Тема сегодняшней статьи - радиоизотопные термоэлектрические генераторы , или проще - ядерные батарейки. Те самые штуковины, которые используют на севере в необслуживаемых навигационных маяках, в космических зондах и даже в искусственных сердцах! Вещь распространенная, однако слухов и страхов вокруг нее больше, чем фактов. Рассмотрим подробней, что же на самом деле представляет из себя такая «батарейка» со сроком службы в 10-20 лет.

Радиоизотопный термоэлектрический генератор (РТГ, РИТЕГ, англ. - radioisotope thermoelectric generator, RTG) является ядерным электрическим генератором, который конвертирует энергию радиоактивного распада в электрическую энергию. Правда, не на прямую, а опосредованно - сначала энергия распада преобразуется в тепловую, а та, в свою очередь, преобразуется в электрическую при помощи так называемых термопар. Остановимся на этом процессе детальней.

Начнем с термопар . Они представляют из себя соединение двух (как правило - металлических) проводников, разница в температуре которых генерирует слабый электрический ток. Это явление называется эффектом Зеебека . Наиболее распространенная и простая для представления термопара - соединение медного и алюминиевого проводов. Если один конец соединения такой пары нагреть, а другой наоборот - охладить, на холодном проводнике начнут скапливаться электроны, что и приведет к возникновению электрического тока. Чем выше разница в температуре проводников в месте соединения, площадь соединения и толщина самих проводников, тем лучше.

Понятно, что большие сплавы проводников сложно нагревать и охлаждать, они тяжелы и требуют много места, поэтому термопары в электрогенераторах, основанных на этом принципе, выполняют в виде последовательностей большого количества небольших соединений. Такие блоки термопар соединяют между собой для получения необходимых силы тока и напряжения. Хорошим показателем для одной термопары является напряжение порядка 40 микровольт на 1 кельвин температурной разницы.

Из этой мизерной величины, думаю, становится понятно, что КПД такого термоэлектрического генератора будет очень низок. Даже с применением современных дорогих полупроводников в качестве основы термопар на практике он не превышает 3-7% от затраченной тепловой энергии. Поэтому, говорить о какой-то феноменальной мощности РТГ не приходится.

Вернемся к нашим ядерным «батарейкам». Описанные последовательности термопар нагреваются в таком генераторе при помощи тепла, образующегося при распаде радиоактивного материала. Как известно, радиоактивный распад сопровождается выделением тепла. Чем быстрее радиоактивный материал распадается, тем больше при этом выделится тепла. Таким образом, в РТГ радиоактивное топливо, распадаясь, образует радиоактивное излучение, которое конвертируется в тепло. Тепло, в свою очередь, конвертируется в электроэнергию.

Конструктивно это реализовано так: термопары в самом генераторе обращены горячей стороной (проводником, имеющим положительный заряд) вовнутрь, а холодной стороной (проводником, имеющим отрицательный заряд) к оболочке генератора и соединены с радиатором теплоотвода, чтобы обеспечивать максимальную разницу температуры. Все особенности устройства того или иного типа радиоизотопного термоэлектрогенератора сводятся к тому, чтобы увеличить долговечность и повысить КПД устройства.

Отсюда следуют требования к «топливу», тому самому радиоактивному материалу, который будет распадаться и обеспечивать нас «теплом»:

Плутоний 238, раскаленный собственным распадом

1. Период полураспада должен одновременно быть длительным, чтобы обеспечивать батарею теплом, но в то же время таким, чтобы при распад шел достаточно интенсивно и сопровождался выделением большого количества радиоактивного излучения. Здесь приходится выбирать между мощностью батареи и ее «сроком службы». Чем короче период полураспада, тем радиоактивней вещество и выше тепловая энергия, выделяемая при распаде, тем выше «мощность» батареи. И наоборот, чем менее радиоактивно вещество (дольше период полураспада), тем меньше мы получим тепла и тем слабее будет наша батарея, но прослужит дольше. Как правило, выбирают изотопы с периодом полураспада в 80-90 лет со сроком службы в 10-50 лет, однако специализированные мощные батареи могут иметь срок службы и в полгода. Ценой сами знаете чего.

