На сегодняшний день развитие телевизоров происходит так же стремительно, как и компьютеров. Появляются все новые и новые технологии. В таких условиях информация очень быстро устаревает, и советы по выбору ТВ, которые работали вчера, могут быть бесполезными уже сегодня. Важно уметь ориентироваться во всем этом многообразии производителей, ведь очень часто бывает так, что для привлечения покупателей они идут на различные уловки. Существует множество моделей, которые на первый взгляд не отличаются друг от друга. Но не волнуйтесь, эта статья внесет ясность в ситуацию. После ее прочтения вы сможете самостоятельно пойти в магазин и осознанно выбрать именно ту модель телевизора, которая будет отвечать всем вашим требованиям.

Выбор может зависеть от множества параметров. Тут, все зависит от ваших потребностей. Нужно определиться, будете ли вы смотреть на нем фильмы высокой четкости или же обычные выпуски новостей; требуется ли вам поддержка цифровых каналов; будете ли вы подключать телевизор к компьютеру с помощью разъемов HDMI или Ethernet; смотреть фотографии и фильмы с или . От этого и зависит цена будущего устройства, его размеры и набор функций. Но, обо всем по порядку.

Для начала, давайте определимся с видами экрана. Естественно, мы не будем рассматривать ЭЛТ телевизоры, как это делается на большинстве сайтов. Они совершенно безнадежно устарели, и эта технология абсолютно не востребована. На сегодняшний день вам придется выбирать лишь между двумя реально успешными видами экранов: Жидкокристаллические (LCD или ЖК) и плазменные. Каждый из них хорош по-своему, поэтому имеет смысл разобраться в вопросе более детально.

Виды экранов

Жидкокристаллический дисплей (или LCD, ЖК)

Самая распространенная технология на сегодня. В состав такого экрана телевизора входит матрица и подсветка. При этом матрица представляет собой мелкую сетку из пикселей, каждый из которых, соответственно, состоит из субпикселей (красного, зеленого и синего). Для формирования картинки используется свойство кристаллов в матрице – под воздействием электрического поля они способны менять свое положение, тем самым, то открывая, то закрывая свет от лампы подсветки, находящейся позади матрицы.

Схема пикселя:

Специальная микросхема управляет прозрачностью субпикселей. Если все три будут полностью прозрачны, то цвет всего пикселя будет белым, если все три субпикселя непрозрачны – пиксель черный. Для формирования других цветов и их оттенков микросхема смешивает красный, зеленый и синий в определенной пропорции.


При использовании такого алгоритма имеется несколько недостатков. Один из них – установка мощных ламп для подсветки не полностью прозрачной матрицы. Чем ярче подсветка, тем красочнее картинка. Что, в свою очередь, влечет за собой увеличение энергопотребления и цены телевизора. Второй недостаток – неспособность добиться идеально черного цвета, так как матрица не может полностью перекрывать мощные потоки света. И если с первой проблемой можно частично справиться путем , то вторая проблема до сих пор актуальна. Ранее также существовала проблема с углами обзора, но в современных моделях в этом направлении уже проделана огромная работа, и на сегодняшний день ситуация удовлетворительна.

К плюсам технологии жидкокристаллических экранов можно отнести в первую очередь дешевизну и огромный выбор моделей. Каждый сможет подобрать достойный телевизор, который будет ему по карману. Такие дисплеи обладают достаточно хорошей контрастностью (от 500:1 до 1 000 000:1) и яркостью (250-1500 кд/м2). Благодаря LED подсветке, о которой упоминалось выше, удается снизить энергопотребление ЖК телевизоров, а сама технология подразумевает применение матриц маленькой толщины. Такие экраны получаются легкими, и их можно без опасений крепить прямо на стену.

В целом жидкокристаллические дисплеи являются очень удачными. Их единственная альтернатива на сегодня – плазменные телевизоры, которые имеют как ряд преимуществ, так и несколько недостатков.

Плазменные панели

Плазменный телевизор представляет собой матрицу из маленьких герметичных секций, каждая из которых наполнена ксеноном или же неоном. Специальные прозрачные электроды подают на ячейки электрический ток такой силы, что газ внутри секции переходит в состояние плазмы, излучая при этом ультрафиолет. Он попадает на люминофор, который нанесен на стенку ячейки и, в зависимости от состава, светится красным, зеленым или синим цветом. Соответственно, чем выше напряжение, подающееся на электрод и ячейку, тем сильнее она светится. При смешении трех цветов мы получаем любые оттенки, какие потребуется.


Такие телевизоры отличаются отличным качеством картинки: насыщенными и яркими цветами, высокой контрастностью. Все это заложено технологией. Ячейка в неактивном состоянии, то есть когда на нее не подается напряжение, является полностью черной, в отличие от пикселя в ЖК-дисплее. А при наличии напряжения ее свет проходит сквозь матрицу беспрепятственно, следовательно, отличается высокой интенсивностью. По яркости картинки плазменные телевизоры превосходят ЖК-дисплеи примерно в 3 раза.

Но не обошлось и без недостатков. Основной проблемой является сложность изготовления маленьких секций с газом. Большие ячейки для плазменных панелей изготовить проще, именно поэтому широкоформатные (от 50 дюймов и больше) плазменные телевизоры появились гораздо раньше таких же по размерам ЖК. Однако, если нужен плазменный телевизор небольших размеров (до 32 дюймов), то тут возникают сложности, такие модели очень дороги и встречаются редко.

Таким образом, плазменные панели с большими диагоналями, отличной цветопередачей и контрастностью являются наилучшим вариантом для киноманов и просто людей, которые любят качественное изображение и готовы при этом мириться с большими габаритами и высоким энергопотреблением.

Теперь же давайте перейдем к характеристикам телевизоров. На что следует обратить особое внимание при выборе.

Характеристики телевизоров

Диагональ экрана

На самом деле, это один из самых важных параметров для телевизора и вообще, любого экрана. Именно диагональ в первую очередь влияет на размеры, вес и толщину экрана, его цену. Нужно очень серьезно отнестись к выбору, ведь чтобы получать удовольствие от просмотра – все должно быть сбалансировано.

