Книги. Скачать книги DJVU, PDF бесплатно. Бесплатная электронная библиотека
В.В. Ященко, Введение в криптографию

Вы можете (программа отметит желтым цветом)
Вы можете посмотреть список книг по высшей математике с сортировкой по алфавиту.
Вы можете посмотреть список книг по высшей физике с сортировкой по алфавиту.

• Бесплатно скачать книгу , объем 1.69 Мб, формат.djvu
Издание второе под ред. Ященко В.В., сентябрь 1999 года

Уважаемые дамы и господа!! Для того, чтобы без "глюков" скачать файлы электронных публикаций, нажмите на подчеркнутую ссылку с файлом ПРАВОЙ кнопкой мыши , выберите команду "Save target as ..." ("Сохранить объект как..." ) и сохраните файл электронной публикации на локальный компьютер. Электронные публикации обычно представлены в форматах Adobe PDF и DJVU.

Глава 1. Основные понятия криптографии
1. Введение
2. Предмет криптографии
3. Математические основы
4. Новые направления
5. Заключение

Глава 2. Криптография и теория сложности
1. Введение
2. Криптография и гипотеза
3. Односторонние функции
4. Псевдослучайные генераторы
5. Доказательства с нулевым разглашением

Глава 3. Криптографические протоколы
1. Введение
2. Целостность. Протоколы аутентификации и электронной подписи
3. Неотслеживаемость. Электронные деньги
4. Протоколы типа "подбрасывание монеты по телефону"
5. Еще раз о разделении секрета
6. Поиграем в "кубнки". Протоколы голосования
7. За пределами стандартных предположений. Конфиденциальная передача сообщений
8. Вместо заключения

Глава 4. Алгоритмические проблемы теории чисел
1. Введение
2. Система шифрования RSA
3. Сложность теоретико-числовых алгоритмов
4. Как отличить составное число от простого
5. Как строить большие простые числа
6. Как проверить большое число на простоту
7. Как раскладывают составные числа на множители
8. Дискретное логарифмирование
9. Заключение

Глава 5. Математика разделения секрета
1. Введение
2. Разделение секрета для произвольных структур доступа
3. Линейное разделение секрета
4. Идеальное разделение секрета и матроиды

Глава 6. Компьютер и криптография
1. Вместо введения
2. Немного теории
3. Как зашифровать файл?
4. Поучимся на чужих ошибках
5. Вместо заключения

Глава 7. Олимпиады по криптографии для школьников
1. Введение
2. Шифры замены
3. Шифры перестановки
4. Многоалфавитные шифры замены с периодическим ключом
5. Условия задач олимпиад по математике и криптографии
6. Указания и решения

Приложение: отрывок из статьи К. Шеннона "Теория связи в секретных системах"

Краткая аннотация книги

Под общ. ред. В.В.Ященко. Авторский коллектив: В. В. Ященко (редактор, глава 1), Н. П. Варновский (главы 2, 3), Ю. В. Нестеренко (глава 4), Г. А. Кабатянский (глава 5), П. Н. Девянин, В. Г. Проскурин, А. В. Черемушкин (глава 6), П. А. Гырдымов, А. Ю. Зубов, А. В. Зязин, В. Н. Овчинников (глава 7).

В книге впервые на русском языке дается систематическое изложение научных основ криптографии от простейших примеров и основных понятий до современных криптографических конструкций. Понимание принципов криптографии стало для многих потребностью в связи с широким распространением криптографических средств обеспечения информационной безопасности. Поэтому книга может быть полезна массовому читателю. Книга рассчитана на студентов-математиков и специалистов по информационной безопасности.

Криптография - наука о шифрах - долгое время была засекречена, так как применялась, в основном, для защиты государственных и военных секретов. В настоящее время методы и средства криптографии используются для обеспечения информационной безопасности не только государства, но и частных лиц, и организаций. Дело здесь совсем не обязательно в секретах. Слишком много различных сведений "гуляет" по всему свету в цифровом виде. И над этими сведениями "висят" угрозы недружественного ознакомления, накопления, подмены, фальсификации и т. п. Наиболее надежные методы защиты от таких угроз дает именно криптография.

Пока криптографические алгоритмы для рядового потребителя - тайна за семью печатями, хотя многим уже приходилось пользоваться некоторыми криптографическими средствами: шифрование электронной почты, интеллектуальные банковские карточки и др. Естественно, что при этом основной вопрос для пользователя - обеспечивает ли данное криптографическое средство надежную защиту. Но даже правильно Сформулировать этот элементарный вопрос непросто. От какого противника защищаемся? Какие возможности у этого противника? Какие цели он может преследовать? Как измерять надежность защиты? Список таких вопросов можно продолжить. Для ответа на них пользователю необходимы знания основных понятий криптографии.

Популярное изложение научных основ криптографии (речь идет только о "негосударственной" криптографии; разделы криптографии, связанные с государственной безопасностью, должны оставаться секретными) - цель настоящей книги. Ее можно использовать и в качестве учебного пособия. На русском языке аналогичных книг пока нет. Материалы ряда глав публиковались авторами ранее в других изданиях (глава 1 - в книге С. А. Дориченко, В. В. Ященко, "25 этюдов о шифрах", М.: ТЕИС, 1994; главы 1,2,4,5 - в журнале "Математическое просвещение", третья серия, выпуск 2, М.: МЦНМО, 1998; глава 7 - в газете "Информатика" (еженедельное приложение к газете "Первое сентября"), N 4, январь 1998). При подготовке настоящего издания эти материалы были переработаны и дополнены. Изложение материала рассчитано на читателя с математическим складом ума.

В основном главы не зависят друг от друга (это достигнуто за счет некоторых повторов) и их можно читать в произвольном порядке. Главу 1 - вводную - рекомендуется прочитать всем, поскольку в ней на популярном уровне разъясняются все основные понятия современной криптографии: шифр, ключ, стойкость, электронная цифровая подпись, криптографический протокол и др. В других главах часть материала повторяется, но уже более углубленно. В главах 2, 3, 4, 5 используются некоторые сведения из высшей математики, известные ученикам математических классов и студентам. Глава 6 ориентирована на знатоков компьютерных технологий. Глава 7 содержит материалы олимпиад по криптографии для школьников и поэтому для ее чтения никаких знаний, выходящих за пределы школьной программы, не требуется.

Предупреждение: криптографические средства и программные продукты, упоминаемые в книге, используются только для иллюстрации общих криптографических идей; авторы не ставили своей целью давать оценки или сравнивать имеющиеся на рынке криптографические средства.

Криптография была поставлена на научную основу во многом благодаря работам выдающегося американского ученого Клода Шеннона. Его доклад "Математическая теория криптографии" был подготовлен в секретном варианте в 1945 г., рассекречен и опубликован в 1948 г., переведен на русский язык в 1963 г. Поскольку "Работы по теории информации и кибернетике" (1963 г.) К. Шеннона стали библиографической редкостью, мы включили в приложение основную часть статьи К. Шеннона "Теория связи в секретных системах". Эту основополагающую работу рекомендуется прочитать всем интересующимся криптографией.

Для профессионального понимания криптографических алгоритмов и умения оценивать их сильные и слабые стороны необходима уже серьезная математическая подготовка (на уровне математических факультетов университетов). Это объясняется тем, что современная криптография основана на глубоких результатах таких разделов математики, как теория сложности вычислений, теория чисел, алгебра, теория информации и др. Желающим серьезно изучать криптографию можно порекомендовать обзорную монографию "Криптография в банковском деле" Анохина М. И., Варновского Н. П., Сидельникова В. М., Ященко В. В., М.: МИФИ, 1997.

Как передать нужную информацию нужному адресату в тайне от других? Каждый из читателей в разное время и с разными целями наверняка пытался решить для себя эту практическую задачу (для удобства дальнейших ссылок назовем ее "задача ТП", т. е. задача Тайной Передачи). Выбрав подходящее решение, он, скорее всего, повторил изобретение одного из способов скрытой передачи информации, которым уже не одна тысяча лет.

Размышляя над задачей ТП, нетрудно прийти к выводу, что есть три возможности.
1. Создать абсолютно надежный, недоступный для других канал связи между абонентами.
2. Использовать общедоступный канал связи, но скрыть сам факт передачи информации.
3. Использовать общедоступный канал связи, но передавать по нему нужную информацию в так преобразованном виде, чтобы восстановить ее мог только адресат.

Прокомментируем эти три возможности.
1. При современном уровне развития науки и техники сделать такой канал связи между удаленными абонентами для неоднократной передачи больших объемов информации практически нереально.
2. Разработкой средств и методов скрытия факта передачи сообщения занимается стеганография.

Первые следы стеганографических методов теряются в глубокой древности. Например, известен такой способ скрытия письменного сообщения: голову раба брили, на коже головы писали сообщение и после отрастания волос раба отправляли к адресату. Из детективных произведений хорошо известны различные способы тайнописи между строк обычного, незащищаемого текста: от молока до сложных химических реактивов с последующей обработкой.

Также из детективов известен метод "микроточки": сообщение записывается с помощью современной техники на очень маленький носитель (микроточку), который пересылается с обычным письмом, например, под маркой или где-нибудь в другом, заранее обусловленном месте.

В настоящее время в связи с широким распространением компьютеров известно много тонких методов "запрятывания" защищаемой информации внутри больших объемов информации, хранящейся в компьютере. Наглядный пример эапрятывания текстового файла в графический можно найти в Интернете; он же приведен в журнале "Компьютерра", N48 (225) от 1 декабря 1997 г., на стр. 62. (Следует отметить, что авторы статьи в журнале ошибочно относят стеганографию к криптографии. Конечно, с помощью стеганографии можно прятать и предварительно зашифрованные тексты, но, вообще говоря, стеганография и криптография - принципиально различные направления в теории и практике зашиты информации.)

3. Разработкой методов преобразования (шифрования) информации с целью ее защиты от незаконных пользователей занимается криптография. Такие методы и способы преобразования информации называются шифрами.

Шифрование (зашифрование) - процесс применения шифра к защищаемой информации, т. е. преобразование защищаемой информации (открытого текста) в шифрованное сообщение (шифртекст, криптограмму) с помощью определенных правил, содержащихся в шифре.

Дешифрование - процесс, обратный шифрованию, т. е. преобразование шифрованного сообщения в защищаемую информацию с помощью определенных правил, содержащихся в шифре.

Криптография - прикладная наука, она использует самые последние достижения фундаментальных наук и, в первую очередь, математики. С другой стороны, все конкретные задачи криптографии существенно зависят от уровня развития техники и технологии, от применяемых средств связи и способов передачи информации.

Предмет криптографии. Что же является предметом криптографии? Для ответа на этот вопрос вернемся к задаче ТП, чтобы уточнить ситуацию и используемые понятия. Прежде всего заметим, что эта задача возникает только для информации, которая нуждается в защите. Обычно в таких случаях говорят, что информация содержит тайну или является защищаемой, приватной, конфиденциальной, секретной. Для наиболее типичных, часто встречающихся ситуаций такого типа введены даже специальные понятия:
- государственная тайна;
- военная тайна;
- коммерческая тайна;
- юридическая тайна;
- врачебная тайна и т. д.

Далее мы будем говорить о защищаемой информации, имея в виду следующие признаки такой информации:
- имеется какой-то определенный круг законных пользователей, ко торые имеют право владеть этой информацией;
- имеются незаконные пользователи, которые стремятся овладеть этой информацией с тем, чтобы обратить ее себе во благо, а законным пользователям во вред.