2. Топливо должно производить большее количество тепла на единицу массы и объема. Тонна плутония 239 (используется в ядерном оружии и АЭС) будет таким же радиоактивным, как примерно 3,6 килограмма плутония 238 и производить такое же количество тепла. Тонны урановой руды под поверхностью Земли, к примеру, согревают жизнь бактериям на глубине в несколько километров. Однако, ключевое слово здесь - тонны. Чем радиоактивней топливо, тем меньшая масса нужна для получения нужного эффекта.

3. Радиоактивное излучение, образуемое в результате распада, должно легко преобразовываться в тепло. Оно так же не должно быть проникающим. Нейтронное и гамма-излучение по этим причинам не подходят. Лучше всего подойдет альфа-излучение, так как почти не требует экранирования. Бета-излучение и рентгеновское уже требуют защитную свинцовую оболочку, что ведет к увеличению веса установки. Это не критично для стационарных наземных генераторов, но играет большую роль в случае использования в космических аппаратах, удорожая стоимость их запуска.

В настоящее время, самым распространенным топливом для РТГ является плутоний 238 - он обладает периодом полураспада в 87,7 лет, относительно низкую составляющую гамма и нейтронного излучения, и, в связи с этим, практически не требует защитного экранирования, в большинстве случае достаточно толщины самого корпуса генератора.

В Советском Союзе для питания РТГ удаленных необслуживаемых маяков также широко применялся стронций 90, который имея меньший период полураспада, значительную составляющую гамма-излучения (и, как следствие - меньше получаемого тепла на единицу массы) был дешевле. Экономика должна быть экономной!

В настоящее время ведутся активные исследования по применению в качестве топлива америция 241 , который лучше плутония 238 периодом полураспада - 432 года. Даже не смотря на то, что «энергоемкость» его в 4 раза ниже плутония, а доля нежелательного проникающего излучения выше, перспектива питать устройства столетиями выглядит заманчиво. В любом случае по всем параметрам такого рода топлива это второе лучшее после плутония 238 решение.

Теперь остановимся на сроке службы «генераторов». Как уже можно было догадаться, он зависит от типа выбранного топлива и для плутония 238 составляет -0.87% от исходной мощности за год работы. Однако и здесь не все так просто. Не забываем, что наши термопары тоже имеют свой срок службы и со временем, под воздействием постоянного радиоактивного излучения и высокой температуры деградируют. Быстрее, чем распадается топливо. К примеру, батарея зонда Voyager -1, запущенного в космос в 1977 году, к 2001 году имела 315 Ватт мощности вместо проектных 420 Ватт. Реальное уменьшение мощности за 24 года работы составило 25%.

КПД по преобразованию тепла в электричество, как уже сообщалось, у генераторов, использующих принцип Зеебека, весьма не высок и на практике редко превышает 5%. Так что, серьезным источником РТГ никем никогда не считались, до мощи, ассоциируемой с ядерной энергетикой, им — как часовым батарейкам до дизельных электрогенераторов. Однако, и здесь ведутся работы по улучшению. Правда, от оригинальной конструкции в перспективной разработке NASA осталось только преобразование радиоактивного излучения в тепло.

Речь идет о совмещении теплового двигателя Стирлинга (работающего как раз за счет разницы температур), генератора и, собственно, радиоактивного изотопа. Напомню коротко принцип работы двигателя Стирлинга: рабочее тело (газ) расширяясь и сжимаясь в холодном и горячем цилиндрах (либо в разных частях одного цилиндра) двигает поршень посредством теплового расширения либо теплового сжатия.

Сам газ не покидает двигателя, постоянно циркулируя внутри него. Такие двигатели еще называют двигателями внешнего сгорания (по аналогии с двигателями внутреннего), так как, тепло для нагревания газа необходимо брать извне. КПД и мощность двигателя Стирлинга зависит от все той же разницы температур холодного и горячего отсеков (силы сжатия и расширения газа). А теперь представим себе безграничные возможности для охлаждения в космосе и постоянный источник тепла в виде теплового стержня радиоизотопного топлива. По расчетам специалистов NASA, такой генератор будет иметь КПД в 20% — 25%, что уже намного лучше 3%-5% для РТГ.

