Гипотеза уникальной Земли

Одна из современных гипотез, названная гипотезой уникальной Земли , утверждает, что многоклеточная жизнь может быть чрезвычайно редкой из-за возможной исключительности и редкости планет земного типа. В ней утверждается, что целый ряд невероятных совпадений сделали возможным возникновение сложных форм жизни на Земле. Несколько примеров таких совпадений приведены ниже.

Спиральные витки галактики содержат много сверхновых звёзд, радиация которых, как считается, делает высшие формы жизни невозможными. Наша Солнечная система находится на особенной орбите внутри Млечного Пути : она является почти идеальной окружностью такого радиуса, что она двигается с той же скоростью, что и гравитационные ударные волны, формирующие спиральные витки. Земля пребывала между спиральными витками Галактики на протяжении сотен миллионов лет, или свыше тридцати полных галактических оборотов, то есть практически всё время, пока на Земле существуют высшие формы жизни.

Другой необходимый элемент - Луна . Популярная теория гигантского столкновения утверждает, что она сформировалась вследствие редкого столкновения молодой Земли с планетой размером с Марс примерно 4,45 миллиардов лет назад. Столкновение должно было произойти лишь под определённым углом: прямой угол уничтожил бы Землю, более пологий угол привёл бы к тому, что другая планета бы просто отрикошетила от Земли. Приливы, вызванные Луной, стабилизировали земную ось: без влияния Луны её колебания (прецессия) были бы намного большими и привели бы к громадным изменениям климата, которые могли уничтожить жизнь на Земле. Лунные приливы, вероятно, разогрели земное ядро , которое должно быть расплавленным, чтобы генерировать магнитное поле , существенно ослабляющее влияние солнечного ветра .

Сторонники противоположной точки зрения настаивают, что требование наличия земных условий для существования жизни свидетельствуют об узком видении природы, поскольку исключает из рассмотрения формы жизни, принципиально отличные от земных (См. углеродный шовинизм).

Уравнение Дрейка

Те, кто верит в предложенные доктором Карлом Саганом более оптимистические оценки параметров уравнения Дрейка, утверждают, что разумная жизнь является распространённым явлением во Вселенной. Некоторые из них считают, что приняв обоснованные, по их мнению, параметры уравнения Дрейка, мы приходим к выводу, что наличие большого количества внеземных цивилизаций не только возможно, но «практически гарантировано». Тем не менее, сторонники принципа Ферми считают, что в связи с отсутствием доказательств в пользу обратного, человечество - единственная технологически развитая цивилизация как минимум в нашей части Млечного Пути. Также они считают, что поскольку мы не имеем надёжных оценок для параметров уравнения Дрейка, то его нельзя использовать как единственный способ для оценки числа внеземных цивилизаций, а следует опираться на данные, которые мы только начинаем систематически накапливать.

Существующие данные

Оппоненты, однако, говорят об отсутствии инструментов для обработки всех сигналов как о возможной причине отсутствия разумных сигналов. Например, главный астроном из института SETI Сет Шостак (Seth Shostak) утверждает, что в галактике может существовать большое количество радиопередатчиков от сотен миллиардов звёзд, но чтобы уловить и обработать все сигналы, понадобятся большие вычислительные мощности, на данный момент недоступные человеку . Кроме того, по их мнению, внеземные цивилизации или инопланетяне могут просто использовать способы связи, отличные от радиоволн, или по каким-либо причинам скрывать сам факт радиопередач. Их оппоненты в то же время указывают, что это может действительно быть так, но только в случае, если существует/существовало очень малое количество цивилизаций, и если бы их было столько, сколько прогнозировали Саган и Дрейк, то даже при условии, что только часть из них использовала радио во время своего развития, этого было бы достаточно, чтобы заметно повлиять на радиоспектр части звёзд.

Антропный принцип

Подобно гипотезе уникальной Земли, антропный принцип утверждает, что Вселенная «тонко настроена» на известную нам форму жизни. Он утверждает, что поскольку жизнь на Земле была бы невозможна, если какой-либо из многих параметров физической Вселенной был даже в незначительной мере изменён, то похоже, что люди имеют преимущество над любой другой формой разумной жизни, делая допущение о том, что люди - единственный разумный вид, вероятным. Ещё более убедительным является ряд работ Стивена Хокинга , опубликованных в 2004 году, в которых утверждается, что вероятность того, что вследствие Большого взрыва возникнет вселенная того же типа, что мы наблюдаем сегодня, составляет 98 %.

Критики возражают, объявляя это утверждение тавтологией : в изменённой Вселенной жизнь в известной нам форме, возможно, не существовала бы, но могла бы существовать в другой форме.

Вклад Фримена Дайсона

Упоминается в научно-фантастическом произведении Майкла Крайтона «Сфера ».

