноутбуком, а с некоторыми, если и удастся подключить, то комфортно играть все равно не получится.

    Покупать сенсор LeapMotion и очки виртуальной реальности для смартфона в данном случае, я считаю, можно для ознакомления с играми и самой технологией работы. Конечно, вы сможете привыкнуть играть без пультов, но эффект будет совсем другой. Вы не получите в данном варианте тех эмоций, которые могли бы получить с виртуальными очками HTC Vive. Очень неудобно то, что с сенсором вам необходимо держать руки только в области видимости сенсорной камеры, в то время как с пультами HTC Vive, вы сможете размахивать, как вам удобно. Если же вы хотите играть полноценно и при этом сэкономить, то я советую купить вам, вместо сенсора LeapMotion, пульты RazerHydra, которые хорошо отслеживаются в пространстве, точно так же как и настоящие пульты от HTC Vive. Используя RazerHydra вы сможете так же комфортно играть, как и при помощи пультов от HTC Vive.

    Итак, в этой статье я рассказал вам о том, как создать неполноценную, конечно, но хорошую замену для дорогих виртуальных очков HTC Vive, сэкономив в 10 раз. Покупайте себе сенсорную камеру LeapMotion или же пульты RazerHydra, очки виртуальной реальности для смартфона, устанавливайте необходимые программы на ПК и наслаждайтесь играми виртуальной реальности для очков виртуальной реальности HTC Vive вместе с нами! Заказывайте все необходимое на BESTVR!

    Собственный модуль виртуальной реальности — мечта многих с детства, и прогресс уже вплотную приблизился к созданию таких устройств. В 2014 году разработчики Google представили миру ошеломляющее изобретение, использующее возможности обычных смартфонов на платформе Android. Прямо на конференции любой участник мог собрать из картона и нескольких несложных деталей шлем виртуальной реальности и оценить прелести трёхмерной графики и атмосферного видео с возможностью просмотра на все 360 градусов обзора.

    Виртуальная реальность по дешёвке

    Google Cardboard не стал технологическим прорывом, шлемы виртуальной реальности существуют уже довольно давно, более того, многим знакомы детские устройства для просмотра объёмных изображений. Умением смартфонов ориентироваться в пространстве сейчас тоже мало кого можно удивить, нет, общественность удивило кое-что другое. Простота и доступность конструкции — вот что действительно заслужило внимание, к тому же разработчики успели к настоящему моменту выпустить множество приложений, использующих это устройство для погружения в виртуальную реальность.

    Разработчики Google Cardboard открыли всю техническую документацию на устройство, отказавшись торговать своим изобретением, и производители мгновенно подхватили идею. На данный момент существует множество различных моделей из пластика, картона и даже кожаные изделия. В пределах $20 можно приобрести картонные комплекты наподобие тех, что были впервые представлены на конференции разработчиков в июне 2014 года. Также инструкции и схемы доступны любому, и не составит труда собрать Cardboard своими руками.

    Материалы

    Цены для картонной коробочки, конечно, довольно значительные, но перед тем как сделать Cardboard своими руками, следует знать, где найти или приобрести остальные материалы. Нам понадобятся:


    Электронная составляющая - мощный смартфон

    Разберём теперь все составляющие по пунктам, начиная с моделей подходящих смартфонов. Любой желающий может найти придуманные разработчиками для сборки Google Cardboard своими руками чертежи. Размеры телефонов, подходящих для таких версий очков 2.0 ограничены шириной до 83 мм и диагональю до 6 дюймов. Для других размеров придётся продумывать свою собственную конструкцию, подбирая расстояния до линз опытным путём или поискать вариант из готовых изделий в магазине. Дополнительные требования 3D-очки предъявляют и к экрану устройства. Помните, вы не просто будете разглядывать экран телефона с очень близкого расстояния, а получите увеличение через линзы. Само собой, чем лучше экран, тем меньше дискомфорта. На данный момент возможно использование смартфонов на базе и выше (от 4 iPhone) или Windows Phone 7.0 и выше, но изначально вся система задумана именно для Android 4.1. Скачайте любое VR-приложение и проверьте свой смартфон на совместимость, вращая его и наблюдая за картинкой.

    Материал корпуса

    Картон для основы наших очков подобрать несложно, подходящими параметрами обладает большая коробка от пиццы. Также картон можно приобрести в магазинах для рукоделия или разобрать какую-нибудь безхозную коробку из-под бытовых приборов. Слишком толстый картон будет неудобно резать и сгибать, тогда как тонкий, скорее всего, не удержит линзы и смартфон в жёстко зафиксированном положении на голове.