И, напоследок, поговорим о самом животрепещущем вопросе - радиационной безопасности наших ядерных батареек. Пожалуй, самой знаменитой является фотография «занедбаних та спаплюжених» советских «маячных» генераторов на стронции 90, валяющихся на какой-то прибрежной свалке. Смотрите мол, вот к чему это все ведет, разобранные вандалами на металлолом, источники радиационного загрязнения окружающей среды валяются тут и там, излучая излучение, отравляя радиоактивной отравой все живое и как бы призывая террористов сделать из них «грязную бомбу ». На заднем плане не хватает гигантских крыс-мутантов.

В реальности все немного не так. Документированных случаев акта вандализма по отношению к отслужившим свое генераторам зафиксировано не было. Правда, в основном потому, что эти генераторы, якобы, особо не документировались. Вы верите в то, что в СССР могли без учета разбрасывать ядерные технологии? Я — нет. В интернете так же есть информация о каких-то грузинских пастухах, проспавших возле заброшенного РТГ холодной ночью, чтобы согреться. Их потом доставили в больницу с радиационными ожогами, а РТГ забрали. Кто, когда, куда, где? Ничего.

Страшные истории про радиоизотопные генераторы на этом заканчиваются, дальше идет вполне себе положительная и хорошо документированная статистика. Из 33 американских миссий с использованием плутониевых РТГ, 5 окончились аварией при запуске, либо вхождении в атмосферу . При этом, из 5 аварий только одна привела к повреждению контейнера с топливом РТГ при его сгорании в атмосфере, что привело появлению следов плутония 238 в атмосфере над Мадагаскаром через несколько месяцев после аварии. Судя по тому, что массового радиационного отравления не произошло и даже снят мультфильм, последствий этот выброс не возымел.

Советские спутники с РТГ на борту проблем не имели вообще никогда. Страшилки про падающие в океан военные и метеорологические зонды, доверху наполненные радиоактивной радиацией касаются аппаратов , оснащенных полноценными бортовыми ядерными реакторами, которые изначально проектировались так, чтобы упасть, а радиоактивная часть - сгореть в атмосфере.

Также успокою тех, кто боится, что с помощью топлива РТГ террористы смогу сделать атомную бомбу. Ни со стронцием 90 из советских РТГ ни с плутонием 238 из американских ядерной бомбы не получится . Эти изотопы слишком нестабильны, чтобы достичь критической массы и в дальнейшем поддерживать цепную реакцию деления ядер. Более того, добавление подобного изотопа в компоненты нормальной ядерной бомбы приведет к уменьшению силы взрыва , так, как своей высокой активностью этот компонент вызовет преждевременное начало ядерной реакции до того, как будут достигнуты оптимальные условия критической массы заряда.

Что касается грязной бомбы,

то и здесь для террористов все плохо. Топливо в том виде, в котором его можно снять с РТГ, во-первых, слишком горячее (рабочая температура тепловой головки 500-600 градусов Цельсия), во-вторых, таки да, радиоактивная, излучение действительно может быть очень вредным, на столько, что приготовить из этого всего рабочую бомбу можно не успеть. Ну и в-третьих, живет недолго по сравнению с радиоактивными отходами АЭС, достать которые значительно проще. В итоге, делать бомбу из постоянно очень горячих, опасных для самого подрывника элементов, по радиационному воздействию на единицу веса сравнимых с урановой рудой, не очень выгодно. Разве что, моральный эффект от использования плутония (ужос!ужос!) в бомбе выгодно отличал бы новостные заголовки от расплывчатого «радиоактивные отходы».

Подводя итоги, хочу сказать, что данный вид получения электроэнергии безусловно интересен, прежде всего, своей автономностью. Например, в США известны случаи, когда в пепле кремированных граждан находили рабочие радиоизотопные термоэлектрогенераторы, которые забыли удалить при подготовке к похоронам. Даже в таких малых корпусах, достаточных для работы кардиостимуляторов, генераторы сохраняли работоспособность, пережив кремацию носителя. Оба Вояджера своей длительной работой также обязаны установленным на них РТГ, как и энергетические установки американской лунной программы Apollo. Прогнозы погоды от Гидрометцентра России мы тоже получаем, в том числе, благодаря ядерным батарейкам. И даже камчатских крабов едим при их опосредованном участии. Так что, не пугайтесь, если услышите в новостях страшное «спутник с радиоизотопным генератором».

p align=»center»>Чадящий дизелем КамАз на ближайшей стройке гораздо вредней.