Неоднократно упоминается в рассказе Фредерика Пола «Ферми и стужа». Парадокс объясняется тем, что как только цивилизация достигает достаточного уровня технологического развития для выхода в космос, она уничтожает себя в ядерной войне .

См. также

Примечания

Ссылки

  • Shostak, Seth (25 October 2001). «Our Galaxy Should Be Teeming With Civilizations, But Where Are They?». Space.com. Space.com. Retrieved on April 08, 2006.
  • Парадокс Ферми (англ.)
  • Наши наблюдения неполны и логические ошибки (англ.)
  • Стефан Уэбб. 50 решений парадокса Ферми.
  • Язев С. А. Почему все-таки молчит космос? //Земля и Вселенная, 1998. N 1. С. 65-71.
  • Шкловский И. С. Существуют ли внеземные цивилизации? // Земля и Вселенная . - 1985, № 3. - С. 76-80.


Парадокс Ферми против уравнения Дрейка. Мы одни во Вселенной?

Прошло почти 14 миллиардов лет с момента Большого взрыва, и некоторые из чужеродных цивилизаций должны были стать технологически развитыми и межпланетными, поэтому их обнаружение не составило бы труда.

Like Love Haha Wow Sad Angry

1 1

«Где они?», задавался вопросом физик Энрико Ферми, размышляя о жизни в космосе. Он рассуждал, что, если генезис жизни не сложный, то Вселенная должна изобиловать зелеными существами на триллионах планет. Прошло почти 14 миллиардов лет с момента Большого взрыва, и некоторые из чужеродных цивилизаций должны были стать технологически развитыми и межпланетными, поэтому их обнаружение не составило бы труда. Так почему же мы до сих пор «одиноки»? Есть ответ: отсутствие доказательств внеземной жизни известно как парадокс Ферми.

Энрико Ферми. Итальянский физик, наиболее известный благодаря созданию первого в мире ядерного реактора, внесший большой вклад в развитие ядерной физики, физики элементарных частиц, квантовой и статистической механики. Считается одним из «отцов атомной бомбы».

Парадокс подверг сомнению возможность обнаружения внеземных цивилизаций и связан с попыткой ответить на один из важнейших вопросов современности: «Является ли человечество единственной технологически развитой цивилизацией во Вселенной?». Попыткой ответа на этот вопрос служит уравнение Дрейка, которое оценивает количество возможных для контакта внеземных цивилизаций. Оно может давать при некоторых значениях неизвестных параметров довольно высокую оценку шансам на такую встречу. На подобные выводы Ферми ответил, что, если в нашей Галактике должно существовать множество развитых цивилизаций, то надо ответить на вопрос: «Где они? Почему мы не наблюдаем никаких следов разумной внеземной жизни, таких, например, как зонды, космические корабли или радиопередачи?». Допущения, которые легли в основу парадокса Ферми, часто называют Принципом Ферми.

Уравнение Дрейка: N = R · f p · n e · f l · f i · f c · L , где:

N – количество разумных цивилизаций, готовых вступить в контакт;

R – количество звёзд, образующихся в год в нашей галактике;

f p – доля звезд, обладающих планетами;

n e – среднее количество планет (и спутников) с подходящими условиями для зарождения цивилизации;

f l – вероятность зарождения жизни на планете с подходящими условиями;

f i – вероятность возникновения разумных форм жизни на планете, на которой есть жизнь;

f c – отношение количества планет, разумные жители которых способны к контакту и ищут его, к количеству планет, на которых есть разумная жизнь;

L – время жизни такой цивилизации (то есть время, в течение которого цивилизация существует, способна вступить в контакт и хочет вступить в контакт).

Фрэнк Дональд Дрейк сформулировал уравнение в 1960 году во время подготовки к телеконференции, на которой собрались ведущие астрономы, физики, биологи, социологи и промышленники, чтобы обсудить возможность обнаружения разумной жизни на других планетах.

Фрэнк Дональд Дрейк. Родился в Чикаго, учился на факультете электроники Корнеллского университета. Прослушав курс лекций прославленного астронома Отто Струве о формировании планетных систем, на всю жизнь загорелся интересом к вопросам внеземной жизни и цивилизаций.

Когда Дрейк выступал со своей формулой, он не предполагал, что она послужит аргументом для сторонников SETI, обеспечившим проекту финансирование на десятилетия вперед.

Парадокс Ферми имеет много других предполагаемых решений, например, что мы действительно одиноки в космосе, или, что Земля изолирована от межзвездного сообщества до тех пор, пока люди не станут «ответственными гражданами галактики». Самое страшное из всех – идея Великого фильтра – некий неизбежный вектор развития, при котором у всех цивилизаций есть относительно короткий срок существования, возможно потому что они развиваются и становятся жертвами саморазрушительных технологий. При таком сценарии шансы на существование двух цивилизаций в непосредственной близости ничтожно малы, и они всегда будут ощущать себя одинокими.

