) , выглядящим как набор перекрывающихся подзадач, сложность которых чуть меньше исходной. В этом случае время вычислений, по сравнению с «наивными» методами, можно значительно сократить.

Ключевая идея в динамическом программировании достаточно проста. Как правило, чтобы решить поставленную задачу, требуется решить отдельные части задачи (подзадачи), после чего объединить решения подзадач в одно общее решение. Часто многие из этих подзадач одинаковы. Подход динамического программирования состоит в том, чтобы решить каждую подзадачу только один раз, сократив тем самым количество вычислений. Это особенно полезно в случаях, когда число повторяющихся подзадач экспоненциально велико.

Метод динамического программирования сверху - это простое запоминание результатов решения тех подзадач, которые могут повторно встретиться в дальнейшем. Динамическое программирование снизу включает в себя переформулирование сложной задачи в виде рекурсивной последовательности более простых подзадач.

Энциклопедичный YouTube

  • 1 / 5

    Словосочетание «динамическое программирование» впервые было использовано в -х годах Р. Беллманом для описания процесса нахождения решения задачи, где ответ на одну задачу может быть получен только после решения задачи, «предшествующей» ей. В г. он уточнил это определение до современного. Первоначально эта область была основана, как системный анализ и инжиниринг, которая была признана IEEE . Вклад Беллмана в динамическое программирование был увековечен в названии уравнения Беллмана , центрального результата теории динамического программирования, который переформулирует оптимизационную задачу в рекурсивной форме.

    Слово «программирование» в словосочетании «динамическое программирование» в действительности к «традиционному» программированию (написанию кода) почти никакого отношения не имеет и имеет смысл как в словосочетании «математическое программирование », которое является синонимом слова «оптимизация». Поэтому слово «программа» в данном контексте скорее означает оптимальную последовательность действий для получения решения задачи. К примеру, определенное расписание событий на выставке иногда называют программой. Программа в данном случае понимается как допустимая последовательность событий.

    Идея динамического программирования

    Оптимальная подструктура в динамическом программировании означает, что оптимальное решение подзадач меньшего размера может быть использовано для решения исходной задачи. К примеру, кратчайший путь в графе из одной вершины (обозначим s) в другую (обозначим t) может быть найден так: сначала считаем кратчайший путь из всех вершин, смежных с s, до t, а затем, учитывая веса ребер, которыми s соединена со смежными вершинами, выбираем лучший путь до t (через какую вершину лучше всего пойти). В общем случае мы можем решить задачу, в которой присутствует оптимальная подструктура, проделывая следующие три шага.

    1. Разбиение задачи на подзадачи меньшего размера.
    2. Нахождение оптимального решения подзадач рекурсивно, проделывая такой же трехшаговый алгоритм .
    3. Использование полученного решения подзадач для конструирования решения исходной задачи.

    Подзадачи решаются делением их на подзадачи ещё меньшего размера и т. д., пока не приходят к тривиальному случаю задачи, решаемой за константное время (ответ можно сказать сразу). К примеру, если нам нужно найти n!, то тривиальной задачей будет 1! = 1 (или 0! = 1).

    Перекрывающиеся подзадачи в динамическом программировании означают подзадачи, которые используются для решения некоторого количества задач (не одной) большего размера (то есть мы несколько раз проделываем одно и то же). Ярким примером является вычисление последовательности Фибоначчи , F 3 = F 2 + F 1 {\displaystyle F_{3}=F_{2}+F_{1}} и F 4 = F 3 + F 2 {\displaystyle F_{4}=F_{3}+F_{2}} - даже в таком тривиальном случае вычисления всего двух чисел Фибоначчи мы уже посчитали дважды. Если продолжать дальше и посчитать , то F 2 {\displaystyle F_{2}} посчитается ещё два раза, так как для вычисления F 5 {\displaystyle F_{5}} будут нужны опять F 3 {\displaystyle F_{3}} и F 4 {\displaystyle F_{4}} . Получается следующее: простой рекурсивный подход будет расходовать время на вычисление решения для задач, которые он уже решал.

    Чтобы избежать такого хода событий мы будем сохранять решения подзадач, которые мы уже решали, и когда нам снова потребуется решение подзадачи, мы вместо того, чтобы вычислять его заново, просто достанем его из памяти. Этот подход называется мемоизацией . Можно проделывать и дальнейшие оптимизации - например, если мы точно уверены, что решение подзадачи нам больше не потребуется, можно выкинуть его из памяти, освободив её для других нужд, или если процессор простаивает и мы знаем, что решение некоторых, ещё не посчитанных подзадач, нам понадобится в дальнейшем, мы можем решить их заранее.

    Подводя итоги вышесказанного можно сказать, что динамическое программирование пользуется следующими свойствами задачи:

    • перекрывающиеся подзадачи;
    • оптимальная подструктура;
    • возможность запоминания решения часто встречающихся подзадач.

    Динамическое программирование обычно придерживается двух подходов к решению задач:

    • нисходящее динамическое программирование: задача разбивается на подзадачи меньшего размера, они решаются и затем комбинируются для решения исходной задачи. Используется запоминание для решений часто встречающихся подзадач.
    • восходящее динамическое программирование: все подзадачи, которые впоследствии понадобятся для решения исходной задачи просчитываются заранее и затем используются для построения решения исходной задачи. Этот способ лучше нисходящего программирования в смысле размера необходимого стека и количества вызова функций, но иногда бывает нелегко заранее выяснить, решение каких подзадач нам потребуется в дальнейшем.

    Языки программирования могут запоминать результат вызова функции с определенным набором аргументов (мемоизация), чтобы ускорить «вычисление по имени». В некоторых языках такая возможность встроена (например, Scheme , Common Lisp , Clojure , Perl), а в некоторых требует дополнительных расширений (C++).

    Известны сериальное динамическое программирование, включённое во все учебники по исследованию операций , и несериальное динамическое программирование (НСДП), которое в настоящее время слабо известно, хотя было открыто в 1960-х годах.

    Обычное динамическое программирование является частным случаем несериального динамического программирования, когда граф взаимосвязей переменных - просто путь. НСДП, являясь естественным и общим методом для учета структуры задачи оптимизации, рассматривает множество ограничений и/или целевую функцию как рекурсивно вычислимую функцию. Это позволяет находить решение поэтапно, на каждом из этапов используя информацию, полученную на предыдущих этапах, причём эффективность этого алгоритма прямо зависит от структуры графа взаимосвязей переменных. Если этот граф достаточно разрежен, то объём вычислений на каждом этапе может сохраняться в разумных пределах.

    Одним из основных свойств задач, решаемых с помощью динамического программирования, является аддитивность . Неаддитивные задачи решаются другими методами. Например, многие задачи по оптимизации инвестиций компании являются неаддитивными и решаются с помощью сравнения стоимости компании при проведении инвестиций и без них.