Во всем мире размеры экрана указываются в дюймах. При этом 1 дюйм равен 2,54 сантиметра. Обозначается размер диагонали, например, вот так: 32”.

При выборе телевизора не забывайте, что его размеры должны соответствовать размерам вашей комнаты. Самые распространенные форматы на сегодня – это диагональ от 26” до 42”. Логично, что в гостиную нужно поставить большой телевизор (от 32”), ведь там может собираться вся семья и друзья. К нему лучше подключить цифровое телевидение высокой четкости и домашний кинотеатр с качественной акустикой.


А вот на кухне или в спальне можно обойтись экраном поменьше. Ранее была информация о соотношении диагонали к расстоянию, с которого нужно смотреть этот телевизор, как 1 к 3. То есть, телевизор с диагональю 32” нужно смотреть с расстояния примерно в 2,4 метра. Но сегодня такое соотношение практически не актуально. Комфортное расстояние принимается уже как 1 к 2 или даже 1 к 1,5, то есть те же 32 дюйма можно смотреть с расстояния примерно в полтора метра. Следовательно, для кухни советуем телевизоры с диагональю до 26 дюймов, а в спальне можно попробовать установить чуть большие размеры – до 32”.

Для того, чтобы не ошибиться с выбором и не купить слишком большое устройство, советуем дома примерно прикинуть, как будет смотреться будущий телевизор. В магазинах специально дисплеи выставляются в больших залах, где покупатель не может адекватно представить себе размеры экрана. В итоге получается, что телевизор при покупке смотрится нормально, а дома он оказывается просто огромным.

Разрешение дисплея

Выбрать подходящее разрешение на сегодняшний день не так уж и сложно. Для начала стоит отметить, что вообще разрешение – это количество пикселей на экране. Чем оно больше, тем мельче каждая из ячеек и, соответственно, тем выше качество картинки.

Записывается разрешение двумя цифрами, например, 1920×1080. Первая из них – количество пикселей по горизонтали (ширине), вторая – по вертикали (высоте).

Телевизоры с одинаковой диагональю могут иметь разное разрешение. И тот, который имеет большее разрешение, будет показывать более четкую и детализированную картинку. Например, при диагонали 42” вы можете встретить экземпляры с разрешением 1920×1080 и 1366×768. Очевидно, что первый будет гораздо лучше.

Самыми качественными являются телевизоры, поддерживающие форматы высокой четкости, которые имеют несколько стандартов:

  • 720p: 1280×720, прогрессивная развертка;
  • 1080i: 1920×1080, чересстрочная развертка;
  • 1080p: 1920×1080, прогрессивная развертка.

Чересстрочная развертка (с пометкой «i») не очень удачна, поэтому рекомендуем вам покупать устройства, поддерживающие прогрессивную развертку (буква «p»). Алгоритмы прогрессивной развертки практически убирают эффект лесенки на границах объектов.

Вообще говоря, советуем выбирать телевизоры с FullHD, то есть разрешением 1920×1080 и поддержкой прогрессивной развертки. Многие компании предоставляют доступ к телевидению высокой четкости, то есть HDTV. Только с FullHD экраном вы сможете оценить всю прелесть и красоту картинки. Фильмы и сериалы также гораздо лучше выглядят на таком дисплее. Не разменивайтесь на меньшее, к тому же, сегодня такие телевизоры вполне доступны по цене.

Яркость и контрастность

От яркости экрана зависит комфортность просмотра телевизора, а также сочность и красочность картинки. Измеряется яркость в кд\м2 (кандел на метр квадратный) и представляет собой силу света на единицу площади. Здесь, если сравнивать жидкокристаллические экраны с плазменными панелями, очевидно, что выигрывают последние. Хотя, ЖК в последнее время догоняют их в этом плане, но конструктивные отличия дают о себе знать.
Самыми распространенными значениями данного параметра являются 300-600 кд\м2 для ЖК с LED-подсветкой и до 1500 для плазменных ТВ. Ориентируйтесь на эти значения при выборе своего устройства.

Что же касается контрастности, то здесь суть в следующем. Она выражает отношение самой светлой точки на экране к самой темной. Например, если вы видите значение контрастности 1000 к 1, то это значит, что белый участок на телевизоре в 1000 раз светлее черного. Соответственно параметр так же влияет на усталость глаз, на качество картинки и так далее.


Теперь стоит поговорить о приемлемых значениях и соотношении яркости и контрастности. Для стандартного ЖК телевизора с яркостью 300 кд\м2 оптимальная контрастность будет от 1000:1. Для яркости 400-500кд\м2 она составит уже от 5000:1 до 10000:1. Ну и самые продвинутые модели обладают яркостью 600кд\м2 и выше, при контрастности от 20000:1.

Не бойтесь покупать телевизоры с избыточной яркостью, ведь ее в крайнем случае можно будет программно уменьшить, а вот взять слишком темный дисплей будет большой ошибкой.

Время отклика

Данный параметр относится именно к самой матрице, следовательно, в нематричных телевизорах (ЭЛТ) он не применялся. Теперь же он достаточно важен, и на него также стоит обращать внимание при выборе телевизора. Время отклика представляет собой среднее время, затрачиваемое элементом матрицы на переход из одного состояния в другое. По стандарту здесь понимается переход пикселя от черного цвета к белому и обратно. Однако, некоторые компании измеряют параметр по схеме «GtG», то есть от серого к серому.

Время отклика должно лежать в пределах от 2 до 8 миллисекунд. Делается это для того, чтобы при просмотре динамических сцен с быстродвижущимися объектами, как, например, на спортивных каналах, не появлялось шлейфа, и картинка не размывалась. При подключении телевизора к компьютеру в качестве основного монитора или даже расширенного, лучше выбирать модели с временем отклика матрицы до 5мс.

Все вышесказанное относится только к ЖК-дисплеям, при покупке плазменной панели на этот параметр можете не обращать внимания, он там пренебрежимо мал.