Книги, книги скачать, скачать книгу, книги онлайн, читать онлайн, скачать книги бесплатно, читать книги, читать книги онлайн, читать, библиотека онлайн, книги читать, читать онлайн бесплатно, читать книги бесплатно, электронная книга, читать онлайн книги, лучшие книги математика и физика, интересные книги математика и физика, электронные книги, книги бесплатно, книги бесплатно скачать, скачать бесплатно книги математика и физика, скачать книги бесплатно полностью, онлайн библиотека, книги скачать бесплатно, читать книги онлайн бесплатно без регистрации математика и физика, читать книги онлайн бесплатно математика и физика, электронная библиотека математика и физика, книги читать онлайн математика и физика, мир книг математика и физика, читать бесплатно математика и физика, библиотека онлайн математика и физика, чтение книг математика и физика, книги онлайн бесплатно математика и физика, популярные книги математика и физика, библиотека бесплатных книг математика и физика, скачать электронную книгу математика и физика, бесплатная библиотека онлайн математика и физика, электронные книги скачать, учебники онлайн математика и физика, библиотека электронных книг математика и физика, электронные книги скачать бесплатно без регистрации математика и физика, хорошие книги математика и физика, скачать книги полностью математика и физика, электронная библиотека читать бесплатно математика и физика, электронная библиотека скачать бесплатно математика и физика, сайты для скачивания книг математика и физика, умные книги математика и физика, поиск книг математика и физика, скачать электронные книги бесплатно математика и физика, электронная книга скачать математика и физика, самые лучшие книги математика и физика, электронная библиотека бесплатно математика и физика, читать онлайн бесплатно книги математика и физика, сайт книг математика и физика, библиотека электронная, онлайн книги читать, книга электронная математика и физика, сайт для скачивания книг бесплатно и без регистрации, бесплатная онлайн библиотека математика и физика, где бесплатно скачать книги математика и физика, читать книги бесплатно и без регистрации математика и физика, учебники скачать математика и физика, скачать бесплатно электронные книги математика и физика, скачать бесплатно книги полностью, библиотека онлайн бесплатно, лучшие электронные книги математика и физика, онлайн библиотека книг математика и физика, скачать электронные книги бесплатно без регистрации, библиотека онлайн скачать бесплатно, где скачать бесплатно книги, электронные библиотеки бесплатные, электронные книги бесплатно, бесплатные электронные библиотеки, онлайн библиотека бесплатно, бесплатно читать книги, книги онлайн бесплатно читать, читать бесплатно онлайн, интересные книги читать онлайн математика и физика, чтение книг онлайн математика и физика, электронная библиотека онлайн математика и физика, бесплатная библиотека электронных книг математика и физика, библиотека онлайн читать, читать бесплатно и без регистрации математика и физика, найти книгу математика и физика, каталог книг математика и физика, скачать книги онлайн бесплатно математика и физика, интернет библиотека математика и физика, скачать бесплатно книги без регистрации математика и физика, где можно скачать книги бесплатно математика и физика, где можно скачать книги, сайты для бесплатного скачивания книг, онлайн читать, библиотека читать, книги читать онлайн бесплатно без регистрации, книги библиотека, бесплатная библиотека онлайн, онлайн библиотека читать бесплатно, книги читать бесплатно и без регистрации, электронная библиотека скачать книги бесплатно, онлайн читать бесплатно.

,
С 2017 года возобновляем мобильную версию веб-сайта для мобильных телефонов (сокращенный текстовый дизайн, технология WAP) - верхняя кнопка в левом верхнем углу веб-страницы. Если у Вас нет доступа в Интернет через персональный компьютер или интернет-терминал, Вы можете воспользоваться Вашим мобильным телефоном для посещения нашего веб-сайта (сокращенный дизайн) и при необходимости сохранить данные с веб-сайта в память Вашего мобильного телефона. Сохраняйте книги и статьи на Ваш мобильный телефон (мобильный интернет) и скачивайте их с Вашего телефона на компьютер. Удобное скачивание книг через мобильный телефон (в память телефона) и на Ваш компьютер через мобильный интерфейс. Быстрый Интернет без излишних тэгов, бесплатно (по цене услуг Интернет) и без паролей. Материал приведен для ознакомления. Прямые ссылки на файлы книг и статей на веб-сайте и их продажи третьими лицами запрещены.

Примечание. Удобная текстовая ссылка для форумов, блогов, цитирования материалов веб-сайта, код html можно скопировать и просто вставить в Ваши веб-страницы при цитировании материалов нашего веб-сайта. Материал приведен для ознакомления. Сохраняйте также книги на Ваш мобильный телефон через сеть Интернет (есть мобильная версия сайта - ссылка вверху слева страницы) и скачивайте их с Вашего телефона на компьютер. Прямые ссылки на файлы книг запрещены.


Метод шифровки/дешифровки называют шифром (cipher ). Некоторые алгоритмы шифрования основаны на том, что сам метод шифрования (алгоритм) является секретным. Ныне такие методы представляют лишь исторический интерес и не имеют практического значения. Все современные алгоритмы используют ключ для управления шифровкой и дешифровкой; сообщение может быть успешно дешифровано только если известен ключ. Ключ, используемый для дешифровки может не совпадать с ключом, используемым для шифрования, однако в большинстве алгоритмов ключи совпадают.

Алгоритмы с использованием ключа делятся на два класса: симметричные (или алгоритмы секретным ключом) и асиметричные (или алгоритмы с открытым ключом). Разница в том, что симметричные алгоритмы используют один и тот же ключ для шифрования и для дешифрования (или же ключ для дешифровки просто вычисляется по ключу шифровки). В то время как асимметричные алгоритмы используют разные ключи, и ключ для дешифровки не может быть вычислен по ключу шифровки.

Смметричные алгоритмы подразделяют на потоковые шифры и блочные шифры . Потоковые позволяют шифровать информацию побитово, в то время как блочные работают с некоторым набором бит данных (обычно размер блока составляет 64 бита) и шифруют этот набор как единое целое.

Ассиметричные шифры (также именуемые алгоритмами с открытым ключом, или --- в более общем плане --- криптографией с открытым ключом) допускают, чтобы открытый ключ был доступн всем (скажем, опубликован в газете). Это позволяет любому зашифровать сообщение. Однако расшифровать это сообщение сможет только нужный человек (тот, кто владеет ключом дешифровки). Ключ для шифрования называют открытым ключом , а ключ для дешифрования --- закрытым ключом или секретным ключом .

Современные алгоритмы шифровки/дешифровки достаточно сложны и их невозможно проводить вручную. Настоящие криптографические алгоритмы разработаны для использования компьютерами или специальными аппаратными устройствами. В большинстве приложений криптография производится программным обеспечением и имеется множество доступных криптографических пакетов.

Вообще говоря, симметричные алгоритмы работают быстрее, чем ассиметричные. На практке оба типа алгоритмов часто используются вместе: алгоритм с открытым ключом используется для того, чтобы передать случайным образом сгенерированный секретный ключ, который затем используется для дешифровки сообщения.

Многие качественные криптографические алгоритмы доступны широко - в книжном магазине, библиотеке, патентном бюро или в Интернет. К широко известным симметричным алгоритмам относятся DES и IDEA, Наверное самым лучшим асимметричным алгоритмом является RSA.

Цифровые подписи

Некоторые из асимметричных алгоритмов могут использоваться для генерирования цифровой подписи . Цифровой подписью называют блок данных, сгенерированный с использованием некоторого секретного ключа. При этом с помощью открытого ключа можно проверить, что данные были действительно сгенерированы с помощью этого секретного ключа. Алгоритм генерации цифровой подписи должен обеспечивать, чтобы было невозможно без секретного ключа создать подпись, которая при проверке окажется правильной.

Цифровые подписи используются для того, чтобы подтвердить, что сообщение пришло действительно от данного отправителя (в предположении, что лишь отправитель обладает секретным ключом, соответствующим его открытому ключу). Также подписи используются для проставления штампа времени (timestamp ) на документах: сторона, которой мы доверяем, подписывает документ со штампом времени с помошью своего секретного ключа и, таким образом, подтверждает, что документ уже существовал в момент, объявленный в штампе времени.

Цифровые подписи также можно использовать для удостоверения (сертификации --- to certify ) того, что документ принадлежит определенному лицу. Это делается так: открытый ключ и информация о том, кому он принадлежит подписываются стороной, которой доверяем. При этом доверять подписывающей стороне мы можем на основании того, что ее ключ был подписан третьей стороной. Таким образом возникает иерархия доверия. Очевидно, что некоторый ключ должен быть корнем иерархии (то есть ему мы доверяем не потому, что он кем-то подписан, а потому, что мы верим a-priori, что ему можно доверять). В централизованной инфраструктуре ключей имеется очень небольшое количество корневых ключей сети (например, облеченные полномочиями государственные агенства; их также называют сертификационными агенствами --- certification authorities ). В распределенной инфраструктуре нет необходимости иметь универсальные для всех корневые ключи, и каждая из сторон может доверять своему набору корневых ключей (скажем своему собственному ключу и ключам, ею подписанным). Эта концепция носит название сети доверия (web of trust ) и реализована, например, в PGP.

Цифровая подпись документа обычно создается так: из документа генерируется так называемый дайджест (message digest ) и к нему добавляется информация о том, кто подписывает документ, штамп времени и прочее. Получившаяся строка далее зашифровывается секретным ключом подписывающего с использованием того или иного алгоритма. Получившийся зашифрованный набор бит и представляет собой подпись. К подписи обычно прикладывается открытый ключ подписывающего. Получатель сначала решает для себя доверяет ли он тому, что открытый ключ принадлежит именно тому, кому должен принадлежать (с помощью сети доверия или априорного знания), и затем дешифрует подпись с помощью открытого ключа. Если подпись нормально дешифровалась, и ее содержимое соответствует документу (дайджест и др.), то сообщение считается подтвержденным.

Свободно доступны несколько методов создания и проверки цифровых подписей. Наиболее известным является алгоритм RSA.

Криптографические хэш-функции

Криптографические хэш-функции используются обычно для генерации дайджеста сообщения при создании цифровой подписи. Хэш-функции отображают сообщение в имеющее фиксированный размер хэш-значение (hash value ) таким образом, что все множество возможных сообщений распределяется равномерно по множеству хэш-значений. При этом криптографическая хэш-функция делает это таким образом, что практически невозможно подогнать документ к заданному хэш-значению.

Криптографические хэш-функции обычно производят значения длиной в 128 и более бит. Это число значительно больше, чем количество собщений, которые когда-либо будут существовать в мире.

Много хороших криптографических хэш-функций доступно бесплатно. Широко известные включают MD5 и SHA.

Криптографические генераторы случайных чисел

Криптографические генераторы случайных чисел производят случайные числа, которые используются в криптографических приложениях, например - для генерации ключей. Обычные генераторы случайных чисел, имеющиеся во многих языках программирования и программных средах, не подходят для нужд криптографии (они создавались с целью получить статистически случайное распределение, криптоаналитики могут предсказать поведение таких случайных генераторов).

В идеале случайные числа должны основываться на настоящем физическом источнике случайной информации, которую невозможно предсказать. Примеры таких источников включают шумящие полупроводниковые приборы, младшие биты оцифрованного звука, интервалы между прерываниями устройств или нажатиями клавиш. Полученный от физического источника шум затем "дистиллируется" криптографической хэш-функцией так, чтобы каждый бит зависел от каждого бита. Достаточно часто для хранения случайной информации используется довольно большой пул (несколько тысяч бит) и каждый бит пула делается зависимым от каждого бита шумовой информаци и каждого другого бита пула криптографически надежным (strong ) способом.