    Оптика

    С линзами, пожалуй, будет наиболее сложно, но это самый важный материал для 3D-очков. Google рекомендует использовать линзы для Cardboard с фокусным расстоянием 45 мм, соответственно, размеры самих очков виртуальной реальности на сайте рассчитаны лишь на линзы с таким фокусом. Таким образом, желание использовать другие линзы или, быть может, систему из двух и более линз на каждый окуляр неизбежно приведёт к перенастройке расстояния до глаз и экрана, таким образом, к изменению всей конструкции. Если чувствуете себя достаточно уверенными, стоит поэкспериментировать, но гораздо проще заказать линзы.

    Крепёжные элементы

    В качестве крепления к голове можно использовать тканевую резинку или ремешок на липучке. Канцелярскую резинку для корпуса найти несложно, а заменить и того проще. После сборки всей конструкции она нужна лишь для удержания формы. Можно просто проклеить 3D-очки на всех стыках после проведения настройки линз клеем или скотчем. Две липучки размером 15х20 мм понадобятся, чтобы зафиксировать закрытую крышку со вставленным смартфоном. При отсутствии таковой существует масса вариантов фиксации картонной крышки, главное — убедиться, что смартфон не выпадет в процессе использования 3D-очков.

    Дополнительные элементы управления

    Магниты нужны, чтобы сделать на корпусе необязательную кнопку управления 3D-гарнитурой, и подходят только к моделям смартфонов со встроенным магнитометром. При создании шлема на пробу не стоит тратить силы и деньги на поиск подходящих магнитов. Такую кнопку можно будет прикрепить к очкам виртуальной реальности отдельно после полного тестирования устройства или вообще не устанавливать её. Для долговременных 3D-очков вам понадобятся кольцо неодимового магнита и диск магнитной керамики, оба размерами не более 3х20 мм. Также можно прорезать отверстия и управлять смартфоном пальцами.

    NFC-стикер приклеивают с внутренней стороны очков, что позволяет смартфону автоматически запускать нужные приложения. Найти его можно, наверно, в салонах связи или в интернет-магазинах, обязательным он также не является, да и поставить его можно уже как-нибудь потом.

    Инструментарий и техника безопасности

    Инструмент для работы понадобится самый простой:

    • Шаблон Google Cardboard. Чертежи находятся в статье.
    • Острый нож, подойдёт прочный канцелярский. Картон нужно резать чётко по линиям шаблона, особенно пазы и отверстия, поэтому ножницы тут не справятся.
    • Скотч или клей.
    • Жёсткая линейка.

    Google утверждает, что для работы достаточно ножниц, не стоит обольщаться, тонкие прорези и фиксирующие пазы гораздо удобнее вырезать лезвием.

    Конструкция получается усиленная рёбрами жёсткости изнутри, поэтому нет особой разницы, вырезать цельную выкройку из длинного куска картона или собрать из 2-3 частей, соединяя их скотчем. При вырезании ножом внимательно следите, чтобы не поцарапать поверхность стола или пола, возьмите для этих целей специальную доску, например, разделочную из кухни. Особенно тщательно нужно подойти к вырезанию отверстий для линз, чтобы впоследствии линзы лежали в одной плоскости, перпендикулярной взгляду.

    Сборка устройства

    Сборку производите по рисункам, укрепляйте каркас липкой лентой и внимательно следите за расположением линз. В зафиксированном положении картон жёстко прижмёт линзы, чтобы они не смещались относительно друг друга. Далее нужно приклеить липучки в качестве застёжек по краям верхней стороны и на внутренней стороне крышки, а также установить на своё место магниты. На этом этапе уже можно примерить 3D-очки к голове, чтобы определить места возможного натирания кожи. При продолжительном просмотре фильма, к примеру, эти точки могут сильно раздражать, поэтому дополнительно можно проложить их тонкими полосками поролона.

    Овчинка стоит выделки?

    3D-очки готовы, осталось закрепить их на голове резинкой или ремешком по вашему выбору, вставить смартфон с 3D-приложением и наслаждаться виртуальной реальностью. Что касается стоимости полученного устройства, существует множество предложений готовых комплектов ценой менее $10. Сэкономить получится только в том случае, если все детали имеются под рукой или находятся в лёгкой доступности. Если заказывать запчасти, с учётом различных расходов на пересылку и времени выполнения заказов, получается несколько дороже, чем покупка комплекта целиком. Естественно, если ваш пёс покусает 3D-очки за то, что вы просидели в виртуальной реальности вместо того, чтобы накормить или выгулять животное, вы легко можете собрать новые, используя инструкцию, приведенную выше, и оставшиеся детали. А пока вы ищете картон взамен повреждённого, чтобы восстановить Cardboard своими руками, можно и собаку выгулять и накормить.