Углы обзора экрана

Важная характеристика, однако, она не является критичной при выборе телевизора. Все дело в том, что жидкокристаллические дисплеи построены таким образом, что их ячейки изолированы друг от друга специальными поляризационными фильтрами. При обычном положении, то есть перпендикулярно экрану, фильтры не заметны, однако если отклониться в сторону на некоторый угол, то они могут значительно ухудшить яркость и контрастность картинки.

Так, для большинства моделей самыми комфортными углами являются 60 градусов с каждой стороны, то есть 120 в общей сложности. После них картинка начинает понемногу ухудшаться, но примерно до 160 градусов это все еще малозаметно.

И только флагманские модели, то есть самые продвинутые и дорогие, могут дотягивать до результата в 175-178 градусов. Поляризационные фильтры там очень миниатюрные и практически не влияют на картинку. Стоит отметить, что для плазменных телевизоров углы обзора всегда близки к 180 градусам, так как матрица там устроена по-другому, как уже было сказано в первом пункте статьи.

Звуковая система

Если речь идет о широкоформатном телевизоре для гостиной, где важно качество как картинки, так и звука, то рекомендуется подключать отдельную акустическую систему с несколькими колонками-сателлитами, а также сабвуфером. Но, если выбирать вариант для спальни или кухни, то для экономии места вполне можно обойтись встроенной акустикой, которая, к слову сказать, в современных моделях находится на достаточно высоком уровне.
Мощность динамиков встроенной аудиосистемы подбирается таким образом, чтобы соответствовать потребностям пользователей. Таким образом, если диагональ экрана не большая и смотреть телевизор будут с не очень большого расстояния, то тут обходятся динамиками мощностью в 5 Ватт. Если же диагональ большая, то есть от 32” дюймов, то динамики имеют мощность от 10-15 Вт и выше, чтобы покрывать размеры помещения, где устанавливается устройство.

Также при выборе телевизора для гостиной советуем обратить внимание на наличие процессора обработки Dolby Digital, если вы собираетесь подключать его к внешней акустической системе. Такой процессор самостоятельно раскодирует звуковой сигнал и отправит его на акустику, иначе же вам придется подключать помимо самой акустики еще и цифровой декодер, а это лишнее занимаемое пространство, спутанные провода и денежные расходы.

Интерфейсы и разъемы

HDMI представляет собой один из самых современных интерфейсов передачи данных между телевизором и компьютером. Также он используется при подключении к мультимедийной системе или домашнему кинотеатру. Кабель является многоканальным, длиной обычно до 5 метров. По нему передается видео в разрешении до 2560×1440, а также звук.

USB – это разъем, который первоначально предназначался для компьютеров, но теперь его можно встретить и у телевизоров. Если говорить просто, то нужен он для подключения к нему флеш-накопителей и внешних жестких дисков. С таких носителей информации можно смотреть фильмы и клипы, слушать музыку, просматривать фотографии, и все это без каких-либо дополнительных преобразований и манипуляций.

Ethernet – разъем подключения устройств по витой паре. Конкретно, телевизор будет , а уже роутер к внешним накопителям и компьютеру. Таким образом, устройство попадает в вашу домашнюю локальную сеть, что дает вам массу возможностей. Самое главное здесь – доступ к DLNA для обмена медиаконтентом между телевизором и компьютером или любыми другими устройствами в сети.

Wifi дает те же возможности, что и Ethernet порт, но только без проводов. Вся информация передается радиоволнами.

Этих параметров вполне достаточно, чтобы понимать как выбрать телевизор. Теперь осталось лишь воспользоваться полученными знаниями и рекомендациями и все таки пойти в магазин и выбрать нужную модель.

В физическом мире все связано с измерениями и все можно описать и измерить. И для каждого предмета или явления есть единицы измерения. Так, например, расстояние измеряется в метрах, температура в градусах, а масса в килограммах. У света тоже имеются измеряемые параметры: светимость, яркость, сила света, которые также имеют свои единицы. Например, единицей яркости является кандела на метр в квадрате.

Параметры светового излучения

Свет как физическое явление характеризуется многими параметрами. Основные используемые в физике таковы:

  • Сила света;
  • Светимость;
  • Яркость;
  • Освещенность;
  • Световая температура.

Сила света определяет количество световой энергии, излучаемой источником света за промежуток времени. Другими словами, это то, насколько мощный световой поток способен излучить источник света.

Светимость - это световой поток на единицу светящейся поверхности. Чем больше светимость, тем более светлой кажется излучающая поверхность. Единица светимости - люмен на квадратный метр.

Яркость - это световой поток в определённом, узком направлении. Обычно говорится об этой величине в контексте точечного источника излучения. При большой светящейся площади определяется ее средняя яркость.

Термин освещенность применяется по отношению к освещаемой поверхности. Это отношение светового потока к площади поверхности, то есть насколько хорошо она освещена.

Световая температура показывает воспринимаемый цвет источника излучения. Она измеряется в единицах температуры - Кельвинах - и соответствует температуре излучающего, нагретого до этих градусов тела. Субъективно она воспринимается теплой или холодной. Чем более высокой является цветовая температура, тем более холодным будет цвет. Теплый - это желтый и красноватый, холодный - голубой и фиолетовый.

Измерение яркости

Поскольку свет имеет измеримые параметры, то яркость как параметр света имеет свои единицы измерения. Сейчас, по интернациональной системе СИ, яркость измеряется в канделах на квадратный метр, значение этой единицы соответствует принятой в старину единице нит, величина которой выражалась отношением одной канделы к одному метру в квадрате. Кроме нитов, единицами яркости также были:

  • Стильб;
  • Апостильб;
  • Ламберт.

Апостильб в настоящее время является устаревшей величиной, которая вышла из употребления она в 1978 году. Она обозначала яркость поверхности площадью 1 квадратный метр и излучающей световой поток в 1 люмен.

Величина стильб используется системе измерений СГС. В этой системе основными мерами являются меры длины, веса и времени, что в расшифровке аббревиатуры СГС соответствует величинам сантиметр, грамм, секунда. В более поздних версиях системы появились электрические и магнитные расширения СГСЭ и СГСМ. Здесь и находится и стильб, как единица измерения электромагнитного излучения.