Когда нет настоящего физического источника шума, приходится пользоваться псевдослучайными числами. Такая ситуация нежелательна, но часто возникает на компьютерах общего назначения. Всегда желательно получить некий шум окружения --- скажем от величины задержек в устройствах, цифры статистики использования ресурсов, сетевой статистики, прерываний от клавиатуры или чего-то иного. Задачей является получить данные, непредсказуемые для внешнего наблюдателя. Для достижения этого случайный пул должен содержать как минимум 128 бит настоящей энтропии.

Криптографические генераторы псевдослучайных чисел обычно используют большой пул (seed-значение), содержащий случайную информацию. Биты генерируется путем выборки из пула с возможным прогоном через криптографическую хэш-функцию, чтобы спрятать содержимое пула от внешнего наблюдателя. Когда требуется новая порция бит, пул перемешивается путем шифровки со случайным ключом (его можно взять из неиспользованной пока части пула) так, чтобы каждый бит пула зависел от каждого другого бита. Новый шум окружения должен добавляться к пулу перед перемешиваниям, дабы сделать предсказание новых значений пула еще более сложным.

Несмотря на то, что при аккуратном проектировании криптографически надежный генератор случайных чисел реализовать не так уж и трудно, этот вопрос часто упускают из вида. Таким образом, следует подчеркнуть важность криптографического генератора случайных чисел --- если он сделан плохо, он может легко стать самым уязвимым элементом системы.

Обеспечиваемая шифром степень защиты

Хорошие криптографические системы создаются таким образом, чтобы сделать их вскрытие как можно более трудным делом. Можно построить системы, которые на практике невозможно вскрыть (хотя доказать сей факт обычно нельзя). При этом не требуется очень больших усилий для реализации. Единственное, что требуется --- это аккуратность и базовые знания. Нет прощения разработчику, если он оставил возможность для вскрытия системы. Все механизмы, которые могут использоваться для взлома системы надо задокументировать и довести до сведения конечных пользователей.

Теоретически, любой шифровальный алгоритм с использованием ключа может быть вскрыт методом перебора всех значений ключа. Если ключ подбирается методом грубой силы (brute force ), требуемая мощность компьютера растет экспоненциально с увеличением длины ключа. Ключ длиной в 32 бита требует 2^32 (около 10^9) шагов. Такая задача под силу любому дилетанту и решается на домашнем компьютере. Системы с 40-битным ключом (например, экспортный американский вариант алгоритма RC4) требуют 2^40 шагов --- такие компьютерные мощности имеются в большинстве университетов и даже в небольших компаниях. Системы с 56-битными ключами (DES) требуют для вскрытия заметных усилий, однако могут быть легко вскрыты с помощью специальной аппаратуры. Стоимость такой аппаратуры значительна, но доступна для мафии, крупных компаний и правительств. Ключи длиной 64 бита в настоящий момент, возможно, могут быть вскрыты крупными государствами и уже в ближайшие несколько лет будут доступны для вскрытия преступными организацими, крупными компаниями и небольшими государствами. Ключи длиной 80 бит могут в будущем стать уязвимыми. Ключи длиной 128 бит вероятно останутся недоступными для вскрытия методом грубой силы в обозримом будущем. Можно использовать и более длинные ключи. В пределе нетрудно добиться того, чтобы энергия, требуемая для вскрытия (считая, что на один шаг затрачивается минимальный квантовомеханический квант энергии) превзойдет массу солнца или вселенной.

Однако, длина ключа это еще не все. Многие шифры можно вскрыть и не перебирая всех возможных комбинаций. Вообще говоря, очень трудно придумать шифр, который нельзя было бы вскрыть другим более эффективным способом. Разработка собственных шифров может стать приятным занятием, но для реальных приложений использовать самодельные шифры не рекомендуется если вы не являетесь экспертом и не уверены на 100 процентов в том, что делаете.

Вообще говоря, следует держаться в стороне от неопубликованных или секретных алгоритмов. Часто разработчик такого алгоритма не уверен в его надежности, или же надежность зависит от секретности самого алгоритма. Вообще говоря, ни один алгоритм, секретность которого зависит от секретности самого алгоритма не явяется надежным. В частности, имея шифрующую программу, можно нанять прграммиста, который дизассемблирует ее и восстановит алгоритм методом обратной инженерии. Опыт показывает, что большинство секретных алгоритмов, ставших впоследствии достоянием общественности, оказались до смешного ненадежными.

Длины ключей, используемых в криптографии с открытым ключом обычно значительно больше, чем в симметричных алгоритмах. Здесь проблема заключается не в подборе ключа, а в воссоздании секретного ключа по открытому. В случае RSA проблема эквивалентна разложению на множители большого целого числа, которое является произведением пары неизвестных простых чисел. В случае некоторых других криптосистем, проблема эквивалентна вычислению дискретного логарифма по модулю большого целого числа (такая задача считается примерно аналогичной по трудности задаче разложения на множители). Имеются криптосистемы, которые используют другие проблемы.

Чтобы дать представление о степени сложности вскрытия RSA, скажем, что модули длиной 256 бит легко факторизуются обычными программистами. Ключи в 384 бита могут быть вскрыты исследовательской группой университета или компании. 512-битные ключи находятся в пределах досягаемости крупных государств. Ключи длиной в 768 бит вероятно не будут надежны продолжительное время. Ключи длиной в 1024 бит могут считаться безопасными до тех пор, пока не будет существенного прогресса в алгоритме факторизации; ключи длиной в 2048 большинство считает надежными на десятилетия. Более подробную информацию о длинах ключей RSA можно почерпнуть из статьи Брюса Шнайера (Bruce Scheier).

Важно подчеркнуть, что степень надежности криптографической системы определяется ее слабейшим звеном . Нельзя упускать из вида ни одного аспекта разработки системы --- от выбора алгоритма до политики использования и распространения ключей.

Криптоанализ и атаки на криптосистемы

Криптоанализ - это наука о дешифровке закодированных сообщений не зная ключей. Имеется много криптоаналитических подходов. Некоторые из наиболее важных для разработчиков приведены ниже.
  • Атака со знанием лишь шифрованного текста (ciphertext-only attack ): Это ситуация, когда атакующий не знает ничего о содержании сообщения, и ему приходтся работать лишь с самим шифрованным текстом. На практике, часто можно сделать правдоподобные предположения о структуре текста, поскольку многие сообщения имеют стандартные заголовки. Даже обычные письма и документы начинаются с легко предсказумой информации. Также часто можно предположить, что некоторый блок информации содержит заданное слово.
  • Атака со знанием содержимого шифровки (known-plaintext attack ): Атакующий знает или может угадать содержимое всего или части зашифрованного текста. Задача заключается в расшифровке остального сообщения. Это можно сделать либо путем вычисления ключа шифровки, либо минуя это.
  • Атака с заданным текстом (chosen-plaintext attack ): Атакующий имеет возможнот получить шифрованный документ для любого нужного ему текста, но не знает ключа. Задачей является нахождение ключа. Некоторые методы шифрования и, в частности, RSA, весьма уязвимы для атак этого типа. При использовании таких алгоритмов надо тщательно следить, чтобы атакующий не мог зашифровать заданный им текст.
  • Атака с подставкой (Man-in-the-middle attack ): Атака направлена на обмен шифрованными сообщениями и, в особенности, на протокол обмена ключами. Идея заключается в том, что когда две стороны обмениваются ключами для секретной коммуникации (например, используя шифр Диффи-Хелмана, Diffie-Hellman), противник внедряется между ними на линии обмена сообщениями. Далее противник выдает каждой стороне свои ключи. В результате, каждая из сторон будет иметь разные ключи, каждый из которых известен противнику. Теперь противник будет расшифровывать каждое сообщение своим ключом и затем зашифровывать его с помощью другого ключа перед отправкой адресату. Стороны будут иметь иллюзию секретной переписки, в то время как на самом деле противник читает все сообщения.

    Одним из способов предотвратить такой тип атак заключается в том, что стороны при обмене ключами вычисляют криптографическую хэш-функцию значения протокола обмена (или по меньшей мере значения ключей), подписывают ее алгоритмом цифровой подписи и посылают подпись другой стороне. Получатель проверит подпись и то, что значение хэш-функции совпадает с вычисленным значением. Такой метод используется, в частности, в системе Фотурис (Photuris).

  • Атака с помощью таймера (timing attack ): Этот новый тип атак основан на последовательном измерении времен, затрачиваемых на выполнение операции возведения в стенень по модулю целого числа. Ей подвержены по крайней мере следующие шифры: RSA, Диффи-Хеллман и метод эллиптических кривых. Дополнительную информацию смотрите в оригинальной статье и во множестве последовавших статей.
Имеется множество других криптографических атак и криптоаналитических подходов. Однако приведенные выше являются, по-видимому, наиболее важными для практической разработки систем. Если кто-либо собирается создавать свой алгоритм шифрования, ему необходимо понимать данные вопросы значительно глубже. Одно из мест, где можно начать систематическое изучение информации --- это замечательная книга Брюса Шнейера "Прикладная криптография" (Bruce Schneier, Applied Cryptography).

Disclaimer. Все приведенные здесь мнения и выводы являются субъективной точкой зрения автора, и автор не может нести ответственность за их ильность.

В книге впервые на русском языке дается систематическое изложение научных основ криптографии от простейших примеров и основных понятий до современных криптографических конструкций. Понимание принципов криптографии стало для многих потребностью в связи с широким распространением криптографических средств обеспечения информационной безопасности. Поэтому книга может быть полезна массовому читателю.
Книга рассчитана на студентов-математиков и специалистов по информационной безопасности.

Предмет криптографии.
Что же является предметом криптографии? Для ответа на этот вопрос вернемся к задаче ТП, чтобы уточнить ситуацию и используемые понятия.

Прежде всего заметим, что эта задача возникает только для информации, которая нуждается в защите. Обычно в таких случаях говорят, что информация содержит тайну или является защищаемой, приватной, конфиденциальной, секретной. Для наиболее типичных, часто встречающихся ситуаций такого типа введены даже специальные понятия:
- государственная тайна;
- военная тайна;
- коммерческая тайна;
- юридическая тайна;
- врачебная тайна и т. д.

Далее мы будем говорить о защищаемой информации, имея в виду следующие признаки такой информации:
- имеется какой-то определенный круг законных пользователей, которые имеют право владеть этой информацией;
- имеются незаконные пользователи, которые стремятся овладеть этой информацией с тем. чтобы обратить ее себе во благо, а законным пользователям во вред.

Для простоты мы вначале ограничимся рассмотрением только одной угрозы - угрозы разглашения информации. Существуют и другие угрозы для защищаемой информации со стороны незаконных пользователей: подмена, имитация и др. О них мы поговорим ниже.