Сорок лет назад был создан первый мобильный телефон, а сегодня уже изобретена атомная батарея для него. Технологический прогресс в последние годы идет настолько уверенно, что на прилавках магазинов электроники появляются такие новинки, о которых еще совсем недавно писали фантасты.

Как вы считаете, сколько способен продержаться без подзарядки современный смартфон? Среднее время автономной работы подобного устройства составляет 1-3 суток. А если его оснастить аккумулятором, работающим на основе реакции трития, то это время можно будет растянуть до 20 лет!

Неужели телефоны могут работать на атомных аккумуляторах?

Подобная идея среди ученых появилась относительно недавно. По их предположению, использование атомной энергетики в работе современных гаджетов может решить множество проблем, связанных с постоянной необходимостью подзарядки.

Тритий является радиоактивным веществом, но его излучение слишком слабое. Оно неспособно навредить здоровью человека. От него не пострадает ни кожа, ни внутренние органы – это известно ученым с незапамятных времен. Именно радиоактивный тритий выступает своего рода топливом, которое будет содержаться в этих батареях.

Батарея представляет собой интегральную микросхему, источником энергии которой является ядерная реакция трития. Такой принцип работы позволяет производить 0.8 – 2.4 ватт энергии. И этот уровень вырабатываемой электроэнергии может поддерживаться на протяжении 20 лет, при этом радиоактивную батарею не придется подзаряжать.

Многие не подозревают, что тритий уже давно используется во многих сферах производства. Каждый из нас видел, либо носил часы, стрелки которых отчетливо светятся в темноте. В большинстве случаев для создания такого эффекта используется именно этот радиоактивный элемент. Он не получил распространения в основной сфере атомной энергетики из-за своего минимального радиоактивного излучения.

Среди особенностей аккумулятора, которому посвящен сегодняшний обзор, следует также выделить его устойчивость к внешним факторам. Он отлично работает при резких перепадах высоты, давления и температуры, а также демонстрирует хорошую стойкость при сильных вибрациях. Что касается температуры, то ее диапазон составляет от -50 до +150 градусов по Цельсию.

Несмотря на то, что эта идея еще не внедрена в производство, известна приблизительная стоимость атомной батареи - 124 доллара. Но далеко не каждый человек, даже если ему нужна высокая производительность его телефона, согласится на ношение в своем кармане крохотного радиоактивного источника энергии.

Создание портативного одноразового источника питания, срок службы которого измерялся бы не сутками или месяцами, а годами, прежде покорилось специалистам Корнельского университета. Элемент питания, в качестве базы для которого был выбран радиоактивный изотоп никеля-63, мог похвастаться непрерывным сроком службы до 50 лет. Но, разумеется, не обошлось и без существенных ограничений в номинальных параметрах «ядерной батарейки». Всё дело в том, что принцип, на котором строится работа таких устройств — сопровождающее распад никеля-63 испускание электронов для последующего заряда медной пластины — не позволял добиться серьёзной мощности источника питания. В итоге указанная характеристика для ядерных батареек находилась на уровне нескольких милливатт, что накладывало ряд существенных ограничений при её эксплуатации.

Решением описанной проблемы активно занялись учёные Национального исследовательского технологического университета «МИСиС», которые вчера рапортовали о достигнутых успехах. Им удалось изготовить прототип уникальной «ядерной батарейки», способной, как и её предшественник родом из США, питать определённую электронику на протяжении 50 лет.

Как рассказали в «МИСиС», спроектированная ими «ядерная батарейка» обладает огромным потенциалом и имеет широкий спектр потенциально возможного применения, начиная от использования разработки в медицинском оборудовании и миниатюрных приборах для поддержания жизнедеятельности, заканчивая размещением такого источника питания в космических аппаратах. Команде инженеров под руководством профессора Юрия Пархоменко удалось воплотить на практике концепцию преобразования энергии бета-излучения в электрическую на основе монокристаллов пьезоэлектриков. Этот принцип и лёг в основу показанного образца автономной бета-вольтаической батареи переменного напряжения, первичным источником энергии для которой послужил хорошо знакомый изотоп никель-63.