    Классические задачи динамического программирования

    • Задача о наибольшей общей подпоследовательности : даны две последовательности, требуется найти самую длинную общую подпоследовательность.
    • Задача поиска наибольшей увеличивающейся подпоследовательности : дана последовательность, требуется найти самую длинную возрастающую подпоследовательность.
    • Задача о редакционном расстоянии (расстояние Левенштейна) : даны две строки, требуется найти минимальное количество стираний, замен и добавлений символов, преобразующих одну строку в другую.
    • Задача о порядке перемножения матриц : даны матрицы A 1 {\displaystyle A_{1}} , …, A n {\displaystyle A_{n}} , требуется минимизировать количество скалярных операций для их перемножения.
    • Задача о выборе траектории
    • Задача последовательного принятия решения
    • Задача об использовании рабочей силы
    • Задача управления запасами

    Допустим, есть задача, которую мы уже решили динамическим программированием, например, извечные числа Фибоначчи.
    Давайте немного переформулируем её. Пусть у нас есть вектор , из которого мы хотим получить вектор . Чуть-чуть раскроем формулы: . Можно заметить, что из вектора можно получить вектор путем умножения на какую-то матрицу, ведь в итоговом векторе фигурируют только сложенные переменные из первого вектора. Эту матрицу легко вывести, вот она: . Назовём её матрицей перехода.

    Это значит, что если взять вектор и умножить его на матрицу перехода n - 1 раз, то получим вектор , в котором лежит fib[n] - ответ на задачу.

    А теперь, зачем всё это надо. Умножение матриц обладает свойством ассоциативности, то есть (но при этом не обладает коммутативностью, что по-моему удивительно). Это свойство даёт нам право сделать так: .

    Это хорошо тем, что теперь можно применить метод быстрого возведения в степень , который работает за . Итого мы сумели посчитать N -ое число Фибоначчи за логарифм арифметических операций.

    А теперь пример посерьёзнее:

    Пример №3: Пилообразная последовательность
    Обозначим пилообразную последовательность длины N как последовательность, у которой для каждого не крайнего элемента выполняется условие: он или меньше обоих своих соседей или больше. Требуется посчитать количество пилообразных последовательностей из цифр длины N . Выглядит это как-то так:

    Решение

    Для начала решение без матрицы перехода:

    1) Состояние динамики: dp[n] - количество пилообразных последовательностей длины n , заканчивающихся на цифру last . Причём если less == 0 , то последняя цифра меньше предпоследней, а если less == 1 , значит больше.
    2) Начальные значения:
    for last in range(10): dp = 9 - last dp = last 3) Пересчёт динамики:
    for prev in range(10): if prev > last: dp[n] += dp if prev < last: dp[n] += dp 4) Порядок пересчёта: мы всегда обращаемся к предыдущей длине, так что просто пара вложенных for "ов.
    5) Ответ - это сумма dp[N] .

    Теперь надо придумать начальный вектор и матрицу перехода к нему. Вектор, кажется, придумывается быстро: все состояния, обозначающие длину последовательности N . Ну а матрица перехода выводится, смотря на формулы пересчёта.

    Вектор и матрица перехода

    Динамика по подотрезкам

    Это класс динамики, в котором состояние - это границы подотрезка какого-нибудь массива. Суть в том, чтобы подсчитать ответы для подзадач, основывающихся на всех возможных подотрезках нашего массива. Обычно перебираются они в порядке увеличения длины, и пересчёт основывается, соответственно на более коротких отрезках.
    Пример №4: Запаковка строки
    Вот Развернутое условие . Я вкратце его перескажу:

    Определим сжатую строку:
    1) Строка состоящая только из букв - это сжатая строка. Разжимается она в саму себя.
    2) Строка, являющаяся конкатенацией двух сжатых строк A и B . Разжимается она в конкатенацию разжатых строк A и B .
    3) Строка D(X) , где D - целое число, большее 1 , а X - сжатая строка. Разжимается она в конкатенацию D строк, разжатых из X .
    Пример: “3(2(A)2(B))C” разжимается в “AABBAABBAABBC” .

    Необходимо по строке s узнать длину самой короткой сжатой строки, разжимающийся в неё.

    Решение

    Решается эта задача, как вы уже наверняка догадались, динамикой по подотрезкам.

    1) Состояние динамики: d[l][r] - сжатая строка минимальной длины, разжимающаяся в строку s
    2) Начальные состояния: все подстроки длины один можно сжать только в них самих.
    3) Пересчёт динамики:
    У лучшего ответа есть какая-то последняя операция сжатия: либо это просто строка из заглавных букв, или это конкатенация двух строк, или само сжатие. Так давайте переберём все варианты и выберем лучший.

    Dp_len = r - l dp[l][r] = dp_len # Первый вариант сжатия - просто строка. for i in range(l + 1, r): dp[l][r] = min(dp[l][r], dp[l][i] + dp[i][r]) # Попробовать разделить на две сжатые подстроки for cnt in range(2, dp_len): if (dp_len % cnt == 0): # Если не делится, то нет смысла пытаться разделить good = True for j in range(1, (dp_len / cnt) + 1): # Проверка на то, что все cnt подстрок одинаковы good &= s == s if good: # Попробовать разделить на cnt одинаковых подстрок и сжать dp[l][r] = min(dp[l][r], len(str(cnt)) + 1 + dp[l] + 1) 4) Порядок пересчёта: прямой по возрастанию длины подстроки или ленивая динамика.
    5) Ответ лежит в d .

    Пример №5:

    Динамика по поддеревьям

    Параметром состояния динамики по поддеревьям обычно бывает вершина, обозначающая поддерево, в котором эта вершина - корень. Для получения значения текущего состояния обычно нужно знать результаты всех своих детей. Чаще всего реализуют лениво - просто пишут поиск в глубину из корня дерева.
    Пример №6: Логическое дерево
    Дано подвешенное дерево, в листьях которого записаны однобитовые числа - 0 или 1 . Во всех внутренних вершинах так же записаны числа, но по следующему правилу: для каждой вершины выбрана одна из логических операций: «И» или «ИЛИ». Если это «И», то значение вершины - это логическое «И» от значений всех её детей. Если же «ИЛИ», то значение вершины - это логическое «ИЛИ» от значений всех её детей.

    Требуется найти минимальное количество изменений логических операций во внутренних вершинах, такое, чтобы изменилось значение в корне или сообщить, что это невозможно.

    Решение

    1) Состояние динамики: d[v][x] - количество операций, требуемых для получения значения x в вершине v . Если это невозможно, то значение состояния - +inf .
    2) Начальные значения: для листьев, очевидно, что своё значение можно получить за ноль изменений, изменить же значение невозможно, то есть возможно, но только за +inf операций.
    3) Формула пересчёта:
    Если в этой вершине уже значение x , то ноль. Если нет, то есть два варианта: изменить в текущей вершине операцию или нет. Для обоих нужно найти оптимальный вариант и выбрать наилучший.