Оглавление
Предисловия
Глава 1. Основные понятия криптографии
§1. Введение
§2. Предмет криптографии
§3. Математические основы
§4. Новые направления
§5. Заключение
Глава 2. Криптография и теория сложности
§1. Введение
§2. Криптография и гипотеза Р = NP
§3. Односторонние функции
§4. Псевдослучайные генераторы
§5. Доказательства с нулевым разглашением
Глава 3. Криптографические протоколы
§1. Введение
§2. Целостность. Протоколы аутентификации и электронной подписи
§3. Неотслеживаемость. Электронные деньги
§4. Протоколы типа «подбрасывание монеты по телефону»
§5. Еще раз о разделении секрета
§6. Поиграем в «кубики». Протоколы голосования
§7. За пределами стандартных предположений. Конфиденциальная передача сообщений
§8. Вместо заключения
Глава 4. Алгоритмические проблемы теории чисел
§1. Введение
§2. Система шифрования RSA
§3. Сложность теоретико-числовых алгоритмов
§4. Как отличить составное число от простого
§5. Как строить большие простые числа
§6. Как проверить большое число на простоту
§7. Как раскладывают составные числа на множители
§8. Дискретное логарифмирование
§9. Заключение
Глава 5. Математика разделения секрета
§1. Введение
§2. Разделение секрета для произвольных структур доступа
§3. Линейное разделение секрета
§4. Идеальное разделение секрета и матроиды
Глава 6. Компьютер и криптография
§1. Вместо введения
§2. Немного теории
§3. Как зашифровать файл?
§4. Поучимся на чужих ошибках
§5. Вместо заключения
Глава 7. Олимпиады по криптографии для школьников
§1. Введение
§2. Шифры замены
§3. Шифры перестановки
§4. Многоалфавитные шифры замены с периодическим ключом
§5. Условия задач олимпиад по математике и криптографии
§6. Указания и решения
Приложение А. Отрывок из статьи К. Шеннона «Теория связи в секретных системах»
Приложение Б. Аннотированный список рекомендованной литературы
Приложение В. Словарь криптографических терминов
Алфавитный указатель русскоязычных терминов
Алфавитный указатель англоязычных терминов.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Введение в криптографию, Ященко В.В., 2012 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.

Криптография ‑ это наука об обеспечении безопасности данных. Она занимается поисками решений четырех важных проблем безопасности ‑ конфиденциальности, аутентификации, целостности и контроля участников взаимодействия.

Криптосистемы

Криптосистема работает по определенной методологии (процедуре). Она состоит из: одного или более алгоритмов шифрования (математических формул); ключей, используемых этими алгоритмами шифрования; системы управления ключами; незашифрованного текста; и зашифрованного текста (шифротекста).

Согласно методологии сначала к тексту применяются алгоритм шифрования и ключ для получения из него шифротекста. Затем шифротекст передается к месту назначения, где тот же самый алгоритм используется для его расшифровки, чтобы получить снова текст. Также в методологию входят процедуры создания ключей и их распространения.

Методология с использованием ключа

В этой методологии алгоритм шифрования объединяет ключ с текстом для создания шифротекста. Безопасность систем шифрования такого типа зависит от конфиденциальности ключа, используемого в алгоритме шифрования, а не от хранения в тайне самого алгоритма. Многие алгоритмы шифрования общедоступны и были хорошо проверены благодаря этому (например, DES).

Но основная проблема, связанная с этой методологией, состоит в том, как сгенерировать и безопасно передать ключи участникам взаимодействия. Как установить безопасный канал передачи информации между участниками взаимодействия до передачи ключей?

Другой проблемой является аутентификация. При этом существуют две серьезных проблемы:

    Сообщение шифруется кем-то, кто владеет ключом в данный момент. Это может быть владелец ключа; но если система скомпрометирована, это может быть другой человек.

    Когда участники взаимодействия получают ключи, откуда они могут узнать, что эти ключи на самом деле были созданы и посланы уполномоченным на это лицом?

Существуют две методологии с использованием ключей ‑ симметричная (с секретным ключом) и асимметричная (с открытым ключом). Каждая методология использует свои собственные процедуры, свои способы распределения ключей, типы ключей и алгоритмы шифрования и расшифровки ключей. Так как терминология, используемая этими методологиями, может показаться непонятной, дадим определения основным терминам:

Термин

Значение

Замечания

Симметричная методология

Используется один ключ, с помощью которого производится как шифрование, так и расшифровка с использованием одного и того же алгоритма симметричного шифрования.

Этот ключ передается двум участникам взаимодействия безопасным образом до передачи зашифрованных данных.

Часто называется методологией с секретным ключом.

Асимметричная методология

Использует алгоритмы симметричного шифрования и симметричные ключи для шифрования данных.

Использует алгоритмы асимметричного шифрования и асимметричные ключи для шифрования симметричного ключа. Создаются два взаимосвязанных асимметричных ключа. Симметричный ключ, зашифрованный с использованием одного асимметричного ключа и алгоритма асимметричного шифрования, должен расшифровываться с использованием другого ключа и того же алгоритма шифрования.

Создаются два взаимосвязанных асимметричных ключа. Один должен быть безопасно передан его владельцу, а другой ‑ тому лицу, которое отвечает за хранение этих ключей (CA ‑ сертификационному центру ключей), до начала их использования.

Часто называется методологией с открытым ключом

Секретный ключ(1)

Симметричная методология

Используется один ключ, с помощью которого производится как шифрование, так и расшифровка. См. выше

Секретный ключ(2)

Секретный ключ симметричного шифрования

Симметричный секретный ключ

Секретный ключ(3)

Секретный ключ асимметричного шифрования

Асимметричный секретный ключ.

Асимметричные ключи создаются парами, так как связаны друг с другом. Выражение «секретный ключ» часто используют для одного из пары асимметричных ключей, который должен держаться в секрете.

Асимметричный секретный ключ не имеет ничего общего с симметричным секретным ключом.

Открытый ключ (1)

Асимметричная методология

Использует пару ключей, которые совместно создаются и связаны друг с другом. Все, что зашифровано одним ключом, может быть расшифровано только другим ключом этой пары.

Открытый ключ (2)

Открытый ключ асимметричного шифрования

Асимметричные ключи создаются парами, каждый из двух ключей связан с другим.

Выражение «открытый ключ» часто используют для одного из пары асимметричных ключей, который должен быть всем известен.

Сеансовый ключ

Симметричный (секретный) ключ шифрования

Используется в асимметричной методологии для шифрования самих данных с помощью симметричных методологий.

Это просто симметричный секретный ключ (см. выше)

Алгоритм шифрования

Математическая формула

Для симметричных алгоритмов требуются симметричные ключи.

Для асимметричных алгоритмов требуются асимметричные ключи.

Вы не можете использовать симметричные ключи для асимметричных алгоритмов и наоборот.

Секретные криптосистемы

Открытые криптосистемы

Использует асимметричные алгоритмы и асимметричные ключи для шифрования сеансовых ключей.

Используют симметричные алгоритмы и симметричные (секретные) ключи для шифрования данных.

Защита информации ‑ совокупность мероприятий, методов и средств, обеспечивающих:

    исключение несанкционированного доступа к ресурсам ЭВМ, программам и данным;

    проверку целостности информации;

    исключение несанкционированного использования программ (защита программ от копирования).

Очевидная тенденция к переходу на цифровые методы передачи и хранения информации позволяет применять унифицированные методы и алгоритмы для защиты дискретной и непрерывной информации.

Испытанный метод защиты информации от несанкционированного доступа ‑ шифрование (криптография).

С помощью криптографических методов возможно:

    шифрование информации;

    реализация электронной подписи;

    распределение ключей шифрования;

    защита от случайного или умышленного изменения информации.

К алгоритмам шифрования предъявляются определенные требования:

    высокий уровень защиты данных против дешифрования и возможной модификации;

    защищенность информации должна основываться только на знании ключа и не зависеть от того, известен алгоритм или нет (правило Киркхоффа);

    малое изменение исходного текста или ключа должно приводить к значительному изменению шифрованного текста (эффект «обвала»);

    область значений ключа должна исключать возможность дешифрования данных путем перебора значений ключа;

    экономичность реализации алгоритма при достаточном быстродействии;

    стоимость дешифрования данных без знания ключа должна превышать стоимость данных.

Симметричные алгоритмы шифрования

Симметричные алгоритмы шифрования (или криптография с секретными ключами) основаны на том, что отправитель и получатель информации используют один и тот же ключ. Этот ключ должен храниться в тайне и передаваться способом, исключающим его перехват.

Обмен информацией осуществляется в 3 этапа:

    отправитель передает получателю ключ (в случае сети с несколькими абонентами у каждой пары абонентов должен быть свой ключ, отличный от ключей других пар);

    отправитель, используя ключ, зашифровывает сообщение, которое пересылается получателю;

Если для каждого дня и для каждого сеанса связи будет использоваться уникальный ключ, это повысит защищенность системы.

Потоковые шифры

В потоковых шифрах, т. е. при шифровании потока данных, каждый бит исходной информации шифруется независимо от других с помощью гаммирования.

Гаммирование ‑ наложение на открытые данные гаммы шифра (случайной или псевдослучайной последовательности единиц и нулей) по определенному правилу. Обычно используется «исключающее ИЛИ», называемое также сложением по модулю 2 и реализуемое в ассемблерных программах командой XOR. Для расшифровывания та же гамма накладывается на зашифрованные данные.

При однократном использовании случайной гаммы одинакового размера с зашифровываемыми данными взлом кода невозможен (так называемые криптосистемы с одноразовым или бесконечным ключом). В данном случае «бесконечный» означает, что гамма не повторяется. В некоторых потоковых шифрах ключ короче сообщения. Так, в системе Вернама для телеграфа используется бумажное кольцо, содержащее гамму. Конечно, стойкость такого шифра не идеальна.

Понятно, что обмен ключами размером с шифруемую информацию не всегда уместен. Поэтому чаще используют гамму, получаемую с помощью генератора псевдослучайных чисел (ПСЧ). В этом случае ключ ‑ порождающее число (начальное значение, вектор инициализации, initializing value, IV) для запуска генератора ПСЧ. Каждый генератор ПСЧ имеет период, после которого генерируемая последовательность повторяется. Очевидно, что период псевдослучайной гаммы должен превышать длину шифруемой информации.

Генератор ПСЧ считается корректным, если наблюдение фрагментов его выхода не позволяет восстановить пропущенные части или всю последовательность при известном алгоритме, но неизвестном начальном значении. При использовании генератора ПСЧ возможны несколько вариантов:

    Побитовое шифрование потока данных. Цифровой ключ используется в качестве начального значения генератора ПСЧ, а выходной поток битов суммируется по модулю 2 с исходной информацией. В таких системах отсутствует свойство распространения ошибок.

    Побитовое шифрование потока данных с обратной связью по шифротексу. Такая система аналогична предыдущей, за исключением того, что шифротекст возвращается в качестве параметра в генератор ПСЧ. Характерно свойство распространения ошибок. Область распространения ошибки зависит от структуры генератора ПСЧ.

    Побитовое шифрование потока данных с обратной связью по исходному тексту. Базой генератора ПСЧ является исходная информация. Характерно свойство неограниченного распространения ошибки.

    Побитовое шифрование потока данных с обратной связью по шифротексту и по исходному тексту.

К наиболее известным потоковым шрифтам относятся:

    RC4 (Rivest Cipher 4), разработанный Р. Ривестом, в этом шифре может использоваться ключ переменной длины;

    SEAL (Software Encryption Algorithm) – приспособленный для программной реализации потоковый шрифт, использующий ключ длиной 160 бит;

    WAKE (Word Auto Key Encryption) ‑ шифрование слов с автоключом, был предложен Дэвидом Уилером.