Излучение выбранного в качестве источника электронов изотопа, несмотря на свою радиоактивность, характеризуется периодом полураспада в 100 лет и не несёт какой-либо угрозы для здоровья биологических организмов. Но главной особенностью прототипа отечественного производства стало применение импульсных источников питания для накопления и последующей отдачи заряда. За счёт этого учёные сумели обойти главный недостаток бета-вольтаической «ядерной батарейки» — их крайне малую мощность, сильно сужавшую сферы дальнейшего эффективного применения.

«В импульсном режиме один бета-вольтаический элемент способен выдавать мощность вплоть до 1 мВт/см 3 . При низких удельных мощностях энергетического материала батарейка, собранная на их основе, способна обеспечивать непрерывную выходную мощность 10-100 нВт/см 3 — достаточную, чтобы обеспечить питание кардиоимплантата», — объяснил технические особенности продемонстрированного решения господин Пархоменко.

Инновационная российская «ядерная батарейка», ставшая реальностью благодаря усилиям сотрудников «МИСиС», обладает всеми необходимыми для начала серийного производства и скорейшего внедрения технологии преимуществами. Здесь и сверхмалые габариты источника питания, и отсутствие пагубного влияния энергетического материала, и длительный срок эксплуатации в несколько десятков лет. Однако дойдёт ли дело до выпуска коммерческого образца — покажет время.

Компания City Labs начала выпуск настоящих атомных батареек NanoTritium. Источником энергии в этих батарейках служит распад сверхтяжелого водорода - трития. Батарейка изготавливается в корпусе микросхемы, на данный момент ее стоимость достаточно велика и составляет около $1000. Тритий входит в десятку самых дорогих веществ в мире и его грамм стоит $30000.

Тритий - это радиоактивный изотоп водорода. Ядро трития составляет протон и два нейтрона. При распаде тритий превращается в 3He. Период полураспада примерно 13 лет. Энергия испускаемых электронов мала - от 6.5 кэВ до 18.59 кэВ. Излучение останавливается такими преградами, как одежда или даже кожа человека. В герметической упаковке тритий безвреден. Пары трития все же представляют радиационную опасность. Впрочем, в атомных батарейках NanoTritium его настолько мало, что данная проблема не актуальна. Один кубический миллилитр тритиевого газа обладает активностью около 94 ГБк.

Тритий уже давно используется в ряде устройств. К примеру, его можно встретить на стрелках светящихся в темноте часов. Светящиеся элементы часов изготавливаются как герметичные колбы, заполненные газом трития. Стенки колб изнутри покрывают слоем люминофора. Принцип работы свечения достаточно прост. Электроны, испускаемые тритием при бета-распаде, соударяются с люминофором, поглощаются им, заставляя светиться.

Принцип работы атомной батарейки достаточно прост: распад трития - это бета-распад, ядро трития превращается в ядро гелий-3, и вылетает один электрон обладающий высокой энергией. Тритий закачивают в ячеистый, или можно сказать губчатый, рабочий объём из кремния. В кремнии каждый электрон высокой энергии создаёт огромное число электронно-дырочных пар. По сути, подобные процессы протекают в обычных фотоэлементах - с той лишь разницей, что в фотоэлементе один фотон порождает только одну пару (просто потому, что энергия оптического фотона в тысячи раз меньше, чем энергия бета-электрона). Дальше, достаточно, замкнуть цепь и потечёт ток.

Атомный источник питания от City Labs способен выдерживать перепад температур от -50 до 150 градусов Цельсия, а также хорошие перепады высот. Этот аккумулятор способен работать на протяжении 20 лет и выдавать до 2.4В с силой тока 50-300 наноампер.

Даже столь низкий ток вполне достаточен для питания многих устройств. Например, специальные прослушивающие устройства. Радиоактивность тритиевых элементов не выходит за пределы корпуса, и не может быть обнаружена, в сочетании с современными цифровыми технологиями кодирования сигнала такие элементы питания позволяют создать идеальную "прослушку". В медецине, также атомные батарейки NanoTritium могут использоваться для питания кардиостимуляторов.

Элементы питания на тритии - не единственная разработка изотопных источников питания. На американских междпланетных станциях "Пионер" и "Вояджер" используются плутониевые радиоизотопные источники. Их мощность уже существенно - порядка 400 ватт. И, между прочим, они были изготовлены более сорока лет назад и работают по сей день.