Парадокс Ферми? Нет, не слышали!

Американский астроном Джейсон Райт, профессор астрономии из Университета штата Пенсильвания, 24 апреля 2017 года опубликовал статью, в которой он перефразировал Ферми так: «Где они были?». Он задается вопросом, возникали ли в прошлом в Солнечной системе и ее окрестностях «коренные» технически развитые цивилизации и какое наследие они могли оставить нам, жителям Земли.

До того, как люди начали бродить по Земле

Исходя из работы Джейсона Райта, Вселенная может быть заполнена остатками мертвых цивилизаций. Ученый не опирается на шансы «созерцать» жизнь где-то за десятки и сотни световых лет, где ее невероятно сложно обнаружить, а рассматривает возможность существования цивилизаций в ранней Солнечной системе, которые пали жертвой Великого Фильтра сотни миллионов, если не миллиардов, лет до того, как люди сделали первые шаги по Земле.

Инопланетная жизнь в представлении Карла Сагана.

Если бы разумная жизнь существовала здесь или на других планетах и лунах, какие следы и где мы должны искать? В разрушительной среде Венеры и агрессивной тектонике Земли любые «рукотворные» сооружения были бы разрушены за столь долгое время. Но на медленно меняющихся Марсе, Луне и, возможно, покрытых вечной мерзлотой спутниках газовых гигантов, города древних цивилизаций могли бы сохраниться под толщей льда и каменных пород. Кроме этого, технически развитые предшественники могли бы оставить после себя радиоизотопные источники энергии, выдающие себя на протяжении миллиардов лет.

Парадо́кс Фе́рми - отсутствие видимых следов деятельности инопланетных цивилизаций , которые должны были бы расселиться по всей Вселенной за миллиарды лет своего развития. Парадокс был предложен физиком Энрико Ферми , который подверг сомнению возможность обнаружения внеземных цивилизаций, и связан с попыткой ответить на один из важнейших вопросов современности: «Является ли человечество единственной технологически развитой цивилизацией во Вселенной?». Попыткой ответа на этот вопрос служит уравнение Дрейка , которое оценивает количество возможных для контакта внеземных цивилизаций. Оно может давать при некоторых значениях неизвестных параметров довольно высокую оценку шансам на такую встречу. На подобные выводы Ферми ответил, что если в нашей галактике должно существовать множество развитых цивилизаций, то надо ответить на вопрос: «Где они? Почему мы не наблюдаем никаких следов разумной внеземной жизни, таких, например, как зонды, космические корабли или радиопередачи?». Допущения, которые легли в основу парадокса Ферми, часто называют Принципом Ферми.

Парадокс можно сформулировать так: С одной стороны, выдвигаются многочисленные аргументы за то, что во Вселенной должно существовать значительное количество технологически развитых цивилизаций. С другой стороны, отсутствуют какие-либо наблюдения, которые бы это подтверждали. Ситуация является парадоксальной и приводит к выводу, что или наше понимание природы, или наши наблюдения неполны и ошибочны. Как сказал Энрико Ферми, «Ну, и где они в таком случае?»

Различными авторами предложено большое число теоретических разрешений или объяснений парадокса Ферми. Спектр этих гипотез весьма широк: от утверждения единственности Земли как обитаемой планеты или невозможности отличить искусственные сигналы от естественных до «гипотезы зоопарка ».

Энциклопедичный YouTube

    1 / 5

    ✪ Парадокс Ферми (рассказывает астрофизик Владимир Липунов)

    ✪ Парадокс Ферми | Уравнение Дрейка

    ✪ «Черный аттрактор» как новое решение парадокса Ферми

    ✪ Парадокс Ферми - Где все пришельцы?(1/2) (Kurzgesagt)

    ✪ Время и его парадоксы (рассказывает профессор Рувин Фербер)

    Субтитры

История

Обсуждение вопроса Циолковским

В известной вселенной можно насчитать миллион миллиардов солнц. Стало быть, мы имеем столько же планет, сходных с Землей. Невероятно отрицать на них жизнь. Если она зародилась на Земле, то почему же не появится при тех же условиях на сходных с Землей планетах? Их может быть меньше числа солнц, но все же они должны быть. Можно отрицать жизнь на 50, 70, 90 процентах всех этих планет, но на всех - это совершенно невозможно. <…>

На чем основано отрицание разумных планетных существ вселенной? <…> Нам говорят: если бы они были, то посетили бы Землю. Мой ответ: может быть, и посетят, но не настало еще для того время. <…> Должно прийти время, когда средняя степень развития человечества окажется достаточной для посещения нас небесными жителями. <…> Не пойдем же мы в гости к волкам, ядовитым змеям или гориллам. Мы их только убиваем. Совершенные же животные небес не хотят то же делать с нами.