    Возможности устройства

    На данный момент существует уже ощутимое количество оптимизированных под Google Cardboard приложений и несколько фильмов. В паре с наушниками очки виртуальной реальности вполне могут заменить хороший 3D-кинотеатр, а игры, по мнению пользователей, несмотря на свою примитивность, способны добавить сильнейших ощущений присутствия и атмосферности. Для умельцев и любителей различных технических задач можно отметить, что существует возможность очки Cardboard подключить к компьютеру для использования модуля виртуальной реальности в играх. Вот где действительно полное погружение.

    Работающий на стыке кибернетики, психологии и бихевиоризма (науки о поведении), и инженер, составляющий алгоритмы для промышленных роботизированных комплексов, среди основных инструментов которого - высшая математика и мехатроника, работают в самой перспективной отрасли ближайших лет - робототехнике. Роботы, несмотря на сравнительную новизну термина, издавна знакомы человечеству. Вот лишь несколько фактов из истории развития умных механизмов.

    Железные люди Анри Дро

    Еще в мифах Древней Греции упоминались механические рабы, созданные Гефестом для выполнения тяжелых и однообразных работ. А первым изобретателем и разработчиком человекоподобного робота стал легендарный Леонардо да Винчи. До наших дней сохранились подробнейшие чертежи итальянского гения, описывающие механического рыцаря, способного имитировать человеческие движения руками, ногами, головой.

    Созданию первых автоматических механизмов с программным управлением положили начало в конце XVΙΙΙ века европейские часовые мастера. Наиболее преуспели на этом поприще швейцарские специалисты отец и сын Пьер-Жак и Анри Дро. Ими создана целая серия ("пишущий мальчик", "рисовальщик", "музыкантша") в основе управления которыми лежали часовые механизмы. Именно в честь Анри Дро в дальнейшем все программируемые человекоподобные автоматы стали называть "андроидами".

    У истоков программирования

    Основы программирования промышленных роботов были заложены на заре XIX века во Франции. Здесь же и были разработаны первые программы для автоматических текстильных станков (прядильных и ткацких). Стремительно растущая армия Наполеона остро нуждалась в обмундировании и, следовательно, тканях. Изобретатель из Лиона Жозеф Жаккар предложил способ быстрой перенастройки ткацкого станка для производства различных видов продукции. Нередко эта процедура требовала огромного количества времени, колоссальных усилий и внимания целого коллектива. Суть нововведения сводилась к использованию картонных карточек с перфорированными отверстиями. Иглы, попадая в просеченные места, необходимым образом смещали нити. Смена карт быстро проводилась оператором станка: новая перфокарта - новая программа - новый тип ткани или узора. Французская разработка стала прообразом современных автоматизированных комплексов, роботов с возможностью программирования.

    Идею, предложенную Жаккаром, с восторгом использовали в своих автоматических устройствах многие изобретатели:

    • Начальник статистического управления С. Н. Корсаков (Россия, 1832 г.) - в механизме для сравнивания и анализа идей.
    • Математик Чарльз Бэббидж (Англия, 1834 г.) - в аналитической машине для решения широкого круга математических задач.
    • Инженер (США, 1890 г.) - в устройстве для хранения и обработки статистических данных (табуляторе). Для заметки: в 1911 году компания. Холлерита получила название IBM (International Business Machines).

    Перфокарты были основными носителями информации вплоть до 60-х годов прошлого века.

    Своим названием интеллектуальные машины обязаны чешскому драматургу В пьесе "R.U.R.", увидевшей свет в 1920 году, писатель назвал роботом искусственного человека, созданного для тяжелых и опасных участков производства (robota (чешск.) - каторга). А что отличает робота от механизмов и автоматических устройств? В отличие от последних, робот не только выполняет определенные действия, слепо следуя заложенному алгоритму, но и способен более тесно взаимодействовать с окружающей средой и человеком (оператором), адаптировать свои функции при изменении внешних сигналов и условий.