Ламберт - это внесистемная единица. Появилась и используется преимущественно в Америке. Ее название происходит от имени немецкого физика Иоганна Ламберта, проводившего исследования в теории систем, иррациональных чисел, фотометрии и тригонометрии. Один ламберт - это единица яркости светящейся поверхности площадью в один квадратный сантиметр и обладающей световым потоком в один люмен.

Физическое представление

A в физике рассматриваемую величину можно выразить через понятие работы. Работа понимается как обмен энергиями между системой и внешней средой. Обмен может происходить в форме электромагнитного излучения. Интенсивность излучения как раз и будет определять яркость. Если понимать, в чем измеряется работа в физике, можно определить физическое представление яркости. Работа в физике измеряется в джоулях, которые можно представить, как Ватт-секунды. То есть мощность излучения, умноженная на время, будет считаться работой. Чем больше мощность светового излучения, тем более ярким будет источник света.

Применение в астрономии

В астрономии также используются единицы измерения яркости для небесных тел. Они характеризуют небесные тела по излучательной или отражательной способности. Отраженный свет небесных тел может быть весьма ярким, достаточно вспомнить свет Луны или затмевающую свет многих звезд утреннюю Венеру. Оба этих небесных тела светят отраженным светом Солнца.

Единица яркости небесных тел выражается звездной величиной участка неба размером одна квадратная секунда. Простыми словами звездную величину можно определить как светимость точечного объекта звездного неба. Квадратной секундой считается 1/648000 от объемного угла, именуемого стерадиан.

Астрономическую яркость можно сравнить с обычной. Одна звездная величина с квадратной секунды равна 8,96 микрокандел на квадратный метр.

Яркость неба в безлунную ночь выражается величиной 0,0002 кд/м2. Измерять светлоту темных объектов важно для фотометрии: таким образом можно понять, какой объект звездного неба и насколько перекрывает светимостью другие объекты. По уменьшению интенсивности света звезд судят о возможном закрытии их светящегося диска планетами, и даже о размере и составе атмосферы этих планет! Эта величина играет важную роль в астрономии , фотографии и видеографии, а также у художников и специалистов по освещенности рабочих мест.

Для экранов телевизоров

Современный плазменные и жидкокристаллические экраны телевизоров могут достигать яркости в 400−500 кд/м2. Однако это сомнительное преимущество, так как увеличение этой величины приводит к повышению усталости глаз и требует увеличения частоты и длительности отдыха. Особенно это влияет на глаз при просмотре телевизора или работе с компьютером в темноте или при слабом освещении. Для человеческого глаза комфортное значение устанавливается в пределах 150−200 кандел на квадратный метр. Санитарными правилами и нормами установлено ограничение яркости экрана при работе в 200 кд/м2.

Повышенное значение интенсивности излучения приветствуется только при просмотре фильмов с 3D эффектом, так как используемые при этом 3D очки сильно поглощают излучение экрана, делая его более темным. При выборе устройств с жидкокристаллическими и плазменными экранами стоит обращать внимание на равномерность подсветки. Некачественные экраны отображают центр более ярким , при этом оказывается сильно заметным спадание мощности подсветки к краям дисплея.

© 2013 сайт

Световые и экспозиционные числа (LV и EV) – это условные фотографические величины, характеризующие условия освещения и необходимые для съёмки в этих условиях, параметры экспозиции . Они позволяют указать как на яркость снимаемых объектов, так и на соответствующую этой яркости экспозицию не прибегая к конкретным значениям выдержки и диафрагмы, которые сами по себе (без учёта освещения) не имеют никакого смысла.

Световые числа

Световое число (LV – Light Value) однозначно характеризует яркость какого-либо объекта или сцены в целом. Световое число указывает на абсолютную, реальную яркость безотносительно экспозиции. Речь идёт именно о яркости, измеряемой в канделах на квадратный метр, а не об освещённости, измеряемой в люксах. Нас не интересует, сколько света падает на объект, для нас важно, сколько света объект отражает или излучает. Две кошки, белая и чёрная, греясь на солнце, получают одинаковое количество люксов, но отражают они свет по-разному, и потому яркость белой кошки будет выше яркости чёрной.

Когда говорят о световом числе какой-то сцены, имеют в виду усреднённую яркость всех её объектов.

Шкала световых чисел логарифмическая, т.е. каждое световое число обозначает яркость вдвое большую яркости предшествующего числа и вдвое меньшую яркости последующего. Например LV 11 означает яркость в 256 кд/м 2 , а LV 12 уже 512 кд/м 2 , т.е. в два раза больше.

Ниже приведены значения яркости и типичные фотографические ситуации для световых чисел от -8 до 18. Шкала световых чисел может быть продлена в обе стороны, однако фотограф на практике редко сталкивается со значениями LV меньше или больше значений, представленных в таблице.

Световое число (LV) Яркость, кд/м 2 Примеры
18 32 768 Блики, в т.ч. на поверхности воды и металлических предметах.
17 16 384 Белые объекты, освещённые солнцем
16 8 192 Светло-серые объекты, песок или светлая кожа, освещённые солнцем.
15 4 096 Серая карта в прямом солнечном свете. Диск яркой полной луны. Типичная экспозиция для фронтально освещённых полуденных сцен.
14 2 048 Сцены с боковым освещением в ясный солнечный день. Полупрозрачные облака или дымка. Диск Луны над горизонтом.
13 1 024 Лёгкая облачность.
12 512 Небо затянуто облаками. Объекты в тени ясным днём. Рассветы и закаты.
11 256 Тёмный, пасмурный день.
10 128 Грозовые облака.
9 64 Спустя 10 минут после заката.
8 32 Хорошо освещённая комната. Витрины магазинов.
7 16 Яркие сцены ночного города. Сцена театра. Лесная чаща днём.
6 8 Типичный свет в помещении.
5 4 Городские улицы ночью. Свет от костра.
4 2 Интерьер при свечах.
3 1 Фейерверк.
2 0,5 Слабоосвещённые городские сцены ночью. Разряд молнии.
1 0,25 Далёкие очертания ночного города.
0 0,125 Очень слабый искусственный свет. При чувствительности ISO 100 требуется выдержка в 1 с и диафрагма f/1 при массе фотоаппарата 1 кг и высоте штатива 1м.
- 1 0,063
- 2 0,031 Снег в ярком лунном свете.
- 3 0,016 Пейзаж, освещённый полной луной.
- 4 0,008
- 5 0,004 Пейзаж, освещённый низкой или неполной луной.
- 6 0,002
- 7 0,001
- 8 0,0005 Звёздное небо.