К. Э. Циолковский. «Планеты заселены живыми существами»

Дискуссия летом 1950 года

Знаменитый вопрос: «Являемся ли мы единственной разумной и технологически продвинутой цивилизацией во Вселенной?» Ферми задал летом 1950 года в кафетерии Лос-Аламосской лаборатории в ходе неформальной беседы с тремя своими коллегами. Точное содержание беседы по-разному описывается в воспоминаниях её свидетелей. Беседа между Ферми и тремя его коллегами - Эдвардом Теллером , Эмилем Конопинским и Гербертом Йорком - совершенно не предназначалась для записи. Согласно Карлу Сагану , сам факт этого разговора был выдуман , однако расследование Эрика М. Джонса, опубликованное в 1985 году , свидетельствует о том, что подобная беседа действительно имела место. Свидетельства троих участвовавших в ней учёных, а также тех, кто был рядом, представляют собой единственный источник информации об этой беседе. Сам Ферми, по-видимому, впоследствии не высказывался по этому вопросу. Джонс восстановил обстоятельства той встречи, связавшись по почте с коллегами Ферми, а также со всеми, кто мог присутствовать в тот момент в «Ложе Фуллера» (англ. Fuller Lodge ) - столовой персонала лаборатории, где происходила беседа. Наиболее надёжными свидетельствами считаются показания Ханса Марка, хотя тот и не принимал непосредственного участия в разговоре . Герберт Йорк отметил, что беседа состоялась летом 1950 года, во всяком случае, после публикации карикатуры Алана Данна (англ. Alan Dunn ), датированной 20 мая 1950 года .

Эмиль Конопинский в переписке с Джонсом смог очень ясно вспомнить разговор, который в общем был посвящён инопланетянам. Итальянский физик в то время говорил о карикатуре, опубликованной в журнале The New Yorker 20 мая 1950 года. Её автор Алан Данн, чтобы объяснить произошедшие незадолго до этого в Нью-Йорке таинственные исчезновения уличных урн, изобразил инопланетян, выгружающих на своей планете из летающей тарелки земные мусорные урны. Это стало толчком к увлечённой беседе между сидящими за столом мужчинами о возможности существования внеземной жизни и доказательствах такой возможности . Конопинский добавил, что с этого рисунка разговор перешёл на более серьёзную тему : факт того, что мы не наблюдаем никаких следов, ни визуальных, ни радио. Ферми спросил: «Если инопланетяне существуют, где же они?». Конопинский вспоминал, что вопрос Ферми прозвучал, скорее, так: «Вы не задумывались над тем, где все?» . Согласно Ферми, могли бы быть три вида доказательств: наличие зондов, кораблей или радиопередач. Однако ничто из этого человечество не обнаружило. Согласно Мишелю Мишо, в тот момент Ферми предложил раннюю неформальную версию знаменитого уравнения , сформулированного более ясно Фрэнком Дональдом Дрейком несколько лет спустя .

Гипотеза уникальной Земли

Одна из современных гипотез, названная гипотезой уникальной Земли, утверждает, что многоклеточная жизнь может быть чрезвычайно редкой из-за возможной исключительности и редкости планет земного типа. В ней утверждается, что целый ряд невероятных совпадений сделали возможным возникновение сложных форм жизни на Земле. Несколько примеров таких совпадений приведены ниже.

Спиральные витки галактики содержат много сверхновых звёзд, радиация которых, как считается, делает высшие формы жизни невозможными. Наша Солнечная система находится на особенной орбите внутри Млечного Пути : она является почти идеальной окружностью такого радиуса, что она движется с той же скоростью, что и гравитационные ударные волны, формирующие спиральные рукава. Земля пребывала между спиральными рукавами Галактики на протяжении сотен миллионов лет, или три полных галактических оборота, то есть практически всё время, пока на Земле существуют высшие формы жизни.

Другой необходимый элемент - Луна. Популярная гипотеза гигантского столкновения утверждает, что она сформировалась вследствие редкого столкновения молодой Земли с планетой размером с Марс примерно 4,45 миллиарда лет назад. Столкновение с образованием Луны должно было произойти лишь под определённым углом: прямой угол уничтожил бы Землю, более пологий угол привёл бы к тому, что другая планета просто отрикошетила бы от Земли. Приливы, вызванные Луной, стабилизировали земную ось: без влияния Луны колебания оси (прецессия) были бы намного больше и привели бы к громадным изменениям климата, которые могли регулярно уничтожать развивающуюся жизнь и откатывать её назад к простым формам. Лунные приливы, вероятно, разогрели земное ядро [ ] , которое должно быть расплавленным, чтобы генерировать магнитное поле , существенно ослабляющее влияние солнечного ветра .

Сторонники противоположной точки зрения настаивают, что требование наличия земных условий для существования жизни свидетельствуют об узком видении природы, поскольку исключает из рассмотрения формы жизни, принципиально отличные от земных (См. углеродный шовинизм).