    Принято считать, что первый действующий робот был сконструирован и реализован в 1928 году американским инженером Р. Уэнсли. Человекоподобный "железный интеллектуал" получил имя Герберт Телевокс. На лавры пионеров претендуют также ученый-биолог Макото Нисимура (Япония, 1929 г.) и английский военнослужащий Уильям Ричардс (1928 г.). Созданные изобретателями антропоморфные механизмы имели схожий функционал: способны были двигать конечностями и головой, выполнять голосовые и звуковые команды, отвечать на простые вопросы. Основным предназначением устройств была демонстрация научно-технических достижений. Очередной виток в развитии технологий позволил в скором времени создать и первых индустриальных роботов.

    Поколение за поколением

    Разработка робототехники представляет собой непрерывный, поступательный процесс. К настоящему моменту сформировались три ярко выраженных поколения "умных" машин. Каждое характеризуется определенными показателями и сферами применения.

    Первое поколение роботов создавалось для узкого вида деятельности. Машины способны выполнять только определенную запрограммированную последовательность операций. Устройства управления роботами, схемотехника и программирование практически исключают автономное функционирование и требуют создания специального технологического пространства с необходимым дополнительным оборудованием и информационно-измерительными системами.

    Машины второго поколения называют очувствленными, или адаптивными. Программирование роботов осуществляется с учетом большого набора внешних и внутренних сенсоров. На основе анализа информации, поступающей с датчиков, вырабатываются необходимые управляющие воздействия.

    И наконец, третье поколение - интеллектуальные роботы, которые способны:

    • Обобщать и анализировать информацию,
    • Совершенствоваться и самообучаться, накапливать навыки и знания,
    • Распознавать образы и изменения ситуации, и в соответствии с этим выстраивать работу своей исполнительной системы.

    В основе искусственного интеллекта лежит алгоритмическое и программное обеспечение.

    Общая классификация

    На любой представительной современной выставке роботов многообразие "умных" машин способно поразить не только простых обывателей, но и специалистов. А какие бывают роботы? Наиболее общую и содержательную классификацию предложил советский ученый А. Е. Кобринский.

    По назначению и выполняемым функциям роботов подразделяют на производственно-промышленные и исследовательские. Первые, в соответствии с характером выполняемых работ, могут быть технологическими, подъемно-транспортными, универсальными или специализированными. Исследовательские предназначены для изучения областей и сфер, опасных или недоступных для человека (космическое пространство, земные недра и вулканы, глубоководные слои мирового океана).

    По типу управления можно выделить биотехнические (копирующие, командные, киборги, интерактивные и автоматические), по принципу - жестко программируемые, адаптивные и гибко программируемые. Бурное развитие современной предоставляет разработчикам практически безграничные возможности при проектировании интеллектуальных машин. Но отличное схемное и конструктивное решение будет служить лишь дорогостоящей оболочкой без соответствующего программного и алгоритмического обеспечения.

    Чтобы кремний микропроцессора смог взять на себя функции мозга робота, необходимо "залить" в кристалл соответствующую программу. Обычный человеческий язык не способен обеспечить четкую формализацию задач, точность и надежность их логической оценки. Поэтому требуемая информация представляется в определенном виде с помощью языков программирования роботов.

    В соответствии с решаемыми задачами управления выделяют четыре уровня такого специально созданного языка:

    • Низший уровень используется для управления исполнительными приводами в виде точных значений линейного или углового перемещения отдельных звеньев интеллектуальной системы,
    • Уровень манипулятора позволяет осуществлять общее управление всей системой, позиционируя рабочий орган робота в координатном пространстве,
    • Уровень операций служит для формирования рабочей программы, путем указания последовательности необходимых действий для достижения конкретного результата.
    • На высшем уровне - заданий - программа без детализации указывает что надо сделать.

    Робототехники стремятся свести программирование роботов к общению с ними на языках высшего уровня. В идеале оператор ставит задачу: "Произвести сборку двигателя внутреннего сгорания автомобиля" и ожидает от робота полного выполнения задания.

    Языковые нюансы

    В современной робототехнике программирование роботов развивается по двум векторам: роботоориентированное и проблемно ориентированное программирование.

    Наиболее распространенные роботоориентированные языки - AML и AL. Первый разработан фирмой IBM только для управления интеллектуальными механизмами собственного производства. Второй - продукт специалистов Стэндфордского университета (США) - активно развивается и оказывает существенное влияние на формирование новых языков этого класса. Профессионал легко разглядит в языке характерные черты Паскаля и Алгола. Все языки, ориентированные на роботов, описывают алгоритм, как последовательность действий "умного" механизма. В связи с этим программа зачастую выходит очень громоздкой и неудобной в практической реализации.