Экспозиционные числа

Экспозиционное число (EV – Exposure Value) указывает на необходимые для съёмки некой сцены параметры экспозиции (выдержку и диафрагму) при заданной чувствительности ISO.

Экспозиционное число определяется по формуле:

N = log 2 (L · S ⁄ K) , где

N – экспозиционное число (EV);

L – яркость объекта, S – чувствительность фотоматериала (ISO);

K – экспонометрическая постоянная, равная для фотоаппаратов Nikon и Canon 12,5.

Очевидно, что при чувствительности ISO 100 экспозиционное число равно световому числу. Это записывается следующим образом: EV 100 = LV.

При изменении чувствительности будет изменяться и EV. Например, при ISO 100 световому числу 14 соответствует экспозиционное число 14 (f/8*1/250 c). Если же чувствительность увеличить, скажем, до ISO 400, т.е. на два шага, то для получения прежней экспозиции следует взять экспозиционное число, соответствующее световому числу 16 (f/11*1/500 с), т.е. EV 400 = LV + 2. К счастью, сегодня вам не обязательно это помнить. Все необходимые вычисления экспонометр камеры совершает автоматически.

Обратите внимание, что чем больше число, тем выше яркость и, соответственно, тем меньше экспозиция. Таким образом, экспозиционные числа указывают на параметры, необходимые для получения нормальной экспозиции при любом освещении. Это значит, что при бездумном следовании указаниям экспонометра белый сервиз на белой скатерти может получиться на фотографии серым и столь же серой выйдет чёрная шляпа, если она занимает достаточно места в кадре. Следовательно, если основной объект съёмки должен быть светлее или темнее нейтрального тона, т.е. если требуется экспозиция, отличная от нормальной, необходимо использовать меньшие (для увеличения экспозиции) или большие (для уменьшения экспозиции) экспозиционные числа по сравнению с теми, что рекомендует экспонометр.

Кстати, в технических характеристиках фотоаппаратов экспозиционные числа (EV 100) используются для указания допустимого диапазона яркости, в котором возможна корректная работа экспонометра и автофокуса.

Важно помнить, что каждое экспозиционное число указывает не на конкретное сочетание диафрагмы и выдержки, а на все возможные эквивалентные сочетания, которые позволяют получить данную конкретную экспозицию.

EV 0 обозначает выдержку в 1 с при диафрагме f/1, однако, согласно закону взаимозаместимости, ту же экспозицию можно получить используя выдержку в 2 с и диафрагму f/1,4. Такая экспопара всё равно даст EV 0. Точно также EV 15 можно получить, используя f/16*1/125 с, f/11*1/250 с, f/8*1/500 с или любую другую эквивалентную комбинацию.

В приведённой ниже таблице показаны возможные сочетания выдержки и диафрагмы для различных экспозиционных чисел.

Выдержка, с Диафрагма
f/1 f/1,4 f/2 f/2,8 f/4 f/5,6 f/8 f/11 f/16 f/22 f/32
30 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5
15 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6
8 - 3 - 2 - 1 0 1 2 3 4 5 6 7
4 - 2 - 1 0 1 2 3 4 5 6 7 8
2 - 1 0 1 2 3 4 5 6 7 8 9
1 0 1 2 3 4 5 6 7 8 9 10
1/2 1 2 3 4 5 6 7 8 9 10 11
1/4 2 3 4 5 6 7 8 9 10 11 12
1/8 3 4 5 6 7 8 9 10 11 12 13
1/15 4 5 6 7 8 9 10 11 12 13 14
1/30 5 6 7 8 9 10 11 12 13 14 15
1/60 6 7 8 9 10 11 12 13 14 15 16
1/125 7 8 9 10 11 12 13 14 15 16 17
1/250 8 9 10 11 12 13 14 15 16 17 18
1/500 9 10 11 12 13 14 15 16 17 18 19
1/1000 10 11 12 13 14 15 16 17 18 19 20
1/2000 11 12 13 14 15 16 17 18 19 20 21
1/4000 12 13 14 15 16 17 18 19 20 21 22
1/8000 13 14 15 16 17 18 19 20 21 22 23

Голубым цветом обозначены экспопары, автоматически выбираемые фотоаппаратом в программном режиме определения экспозиции (режим P). Видно, что упираясь в предельные для данного объектива значения диафрагмы (f/1,4 – f/16), программа вынуждена регулировать экспозицию, меняя лишь выдержку, но, опять же, только в пределах диапазона скоростей затвора конкретного фотоаппарата (1/8000 – 30 с).

Выдержки длиннее 30 с обычно недоступны в автоматических режимах, но могут быть установлены вручную.

Внимательный читатель мог заметить, что на участке программной линии от EV 4 до EV 18 не хватает нечётных экспозиционных чисел. Разумеется, экспонометр через них вовсе не прыгает, а изменяет экспозицию плавно и последовательно. Просто в моей таблице для краткости указаны значения выдержки и диафрагмы с шагом в одну ступень, в то время как на деле, обе составляющие экспопары изменяются, как правило, с шагом в 1/3 ступени. Например, в диапазоне от EV 12 до EV 16 полная последовательность будет выглядеть так:

Выдержка, с Диафрагма
f/5,6 f/6,3 f/7,1 f/8 f/9 f/10 f/11
1/125 12 12,3 12,7 13 13,3 13,7 14
1/160 12,3 12,7 13 13,3 13,7 14 14,3
1/200 12,7 13 13,3 13,7 14 14,3 14,7
1/250 13 13,3 13,7 14 14,3 14,7 15
1/320 13,3 13,7 14 14,3 14,7 15 15,3
1/400 13,7 14 14,3 14,7 15 15,3 15,7
1/500 14 14,3 14,7 15 15,3 15,7 16

Для управления автоматическим определением экспозиции служит экспокоррекция, позволяющая выбирать большие или меньшие экспозиционные числа относительно предлагаемых автоматикой. Сдвиг же программы даёт возможность, оставаясь в пределах заданного экспозиционного числа, выбирать эквивалентные сочетания выдержки и диафрагмы отличные от стандартных.