Блочные шифры

При блочном шифровании информация разбивается на блоки фиксированной длины и шифруется поблочно. Блочные шифры бывают двух основных видов:

    шифры перестановки (transposition, permutation, P-блоки);

    шифры замены (подстановки, substitution, S-блоки).

Шифры перестановок переставляют элементы открытых данных (биты, буквы, символы) в некотором новом порядке. Различают шифры горизонтальной, вертикальной, двойной перестановки, решетки, лабиринты, лозунговые и др.

Шифры замены заменяют элементы открытых данных на другие элементы по определенному правилу. Paзличают шифры простой, сложной, парной замены, буквенно-слоговое шифрование и шифры колонной замены. Шифры замены делятся на две группы:

    моноалфавитные (код Цезаря);

    полиалфавитные (шифр Видженера, цилиндр Джефферсона, диск Уэтстоуна, Enigma).

В моноалфавитных шифрах замены буква исходного текста заменяется на другую, заранее определенную букву. Например, в коде Цезаря буква заменяется на букву, отстоящую от нее в латинском алфавите на некоторое число позиций. Очевидно, что такой шифр взламывается совсем просто. Нужно подсчитать, как часто встречаются буквы в зашифрованном тексте, и сопоставить результат с известной для каждого языка частотой встречаемости букв.

В полиалфавитных подстановках для замены некоторого символа исходного сообщения в каждом случае его появления последовательно используются различные символы из некоторого набора. Понятно, что этот набор не бесконечен, через какое-то количество символов его нужно использовать снова. В этом слабость чисто полиалфавитных шифров.

В современных криптографических системах, как правило, используют оба способа шифрования (замены и перестановки). Такой шифратор называют составным. Он более стойкий, чем шифратор, использующий только замены или перестановки.

Блочное шифрование можно осуществлять двумя способами:

    Без обратной связи. Несколько битов (блок) исходного текста шифруются одновременно, и каждый бит исходного текста влияет на каждый бит шифротекста. Однако взаимного влияния блоков нет, то есть два одинаковых блока исходного текста будут представлены одинаковым шифротекстом. Поэтому подобные алгоритмы можно использовать только для шифрования случайной последовательности битов (например, ключей). Примерами являются DES в режиме ECB (Electronic Code Book) и ГОСТ 28147-89 в режиме простой замены.

    С обратной связью. Обычно обратная связь организуется так: предыдущий шифрованный блок складывается по модулю 2 с текущим блоком. В качестве первого блока в цепи обратной связи используется инициализирующее значение. Ошибка в одном бите влияет на два блока ‑ ошибочный и следующий за ним. Пример ‑ DES в режиме CBC (Cipher Block Chaining).

Генератор псевдослучайных чисел может применяться и при блочном шифровании:

    Поблочное шифрование потока данных. Шифрование последовательных блоков (подстановки и перестановки) зависит от генератора ПСЧ, управляемого ключом.

    Поблочное шифрование потока данных с обратной связью. Генератор ПСЧ управляется шифрованным или исходным текстом или обоими вместе.

Весьма распространен федеральный стандарт США DES (Data Encryption Standard), на котором основан международный стандарт ISO 8372-87. DES был поддержан Американским национальным институтом стандартов (American National Standards Institute, ANSI) и рекомендован для применения Американской ассоциацией банков (American Bankers Association, ABA). DES предусматривает 4 режима работы:

    ECB (Electronic Codebook) электронный шифрблокнот;

    CBC (Cipher Block Chaining) цепочка блоков;

    CFB (Cipher Feedback) обратная связь по шифротексту;

    OFB (Output Feedback) обратная связь по выходу.

ГОСТ 28147-89 ‑ отечественный стандарт на шифрование данных. Стандарт включает три алгоритма зашифровывания (расшифровывания) данных: режим простой замены, режим гаммирования, режим гаммирования с обратной связью и режим выработки имитовставки.

С помощью имитовставки можно зафиксировать случайную или умышленную модификацию зашифрованной информации. Вырабатывать имитовставку можно или перед зашифровыванием (после расшифровывания) всего сообщения, или одновременно с зашифровыванием (расшифровыванием) по блокам. При этом блок информации шифруется первыми шестнадцатью циклами в режиме простой замены, затем складывается по модулю 2 со вторым блоком, результат суммирования вновь шифруется первыми шестнадцатью циклами и т. д.

Алгоритмы шифрования ГОСТ 28147-89 обладают достоинствами других алгоритмов для симметричных систем и превосходят их своими возможностями. Так, ГОСТ 28147-89 (256-битовый ключ, 32 цикла шифрования) по сравнению с такими алгоритмами, как DES (56-битовый ключ, 16 циклов шифрования) и FEAL-1 (64-битовый ключ, 4 цикла шифрования) обладает более высокой криптостойкостью за счет более длинного ключа и большего числа циклов шифрования.

Следует отметить, что в отличие от DES, у ГОСТ 28147-89 блок подстановки можно произвольно изменять, то есть он является дополнительным 512-битовым ключом. Алгоритмы гаммирования ГОСТ 28147-89 (256-битовый ключ, 512-битовый блок подстановок, 64-битовый вектор инициализации) превосходят по криптостойкости и алгоритм B-Crypt (56-битовый ключ, 64-битовый вектор инициализации). Достоинствами ГОСТ 28147-89 являются также наличие защиты от навязывания ложных данных (выработка имитовставки) и одинаковый цикл шифрования во всех четырех алгоритмах ГОСТа.

Блочные алгоритмы могут использоваться и для выработки гаммы. В этом случае гамма вырабатывается блоками и поблочно складывается по модулю 2 с исходным текстом. В качестве примера можно назвать B-Crypt, DES в режимах CFB и OFB, ГОСТ 28147-89 в режимах гаммирования и гаммирования c обратной связью.

Асимметричные алгоритмы шифрования

В асимметричных алгоритмах шифрования (или криптографии с открытым ключом) для зашифровывания информации используют один ключ (открытый), а для расшифровывания ‑ другой (секретный). Эти ключи различны и не могут быть получены один из другого. Схема обмена информацией такова:

    получатель вычисляет открытый и секретный ключи, секретный ключ хранит в тайне, открытый же делает доступным (сообщает отправителю, группе пользователей сети, публикует);

    отправитель, используя открытый ключ получателя, зашифровывает сообщение, которое пересылается получателю;

    получатель получает сообщение и расшифровывает его, используя свой секретный ключ.

К наиболее известным ассиметричным криптографическим системам относятся:

    RSA защищен патентом США N 4405829. Разработан в 1977 году в Массачусетском технологическом институте (США). Получил название по первым буквам фамилий авторов (Rivest, Shamir, Adleman). Криптостойкость основана на вычислительной сложности задачи разложения большого числа на простые множители;

    ElGamal ‑ разработан в 1985 году. Назван по фамилии автора ‑ Эль-Гамаль. Используется в стандарте США на цифровую подпись DSS (Digital Signature Standard). Криптостойкость основана на вычислительной сложности задачи логарифмирования целых чисел в конечных полях;

Сравнение симметричных и асимметричных алгоритмов шифрования

В асимметричных системах необходимо применять длинные ключи (512 битов и больше). Длинный ключ резко увеличивает время шифрования. Кроме того, генерация ключей весьма длительна. Зато распределять ключи можно по незащищенным каналам.

В симметричных алгоритмах используют более короткие ключи, т. е. шифрование происходит быстрее. Но в таких системах сложно распределение ключей.

Поэтому при проектировании защищенной системы часто применяют и симметричные, и асимметричные алгоритмы. Так как система с открытыми ключами позволяет распределять ключи и в симметричных системах, можно объединить в системе передачи защищенной информации асимметричный и симметричный алгоритмы шифрования. С помощью первого рассылать ключи, вторым же ‑ собственно шифровать передаваемую информацию.

Обмен информацией можно осуществлять следующим образом:

    получатель вычисляет открытый и секретный ключи, секретный ключ хранит в тайне, открытый же делает доступным;

    отправитель, используя открытый ключ получателя, зашифровывает сеансовый ключ, который пересылается получателю по незащищенному каналу;

    получатель получает сеансовый ключ и расшифровывает его, используя свой секретный ключ;

    отправитель зашифровывает сообщение сеансовым ключом и пересылает получателю;

    получатель получает сообщение и расшифровывает его.

Надо заметить, что в правительственных и военных системах связи используют лишь симметричные алгоритмы, так как нет строго математического обоснования стойкости систем с открытыми ключами, как, впрочем, не доказано и обратное.

Проверка подлинности информации. Электронная цифровая подпись

При передаче информации должны быть обеспечены вместе или по отдельности:

      Конфиденциальность (privacy) ‑ злоумышленник не должен иметь возможности узнать содержание передаваемого сообщения.

      Подлинность (authenticity), которая включает два понятия

    целостность (integrity) ‑ сообщение должно быть защищено от случайного или умышленного изменения;

Шифрование может обеспечить конфиденциальность, а в некоторых системах и целостность. Целостность сообщения проверяется вычислением контрольной функции (check function) от сообщения ‑ некоего числа небольшой длины. Эта контрольная функция должна с высокой вероятностью изменяться даже при малых изменениях сообщения (удаление, включение, перестановки или переупорядочивание информации). Называют и вычисляют контрольную функцию по-разному:

    код подлинности сообщения (Message Authentical Code, MAC);

    квадратичный конгруэнтный алгоритм (Quadratic Congruentical Manipulation Detection Code, QCMDС);

    Manipulation Detection Code (MDС);

    Message Digest Algorithm (MD5);

    контрольная сумма;

    символ контроля блока (Block Check Character, BCC);

    циклический избыточный код (ЦИК, Cyclic Redundancy Check, CRC);

    хеш-функция (hash);

    имитовставка в ГОСТ 28147-89;

    алгоритм с усечением до n битов (n-bit Algorithm with Truncation).

При вычислении контрольной функции может использоваться какой-либо алгоритм шифрования. Возможно шифрование самой контрольной суммы. Широко применяется цифровая подпись (цифровое дополнение к передаваемой информации, гарантирующее целостность последней и позволяющее проверить ее авторство).

Электронная цифровая подпись (ЭЦП) ‑ реквизит электронного документа, предназначенный для защиты данного электронного документа от подделки, полученный в результате криптографического преобразования информации с использованием закрытого ключа электронной цифровой подписи и позволяющий идентифицировать владельца сертификата ключа подписи, установить отсутствие искажения информации в электронном документе, а также обеспечивает неотказуемость подписавшегося.

Назначение ЭЦП. Цифровая подпись предназначена для аутентификации лица, подписавшего электронный документ. Кроме этого, использование цифровой подписи позволяет осуществить:

    Контроль целостности передаваемого документа. При любом случайном или преднамеренном изменении документа изменится подпись, следовательно, она станет недействительной.

    Защиту от изменений (подделки) документа.

Все эти свойства ЭЦП позволяют использовать её для следующих целей:

    Декларирование товаров и услуг (таможенные декларации).

    Регистрация сделок по объектам недвижимости.

    Использование в банковских системах.

    Электронная торговля и госзаказы.

    Контроль исполнения государственного бюджета.

    В системах обращения к органам власти.

    Для обязательной отчетности перед государственными учреждениями.

    Организация юридически значимого электронного документооборота.

    В расчетных и трейдинговых системах.

Известны модели цифровой подписи (digital signature) на основе алгоритмов симметричного шифрования, но при использовании систем с открытыми ключами цифровая подпись осуществляется более удобно.