    При программировании роботов на проблемно ориентированных языках, в программе указывается последовательность не действий, а целей или промежуточных позиций объекта. Наиболее популярным в этом сегменте является язык AUTOPASS (IBM), в котором состояние рабочей среды представлено в виде графов (вершины - объекты, дуги - связи).

    Обучение роботов

    Любой современный робот представляет собой обучаемую и адаптивную систему. Вся необходимая информация, включающая знания и умения, передается ей в процессе обучения. Это осуществляется, как непосредственным занесением в память процессора соответствующих данных (детальное программирование - семплинг), так и с использованием сенсоров робота (методом наглядной демонстрации) - все движения и перемещения механизмов робота заносятся в память и затем воспроизводятся в рабочем цикле. Обучаясь, система перестраивает свои параметры и структуру, формирует информационную модель внешнего мира. Это и есть основное отличие роботов от автоматизированных линий, промышленных автоматов с жесткой структурой и других традиционных средств автоматизации. Перечисленные методы обучения обладают существенными недостатками. Например, при семплинге перенастройка требует определенного времени и труда квалифицированного специалиста.

    Весьма перспективной выглядит программа для программирования роботов, представленная разработчиками Лаборатории информационных технологий при Массачусетском технологическом институте (CSAIL MIT) на международной конференции промышленной автоматизации и робототехники ICRA-2017 (Сингапур). Созданная ими платформа C-LEARN обладает достоинствами обоих методов. Она предоставляет роботу библиотеку элементарных движений с заданными ограничениями (например, усилие хвата для манипулятора в соответствии с формой и жесткостью детали). В то же время, оператор демонстрирует роботу ключевые движения в трехмерном интерфейсе. Система, исходя из поставленной задачи, формирует последовательность операций для выполнения рабочего цикла. C-LEARN позволяет переписать существующую программу для робота другой конструкции. Оператору при этом не требуются углубленные знания в области программирования.

    Робототехника и искусственный интеллект

    Специалисты Оксфордского университета предупреждают, что в ближайшие два десятилетия машинные технологии заменят более половины сегодняшних рабочих мест. Действительно, роботы давно уже трудятся не только на опасных и трудных участках. Например, программирование значительно потеснило брокеров-людей на мировых биржах. Несколько слов об искусственном интеллекте.

    В представлении обывателя это антропоморфный робот, способный заменить человека во многих сферах жизни. Отчасти так и есть, но в большей степени искусственный интеллект - это самостоятельная отрасль науки и технологии, с помощью компьютерных программ, моделирующая мышление "Homo sapiens", работу его мозга. На сегодняшнем этапе развития ИИ больше помогает людям, развлекает их. Но, по прогнозам экспертов, дальнейший прогресс в области робототехники и искусственного интеллекта может поставить перед человечеством целый ряд морально-этических и юридических вопросов.

    В этом году на выставке роботов в Женеве самый совершенный андроид София заявила, что учится быть человеком. В октябре София впервые в истории искусственного интеллекта была признана гражданкой Саудовской Аравии с полноценными правами. Первая ласточка?

    Основные тенденции робототехники

    В 2017 году специалисты цифровой индустрии отметили несколько выдающихся решений в области технологий виртуальной реальности. Не осталась в стороне и робототехника. Очень перспективным выглядит направление совершенствующее управление сложным робомеханизмом через виртуальный шлем (VR). Эксперты пророчат востребованность такой технологии в бизнесе и промышленности. Вероятные сценарии использования:

    • Управление беспилотной техникой (складскими погрузчиками и манипуляторами, дронами, трейлерами),
    • Проведение медицинских исследований и хирургических операций,
    • Освоение труднодоступных объектов и областей (дно океана, полярные области). Кроме того, программирование роботов позволяет им осуществлять и автономную работу.

    Еще один популярный тренд - connected car. Совсем недавно представители гиганта Apple заявили о старте разработок собственного "беспилотника". Все больше фирм выражают свою заинтересованность в создании машин, способных самостоятельно перемещаться по пересеченным трассам, сохраняя грузы и оборудование.

    Возрастающая сложность алгоритмов программирования роботов и машинного обучения предъявляет повышенные требования к вычислительным ресурсам и, следовательно, к "железу". По-видимому, оптимальным выходом в этом случае будет подключение устройств к облачной инфраструктуре.

    Важное направление - когнитивная робототехника. Стремительный рост количества "умных" машин заставляет разработчиков все чаще задумываться о том, как научить роботов слаженно взаимодействовать.