Несложно понять, как работают прочие автоматические режимы определения экспозиции. В режиме приоритета диафрагмы (A или Av) вы устанавливаете нужную вам диафрагму, а экспонометр определяет экспозиционное число и выбирает соответствующую выдержку. В режиме же приоритета выдержки (S или Tv) вы устанавливаете скорость затвора, а камера выбирает подходящую диафрагму.

В цифровой фотографии закон взаимозаместимости действует безоговорочно, однако традиционная фотографическая плёнка, в отличие от цифровой матрицы, при длительных выдержках (свыше 1 с) подвержена явлению невзаимозаместимости или эффекту Шварцшильда, в результате которого увеличение экспозиции вдвое (т.е. на 1 ступень) может потребовать более чем двукратного увеличения выдержки. Чем длиннее выдержка, тем значительнее расхождение между показаниями экспонометра и выдержкой, необходимой в действительности. Это явление неодинаково для разных плёнок и должно учитываться при расчёте экспозиции.

Спасибо за внимание!

Василий А.

Post scriptum

Если статья оказалась для вас полезной и познавательной, вы можете любезно поддержать проект , внеся вклад в его развитие. Если же статья вам не понравилась, но у вас есть мысли о том, как сделать её лучше, ваша критика будет принята с не меньшей благодарностью.

Не забывайте о том, что данная статья является объектом авторского права. Перепечатка и цитирование допустимы при наличии действующей ссылки на первоисточник, причём используемый текст не должен ни коим образом искажаться или модифицироваться.

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер паропроницаемости и скорости переноса пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 нит [нт] = 1 кандела на квадратный метр [кд/м²]

Исходная величина

Преобразованная величина

кандела на квадратный метр кандела на квадратный сантиметр кандела на квадратный фут кандела на квадратный дюйм килокандела на квадратный метр стильб люмен на кв. метр на стерадиан люмен на кв. сантиметр на стерадиан люмен на квадратный фут не стерадиан нит миллинит ламберт миллиламберт фут-ламберт апостильб блондель брил скот

Подробнее о яркости

Общие сведения

Освещенность

Яркость - это фотометрическая величина, равная отношению силы света, излучаемого поверхностью, к площади ее проекции на плоскость, перпендикулярную оси наблюдения. Количество света здесь измеряется как энергия, выделяемая световым источником или отражаемая освещенной поверхностью. Яркость - количество выделяемого или отраженного света, что отличается от общего количества света в помещении, от количества света, направляющегося к поверхности (освещенность), или от общего количество света, испускаемого в определенном телесном угле (сила света).

В основном разница между освещенностью и яркостью понятна, но чтобы не путать эти два понятия, можно запомнить их как:

  1. Яркость = свет, отраженный от поверхности
  2. Освещенность = свет, направляющийся к поверхности

Под яркостью могут подразумеваться два понятия: физическое свойство света, описанное выше, и субъективное понятие о том, насколько ярким кажется освещенный объект или источник света. Каждый человек воспринимает яркость по-разному, в зависимости от ряда факторов, таких как индивидуальные особенности зрения. Яркость окружающих предметов и среды также влияет на то, насколько ярким кажется источник света или предмет, отражающий свет. Поэтому в описании источников света используют понятие о яркости обозначающее не субъективную а физическую величину. Эта величина используется в оценке яркости дисплеев, например экранов телевизоров или цифровых часов. Яркость также важна для нашего восприятия произведений искусства и окружающего нас мира.

Физиология восприятия яркости

Фоторецепторы глаза, палочки и колбочки, наиболее чувствительны к свету с длиной волны в 550 нанометров (зеленый свет). Чувствительность понижается с увеличением или уменьшением длины волны. Благодаря этой чувствительности зеленый, и цвета, находящиеся рядом с ним в спектре (желтый и оранжевый), кажутся нам наиболее яркими. То есть, яркость - это свойство света выглядеть ярким или тусклым, в зависимости от того, как мозг обрабатывает информацию о длине волны.

Люди, как и другие животные, приспосабливаются к окружающим условиям, и если в окружающей среде не происходит изменений, то люди привыкают к ней и перестают ее замечать, так как она не представляет опасности. Так происходит и с восприятием яркости. Люди привыкают к яркости в окружающей среде и судят о яркости предметов в зависимости от яркости среды. Например, экран сотового телефона с неизменной яркостью кажется ярким ночью и тусклым днем. Это из-за того, что ночью наши глаза привыкают к темноте, и поэтому бо́льшая разница между экраном и средой значит для нас бо́льшую яркость. Меньшая разница между дневным светом и экраном значит маленькую яркость, хотя на самом деле яркость экрана не изменяется.

Контрастная чувствительность

Контрастная чувствительность - это способность глаза видеть разницу между яркостью предметов. Эта чувствительность особенно важна в случаях, когда этот контраст понижен из-за освещения, например в тумане, в темноте, или когда яркость и цвет находящихся рядом предметов близки. Людям с низкой чувствительностью обычно трудно управлять автомобилем вечером или в тумане, передвигаться в темноте, или видеть, если мешает слепящий свет. Низкая контрастная чувствительность особенно проблематична для людей, которые к тому же страдают цветовой слепотой.