Уравнение Дрейка

Сторонники предложенных Карлом Саганом более оптимистических оценок параметров уравнения Дрейка утверждают, что разумная жизнь является распространённым явлением во Вселенной. Некоторые из них считают, что приняв обоснованные, по их мнению, параметры уравнения Дрейка, мы приходим к выводу, что наличие большого количества внеземных цивилизаций не только возможно, но «практически гарантировано». Тем не менее сторонники принципа Ферми считают, что в связи с отсутствием доказательств в пользу обратного, человечество - единственная технологически развитая цивилизация как минимум в нашей части Млечного Пути.

Другим объяснением отсутствия сигналов служит предположение, что цивилизация становится технологически развитой одновременно с возможностью самоуничтожения - например, ядерная война или экологическая катастрофа. Таким образом, у цивилизации или очень мало времени, чтобы её заметили, или его нет вовсе.

Существующие данные

Оппоненты, однако, говорят об отсутствии инструментов для обработки всех сигналов как о возможной причине отсутствия разумных сигналов. Например, главный астроном из Сет Шостак ?! утверждает, что в галактике может существовать большое количество радиопередатчиков от сотен миллиардов звёзд, но чтобы уловить и обработать все сигналы, понадобятся большие вычислительные мощности, на данный момент недоступные человеку . Кроме того, по их мнению, внеземные цивилизации могут просто использовать способы связи, отличные от радиоволн, или по каким-либо причинам скрывать сам факт радиопередач. Их оппоненты в то же время указывают, что это может действительно быть так, но только в случае, если существует/существовало очень малое количество цивилизаций, и если бы их было столько, сколько прогнозировали Саган и Дрейк, то даже при условии, что только часть из них использовала радио во время своего развития, этого было бы достаточно, чтобы заметно повлиять на радиоспектр части звёзд.

Заявление об отсутствии инструментов для обработки всех сигналов как о возможной причине отсутствия разумных сигналов также применимо для восприятия человека, как биологического существа. Поскольку в основе аппарата восприятия лежит интерпретация сигналов от рецепторов посредством нейронной сети, известна её особенность: невозможно распознавание образа без обучения. То есть для распознавания следов инопланетных цивилизаций, нужно чтобы на них указали и объявили их следами инопланетных цивилизаций. Однако, данное действие противоречит принципу Поппера и отвергается наукой, в особенности, если образ уже имеет устойчивое сопоставление с традиционной культурой. Поэтому, определенный интерес представляют находки, технологические свойства которых не соответствуют официальной истории.

Антропный принцип

Подобно гипотезе уникальной Земли, антропный принцип утверждает, что Вселенная «тонко настроена» на известную нам форму жизни. Он утверждает, что поскольку жизнь на Земле была бы невозможна, если какой-либо из многих параметров физической Вселенной был даже в незначительной мере изменён, то похоже, что люди имеют преимущество над любой другой формой разумной жизни, делая допущение о том, что люди - единственный разумный вид, вероятным. Ещё более убедительным является ряд работ Стивена Хокинга , опубликованных в 2004 году, в которых утверждается, что вероятность того, что вследствие Большого взрыва возникнет вселенная того же типа, что мы наблюдаем сегодня, составляет 98 %.

Критики возражают, объявляя это утверждение тавтологией : в изменённой Вселенной жизнь в известной нам форме, возможно, не существовала бы, но могла бы существовать в другой форме.

Вклад Фримена Дайсона

Доктор Фримен Дайсон популяризировал концепцию Сферы Дайсона - оболочки вокруг звезды, которая может быть создана развитой цивилизацией, стремящейся максимально полно использовать энергию её излучения. Подробное строение оболочки не описывалось, были предложены разные варианты её конструкции. Такая сфера поглотила бы большую часть видимого диапазона звезды и излучала бы чётко определяемый спектр чёрного тела с вероятным максимумом в инфракрасном диапазоне и отсутствующими сильными спектральными линиями , свойственными раскалённой плазме . Он предложил астрономам искать необычно окрашенные звёзды, наличие которых, как он предположил, может быть объяснено только существованием высокоразвитой цивилизации. На сегодняшний день не удалось выявить ни одной звезды с указанными характеристиками.

Некоторые сторонники принципа Ферми также утверждают, что высокоразвитая цивилизация должна стремиться максимально полно использовать энергию собственной звезды, изменяя её электромагнитную сигнатуру.

Доктор Дайсон также предложил тип прибора, который, как он считал, с большой вероятностью должен появиться на протяжении жизни каждой высокоразвитой цивилизации, и отсутствие которого, похоже, подтверждает принцип Ферми. Он сказал, что по его мнению, в ближайшее время будет возможно построить космический аппарат для поиска внеземной жизни, источником питания для которого стала бы окружающая среда, и который был бы способен по прибытии в другую систему построить значительное количество своих копий для расширения области поиска. Количество таких поисковых аппаратов вырастало бы в геометрической прогрессии, поскольку каждый из новопостроенных аппаратов по прибытии на место назначения строил бы снова свои копии, что позволило бы охватить поиском значительную часть галактики, даже с учётом ограничения на скорость полёта. Даже за ограниченое время до миллиарда лет, копии такого аппарата были бы уже на всех планетах Галактики, чего не наблюдается.