Для использования алгоритма RSA сообщение следует сжать функцией хеширования (алгоритм MD5 ‑ Message Digest Algorithm) до 256-битового хеша (H). Сигнатура сообщения S вычисляется следующим образом:

Сигнатура пересылается вместе с сообщением. Процесс идентификации заключается в получении хеш-функции сообщения (H) и сравнении с

где H ‑ хеш сообщения,

S ‑ его сигнатура,

d ‑ секретный ключ,

e ‑ открытый ключ.

Проверке подлинности посвящены стандарты:

    проверка подлинности (аутентификация, authentication) - ISO 8730-90, ISO/IES 9594-90 и ITU X.509; (ISO - Международная организация по стандартизации /МОС/, ITU - Международный союз электросвязи /МСЭ/.)

    целостность - ГОСТ 28147-89, ISO 8731-90;

    цифровая подпись - ISO 7498, P 34.10-94 (Россия), DSS (Digital Signature Standard, США).

CryptoAPI операционной системы windows

Криптографический интерфейс приложений операционной системы Windows представляет собой набор констант, типов данных и функций, предназначенных для выполнения операций шифрования, расшифрования, получения и проверки ЭЦП, генерации, хранения и распределения ключей шифрования. Эти услуги для приложений предоставляют провайдеры криптографического обслуживания (Cryptographic Service Provider, CSP) ‑ динамически компонуемые библиотеки (DLL), экспортирующие единый набор объектов, определяемый интерфейсом CryptoAPI.

Взаимодействие между приложением и CSP строится на основе следующих принципов:

    приложение не имеет прямого доступа к изготовлению и хранению ключей шифрования (нет риска их потери из-за ошибок в приложении);

    приложение не определяет детали выполнения криптографических операций, а лишь указывает на требуемые от CSP действия (например, зашифровать по заданному алгоритму данные и получить для них ЭЦП);

    приложение не обрабатывает данных, по которым проводится аутентификация пользователя, а предоставляет это CSP, который имеет лучшие возможности для проверки подлинности пользователя (например, может использовать аутентификацию на основе биометрических признаков или ключевой информации, размещенной на смарт-картах или других элементах аппаратного обеспечения); в этом случае из-за ошибок в приложении не может произойти утечки конфиденциальной информации о пользователе.

На рисунке приведена архитектура криптографической подсистемы Windows. Вызовы функций CryptoAPI обрабатываются модулем операционной системы advapi32.dll, который преобразует их в вызовы функций интерфейса провайдера криптографического обслуживания (Cryptographic Service Provider Interface, CryptoSPI). Для обеспечения аутентичности и подлинности CSP он снабжается ЭЦП, которая периодически проверяется операционной системой в ходе сеанса работы пользователя. Получение ЭЦП производится корпорацией Microsoft на основе хеш-значения CSP, представленного изготовителем этой библиотеки.

Каждый CSP характеризуется своим присвоенным производителем именем и типом, определяющим поддерживаемые этим провайдером криптографические алгоритмы.

К основным атрибутам CSP относятся:

    обязательно поддерживаемый алгоритм ЭЦП (всегда единственный);

    длина ключей асимметричного шифрования;

    формат ЭЦП;

    форматы блоков, в которых открытый и (возможно) секретный ключи асимметричного шифрования экспортируются из CSP;

    возможно поддерживаемый алгоритм обмена сеансовыми ключами симметричного шифрования (всегда единственный);

    возможно поддерживаемые алгоритмы симметричного шифрования (конкретный CSP может поддерживать только часть таких алгоритмов, определенных для соответствующего типа криптопровайдера);

    схема генерации сеансового ключа из хеш-значения;

    длины сеансовых ключей (в зависимости от алгоритма);

    формат блока сеансового ключа при его экспорте из CSP;

    режимы симметричного шифрования, принятые по умолчанию.

Информация об установленных на компьютере криптопровайдерах содержится в реестре Windows в разделе

HKEY_LOCAL_MACHINE\Software\Microsoft\Cryptography\Defaults. В подразделе Provider размещается информация о пути к библиотеке, ЭЦП и типе каждого CSP (по его имени), а в подразделе Provider Types ‑ сведения о полных именах криптопровайдера и его типе.

Для каждого зарегистрированного у него пользователя или конкретного приложения CSP хранит контейнер ключей асимметричного шифрования, который может включать в себя две пары ключей ‑ открытый и секретный ключи для обмена сеансовыми ключами, а также открытый и секретный ключи для ЭЦП. Ключи симметричного шифрования не сохраняются CSP и об их сохранении должно позаботиться приложение.

Существуют две версии CryptoAPI: 1.0 и 2.0. В CryptoAPI 2.0 введены дополнительные функции для поддержки инфраструктуры открытых ключей. Дополнительные функции CryptoAPI 2.0 используют вызовы функций CryptoAPI 1.0, функций CryptoAPI 1.0 приведены в таблице ниже.

Название функции

Краткое описание функции

CryptAcquireContext CryptReleaseContext

Получение и освобождение дескриптора CSP

CryptGetProvParam CryptSetProvParam

Получение и установка атрибутов CSP

CryptSetProvider

Установка используемого по умолчанию CSP

CryptGenKey CryptDestroyKey

Создание ключей шифрования и освобождение их дескрипторов

Создание сеансового ключа из хеш-значения

CryptExportKey CryptlmportKey

Экспорт и импорт ключа шифрования в CSP

Получение дескриптора открытого ключа

CryptGetKeyParam CryptSetKeyParam

Получение и установка параметров ключа шифрования

CryptEncrypt CryptDecrypt

Симметричное шифрование и расшифрование данных

CryptCreateHash CryptDestroyHash

Создание пустого хеш-значения и освобождение его дескриптора

CryptHashData CryptHashSessionKey

Хеширование (добавление к хеш-значению) произвольных данных и сеансового ключа

CryptGetHashParam CryptSetHashParam

Получение и установка параметров хеш-значения

CryptVerifySignature

Получение и проверка ЭЦП

Генерация случайного значения

Для возможности доступа пользователя или его приложения к услугам, предоставляемым конкретным CSP, необходимо создать для этого субъекта пустой контейнер ключей (иначе говоря, зарегистрировать его у этого криптопровайдера). После этого в начале каждого сеанса работы с CSP приложение должно получить у криптопровайдера дескриптор контейнера ключей соответствующего субъекта. Создание контейнера ключей и получение его дескриптора выполняются с помощью функции CryptoAPI CryptAcquireContext.

В защищенных версиях операционной системы Windows для создания нового контейнера ключей приложение должно иметь полномочия администратора (требуется запись в раздел реестра HKEY_LOCAL_MACHINE). Полученный дескриптор контейнера ключей должен указываться приложением при вызове других функций CryptoAPI. Для освобождения дескриптора контейнера ключей, полученного с помощью функции CryptAcquireContext, предназначена функция CryptoAPI CryptReleaseContext.

Вместе с любой версией Windows поставляется криптопровайдер «Microsoft Base Cryptographic Provider vl.0». Начиная с версий Windows 2000/МЕ, в состав операционных систем Windows включаются также криптопровайдеры «Microsoft Enhanced Cryptographic Provider vl.0» и «Microsoft Strong Cryptographic Provider». Криптопровайдер «Microsoft Enhanced Cryptographic Provider vl.0» может быть установлен на компьютерах под управлением операционных систем Windows 9x путем загрузки с веб-сервера Microsoft.

Криптопровайдер «Microsoft Base Cryptographic Provider vl.0» использует ключи асимметричного шифрования длиной 512 бит и ключи симметричного шифрования по алгоритмам RC2 и RC4 длиной 40 бит, что недостаточно на современном уровне развития компьютерных технологий. Криптопровайдеры «Microsoft Enhanced Cryptographic Provider vl.0» и «Microsoft Strong Cryptographic Provider» используют ключи асимметричного шифрования длиной 1024 бита и ключи симметричного шифрования длиной 56 (DES), 128 (RC2 и RC4) и 168 (3-DES) бит.

Существуют криптопровайдеры, в которых реализованы алгоритмы симметричного шифрования и ЭЦП, соответствующие российским стандартам в области информационной безопасности (ГОСТ 28147-89, ГОСТ Р 34.10-94, ГОСТ Р 34.10-2001 и ГОСТ Р 34.11-94). Примером такого криптопровайдера является средство криптографической защиты информации «КриптоПро CSP».

Дополнительно установленные криптопровайдеры могут хранить контейнеры ключей на защищенных от несанкционированного чтения носителях (например, на смарт-картах) или в реестре в зашифрованном виде (в этом случае при выполнении функции CryptAcquireContext может потребоваться ввод аутентифицирующей пользователя информации: PIN-кода или специального пароля).

Защита документов Microsoft Office от несанкционированного доступа

Защита документов Microsoft Office от несанкционированного доступа основана на их шифровании с помощью вызова соответствующих функций CryptoAPI. При установке защиты пользователю предлагается ввести пароль доступа к защищаемому документу, из которого будет сгенерирован сеансовый ключ шифрования этого документа. При попытке в дальнейшем открыть защищаемый документ потребуется ввод пароля доступа, на основании которого произойдут генерация сеансового ключа и расшифрование документа.

В текстовом процессоре Microsoft Word (версия Microsoft Office ХР и старше) установка защиты от несанкционированного доступа к редактируемому документу выполняется с помощью команды меню Сервис\Параметры\Безопасность. Кнопка «Дополнительно» позволяет установить параметры шифрования документа:

    тип шифрования (на основе выбора одного из установленных в системе криптопровайдеров и алгоритма потокового шифрования RC4);

    стойкость (длину) сеансового ключа шифрования в битах;

    необходимость шифрования свойств документа (возможно только при использовании шифрования с помощью CryptoAPI).

При выборе типа шифрования нецелесообразно выбирать варианты «Слабое шифрование» и «Совместимое с Office 97/2000», поскольку в этом случае для защиты документа будет применено ненадежное шифрование, не использующее возможностей CryptoAPI. Существует немало программных средств, позволяющих расшифровывать защищенные таким образом документы путем простого перебора возможных паролей доступа.

При выборе типа шифрования, основанного на использовании одного из установленных в системе криптопровайдеров, необходимо установить максимально возможную длину ключа шифрования (обычно 128 бит).

Стойкость шифрования документа зависит также от длины пароля (фактически ключевой фразы для генерации сеансового ключа). Максимальная длина пароля доступа равна 255 знакам. При выборе пароля доступа к документу необходимо руководствоваться теми же соображениями, что и при выборе пароля пользователя для входа в компьютерную систему: выбирать пароли достаточной длины и сложности, не использовать один пароль для защиты различных документов, не использовать легко угадываемые пароли, совпадающие с логическим именем пользователя или названием документа, и т.п.

Для защиты от несанкционированного внесения изменений в документ Microsoft Word можно установить пароль разрешения записи в него. В этом случае перед открытием документа также будет предложено ввести пароль доступа. При вводе неправильного пароля или отказе от ввода пароля документ будет открыт только для чтения. Однако эту защиту нельзя считать достаточно надежной, поскольку измененная версия документа может быть сохранена под другим именем, после чего файл с оригинальным документом может быть удален, а вновь созданный файл соответствующим образом переименован. Кроме того, пароль разрешения записи содержится непосредственно в тексте документа и поэтому может быть просто удален из него с помощью специальных программных средств.

Для защиты документов Word от несанкционированного изменения необходимо применять средства разграничения доступа к папкам и файлам, имеющиеся в защищенных версиях операционной системы Windows и файловой системы NTFS.