Контрастная чувствительность ухудшается с возрастом, а также вследствие ряда заболеваний, например из-за глаукомы, катаракты, инфаркта миокарда, или диабетической ретинопатии, то есть повреждения сетчатки глаза вследствие диабета. Проблема с контрастной чувствительностью независима от ухудшения зрения, и часто возникает у людей с прекрасным зрением, хотя иногда зрение и контрастная чувствительность ухудшаются одновременно. Проверка контрастной чувствительности отличается от проверки зрения тем, что ее можно проходить в очках или контактных линзах, если человек носит их в повседневной жизни. Вместо таблицы с буквами разного размера пациенту предлагается таблица с буквами, у которых понижается контрастность. В более усложненном варианте на таблице изображены не буквы, а линии на разном фоне, и задача усложняется тем, что в глаз также может быть направлен свет, чтобы ухудшить видимость.

Специальные очки, подобранные для пациента на основе результатов проверки зрения, часто помогают повысить контрастную чувствительность. Такая проверка похожа на тесты, которые проводят перед лазерной хирургией. Кстати, лазерная хирургия для коррекции других дефектов зрения иногда помогает повысить контрастную чувствительность, хотя в некоторых случаях, наоборот, ухудшает ее, как побочный эффект. Нередко также можно улучшить чувствительность с помощью очков с желтыми линзами.

Яркость в искусстве и дизайне

Оптические иллюзии и эффекты

Художники часто манипулируют яркостью, чтобы достичь того или иного эффекта или иллюзии. Например, если яркость цвета двух находящихся рядом предметов одинакова, то их линия соприкосновения кажется размытой. Художники используют это свойство, чтобы изобразить иллюзию движения. Один из самых известных примеров - картина Моне «Впечатление. Восходящее солнце» на иллюстрации. Здесь иллюзия мерцающего солнца и солнечной дорожки вызвана именно этим свойством - яркость солнца и окружающего его неба, а также яркость солнечной дорожки и моря - очень близки. Цвет и яркость обрабатываются разными отделами мозга. Отдел, ответственный за яркость, также отвечает за местоположение в пространстве, перспективу и движение. Благодаря разному цвету мозг понимает, что предмет другого цвета существует, но из-за одинаковой яркости не может определить, где он находится, поэтому создается иллюзия дрожания или движения. Эту технику можно использовать, например, чтобы создать иллюзию блестящих звезд на вечернем небосводе.

В фотографии этот эффект тоже нередко используется. Снимая закат, фотограф ждет момента, когда солнце или облака станут одинаковой яркости, но разного цвета с небом. Если удастся снять этот момент, то иногда кажется, что солнце или облака мерцают на фотографии.

Такие краски встречаются в природе не только на закате и рассвете. Аналогичное сочетание цветов может встретиться и на лугу, и на клумбе. Например, тюльпаны на фотографии как бы слегка покачиваются, благодаря тому, что их яркость сливается с яркостью травы. Это хорошо видно на черно-белой фотографии.

В некоторых случаях такое сочетание цветов может быть жутковатым. Оранжевые огни в замке на фотографии кажутся мерцающими, так как одинаковы по яркости со стенами замка. Если же их цвет изменить до красного и затемнить окружающее небо, то крепость продолжает мерцать, но выглядит уже не гостеприимным дворцом, а зловещим замком с привидениями.

С другой стороны, использование цветов с контрастной яркостью, например сочетание ярких и темных цветов, передает изображению объем, как на написанной маслом розовой камелии. Цветок выглядит настолько объемным, что хочется провести по нему рукой, чтобы в этом убедиться - хотя на самом деле рисунок сделан на плоскости. С темными цветами труднее передать контраст, чем со светлыми - это хорошо видно на рисунке с камелией и особенно заметно на черно-белом изображении. Светлый цветок переходит от почти белого к темно-красному, и выглядит объемно. У темных листьев гораздо меньше разницы в контрасте, чем у цветка, и они выглядят более плоскими. Удобство в работе со светлыми цветами для передачи контраста заметил еще Леонардо да Винчи, и многие художники работают в такой технике.

Дизайн

Цель большинства художников - заставить зрителя задуматься, вызвать в нем разные чувства. Для этого и используются различные эффекты, как те, что описаны выше. В дизайне, наоборот, важнее не специальные эффекты, а ясность. Это особенно важно на знаках, например дорожных, или на предупреждениях об опасности. Чтобы те, для кого предназначено это сообщение, как можно лучше его поняли, дизайнеры используют контрастные цвета, с большой разницей в яркости между сообщением и фоном. Это делает текст или изображение более заметным.

Яркость текста почти совпадает с яркостью фона

Поэтому текст трудно читается

Поэтому текст трудно читается

Разница в контрасте делает текст читаемым, а маленькие детали - заметными. Если, наоборот, между текстом или изображениями и фоном маленькая разница в контрасте, то текст или изображения плохо видны, и они начинают танцевать в глазах. На рисунке показан именно такой текст, который плохо читается из-за того, что он хоть и отличается по цвету от фона, но сливается с ним по яркости.

По мере уменьшения насыщенности цвета, читаемость текста ухудшается. В нашем примере с текстом, красный цвет больше похож на фон по яркости, чем зеленый, но более насыщен. Поэтому и читается он немного лучше, несмотря на то, что зеленый сильнее отличается от фона своей яркостью. Для того, чтобы текст как можно лучше читался, разницу в яркости между ним и фоном делают максимальной, а также увеличивают насыщенность.

Если в дизайне используется несколько цветов с разной яркостью, то самый большой контраст между яркостью фона и текста следует сделать для самого важного текста. Остальной текст может быть менее контрастным, и наименее существенный - с самой низкой разницей в яркости.

На более светлом фоне проще увидеть разницу между двумя изображениями с разной яркостью, поэтому, чтобы усилить контраст, желательно осветлить фон. Это не всегда работает, так как это не помогает людям, которые вынуждены находиться в очень светлой среде - например летчикам. Также нужно быть осторожным при выборе цвета текста, если фон часто изменяется, как, например, на картах навигаторов. Не стоит забывать также, что дизайн для дисплеев ограничен диапазоном воспроизводимых дисплеем цветов.