Инопланетная колонизация

Сторонники принципа Ферми также отмечают, что из того, что нам известно о способности жизни на нашей планете распространяться даже в области с экстремальными условиями и ограниченностью ресурсов, следует надеяться, что развитая внеземная цивилизация почти наверняка ищет новые ресурсы и начнёт колонизацию космоса. Несколько авторов дали свои оценки того, сколько времени заняло бы у такой цивилизации колонизировать всю Галактику, их оценки колеблются между 5 и 50 миллионами лет - относительно малый промежуток времени в космологических масштабах.

Однако здесь перед нами снова встаёт вопрос: «Ну и где они в таком случае?»

Подсчитано, что поперечник нашей Галактики составляет около 100 тыс. световых лет. И если в Галактике существует хотя бы одна цивилизация, способная передвигаться между звёздами со скоростью в 1000 раз меньше скорости света, за 100 млн лет она распространилась бы по всей Галактике. Так почему же мы не видим её представителей на Земле?

Считается (см. Массовое вымирание), что за последние 500 млн лет существования жизни на нашей планете, она, как минимум, пять раз была почти полностью уничтожена в результате космических катастроф.

Фрэнк Дрейк (Frank Drake) и его знаменитая формула.

Что такое парадокс Ферми?

Парадокс Ферми  - это суровое противоречие между оценками высокой вероятности существования внеземной жизни и отсутствием доказательств того же. Основные аргументы таковы:

  • В нашей галактике около 100 миллиардов звезд, некоторые из них даже старше нашего Солнца.
  • Вокруг большинства этих звезд должны быть планеты. Это составляет сотни миллиардов планет. Многие из них являются потенциально пригодными для жизни.
  • Некоторые из этих планет могут привести к возникновению Жизни. И также некоторые из них могут породить разумную жизнь. Это составляет потенциально миллионы миров с интеллектуальными цивилизациями.
  • Некоторые из этих цивилизаций могут развивать межзвездное путешествие. Даже при медленном темпе !

Поэтому возникает вопрос: если существует так много потенциальных внеземных цивилизаций, то почему ни одна из них до сих пор не связалась с нами? Это предполагаемый парадокс. Полный аргумент Парадокса Ферми можно найти в Wait But Why (на английском языке ) или в Википедии .

Есть, по существу, 2 явных противоречия, которые могут разрушить парадокс Ферми:

  1. Оценка числа внеземных цивилизаций, которые могут общаться с нами.
  2. Отсутствие каких-либо доказательств контакта с инопланетной цивилизацией.

Очевидно, что пункт 2 не имеет значения, если оценка пункта 1 неверна. Пункт 1 (т. е. Число цивилизаций, с которыми возможно общение ) находится уравнением Дрейка , которое можно резюмировать следующим образом:

Уравнение Дрейка  - формула, предназначенная для определения числа внеземных цивилизаций в Галактике, с которыми у человечества есть шанс вступить в контакт. Сформулирована в 1960 году профессором астрономии и астрофизики калифорнийского университета Санта Круз (Santa Cruz ), доктором Фрэнком Дрейком .
Выглядит формула следующим образом:
N =R fp Ne fl fi fc L
где:
N - количество разумных цивилизаций, готовых вступить в контакт;
R  - количество звёзд, образующихся в год в нашей галактике;
fp  - доля звёзд, обладающих планетами;
Ne  - среднее количество планет (и спутников) с подходящими условиями для зарождения цивилизации;
fl  - вероятность зарождения жизни на планете с подходящими условиями;
fi - вероятность возникновения разумных форм жизни на планете, на которой есть жизнь;
fc - отношение количества планет, разумные жители которых способны к контакту и ищут его, к количеству планет, на которых есть разумная жизнь;
L  - время жизни такой цивилизации (то есть время, в течение которого цивилизация существует, способна вступить в контакт и хочет вступить в контакт).

Посмотрим на каждый из параметров уравнения Дрейка. Астрофизика достаточно продвинулась, чтобы позволить нам достоверно оценить первые 2 параметра:

  1. Средняя скорость образования звезд в галактике: (R *) = 1,5–3 звезды в год.
  2. Доля этих звезд с планетами: f (p) = ~ 1 .

Таким образом, первые 2 параметра уравнения Дрейка не представляют проблемы. Однако последующие параметры очень грубо оценены, что означает, что с ними связаны большие неопределенности.