    Если операция «И» и нужно получить «0», то ответ это минимум из значений d[i] , где i - сын v .
    Если операция «И» и нужно получить «1», то ответ это сумма всех значений d[i] , где i - сын v .
    Если операция «ИЛИ» и нужно получить «0», то ответ это сумма всех значений d[i] , где i - сын v .
    Если операция «ИЛИ» и нужно получить «1», то ответ это минимум из значений d[i] , где i - сын v .

    4) Порядок пересчёта: легче всего реализуется лениво - в виде поиска в глубину из корня.
    5) Ответ - d xor 1] .

    Динамика по подмножествам

    В динамике по подмножествам обычно в состояние входит маска заданного множества. Перебираются чаще всего в порядке увеличения количества единиц в этой маске и пересчитываются, соответственно, из состояний, меньших по включению. Обычно используется ленивая динамика, чтобы специально не думать о порядке обхода, который иногда бывает не совсем тривиальным.
    Пример №7: Гамильтонов цикл минимального веса, или задача коммивояжера
    Задан взвешенный (веса рёбер неотрицательны) граф G размера N . Найти гамильтонов цикл (цикл, проходящий по всем вершинам без самопересечений) минимального веса.

    Решение

    Так как мы ищем цикл, проходящий через все вершины, то можно выбрать за «начальную» вершину любую. Пусть это будет вершина с номером 0 .

    1) Состояние динамики: dp[v] - путь минимального веса из вершины 0 в вершину v , проходящий по всем вершинам, лежащим в mask и только по ним.
    2) Начальные значения: dp = 0 , все остальные состояния изначально - +inf .
    3) Формула пересчёта: Если i -й бит в mask равен 1 и есть ребро из i в v , то:
    dp[v] = min(dp[v], dp[i] + w[i][v]) Где w[i][v] - вес ребра из i в v .
    4) Порядок пересчёта: самый простой и удобный способ - это написать ленивую динамику, но можно поизвращаться и написать перебор масок в порядке увеличения количества единичных битов в ней.
    5) Ответ лежит в d[(1 << N) - 1] .

    Динамика по профилю

    Классическими задачами, решающимися динамикой по профилю, являются задачи на замощение поля какими-нибудь фигурами. Причём спрашиваться могут разные вещи, например, количество способов замощения или замощение минимальным количеством фигур.

    Эти задачи можно решить полным перебором за , где a - количество вариантов замощения одной клетки. Динамика по профилю же оптимизирует время по одной из размерностей до линейной, оставив от себя в экспоненте только коэффициент. Получится что-то такое: .

    Профиль - это k (зачастую один) столбцов, являющиеся границей между уже замощённой частью и ещё не замощённой. Эта граница заполнена только частично. Очень часто является частью состояния динамики.

    Почти всегда состояние - это профиль и то, где этот профиль. А переход увеличивает это местоположение на один. Узнать, можно ли перейти из одного профиля в другой можно за линейное от размера профиля время. Это можно проверять каждый раз во время пересчёта, но можно и предподсчитать. Предподсчитывать будем двумерный массив can - можно ли от одной маски перейти к другой, положив несколько фигурок, увеличив положение профиля на один. Если предподсчитывать, то времени на выполнение потребуется меньше, а памяти - больше.

    Пример №8: Замощение доминошками
    Найти количество способов замостить таблицу N x M с помощью доминошек размерами 1 x 2 и 2 x 1 .

    Решение

    Здесь профиль - это один столбец. Хранить его удобно в виде двоичной маски: 0 - не замощенная клетка столбца, 1 - замощенная. То есть всего профилей .

    0) Предподсчёт (опционально): перебрать все пары профилей и проверить, что из одного можно перейти в другой. В этой задаче это проверяется так:

    Если в первом профиле на очередном месте стоит 1 , значит во втором обязательно должен стоять 0 , так как мы не сможем замостить эту клетку никакой фигуркой.

    Если в первом профиле на очередном месте стоит 0 , то есть два варианта - или во втором 0 или 1 .
    Если 0 , это значит, что мы обязаны положить вертикальную доминошку, а значит следующую клетку можно рассматривать как 1 . Если 1 , то мы ставим вертикальную доминошку и переходим к следующей клетке.

    Примеры переходов (из верхнего профиля можно перейти в нижние и только в них):

    После этого сохранить всё в массив can - 1 , если можно перейти, 0 - если нельзя.
    1) Состояние динамики: dp - количество полных замощений первых pos - 1 столбцов с профилем mask .
    2) Начальное состояние: dp = 1 - левая граница поля - прямая стенка.
    3) Формула пересчёта:
    dp += dp * can
    4) Порядок обхода - в порядке увеличения pos .
    5) Ответ лежит в dp.

    Полученная асимптотика - .

    Динамика по изломанному профилю

    Это очень сильная оптимизация динамики по профилю. Здесь профиль - это не только маска, но ещё и место излома. Выглядит это так:

    Теперь, после добавления излома в профиль, можно переходить к следующему состоянию, добавляя всего одну фигурку, накрывающую левую клетку излома. То есть увеличением числа состояний в N раз (надо помнить, где место излома) мы сократили число переходов из одного состояния в другое с до . Асимптотика улучшилась с до .

    Переходы в динамике по изломанному профилю на примере задачи про замощение доминошками (пример №8):

    Восстановление ответа

    Иногда бывает, что просто знать какую-то характеристику лучшего ответа недостаточно. Например, в задаче «Запаковка строки» (пример №4) мы в итоге получаем только длину самой короткой сжатой строки, но, скорее всего, нам нужна не её длина, а сама строка. В таком случае надо восстановить ответ.

    В каждой задаче свой способ восстановления ответа, но самые распространенные:

    • Рядом со значением состояния динамики хранить полный ответ на подзадачу. Если ответ - это что-то большое, то может понадобиться чересчур много памяти, поэтому если можно воспользоваться другим методом, обычно так и делают.
    • Восстанавливать ответ, зная предка(ов) данного состояния. Зачастую можно восстановить ответ, зная только как он был получен. В той самой «Запаковке строки» можно для восстановления ответа хранить только вид последнего действия и то, из каких состояний оно было получено.
    • Есть способ, вообще не использующий дополнительную память - после пересчёта динамики пойти с конца по лучшему пути и по дороге составлять ответ.

    Небольшие оптимизации

    Память
    Зачастую в динамике можно встретить задачу, в которой состояние требует быть посчитанными не очень большое количество других состояний. Например, при подсчёте чисел Фибоначчи мы используем только два последних, а к предыдущим уже никогда не обратимся. Значит, можно про них забыть, то есть не хранить в памяти. Иногда это улучшает асимптотическую оценку по памяти. Этим приёмом можно воспользоваться в примерах №1, №2, №3 (в решении без матрицы перехода), №7 и №8. Правда, этим никак не получится воспользоваться, если порядок обхода - ленивая динамика.
    Время
    Иногда бывает так, что можно улучшить асимптотическое время, используя какую-нибудь структуру данных. К примеру, в алгоритме Дейкстры можно воспользоваться очередью с приоритетами для изменения асимптотического времени.