Яркость и воздушная перспектива

Если смотреть вдаль, то объекты, находящиеся дальше от наблюдателя, например горы, кажутся более светлыми и размытыми. Уменьшается также контраст и насыщенность красок. Художники используют эту особенность, чтобы передать перспективу. То есть, элементы ландшафта на заднем плане рисуют более светлыми и размытыми. Называется этот эффект «воздушной перспективой» - он вызван рассеянием света водой и иными частицами в атмосфере.

В туманную или сырую погоду число частиц воды в атмосфере резко увеличивается, и эффект воздушной перспективы происходит даже с предметами, находящимися близко от наблюдателя. Мозг воспринимает это явление как обычную перспективу, и человеку кажется, что эти объекты находятся дальше, чем они есть на самом деле. Это очень опасно как для пешеходов, переходящих дорогу, так и для водителей, и надо помнить об этом и быть особенно осторожным в тумане.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Расчеты для перевода единиц в конвертере «Конвертер яркости » выполняются с помощью функций unitconversion.org .

Как правильно выбрать монитор, который будет не очень дорогой и в тоже время иметь хорошие технические показатели. Ведь каждый хочет не только сэкономить свой бюджет, но и приобрести качественное и надежное устройство.

На какие вообще характеристики необходимо смотреть при выборе нового монитора для своего компьютера? Наша цель сделать такой выбор, чтобы и качество картинки было хорошим и чтобы зрение не сильно нагружать. ТО есть мы попробуем выбрать «золотую середину»

Вступление

Всем привет, сегодня будем собирать все необходимые знания для правильного выбора монитора. Ведь вы явно не раз задумывались, какой выбрать экран, чтобы не сильно портилось зрение, не было большой нагрузки на глаза.

Хотя нужно учитывать и любителей поиграть, для них тоже очень важно иметь хороший монитор, чтобы полностью насладиться игровым процессом. А может быть, вы сутками пишите статьи или какие-то документы и вам важно иметь яркий, четкий экран.

Давайте ближе к делу, при выборе монитора в первую очередь следует обратить внимание на размер экрана. Измеряется он в дюймах, где стандартное значение для домашнего использования примерно 21-25 дюймов.

Я считаю, что это оптимальное значение, монитор не маленький и в тоже время не очень большой и вполне комфортно умещается на компьютерном столике. Кстати, если вы часто смотрите фильмы на компьютере, то вот рекомендованное расстояние для минимального вреда для ваших глаз.

Теперь следует обратить внимание на один из самых важных параметров, а именно матрица вашего будущего монитора, для этого следует знать несколько стандартных типов матрицы и понимать чем они отличаются.

Что нужно знать о матрице монитора?

Давайте разбираться. На данный момент распространены всего три типа матриц и наверное будет не трудно их запомнить:

TFT – TN (устанавливаются на бюджетные мониторы, очень старая разработка)

TFT – AH-IPS (Очень качественная матрица, с отличным углом обзора, но дорогая)

TFT – MVA (Хорошая технология, для средних и дорогих мониторов, на мой взгляд лучшее соотношение цены и качества)

В жизни, чтобы не заморачиваться пропускают одинаковое название и получается просто матрица типа:

TN – самая дешевая модификация, встречается в бюджетных моделях мониторов, плохой угол обзора. То есть если вы будите смотреть на экран со стороны, то цвета будут сильно искажаться и нервировать, поэтому за такими дисплеями следует сидеть близко и исключительно напротив.

IPS — матрица, одна из лучших и по сей день. Используется в большинстве мониторов средней и высокой цены. Отличается хорошим углом обзора и насыщенностью красок.

MVA/ VA – хорошая матрица с отличным углом обзора, немного хуже чем ips, но невооруженным глазом этого не заметно, поэтому если не хотите переплачивать, то это лучший вариант.

Кстати, вы можете увидеть на некоторых ценниках, рекламных плакатах или коробках сокращение LED и многие думают, что это лучший вариант, но это не тип матрицы, а всего лишь реклама подсветки.

Да, тут нас часто пытаются ввести в заблуждение, но теперь вы знаете, что на надпись LED не стоит обращать внимание и путать ее с типом матрицы. Не забываем и про стандартные значения, например про частоту кадров, мониторы следует выбирать от 60Гц. Любители поиграть могут обратить внимание на такой параметр, как скорость отклика,в последнее время у всех мониторов все нормально с этим параметром, но все же напомню, чем меньше скорость отклика тем лучше.

Почему важно знать о яркости и контрастности?

Теперь обратите свое внимание на яркость приобретаемого устройства, измеряется она в канделах на квадратный метр. Например бюджетный монитор будет с яркостью примерно в 200 кд/м2. Но если вы будите использовать монитор с такой яркостью для игр, то скорее всего вы пожалеете, потому что краски будут более темными и во время игры некоторые объекты можно просто пропустить из-за того, что они нам будут казаться темным пятном. Чем больше будет яркость тем лучше.

Но яркость нужно рассматривать в связке с контрастностью. Потому что мы можем увеличить яркость через драйверы видео карты и темные места станут более светлыми и их можно будет легко рассмотреть, но при этом все светлые цвета сольются в белое пятно. А если у монитора, хорошая контрастность, то он выдерживает регулировку яркости и оставляет все элементы отчетливыми. На бюджетных мониторах контрастность примерно 600:1 , у хороших 1000:1.

Когда вы подвели первый итог и определились с техническими характеристиками можно посмотреть на дизайн, бренд и ценовую политику.

И очень важно перед покупкой проверить монитор на наличие битых пикселей, для этого возьмите с собой флешку, на которую перед этим скачайте программу для тестирования TFT дисплеев на наличие выгоревших пикселей. Скачать программу прямо сейчас, бесплатно.

А я подведу для вас небольшой итог по параметрам мониторов:

Эконом Стандарт Высокая цена
Тип матрицы (угол обзора) TFT-TN TFT-MVA TFT-IPS
Яркость 200 кд/м2 250 кд/м2 300 кд/м2
Контрастность 600:1 800:1 1000:1
Размер 17-19 дюймов 19-23 дюйма 23 дюйма и более

Надеюсь, данная статья вам пригодится. Ведь теперь приходя в магазин Вы знаете какой монитор выбрать для компьютера и в тоже время без ущерба для Ваших глаз.