Проблема № 1: (Ne) Наши оценки обитаемых планет предвзяты

Космический телескоп Кеплера (который представляет большую часть нашего прогресса по поиску пригодных для жизни планет) может исследовать только небольшой сектор нашей галактики, показанный выделенной желтой частью на картинке внизу:

  1. Это означает, что наш поиск обитаемых миров только начался. Следовательно, наша оценка суммарных обитаемых миров в галактике экстраполируется из небольшого наблюдаемого угла.
  2. Наши оценки количества обитаемых миров также предвзяты к условиям жизни в этом наблюдаемом углу. Условия жизни не одинаковы во всей галактике, некоторые части Млечного пути более пригодны для жилья, чем другие. Например, центральные части галактики более подвержены воздействию излучения, чем внешние части, в которых мы живем.
  3. Спутники планет (луны) могут не находиться в пригодной для жизни зоне звезды, чтобы иметь возможность производить Жизнь. Гравитационное притяжение газовых гигантов, таких как Юпитер в сочетании с эллиптической орбитой спутника, создает внутренние трения на таких лунах. Это приводит к внутреннему нагреву и доступности энергетических ресурсов, которые могут быть использованы потенциальной формой жизни. Проблема в том, что мы не знаем, как оценить такие обитаемые луны. Мы даже не знаем, как много таких лун, а тем более не знаем об их обитаемости.
  4. Мы не знаем, действительно ли планеты на близких орбитах вокруг красных карликовых звезд пригодны для жилья. Одним из таких примеров потенциально пригодной для жизни планеты является недавно обнаруженная Proxima b . Ответ на вопрос, действительно ли пригодны такие планеты, может быть значимым, поскольку звезды красного карлика являются наиболее распространенными звездами в галактике. Но дело в том, что мы пока не знаем этого ответа.

В принципе, мы на самом деле не знаем, какая часть планет (или лун) в галактике пригодна для жизни.

Проблема № 2: Без (Ne) мы не можем достоверно оценить, сколько планет порождает разумную жизнь

Доля планет, на которых развивается жизнь (fl) : Поскольку мы знаем только одну планету с Жизнью на ней, это оценка, которую мы не можем реально сделать в течение длительного времени. Наши поиски пригодных для жизни планет должны существенно расшириться для того, чтобы мы могли использовать (Ne). И тогда, если мы действительно обнаружим некоторые формы чужой жизни, мы можем сказать что-то значимое о том, на скольких потенциально обитаемых планетах действительно может существовать Жизнь.

Доля планет с жизнью, на которых существует разумная форма жизни (fi): Без нахождения множества планет или лун с жизнью сначала, эта оценка бессмысленна.

Проблема #3: Межзвездные сообщения могут быть не так популярны, как мы предполагаем

Доля планет с разумной жизнью, способных к межзвездной коммуникации (fс) : Если мы в конечном итоге найдем много планет с жизнью (и некоторые из них с разумной жизнью) в течение длительных периодов времени, мы будем ближе к ответу на вопрос, сколько на самом деле цивилизаций может использовать межзвездную связь. Только тогда мы можем получить истинную оценку того, является ли межзвездная связь столь же распространенной, как мы предполагаем. Не говоря уже о том, что если до тех пор нам удастся каким-то образом общаться с разумной цивилизацией, то 2-е противоречие парадокса Ферми (отсутствие доказательств какого-либо общения) все равно разваливается.

Проблема № 4: Шкала времени Вселенной слишком велика

Средняя продолжительность существования таких цивилизаций (L) : Подумайте, что мы, люди, появились на Земле в нашей нынешней форме как разумный вид всего лишь 200 000 лет назад. Для сравнения, Земле 4,5 миллиарда лет, а Вселенной 13,7 миллиарда лет! Таким образом, наше существование как разумного вида было просто мигом в сравнении с космическими масштабами.

Точно так же все наши радиосигналы, отправляемые в космос, чтобы показать себя как технологически развитую цивилизацию, даже не достигли 100 световых лет от нас, из-за скорости света, при которой распространяются радиоволны.

Наша сфера радиопередачи в диаметре всего 200 световых лет (маленькая голубая точка внизу справа), тогда как диаметр галактики Млечный Путь составляет 100 000 световых лет.

Введение

Вам не кажется, что термин "жидкостное охлаждение" наводит на мысль об автомобилях? На самом деле, жидкостное охлаждение является неотъемлемой частью обычного двигателя внутреннего сгорания почти 100 лет. Сразу же напрашивается вопрос: почему именно оно является предпочтительным методом охлаждения дорогих автомобильных двигателей? Чем же так замечательно жидкостное охлаждение?

Чтобы это выяснить, мы должны сравнить его с воздушным охлаждением. При сравнении эффективности этих методов охлаждения нужно учесть два наиболее важных свойства: теплопроводность и удельную теплоёмкость.