    Замена состояния

    В решениях динамикой обязательно фигурирует состояние - параметры, однозначно задающие подзадачу, но это состояние не обязательно одно единственное. Иногда можно придумать другие параметры и получить с этого выгоду в виде снижения асимптотического времени или памяти.
    Пример №9: Разложение числа
    Требуется найти количество разложений числа N на различные слагаемые. Например, если N = 7 , то таких разложений 5:
    • 3 + 4
    • 2 + 5
    • 1 + 7
    • 1 + 2 + 4

    Допустим, есть задача, которую мы уже решили динамическим программированием, например, извечные числа Фибоначчи.
    Давайте немного переформулируем её. Пусть у нас есть вектор , из которого мы хотим получить вектор . Чуть-чуть раскроем формулы: . Можно заметить, что из вектора можно получить вектор путем умножения на какую-то матрицу, ведь в итоговом векторе фигурируют только сложенные переменные из первого вектора. Эту матрицу легко вывести, вот она: . Назовём её матрицей перехода.

    Это значит, что если взять вектор и умножить его на матрицу перехода n - 1 раз, то получим вектор , в котором лежит fib[n] - ответ на задачу.

    А теперь, зачем всё это надо. Умножение матриц обладает свойством ассоциативности, то есть (но при этом не обладает коммутативностью, что по-моему удивительно). Это свойство даёт нам право сделать так: .

    Это хорошо тем, что теперь можно применить метод быстрого возведения в степень , который работает за . Итого мы сумели посчитать N -ое число Фибоначчи за логарифм арифметических операций.

    А теперь пример посерьёзнее:

    Пример №3: Пилообразная последовательность
    Обозначим пилообразную последовательность длины N как последовательность, у которой для каждого не крайнего элемента выполняется условие: он или меньше обоих своих соседей или больше. Требуется посчитать количество пилообразных последовательностей из цифр длины N . Выглядит это как-то так:

    Решение

    Для начала решение без матрицы перехода:

    1) Состояние динамики: dp[n] - количество пилообразных последовательностей длины n , заканчивающихся на цифру last . Причём если less == 0 , то последняя цифра меньше предпоследней, а если less == 1 , значит больше.
    2) Начальные значения:
    for last in range(10): dp = 9 - last dp = last 3) Пересчёт динамики:
    for prev in range(10): if prev > last: dp[n] += dp if prev < last: dp[n] += dp 4) Порядок пересчёта: мы всегда обращаемся к предыдущей длине, так что просто пара вложенных for "ов.
    5) Ответ - это сумма dp[N] .

    Теперь надо придумать начальный вектор и матрицу перехода к нему. Вектор, кажется, придумывается быстро: все состояния, обозначающие длину последовательности N . Ну а матрица перехода выводится, смотря на формулы пересчёта.

    Вектор и матрица перехода

    Динамика по подотрезкам

    Это класс динамики, в котором состояние - это границы подотрезка какого-нибудь массива. Суть в том, чтобы подсчитать ответы для подзадач, основывающихся на всех возможных подотрезках нашего массива. Обычно перебираются они в порядке увеличения длины, и пересчёт основывается, соответственно на более коротких отрезках.
    Пример №4: Запаковка строки
    Вот Развернутое условие . Я вкратце его перескажу:

    Определим сжатую строку:
    1) Строка состоящая только из букв - это сжатая строка. Разжимается она в саму себя.
    2) Строка, являющаяся конкатенацией двух сжатых строк A и B . Разжимается она в конкатенацию разжатых строк A и B .
    3) Строка D(X) , где D - целое число, большее 1 , а X - сжатая строка. Разжимается она в конкатенацию D строк, разжатых из X .
    Пример: “3(2(A)2(B))C” разжимается в “AABBAABBAABBC” .

    Необходимо по строке s узнать длину самой короткой сжатой строки, разжимающийся в неё.

    Решение

    Решается эта задача, как вы уже наверняка догадались, динамикой по подотрезкам.

    1) Состояние динамики: d[l][r] - сжатая строка минимальной длины, разжимающаяся в строку s
    2) Начальные состояния: все подстроки длины один можно сжать только в них самих.
    3) Пересчёт динамики:
    У лучшего ответа есть какая-то последняя операция сжатия: либо это просто строка из заглавных букв, или это конкатенация двух строк, или само сжатие. Так давайте переберём все варианты и выберем лучший.

    Dp_len = r - l dp[l][r] = dp_len # Первый вариант сжатия - просто строка. for i in range(l + 1, r): dp[l][r] = min(dp[l][r], dp[l][i] + dp[i][r]) # Попробовать разделить на две сжатые подстроки for cnt in range(2, dp_len): if (dp_len % cnt == 0): # Если не делится, то нет смысла пытаться разделить good = True for j in range(1, (dp_len / cnt) + 1): # Проверка на то, что все cnt подстрок одинаковы good &= s == s if good: # Попробовать разделить на cnt одинаковых подстрок и сжать dp[l][r] = min(dp[l][r], len(str(cnt)) + 1 + dp[l] + 1) 4) Порядок пересчёта: прямой по возрастанию длины подстроки или ленивая динамика.
    5) Ответ лежит в d .

    Пример №5: Дубы

    Динамика по поддеревьям

    Параметром состояния динамики по поддеревьям обычно бывает вершина, обозначающая поддерево, в котором эта вершина - корень. Для получения значения текущего состояния обычно нужно знать результаты всех своих детей. Чаще всего реализуют лениво - просто пишут поиск в глубину из корня дерева.
    Пример №6: Логическое дерево
    Дано подвешенное дерево, в листьях которого записаны однобитовые числа - 0 или 1 . Во всех внутренних вершинах так же записаны числа, но по следующему правилу: для каждой вершины выбрана одна из логических операций: «И» или «ИЛИ». Если это «И», то значение вершины - это логическое «И» от значений всех её детей. Если же «ИЛИ», то значение вершины - это логическое «ИЛИ» от значений всех её детей.

    Требуется найти минимальное количество изменений логических операций во внутренних вершинах, такое, чтобы изменилось значение в корне или сообщить, что это невозможно.

    Решение

    1) Состояние динамики: d[v][x] - количество операций, требуемых для получения значения x в вершине v . Если это невозможно, то значение состояния - +inf .
    2) Начальные значения: для листьев, очевидно, что своё значение можно получить за ноль изменений, изменить же значение невозможно, то есть возможно, но только за +inf операций.
    3) Формула пересчёта:
    Если в этой вершине уже значение x , то ноль. Если нет, то есть два варианта: изменить в текущей вершине операцию или нет. Для обоих нужно найти оптимальный вариант и выбрать наилучший.