Документ Microsoft Word (версия Microsoft Office XP и старше) может быть снабжен электронной цифровой подписью для обеспечения его аутентичности и целостности. Добавление ЭЦП к файлу документа возможно с помощью кнопки «Цифровые подписи» в окне настроек параметров безопасности. Для добавления ЭЦП к документу необходимо в окне «Цифровые подписи» выбрать соответствующий сертификат ключа ЭЦП. При получении первой подписи для документа следует с помощью кнопки «Добавить» выбрать сертификат для добавляемой к документу ЭЦП.

Сертификат открытого ключа ЭЦП может быть получен одним из следующих способов:

    в удостоверяющем центре корпоративной компьютерной системы, использующей, например, инфраструктуру открытых ключей Microsoft Windows;

    в коммерческом удостоверяющем центре (например, в удостоверяющем центре компании VeriSign, Inc.);

    самостоятельно с помощью программы Selfcert.exe, входящей в стандартную поставку пакета Microsoft Office.

Перед добавлением ЭЦП к защищаемому документу сертификат можно просмотреть с помощью кнопки «Просмотр сертификата». При самостоятельном создании сертификата (вместе с соответствующим ему секретным ключом ЭЦП) программа Selfcert.exe запросит имя владельца сертификата, а после успешного завершения процедуры создания выдаст соответствующее сообщение. Самостоятельно созданный сертификат предназначен только для персонального использования владельцем защищаемого документа.

При попытке сохранения измененного документа, снабженного ЭЦП, Microsoft Word выдаст предупреждение о том, что все ЭЦП будут удалены из документа. Если файл с защищенным ЭЦП документом будет изменен с помощью других программных средств (например, с помощью Блокнота), то при последующей попытке открытия документа Microsoft Word выдаст соответствующее сообщение и файл с документом открыт не будет.

Защита от несанкционированного доступа к электронным таблицам Microsoft Excel и презентациям Microsoft PowerPoint в пакете Microsoft Office XP производится полностью аналогично защите документов Microsoft Word. Установка защиты от несанкционированного доступа к базам данных Microsoft Access выполняется следующим образом.

    Файл базы данных (с расширением «.mdb») открывается в монопольном режиме (с помощью раскрывающегося списка справа от кнопки «Открыть»).

    Выполняется команда Сервис\Защита\Задать пароль базы данных и дважды вводится пароль доступа.

    При последующем открытии базы данных потребуется ввести пароль доступа.

Пароль доступа к базе данных Microsoft Access сохраняется в файле базы данных в открытом виде.

Вместо использования одного пароля доступа к базе данных Microsoft Access можно организовать разграничение доступа к ее объектам (таблицам, формам, запросам и отчетам) на уровне отдельных пользователей.

Вначале удобно воспользоваться услугами Мастера защиты Microsoft Access (команда меню Сервис\Защита\Мастер).

В диалоге с Мастером после открытия файла базы данных в монопольном режиме потребуется указать:

    необходимость создания нового или изменения существующего файла рабочей группы для базы данных;

    имя файла и код рабочей группы, а также имя владельца базы данных и название организации;

    объекты разграничения доступа в базе данных (по умолчанию все таблицы);

    предопределенные группы пользователей с заранее определенными правами доступа (например, все права или только чтение);

    разрешенные права доступа для группы Users, в которую будут входить все зарегистрированные пользователи базы данных;

    имена и пароли (возможно, первоначально пустые) всех регистрируемых Мастером пользователей базы данных;

    группы, в которые будут входить регистрируемые Мастером пользователи.

После завершения работы Мастера для получения доступа к базе данных пользователю необходимо будет пройти процедуру входа, указав свои логическое имя и пароль доступа к базе данных. Для дальнейшего добавления новых пользователей базы данных и установки им прав доступа к ней необходимо использовать соответственно команды меню Сервис\Защита\Пользователи и группы и Сервис\Защита\Разрешения. Изменения в списке пользователей и групп, а также в их правах доступа к объектам базы данных могут быть произведены только владельцем базы данных или пользователем, входящим в группу Admins, в противном случае при попытке выполнения привилегированной операции Microsoft Access выдаст соответствующее сообщение об отказе в доступе.

Наиболее простым средством защиты базы данных Microsoft Access от несанкционированного доступа является ее шифрование, при котором она сжимается и становится недоступной для просмотра и редактирования отличными от Microsoft Access программными средствами. Но если в зашифрованной базе данных не используется разграничение доступа на уровне ее пользователей, то любой из них сможет открыть такую базу данных и получить полный доступ ко всем ее объектам. Поэтому шифрование должно применяться вместе с разграничением доступа на уровне пользователей или с применением пароля доступа к базе данных либо в целях экономии памяти при сохранении базы данных на дискете или компакт-диске.

Шифрование базы данных с разграничением доступа к ее объектам на уровне пользователей возможно только для владельца базы данных или члена группы Admins. Для шифрования базы данных Microsoft Access используется команда меню Сервис\Защита\Шифровать/Расшифровать.

К достоинствам рассмотренных средств защиты от несанкционированного доступа относится то, что они могут применяться в программах пакета Microsoft Office, работающих под управлением как открытых, так и защищенных версий операционной системы Windows.

Шифрующая файловая система в защищенных версиях операционной системы Windows

В защищенных версиях операционной системы Windows, начиная с Windows 2000, для дополнительной защиты от несанкционированного доступа к папкам и файлам пользователей могут применяться средства шифрующей файловой системы (Encrypted File System, EFS), которые базируются на криптографическом интерфейсе приложений Windows CryptoAPI.

Шифрующая файловая система разработана с учетом следующих принципов:

    автоматическая генерация криптопровайдером асимметрических ключей обмена при первом обращении пользователя к услугам EFS (шифровании первой папки или файла);

    автоматическая генерация случайного сеансового ключа перед шифрованием файла, указанного пользователем;

    автоматическое шифрование и расшифрование в прозрачном режиме на уровне файла или папки (гарантируется, что для зашифрованного файла все созданные на его основе временные файлы также будут зашифрованы);

    возможность вызова функций шифрования и расшифрования с помощью контекстного меню Проводника Windows и программы командной строки cipher;

    возможность доступа к открытому ключу обмена пользователя со стороны операционной системы только во время сеанса его работы в системе.

Пользователь сообщает шифрующей файловой системе Windows о необходимости шифрования папки или файла с помощью дополнительных атрибутов этих объектов, доступных по команде контекстного меню Свойства\Другие. Состояние выключателя «Шифровать содержимое для защиты данных» определяет необходимость шифрования информации в данном объекте. При изменении этого состояния EFS запрашивает пользователя о подтверждении изменения атрибута шифрования, а также о том, распространяется это изменение только на папку или также на все вложенные в нее файлы и папки.

При изменении атрибута шифрования для отдельного файла шифрующая файловая система также запрашивает пользователя о подтверждении этого изменения и предлагает выбрать один из двух вариантов: зашифровать (расшифровать) только один файл или применить новое значение атрибута шифрования ко всей содержащий файл папке. Если выбранный для шифрования файл находится в незашифрованной папке (и наоборот), то после модификации этого файла значение его атрибута шифрования может автоматически измениться. Поэтому рекомендуется изменять значение атрибута шифрования для всей папки.

В операционной системе Windows 2000 не обеспечивается возможность совместного доступа к зашифрованному файлу со стороны нескольких пользователей, а также передача по сети зашифрованных файлов. Поэтому для исключения угрозы потери зашифрованных пользователем данных, например из-за невозможности его входа в систему, администратор должен применять политику обязательного использования агента восстановления данных (Data Recovery Agent, DRA).

В операционной системе Windows XP Professional и более поздних защищенных версиях этой системы реализована поддержка общего доступа к зашифрованным файлам. С помощью кнопки «Подробно» в окне установки дополнительных атрибутов зашифрованного файла открывается окно просмотра списка пользователей, которым разрешен доступ к этому файлу. Кнопка «Добавить» в этом окне предназначена для добавления пользователей, уже обращавшихся за услугами шифрующей файловой системы (уже имеющих пары асимметричных ключей обмена) или имеющих сертификаты своих открытых ключей, заверенные используемым в компьютерных системах удостоверяющим центром.

Разрешение доступа к зашифрованным файлам со стороны других пользователей может избавить от необходимости использовать в компьютерных системах политику агента восстановления.

Недостатки реализованного механизма совместного доступа к зашифрованным файлам в Windows XP Professional:

    при выборе пользователей, которым разрешен доступ к зашифрованному файлу, нельзя использовать определенные в системе группы;

    нет возможности предоставления совместного доступа к зашифрованной папке.

В качестве дополнительной услуги в Windows XP Professional поддерживается выделение имен зашифрованных файлов и папок зеленым цветом, хотя это может рассматриваться и как дополнительное указание на объекты, содержащие конфиденциальную информацию. Помимо шифрования по алгоритму DESX поддерживается также и шифрование по алгоритму 3-DES (изменить алгоритм шифрования можно с помощью изменения значения соответствующего параметра безопасности).

Начиная с версии Windows XP Professional, возможно использование средств шифрующей файловой системы при работе с кэшированными на клиентском компьютере автономными файлами из общих для пользователей сети папок. Благодаря кэшированию пользователи могут продолжать просматривать и редактировать файлы из общих папок в ситуации, когда их компьютер отключен от сети. При последующем подключении к серверу сети операционная система синхронизирует произведенные изменения в файлах с их более ранними версиями, размещенными в общих папках. Возможность автоматического шифрования и расшифрования автономных файлов повышает их защищенность от несанкционированного доступа при работе с ними на мобильных компьютерах.

На криптографическом интерфейсе приложений Windows и технологии многокомпонентных объектов (СОМ-технологии) базируется объект CAPICOM, доступный в версиях операционной системы Windows, начиная с Windows XP Professional. Объект CAPICOM может использоваться для выполнения основных криптографических операций в приложениях, созданных как на универсальных языках программирования, так и на языках сценариев. Объекты CAPICOM поддерживают получение и проверку ЭЦП, обмен сеансовыми ключами, симметричное шифрование и расшифрование данных.

Введение в криптографию

При передаче или хранении данных часто возникает задача защиты информации от нежелательного прочтения. Чаще всего в этом случае используют один из методов криптографии (от греческого тайнопись). В отличие от большинства терминов компьютерной лексики это слово не английского, а греческого происхождения.

История криптографии насчитывает тысячи лет, и многие основополагающие принципы современной криптографии известны, возможно, с доисторических времен, однако, существенный прогресс в теории шифрования был достигнут лишь относительно недавно, в связи с разработкой современной теории информации.