Наконец на нашей аккумуляторной поляне засветился Росатом, показав на форуме «Атомэкспо-2017» ядерную батарейку со сроком службы не менее 50 лет. Пользуясь этим знаменательным поводом, рассмотрим перспективы использования мирного атома для мобильных устройств.

Атомный (ядерный) аккумулятор - это все-таки батарейка, а не аккумулятор, так как - это по определению одноразовый источник электрического тока, без возможности перезаряда. Несмотря на это, воображение публики активно будоражит перспектива использования атомных аккумуляторов в мобильных устройствах. Но обо всем по порядку.

Что именно представил Росатом на форуме? Генеральный директор ФГУП «НИИ НПО Луч», Павел Зайцев заявил, что представленный источник, работающий на изотопе Ni63, способен в течение 50 лет выдавать 1mkW с напряжением 2V. Павел Зайцев вполне откровенно говорит про скромные вольт-амперные характеристики, делая основной упор на длительный срок службы. Наверно, исключительно из личной скромности, Генеральный директор ФГУП «НИИ НПО Луч» указал в технических характеристиках только мощность, а не общепринятую ёмкость. Но мы не будем придавать этому большое значение и просто рассчитаем ёмкость:

C = 0,000001W * 50 лет * 365 дней * 24 часа / 2V = 219mA

Получается, что ёмкость ядерной батарейки, размером с небольшой универсальный аккумулятор , всего лишь как у литий-полимерного (Li-Pol) аккумулятора для блютуз наушников! Павел Зайцев предполагает использование своей ядерной батарейки в кардиологии, что вызывает большие сомнения при столь огромных размерах. Возможно эта ядерная батарея может рассматриваться как некий прототип получения электричества из изотопов, но Росатому потребуется уменьшить батарею в тысячи раз, чтобы соответствовать современным электрокардиостимуляторам.

Совсем не порадовала стоимость ядерного аккумулятора - директор государственного унитарного предприятия объявил цену изотопа никеля в долларах (!) 4000USD/грамм. Означает ли это, что основной компонент будет приобретаться за границей России? А сколько грамм необходимо на изготовление одного аккумулятора? Одновременно с этим было замечено, что потребуются также алмазные элементы (также не ясно сколько?), но стоимость которых (уже в рублях) колеблется от 10 000 до 100 000 рублей за штуку. Какова же будет полная стоимость такой батарейки? Электрокардиостимуляторы в России устанавливаются по полису ОМС бесплатно в экстренных случаях или при наличии квоты. При недостаточности квоты и за электрокардиостимуляторы иностранного производства больным приходится оплачивать самостоятельно. Будут ли ядерные батареи устанавливаться за счет бюджета ОМС или пожилые люди должны будут приобретать их отдельно? Если бы руководство Росатома впомнило, что российские пенсионеры живут в режиме "день простоять и ночь продержаться", то, наверно, осознало бы тот нелепый диссонанс между космическим сроком службы и стоимостью. Это наталкивает на мысль, что уважаемый Павел Зайцев активно осваивает средства, выделенные на НИОКР, ничуть не задумываясь о конечных пользователях. Аналогичную оценку "изобретения" Росатома дают пользователи социальных сетей:

Едва ли ее где-нибудь получится использовать. Я более чем уверен, что бюджет как всегда освоили, часть его потратили на презентацию, а само изделие никто никогда не увидит:)

Заявленный срок службы (50 лет), как мы догадались - это как раз половина периода полураспада Ni 63 (100лет). Такую же логику используют ученые Бристольского университета в концептуальном ролике. В отличие от батарейки Росатома, бристольская атомная батарейка использует изотоп C 14 и может работать 5730 лет! В Бристольском университете правда забыли поделить на 2, но и 2865 лет слишком много для кардиостимулятора. Уникальность бристольской концепции заключается в том, что проблема ядерных отходов решается путем переработки их в ядерные батарейки .