    Если операция «И» и нужно получить «0», то ответ это минимум из значений d[i] , где i - сын v .
    Если операция «И» и нужно получить «1», то ответ это сумма всех значений d[i] , где i - сын v .
    Если операция «ИЛИ» и нужно получить «0», то ответ это сумма всех значений d[i] , где i - сын v .
    Если операция «ИЛИ» и нужно получить «1», то ответ это минимум из значений d[i] , где i - сын v .

    4) Порядок пересчёта: легче всего реализуется лениво - в виде поиска в глубину из корня.
    5) Ответ - d xor 1] .

    Динамика по подмножествам

    В динамике по подмножествам обычно в состояние входит маска заданного множества. Перебираются чаще всего в порядке увеличения количества единиц в этой маске и пересчитываются, соответственно, из состояний, меньших по включению. Обычно используется ленивая динамика, чтобы специально не думать о порядке обхода, который иногда бывает не совсем тривиальным.
    Пример №7: Гамильтонов цикл минимального веса, или задача коммивояжера
    Задан взвешенный (веса рёбер неотрицательны) граф G размера N . Найти гамильтонов цикл (цикл, проходящий по всем вершинам без самопересечений) минимального веса.

    Решение

    Так как мы ищем цикл, проходящий через все вершины, то можно выбрать за «начальную» вершину любую. Пусть это будет вершина с номером 0 .

    1) Состояние динамики: dp[v] - путь минимального веса из вершины 0 в вершину v , проходящий по всем вершинам, лежащим в mask и только по ним.
    2) Начальные значения: dp = 0 , все остальные состояния изначально - +inf .
    3) Формула пересчёта: Если i -й бит в mask равен 1 и есть ребро из i в v , то:
    dp[v] = min(dp[v], dp[i] + w[i][v]) Где w[i][v] - вес ребра из i в v .
    4) Порядок пересчёта: самый простой и удобный способ - это написать ленивую динамику, но можно поизвращаться и написать перебор масок в порядке увеличения количества единичных битов в ней.
    5) Ответ лежит в d[(1 << N) - 1] .

    Динамика по профилю

    Классическими задачами, решающимися динамикой по профилю, являются задачи на замощение поля какими-нибудь фигурами. Причём спрашиваться могут разные вещи, например, количество способов замощения или замощение минимальным количеством фигур.

    Эти задачи можно решить полным перебором за , где a - количество вариантов замощения одной клетки. Динамика по профилю же оптимизирует время по одной из размерностей до линейной, оставив от себя в экспоненте только коэффициент. Получится что-то такое: .

    Профиль - это k (зачастую один) столбцов, являющиеся границей между уже замощённой частью и ещё не замощённой. Эта граница заполнена только частично. Очень часто является частью состояния динамики.

    Почти всегда состояние - это профиль и то, где этот профиль. А переход увеличивает это местоположение на один. Узнать, можно ли перейти из одного профиля в другой можно за линейное от размера профиля время. Это можно проверять каждый раз во время пересчёта, но можно и предподсчитать. Предподсчитывать будем двумерный массив can - можно ли от одной маски перейти к другой, положив несколько фигурок, увеличив положение профиля на один. Если предподсчитывать, то времени на выполнение потребуется меньше, а памяти - больше.

    Пример №8: Замощение доминошками
    Найти количество способов замостить таблицу N x M с помощью доминошек размерами 1 x 2 и 2 x 1 .

    Решение

    Здесь профиль - это один столбец. Хранить его удобно в виде двоичной маски: 0 - не замощенная клетка столбца, 1 - замощенная. То есть всего профилей .

    0) Предподсчёт (опционально): перебрать все пары профилей и проверить, что из одного можно перейти в другой. В этой задаче это проверяется так:

    Если в первом профиле на очередном месте стоит 1 , значит во втором обязательно должен стоять 0 , так как мы не сможем замостить эту клетку никакой фигуркой.

    Если в первом профиле на очередном месте стоит 0 , то есть два варианта - или во втором 0 или 1 .
    Если 0 , это значит, что мы обязаны положить вертикальную доминошку, а значит следующую клетку можно рассматривать как 1 . Если 1 , то мы ставим вертикальную доминошку и переходим к следующей клетке.

    Примеры переходов (из верхнего профиля можно перейти в нижние и только в них):

    После этого сохранить всё в массив can - 1 , если можно перейти, 0 - если нельзя.
    1) Состояние динамики: dp - количество полных замощений первых pos - 1 столбцов с профилем mask .
    2) Начальное состояние: dp = 1 - левая граница поля - прямая стенка.
    3) Формула пересчёта:
    dp += dp * can
    4) Порядок обхода - в порядке увеличения pos .
    5) Ответ лежит в dp.

    Полученная асимптотика - .

    Динамика по изломанному профилю

    Это очень сильная оптимизация динамики по профилю. Здесь профиль - это не только маска, но ещё и место излома. Выглядит это так:

    Теперь, после добавления излома в профиль, можно переходить к следующему состоянию, добавляя всего одну фигурку, накрывающую левую клетку излома. То есть увеличением числа состояний в N раз (надо помнить, где место излома) мы сократили число переходов из одного состояния в другое с до . Асимптотика улучшилась с до .

    Переходы в динамике по изломанному профилю на примере задачи про замощение доминошками (пример №8):

    Восстановление ответа

    Иногда бывает, что просто знать какую-то характеристику лучшего ответа недостаточно. Например, в задаче «Запаковка строки» (пример №4) мы в итоге получаем только длину самой короткой сжатой строки, но, скорее всего, нам нужна не её длина, а сама строка. В таком случае надо восстановить ответ.

    В каждой задаче свой способ восстановления ответа, но самые распространенные:

    • Рядом со значением состояния динамики хранить полный ответ на подзадачу. Если ответ - это что-то большое, то может понадобиться чересчур много памяти, поэтому если можно воспользоваться другим методом, обычно так и делают.
    • Восстанавливать ответ, зная предка(ов) данного состояния. Зачастую можно восстановить ответ, зная только как он был получен. В той самой «Запаковке строки» можно для восстановления ответа хранить только вид последнего действия и то, из каких состояний оно было получено.
    • Есть способ, вообще не использующий дополнительную память - после пересчёта динамики пойти с конца по лучшему пути и по дороге составлять ответ.