Практически все методы криптографии сводятся к преобразованию данных в набор из конечного количества символов и осуществлению над этими символами двух основных операций: подстановки и перестановки. Подстановка состоит в замене одних символов на другие. Перестановка состоит в изменении порядка символов. В качестве символов при этом могут выступать различные элементы сообщения – так, при шифровании сообщений на естественных языках подстановке и перестановке могут подвергаться как отдельные буквы, так и слова или даже целые предложения (как, например, в аллегорических изложениях магических и священных текстов). В современных алгоритмах этим операциям чаще всего подвергаются блоки последовательных битов. Некоторые методики можно описать как осуществление операции подстановки над полным сообщением. Подстановки и перестановки производятся по определенным правилам. При этом надежда возлагается на то, что эти правила и/или используемые в них параметры известны только автору и получателю шифрованного сообщения и неизвестны посторонним лицам. В докомпьютерную эру старались засекретить обе составляющие процесса шифрования. Сейчас для шифрования, как правило, используют стандартные алгоритмы, секретность же сообщения достигается путем засекречивания используемого алгоритмом параметра, ключа (key). Прочтение секретного сообщения посторонним лицом, теоретически, может быть осуществлено двумя способами: похищением ключевого значения либо его угадыванием путем анализа перехваченной шифровки. Если первое мероприятие может быть предотвращено только физической и организационной защитой, то возможность второго определяется используемым алгоритмом. Ниже мы будем называть процесс анализа шифровки взломом шифра, а человека, осуществляющего этот процесс, – взломщиком. По-научному эта деятельность называется более нейтрально – криптоанализ. К примеру, сообщение на естественном языке, зашифрованное подстановкой отдельных букв, уязвимо для частотного анализа: основываясь на том факте, что различные буквы встречаются в текстах с разной частотой, взломщик легко – и с весьма высокой достоверностью – может восстановить таблицу подстановки. Существуют и другие примеры неудачных алгоритмов, которые сохраняют в неприкосновенности те или иные присутствовавшие в сообщении автокорреляции – каждый такой параметр можно использовать как основу для восстановления текста сообщения или обнаружения ключа.

Устойчивость шифра к поиску автокорреляций в сообщении называется криптостойкостью алгоритма. Даже при использовании удачных в этом смысле алгоритмов, если взломщик знает, что исходные (нешифрованные) данные удовлетворяют тому или иному требованию, например, содержат определенное слово или снабжены избыточным кодом, он может произвести полный перебор пространства ключей: перебирать все значения ключа, допускаемые алгоритмом, пока не будет получено удовлетворяющее требованию сообщение. При использовании ключей достаточно большой разрядности такая атака оказывается чрезмерно дорогой, однако прогресс вычислительной техники постоянно сдвигает границу "достаточности" все дальше и дальше. Так, сеть распределенных вычислений Bovine в 1998 году взломала сообщение, зашифрованное алгоритмом DES с 56-разрядным ключом за 56 часов работы. Простым и эффективным способом борьбы с такой атакой является расширение пространства ключей. Увеличение ключа на один бит приводит к увеличению пространства вдвое – таким образом, линейный рост размера ключа обеспечивает экспоненциальный рост стоимости перебора. Некоторые алгоритмы шифрования не зависят от разрядности используемого ключа – в этом случае расширение достигается очевидным способом. Если же в алгоритме присутствует зависимость от разрядности, расширить пространство можно, всего лишь применив к сообщению несколько разных преобразований, в том числе и одним алгоритмом, но с разными ключами. Еще один способ существенно усложнить работу взломщику – это упаковка сообщения перед шифрованием и/или дополнение его случайными битами. Важно подчеркнуть, впрочем, что количество двоичных разрядов ключа является лишь оценкой объема пространства ключей сверху, и во многих ситуациях эта оценка завышена. Некоторые алгоритмы в силу своей природы могут использовать только ключи, удовлетворяющие определенному условию – например, RSA использует простые числа. Это резко сужает объем работы по перебору, поэтому для обеспечения сопоставимой криптостойкости разрядность ключа RSA должна быть намного больше, чем у алгоритмов, допускающих произвольные ключи. Низкая криптостойкость может быть обусловлена. не только алгоритмом шифрования, но и процедурой выбора ключа: если ключ может принимать любые двоичные значения заданной разрядности, но реально для его выбора используется страдающий неоднородностью генератор псевдослучайных чисел, мы можем значительно сократить объем пространства, которое реально должен будет перебрать взломщик наших сообщений. Еще хуже ситуация, когда в качестве ключа используются легко запоминаемые слова естественного языка: в этом случае реальный объем пространства ключей даже довольно большой разрядности может измеряться всего лишь несколькими тысячами различных значений.

Современные алгоритмы шифрования делятся на два основных класса: с секретным и с публичным ключом.

Алгоритмы с секретным ключом, в свою очередь, делятся на потоковые (stream) и блочные (block). Потоковые алгоритмы обычно используют подстановку символов без их перестановки. Повышение криптостойкости при этом достигается за счет того, что правила подстановки зависят не только от самого заменяемого символа, но и от его позиции в потоке. Примером простейшего – и в то же время абсолютно не поддающегося взлому – потокового алгоритма является система Вернама или одноразовый блокнот. Система Вернама основана на ключе, размер которого равен размеру сообщения или превосходит его. При передаче двоичных данных подстановка осуществляется сложением по модулю 2 (операцией исключающего или) соответствующих битов ключа и сообщения.

Если ключ порожден надежным генератором случайных чисел (например, правильно настроенным оцифровщиком теплового шума), никакая информация об автокорреляциях в исходном тексте сообщения взломщику не поможет: перебирая полное пространство ключей, взломщик вынужден будет проверить все сообщения, совпадающие по количеству символов с исходным, в том числе и все сообщения, удовлетворяющие предполагаемому автокорреляционному соотношению. Это преимущество теряется, если один и тот же ключ будет использован для кодирования нескольких сообщений: взломщик, перехвативший их все, сможет использовать эти сообщения и предположения об их содержимом при попытках отфильтровать ключ от полезной информации – отсюда и второе название алгоритма. Применение системы Вернама, таким образом, сопряжено с дорогостоящей генерацией и, главное, транспортировкой ключей огромной длины, и поэтому она используется лишь в системах экстренной правительственной и военной связи.

Более практичным оказалось применение в качестве ключа псевдослучайных последовательностей, порождаемых детерминированными алгоритмами. В промежутке между первой и второй мировыми войнами широкое распространение получили шифровальные машины, основанные на механических генераторах таких последовательностей. Чаще всего использовались сочетания, получаемые при вращении колес с взаимно простыми количествами зубцов. Основной опасностью при использовании таких методов шифрования является возможность определить текущую точку последовательности – узнав ее (например, по косвенным признакам догадавшись, что в данной точке сообщения должно быть такое-то слово, и восстановив использовавшийся при ее шифровании элемент ключа), взломщик может продолжить генерацию с той же точки и расшифровать весь дальнейший поток.

В системах цифровой связи широкое применение получили блочные алгоритмы, выполняющие над блоками данных фиксированной длины последовательности – иногда довольно сложные – перестановок, подстановок и других операций, чаще всего двоичных сложений данных с ключом по какому-либо модулю. В операциях используются компоненты ключевого слова относительно небольшой разрядности. Например, широко применяемый блочный алгоритм DES шифрует 64-битные блоки данных 56-битным ключом. Для современной вычислительной техники полный перебор 56-битного пространства возможен, поэтому сейчас все большее распространение получают алгоритмы с большей разрядностью ключа – Blowfish, IDEAL и др.

Шифры с открытым ключом называются также двухключевыми. Если в алгоритмах со скрытым ключом для кодирования и декодирования сообщений используется один и тот же ключ, то здесь используются два ключа: публичный и приватный. Для прочтения сообщения, закодированного публичным ключом, необходим приватный, и наоборот. Помимо обычных соображений криптостойкости, к таким алгоритмам предъявляется дополнительное требование: невозможность восстановления приватного ключа по публичному иначе как полным перебором пространства ключей. Двухключевые схемы шифрования намного сложнее в разработке, чем схемы с секретным ключом: требуется найти преобразование, не поддающееся обращению при помощи применявшегося в нем публичного ключа, но такое, чтобы с применением приватного ключа его все-таки можно было обратить. Известные криптоустойчивые схемы основаны на произведениях простых чисел большой разрядности, дискретных логарифмах и эллиптических кривых. Наиболее широкое применение получил разработанный в 1977 г. алгоритм RSA. Известные двухключевые алгоритмы требуют соответствия ключей весьма специфическим требованиям, поэтому для достижения криптостойкости, сопоставимой с блочными алгоритмами, необходимо использовать ключи намного большей разрядности. Так, снятые в 2000 году ограничения Министерства торговли США устанавливали ограничения разрядности ключа, который мог использоваться в экспортируемом за пределы США программном обеспечении: для схем с секретным ключом устанавливался предел, равный 48 битам, а для схем с открытым – 480. Использование ключей большой разрядности требует значительных вычислительных затрат, поэтому двухключевые схемы чаще всего применяются в сочетании с обычными: обладатель публичного ключа генерирует случайную последовательность битов, кодирует ее и отправляет обладателю приватного ключа. Затем эта последовательность используется в качестве секретного ключа для шифрования данных. При установлении двустороннего соединения стороны могут сначала обменяться своими публичными ключами, а затем использовать их для установления двух разных секретных ключей, используемых для шифрования данных, передаваемых в разных направлениях. Такая схема делает практичной частую смену секретных ключей: так, в протоколе SSH ключ генерируется на каждую сессию, в протоколе виртуальных приватных сетей IPSEC время жизни ключа ограничено восемью часами. Еще более широкое применение двухключевые схемы нашли в области аутентификации и электронной подписи. Электронная подпись представляет собой контрольную сумму сообщения, зашифрованную приватным ключом отправителя. Каждый обладатель соответствующего публичного ключа может проверить аутентичность подписи и целостность сообщения. Это может использоваться для проверки аутентичности как сообщения, так и самого отправителя. Использование в качестве контрольной суммы обычного CRC невозможно, потому что генерация сообщения с заданным CRC не представляет вычислительной сложности. Для применения в электронной подписи были разработаны специальные алгоритмы вычисления контрольных сумм, затрудняющие подбор сообщения с требуемой суммой.

Поскольку программа представляет из себя набор машинных кодов, требуется рассмотреть процедуру ее загрузки в оперативную память компьютера (многие из обсуждаемых далее концепций, впрочем, в известной мере применимы и к прошивке программы в ПЗУ).

Для начала предположим, что программа была заранее собрана в некий единый самодостаточный объект, называемый загрузочным или загружаемым модулем. В ряде операционных систем программа собирается в момент загрузки из большого числа отдельных модулей, содержащих ссылки друг на друга.

Для того чтобы не путаться, давайте будем называть программой ту часть загрузочного модуля, которая содержит исполняемый код. Результат загрузки программы в память будем называть процессом или, если нам надо отличать загруженную программу от процесса ее исполнения, образом процесса. К образу процесса иногда причисляют не только код и данные процесса (подвергнутые преобразованию как в процессе загрузки, так и в процессе работы программы), но и системные структуры данных, связанные с этим процессом. В старой литературе процесс часто называют задачей.

В системах с виртуальной памятью каждому процессу обычно выделяется свое адресное пространство, поэтому мы иногда будем употреблять термин процесс и в этом смысле. Впрочем, во многих системах значительная часть адресных пространств разных процессов перекрывается – это используется для реализации разделяемого кода и данных. В рамках одного процесса может исполняться один или несколько потоков или нитей управления.

Некоторые системы предоставляют и более крупные структурные единицы, чем процесс. Например, в системах семейства Unix существуют группы процессов, которые используются для реализации логического объединения процессов в задания (job). Ряд систем имеют также понятие сессии – совокупности всех заданий, которые пользователь запустил в рамках одного сеанса работы. Впрочем, соответствующие концепции часто плохо определены, а их смысл сильно меняется от одной ОС к другой.

В более старых системах и в старой литературе называют результат загрузки задачей, а процессами – отдельные нити управления. Однако в наиболее распространенных ныне ОС семейств Unix и Win32, принято задачу называть процессом, а процесс – нитью (tread).