Если внимательно прослушать и перевести текст этого ролика, то открывается гораздо больше интересной информации. Сначала подробно рассказывается о происхождении изотопа С 14

С 1940 Англия сделала много ядерных реакторов научного, военного и гражданского назначения. Все эти реакторы используют уран как топливо, а внутри реактор сделан из графитовых блоков. Эти графитовые блоки используются в процессе ядерного расщепления, позволяя контролировать цепную реакцию, которая даёт постоянный источник тепла. Это тепло потом используется, чтобы превратить воду в пар, которое потом крутит турбины, чтобы сделать электричество. Ядерные электростанции производят ядерные отходы, которые необходимо безопасно утилизировать. Надо просто подождать, чтобы эти отходы перестали быть радиоактивными. К сожалению, это занимает тысячи и миллионы лет. Это также требует очень много денег, чтобы контролировать безопасность в течение этих многих лет. Так как мы используем графитовые реакторы, Англия создала 95000 тон графитовых блоков содержащих радиацию. Этот графит только один из форм углерода, простой и стабильный элемент, но если положить эти блоки в высоко радиоактивное место, то тогда часть углерода превращается в углерод 14 . Углерод 14 может превратиться обратно в обычный углерод 12 когда её дополнительная энергия уйдет. Но это очень долгий процесс потому что период полураспада углерода 14 составляет 5730 лет.
Недавно ученные из университета Bristol"s Cabot Institute продемонстрировали, что углерод 14 концентрируется в блоках радиацией снаружи. Это значит, что возможно убрать большинство радиации нагревая их - большинство радиации выходит как газ, который потом может быть собран. Оставшиеся графитовые блоки все-равно радиоактивны, но не так сильно, это значит, что утилизировать их будет проще и дешевле. Радиоактивный углерод 14 в форме газа, может быт переделан при низких давлениях и высоких температурах в алмаз - это еще одна форма углерода. Искусственные алмазы, сделанные из радиоактивного углерода, излучают поток бета-излучения, которое может создать электрический ток. Это дает нам ядерную энергию алмазной батареи. Чтобы она была безопасной для нашего использования она покрывается слоем не радиоактивного алмаза, который полностью поглощает всю радиацию и превращает её в электричество почти на 100%. Там нет движущейся частей, ее не надо обслуживать, алмаз просто производит электричество. Так как алмаз самое твердое вещество на свете, то ни какое другое вещество не может дать такую защиту для радиоактивного углерода 14 . Поэтому снаружи можно обнаружить очень маленькое количество радиации. Но это почти то же самое количество радиации, сколько выделяет банан, так что оно совсем безопасно. Как мы уже сказали только половина углерода 14 распадается через каждый 5730 лет, это значит что наша батарея-бриллиант имеет удивительное время жизни - она разрядится на 50% только в 7746 году. Эти бриллиантовые батареи будут лучше всего использованы там, где нельзя менять обычные батарей. Например в спутниках для космических исследований или для имплантированных устройств, таких как кардиостимуляторы.

Мы просим всех отправлять свои предложения на #diamondbattery. Разработка этой новой технологии решила бы много проблем, например: ядерного мусора, чистого электричества и увеличения срока службы батарей. Это перенесет нас в "бриллиантовый век" производства энергии.

Очень красивая концепция ученых из Бристоля 2016 года и очень скромная коробочка Росатома возможно (?) когда-нибудь будут доработаны до алмазных электростанций, но никак не ядерных батареек для мобильных устройств. Сложно будет уговорить людей ходить с Фукусимой в кармане, даже если за это начнут доплачивать.

Использование атома в мирных целях - это один из спорных вопросов современности, если учесть, что энергетика - это наиболее монополизированная отрасль экономики, когда в цене KW электроэнергии более 90% составляют налоги и сборы. Эффективность мирного атома вызывают сомнения, так как в цену условно дешевой атомной энергии не включается стоимость техногенных последствий. Поэтому некоторые страны, в том числе Германия и Япония приняли решение полностью отказаться от использования атома в энергетике. Ведь развивая возобновляемые источники энергии, можно не только полностью отказаться от атомной энергии, но и создать высокотехнологическую отрасль с миллионами высококвалифицированных рабочих мест.

Подводя итог, мы, скорее всего, имеем очередную технодурилку типа "Супераккумулятор ", а не прорывное "изобретение" бриллиантового века. Другими словами, применять мирный атом в микроэнергетике - это что свинью брить - визгу много, а шерсти мало!