    Небольшие оптимизации

    Память
    Зачастую в динамике можно встретить задачу, в которой состояние требует быть посчитанными не очень большое количество других состояний. Например, при подсчёте чисел Фибоначчи мы используем только два последних, а к предыдущим уже никогда не обратимся. Значит, можно про них забыть, то есть не хранить в памяти. Иногда это улучшает асимптотическую оценку по памяти. Этим приёмом можно воспользоваться в примерах №1, №2, №3 (в решении без матрицы перехода), №7 и №8. Правда, этим никак не получится воспользоваться, если порядок обхода - ленивая динамика.
    Время
    Иногда бывает так, что можно улучшить асимптотическое время, используя какую-нибудь структуру данных. К примеру, в алгоритме Дейкстры можно воспользоваться очередью с приоритетами для изменения асимптотического времени.

    Замена состояния

    В решениях динамикой обязательно фигурирует состояние - параметры, однозначно задающие подзадачу, но это состояние не обязательно одно единственное. Иногда можно придумать другие параметры и получить с этого выгоду в виде снижения асимптотического времени или памяти.
    Пример №9: Разложение числа
    Требуется найти количество разложений числа N на различные слагаемые. Например, если N = 7 , то таких разложений 5:
    • 3 + 4
    • 2 + 5
    • 1 + 7
    • 1 + 2 + 4

    Для выбора оптимального решения при выполнении задач программирования иногда требуется перебирать большое количество комбинаций данных, что нагружает память персонального компьютера. К таким методам относится, например, метод программирования «разделяй и властвуй». В данном случае алгоритмом предусмотрено разделение задачи на отдельные мелкие подзадачи. Такой метод применяется только в тех случаях, когда мелкие подзадачи независимы между собой. Для того чтобы избежать выполнения лишней работы в том случае, если подзадачи взаимозависимы, используется метод динамического программирования, предложенный американцем Р.Беллманом в 50-х годах.

    Суть метода

    Динамическое программирование заключается в определении оптимального решения n-мерной задачи, разделяя ее n отдельных этапов. Каждый из них является подзадачей по отношению к одной переменной.

    Основным преимуществом такого подхода можно считать то, что разработчики занимаются одномерными оптимизационными задачами подзадач вместо n-мерной задачи, а решение главной задачи собирается «снизу вверх».

    Целесообразно применять динамическое программирование в тех случаях, когда подзадачи взаимосвязаны, т.е. имеют общие модули. Алгоритмом предусмотрено решение каждой из подзадач один раз, и сохранение ответов выполняется в специальной таблице. Это дает возможность не вычислять ответ заново при встрече с аналогичной подзадачей.

    Задача динамического программирования оптимизации. Автором этого метода Р. Беллманом был сформулирован принцип оптимальности: каким бы ни являлось начальное состояние на каждом из шагов и решение, определенное на этом шаге, все следующие выбираются оптимальными по отношению к тому состоянию, которое принимает система в конце шага.

    Метод усовершенствует выполнение задач, решаемых с помощью перебора вариантов или рекурсий.

    Построение алгоритма задачи

    Динамическое программирование предполагает построение такого алгоритма задач, при котором задача так разбивается на две или больше подзадач, чтобы ее решение складывалось из оптимального решения всех подзадач, входящих в нее. Далее возникает необходимость в написании рекуррентного соотношения и вычислении оптимального значения параметра для задачи в целом.

    Иногда на 3-м шаге нужно дополнительно запоминать некоторую вспомогательную информацию о ходе выполнения каждой подзадачи. Это называется обратным ходом.

    Применение метода

    Динамическое программирование применяется при наличии двух характерных признаков:

    • оптимальность для подзадач;
    • наличие в задаче перекрывающихся подзадач.

    Решая методом динамического программирования, сначала необходимо описать структуру решения. Задача обладает оптимальностью, если решение задачи складывается из оптимальных решений ее подзадач. В этом случае целесообразно использовать динамическое программирование.

    Второе свойство задачи, существенное при данном методе, - небольшое число подзадач. Рекурсивное решение задачи использует одни и те же перекрывающиеся подзадачи, количество которых зависит от размера исходной информации. Ответ хранится в специальной таблице, программа экономит время, пользуясь этими данными.

    Особенно эффективно применение динамического программирования тогда, когда по существу задачи нужно принимать решения поэтапно. Например, рассмотрим простой пример задачи замены и ремонта оборудования. Допустим, на литейной машине завода по изготовлению шин делают одновременно шины в двух разных формах. В том случае, если одна из форм выходит из строя, приходится машину разбирать. Понятно, что иногда выгоднее заменить и вторую форму для того, чтобы не разбирать машину на случай, если и эта форма окажется неработоспособной на следующем этапе. Тем более, бывает проще заменить обе работающие формы до того, как они начнут выходить из строя. Метод динамического программирования определяет наилучшую стратегию в вопросе о замене таких форм, учитывая все факторы: выгоду от продолжения эксплуатации форм, потери от простоя машины, стоимость забракованных шин и другое.

    Динамическое программирование - тема, которой в рунете посвящено довольно мало статей, поэтому мы решили ею заняться. В этой статье будут разобраны классические задачи на последовательности, одномерную и двумерную динамику, будет дано обоснование решениям и описаны разные подходы к их реализации. Весь приведённый в статье код написан на Java.

    О чём вообще речь? Что такое динамическое программирование?

    Метод решения задачи путём её разбиения на несколько одинаковых подзадач, рекуррентно связанных между собой. Самым простым примером будут числа Фибоначчи - чтобы вычислить некоторое число в этой последовательности, нам нужно сперва вычислить третье число, сложив первые два, затем четвёртое таким же образом на основе второго и третьего, и так далее (да, мы слышали про замкнутую формулу).

    Хорошо, как это использовать?

    Решение задачи динамическим программированием должно содержать следующее:

    И что, мне для решения рекурсивный метод писать надо? Я слышал, они медленные.

    Конечно, не надо, есть и другие подходы к реализации динамики. Разберём их на примере следующей задачи:

    Вычислить n-й член последовательности, заданной формулами:
    a 2n = a n ­+ a n-1 ,
    a 2n+1 = a n — a n-1 ,
    a 0 = a 1 = 1.

    Идея решения

    Здесь нам даны и начальные состояния (a 0 = a 1 = 1), и зависимости. Единственная сложность, которая может возникнуть - понимание того, что 2n - условие чётности числа, а 2n+1 - нечётности. Иными словами, нам нужно проверять, чётно ли число, и считать его в зависимости от этого по разным формулам.

    Рекурсивное решение

    Очевидная реализация состоит в написании следующего метода:

    Private static int f(int n){ if(n==0 || n==1) return 1; // Проверка на начальное значение if(n%2==0){ //Проверка на чётность return f(n/2)+f(n/2-1); // Вычисляем по формуле для чётных индексов, // ссылаясь на предыдущие значения }else{ return f((n-1)/2)-f((n-1)/2-1); // Вычисляем по формуле для нечётных //индексов, ссылаясь на предыдущие значения } }

    И она отлично работает, но есть нюансы. Если мы захотим вычислить f(12) , то метод будет вычислять сумму f(6)+f(5) . В то же время, f(6)=f(3)+f(2) и f(5)=f(2)-f(1) , т.е. значение f(2) мы будем вычислять дважды. Спасение от этого есть - мемоизация (кеширование значений).

    Рекурсивное решение с кэшированием значений

    Идея мемоизации очень проста - единожды вычисляя значение, мы заносим его в какую-то структуру данных. Перед каждым вычислением мы проверяем, есть ли вычисляемое значение в этой структуре, и если есть, используем его. В качестве структуры данных можно использовать массив, заполненный флаговыми значениями. Если значение элемента по индексу N равно значению флага, значит, мы его ещё не вычисляли. Это создаёт определённые трудности, т.к. значение флага не должно принадлежать множеству значений функции, которое не всегда очевидно. Лично я предпочитаю использовать хэш-таблицу - все действия в ней выполняются за O(1) , что очень удобно. Однако, при большом количестве значений два числа могут иметь одинаковый хэш, что, естественно, порождает проблемы. В таком случае стоит использовать, например, красно-чёрное дерево .

    Для уже написанной функции f(int) кэширование значений будет выглядеть следующим образом:

    Private static HashMap cache = new HashMap(); private static int fcashe(int n){ if(!cache.containsKey(n)){//Проверяем, находили ли мы данное значение cache.put(n, f(n)); //Если нет, то находим и записываем в таблицу } return cache.get(n); }

    Не слишком сложно, согласитесь? Зато это избавляет от огромного числа операций. Платите вы за это лишним расходом памяти.

    Последовательное вычисление

    Теперь вернёмся к тому, с чего начали - рекурсия работает медленно. Не слишком медленно, чтобы это приносило действительные неприятности в настоящей жизни, но на соревнованиях по спортивному программированию каждая миллисекунда на счету.

    Метод последовательного вычисления подходит, только если функция ссылается исключительно на элементы перед ней - это его основной, но не единственный минус. Наша задача этому условию удовлетворяет.

    Суть метода в следующем: мы создаём массив на N элементов и последовательно заполняем его значениями. Вы, наверное, уже догадались, что таким образом мы можем вычислять в том числе те значения, которые для ответа не нужны. В значительной части задач на динамику этот факт можно опустить, так как для ответа часто бывают нужны как раз все значения. Например, при поиске наименьшего пути мы не можем не вычислять путь до какой-то точки, нам нужно пересмотреть все варианты. Но в нашей задаче нам нужно вычислять приблизительно log 2 (N) значений (на практике больше), для 922337203685477580-го элемента (MaxLong/10) нам потребуется 172 вычисления.

    Private static int f(int n){ if(n<2) return 1; //Может, нам и вычислять ничего не нужно? int fs = int[n]; //Создаём массив для значений fs=fs=1; //Задаём начальные состояния for(int i=2; i

    Ещё одним минусом такого подхода является сравнительно большой расход памяти.

    Создание стека индексов

    Сейчас нам предстоит, по сути, написать свою собственную рекурсию. Идея состоит в следующем - сначала мы проходим «вниз» от N до начальных состояний, запоминая аргументы, функцию от которых нам нужно будет вычислять. Затем возвращаемся «вверх», последовательно вычисляя значения от этих аргументов, в том порядке, который мы записали.

    Зависимости вычисляются следующим образом:

    LinkedList stack = new LinkedList(); stack.add(n); { LinkedList queue = new LinkedList(); //Храним индексы, для которых ещё не вычислены зависимости queue.add(n); int dum; while(queue.size()>0){ //Пока есть что вычислять dum = queue.removeFirst(); if(dum%2==0){ //Проверяем чётность if(dum/2>1){ //Если вычисленная зависимость не принадлежит начальным состояниям stack.addLast(dum/2); //Добавляем в стек queue.add(dum/2); //Сохраняем, чтобы //вычислить дальнейшие зависимости } if(dum/2-1>1){ //Проверяем принадлежность к начальным состояниям stack.addLast(dum/2-1); //Добавляем в стек queue.add(dum/2-1); //Сохрнаяем, чтобы //вычислить дальнейшие зависимости } }else{ if((dum-1)/2>1){ //Проверяем принадлежность к начальным состояниям stack.addLast((dum-1)/2); //Добавляем в стек queue.add((dum-1)/2); //Сохрнаяем, чтобы //вычислить дальнейшие зависимости } if((dum-1)/2-1>1){ //Проверяем принадлежность к начальным состояниям stack.addLast((dum-1)/2-1); //Добавляем в стек queue.add((dum-1)/2-1); //Сохрнаяем, чтобы //вычислить дальнейшие зависимости } } /* Конкретно для этой задачи есть более элегантный способ найти все зависимости, здесь же показан достаточно универсальный */ } }

    Полученный размер стека – то, сколько вычислений нам потребуется сделать. Именно так я получил упомянутое выше число 172.

    Теперь мы поочередно извлекаем индексы и вычисляем для них значения по формулам – гарантируется, что все необходимые значения уже будут вычислены. Хранить будем как раньше – в хэш-таблице.

    HashMap values = new HashMap(); values.put(0,1); //Важно добавить начальные состояния //в таблицу значений values.put(1,1); while(stack.size()>0){ int num = stack.removeLast(); if(!values.containsKey(num)){ //Эту конструкцию //вы должны помнить с абзаца о кешировании if(num%2==0){ //Проверяем чётность int value = values.get(num/2)+values.get(num/2-1); //Вычисляем значение values.add(num, value); //Помещаем его в таблицу }else{ int value = values.get((num-1)/2)-values.get((num-1)/2-1); //Вычисляем значение values.add(num, value); //Помещаем его в таблицу } }

    Все необходимые значения вычислены, осталось только написать

    Return values.get(n);

    Конечно, такое решение гораздо более трудоёмкое, однако это того стоит.

    Хорошо, математика - это красиво. А что с задачами, в которых не всё дано?

    Для больше ясности разберём следующую задачу на одномерную динамику:

    На вершине лесенки, содержащей N ступенек, находится мячик, который начинает прыгать по ним вниз, к основанию. Мячик может прыгнуть на следующую ступеньку, на ступеньку через одну или через 2. (То есть, если мячик лежит на 8-ой ступеньке, то он может переместиться на 5-ую, 6-ую или 7-ую.) Определить число всевозможных «маршрутов» мячика с вершины на землю.

    Идея решения

    На первую ступеньку можно попасть только одним образом - сделав прыжок с длиной равной единице. На вторую ступеньку можно попасть сделав прыжок длиной 2, или с первой ступеньки - всего 2 варианта. На третью ступеньку можно попасть сделав прыжок длиной три, с первой или со втрой ступенек. Т.е. всего 4 варианта (0->3; 0->1->3; 0->2->3; 0->1->2->3). Теперь рассмотрим четвёртую ступеньку. На неё можно попасть с первой ступеньки - по одному маршруту на каждый маршрут до неё, со второй или с третьей - аналогично. Иными словами, количество путей до 4-й ступеньки есть сумма маршрутов до 1-й, 2-й и 3-й ступенек. Математически выражаясь, F(N) = F(N-1)+F(N-2)+F(N-3) . Первые три ступеньки будем считать начальными состояниями.

    Реализация через рекурсию

    private static int f(int n){ if(n==1) return 1; if(n==2) return 2; if(n==3) return 4; return f(n-1)+f(n-2)+f(n-3); }

    Здесь ничего хитрого нет.

    Исходя из того, что, по большому счёту, простое решение на массиве из N элементов очевидно, я продемонстрирую тут решение на массиве всего из трёх.

    Int vars = new int; vars=1;vars=2;vars=4; for(int i=3; i

    Так как каждое следующее значение зависит только от трёх предыдущих, ни одно значение под индексом меньше i-3 нам бы не пригодилось. В приведённом выше коде мы записываем новое значение на место самого старого, не нужного больше. Цикличность остатка от деления на 3 помогает нам избежать кучи условных операторов. Просто, компактно, элегантно.

    Там вверху ещё было написано про какую-то двумерную динамику?..

    С двумерной динамикой не связано никаких особенностей, однако я, на всякий случай, рассмотрю здесь одну задачу и на неё.

    В прямоугольной таблице NxM в начале игрок находится в левой верхней клетке. За один ход ему разрешается перемещаться в соседнюю клетку либо вправо, либо вниз (влево и вверх перемещаться запрещено). Посчитайте, сколько есть способов у игрока попасть в правую нижнюю клетку.

    Идея решения

    Логика решения полностью идентична таковой в задаче про мячик и лестницу - только теперь в клетку (x,y) можно попасть из клеток (x-1,y) или (x, y-1) . Итого F(x,y) = F(x-1, y)+F(x,y-1) . Дополнительно можно понять, что все клетки вида (1,y) и (x,1) имеют только один маршрут - по прямой вниз или по прямой вправо.

    Реализация через рекурсию

    Ради всего святого, не нужно делать двумерную динамику через рекурсию. Уже было упомянуто, что рекурсия менее выгодна, чем цикл по быстродействию, так двумерная рекурсия ещё и читается ужасно. Это только на таком простом примере она смотрится легко и безобидно.

    Private static int f(int i, int j) { if(i==1 || j==1) return 1; return f(i-1, j)+f(i, j-1); }

    Реализация через массив значений

    int dp = new int; for(int i=0; iКлассическое решение динамикой, ничего необычного - проверяем, является ли клетка краем, и задаём её значение на основе соседних клеток.

    Отлично, я всё понял. На чём мне проверить свои навыки?

    В заключение приведу ряд типичных задач на одномерную и двумерную динамику, разборы прилагаются.

    Взрывоопасность

    При переработке радиоактивных материалов образуются отходы двух видов - особо опасные (тип A) и неопасные (тип B). Для их хранения используются одинаковые контейнеры. После помещения отходов в контейнеры последние укладываются вертикальной стопкой. Стопка считается взрывоопасной, если в ней подряд идет более одного контейнера типа A. Стопка считается безопасной, если она не является взрывоопасной. Для заданного количества контейнеров N определить количество возможных типов безопасных стопок.

    Решение

    Ответом является (N+1)-е число Фибоначчи. Догадаться можно было, просто вычислив 2-3 первых значения. Строго доказать можно было, построив дерево возможных построений.


    Каждый основной элемент делится на два - основной (заканчивается на B) и побочный (заканчивается на A). Побочные элементы превращаются в основные за одну итерацию (к последовательности, заканчивающейся на A, можно дописать только B). Это характерно для чисел Фибоначчи.

    Реализация

    Например, так:

    //Ввод числа N с клавиатуры N+=2; BigInteger fib = new BigInteger; fib=fib=BigInteger.ONE; for(int i=2; i

    Подъём по лестнице

    Мальчик подошел к платной лестнице. Чтобы наступить на любую ступеньку, нужно заплатить указанную на ней сумму. Мальчик умеет перешагивать на следующую ступеньку, либо перепрыгивать через ступеньку. Требуется узнать, какая наименьшая сумма понадобится мальчику, чтобы добраться до верхней ступеньки.

    Решение

    Очевидно, что сумма, которую мальчик отдаст на N-ой ступеньке, есть сумма, которую он отдал до этого плюс стоимость самой ступеньки. «Сумма, которую он отдал до этого» зависит от того, с какой ступеньки мальчик шагает на N-ую - с (N-1)-й или с (N-2)-й. Выбирать нужно наименьшую.

    Реализация

    Например, так:

    Int Imax; //*ввод с клавиатуры числа ступенек* DP = new int; for(int i=0; i

    Калькулятор

    Имеется калькулятор, который выполняет три операции:

    • Прибавить к числу X единицу;
    • Умножить число X на 2;
    • Умножить число X на 3.

    Определите, какое наименьшее число операций необходимо для того, чтобы получить из числа 1 заданное число N. Выведите это число, и, на следующей строке, набор исполненных операций вида «111231».

    Решение

    Наивное решение состоит в том, чтобы делить число на 3, пока это возможно, иначе на 2, если это возможно, иначе вычитать единицу, и так до тех пор, пока оно не обратится в единицу. Это неверное решение, т.к. оно исключает, например, возможность убавить число на единицу, а затем разделить на три, из-за чего на больших числах (например, 32718) возникают ошибки.

    Правильное решение заключается в нахождении для каждого числа от 2 до N минимального количества действий на основе предыдущих элементов, иначе говоря: F(N) = min(F(N-1), F(N/2), F(N/3)) + 1 . Следует помнить, что все индексы должны быть целыми.

    Для воссоздания списка действий необходимо идти в обратном направлении и искать такой индекс i, что F(i)=F(N) , где N - номер рассматриваемого элемента. Если i=N-1 , записываем в начало строки 1, если i=N/2 - двойку, иначе - тройку.

    Реализация
    int N; //Ввод с клавиатуры int a = new int; a= 0; { int min; for(int i=2; i1){ if(a[i]==a+1){ ret.insert(0, 1); i--; continue; } if(i%2==0&&a[i]==a+1){ ret.insert(0, 2); i/=2; continue; } ret.insert(0, 3); i/=3; } } System.out.println(a[N]); System.out.println(ret);

    Самый дешёвый путь

    В каждой клетке прямоугольной таблицы N*M записано некоторое число. Изначально игрок находится в левой верхней клетке. За один ход ему разрешается перемещаться в соседнюю клетку либо вправо, либо вниз (влево и вверх перемещаться запрещено). При проходе через клетку с игрока берут столько килограммов еды, какое число записано в этой клетке (еду берут также за первую и последнюю клетки его пути).

    Требуется найти минимальный вес еды в килограммах, отдав которую игрок может попасть в правый нижний угол.