Теплопроводность - это физическая величина, показывающая, насколько хорошо вещество переносит тепло. Теплопроводность воды почти в 25 раз больше, чем воздуха. Очевидно, что это даёт водяному охлаждению огромное преимущество над воздушным, так как оно позволяет гораздо быстрее переносить тепло от горячего двигателя к радиатору.

Удельная теплоёмкость - ещё одна физическая величина, которая определяется как количество теплоты, необходимое для повышения температуры одного килограмма вещества на один кельвин (градус Цельсия). Удельная теплоёмкость воды почти в четыре раза больше, чем воздуха. Это означает, что для нагревания воды требуется в четыре раза больше энергии, чем для нагревания воздуха. И снова способность воды поглощать гораздо больше тепловой энергии без повышения собственной температуры является огромным преимуществом.

Итак, имеем неоспоримые факты того, что жидкостное охлаждение является более эффективным, чем воздушное. Однако совсем не обязательно, что это - лучший метод для охлаждения компонентов ПК. Давайте разберёмся.

Жидкостное охлаждение ПК

Несмотря на очень хорошие качества воды, касающиеся отвода тепла, есть несколько убедительных причин, чтобы не помещать воду в компьютер. Самая главная из этих причин - электропроводность охлаждающей жидкости.

Если бы вы случайно пролили стакан воды на бензиновый двигатель во время заправки радиатора, то ничего страшного бы не произошло; вода не повредила бы двигатель. А вот если бы вы вылили стакан воды на материнскую плату своего компьютера, то было бы очень плохо. Поэтому существует определённый риск, связанный с применением воды для охлаждения компонентов компьютера.

Следующий фактор - это сложность технического обслуживания. Системы воздушного охлаждения проще и дешевле производить и ремонтировать по сравнению с водяными аналогами, и радиаторы не требуют никакого технического обслуживания, разве что необходимо удалять из них пыль. С системами водяного охлаждения работать гораздо сложнее. Их труднее устанавливать, они часто требуют обслуживания, хотя и незначительного.

В-третьих, элементы системы водяного охлаждения для ПК стоят гораздо больше, чем детали системы охлаждения воздухом. Если комплект качественных радиаторов и вентиляторов воздушного охлаждения для процессора, видеокарты и материнской платы будет стоить, скорее всего, в пределах $150, то стоимость системы жидкостного охлаждения для тех же самых комплектующих легко может доходить до $500.

Имея столько недостатков, системы водяного охлаждения, казалось бы, не должны пользоваться спросом. Но на самом деле они настолько хорошо отводят тепло, что это их свойство оправдывает все недостатки.

На рынке можно найти полностью готовые к установке системы жидкостного охлаждения, которые уже не являются набором запасных частей, с которым энтузиастам приходилось иметь дело в прошлом. Готовые системы собраны, проверены и вполне надёжны. К тому же, водяное охлаждение не так опасно, как кажется: разумеется, всегда существует большой риск при использовании жидкостей в ПК, но если соблюдать осторожность, то этот риск существенно снижается. Что касается технического обслуживания, то современные хладагенты требуют замены довольно редко, может, раз в год. Что касается цены, то любое оборудование, которое работает с высокой производительностью, всегда стоит дороже обычного, будь то "Феррари" в вашем гараже или система водяного охлаждения для вашего компьютера. За высокую производительность приходится платить.

Предположим, что вас привлекает этот метод охлаждения или, по крайней мере, вам хотелось бы узнать, как он работает, что с ним связано, и каковы его преимущества.

Общие принципы водяного охлаждения

Цель любой системы охлаждения в ПК - отвести тепло от компонентов компьютера.

Традиционный воздушный кулер для ЦП отводит тепло от процессора на радиатор. Вентилятор активно прогоняет воздух через рёбра радиатора, и когда воздух проходит мимо, он забирает тепло. Воздух из корпуса компьютера выводится другим вентилятором или даже несколькими. Как видите, воздух совершает много перемещений.

В системах водяного охлаждения вместо воздуха для отвода тепла используется охлаждающая жидкость (теплоноситель) - вода. Вода выходит из резервуара по трубке, поступая туда, куда нужно. Блок водяного охлаждения может либо представлять собой отдельный блок вне корпуса ПК, либо может быть встроен в корпус. На диаграмме водоохладительный блок является внешним.

Тепло передаётся от процессора к головке охлаждения (водоблоку), которая представляет собой полый радиатор-теплосъёмник с входным и выходным отверстиями для охлаждающей жидкости. Когда вода проходит сквозь головку, она забирает с собой тепло. Теплоотдача за счёт воды происходит гораздо эффективнее, чем за счёт воздуха.

Затем нагретая жидкость закачивается в резервуар. Из резервуара она протекает в теплообменник, где отдаёт тепло радиатору, а тот - окружающему воздуху, обычно с помощью вентилятора. После этого вода попадает снова в головку, и цикл начинается сначала.

Сейчас, когда мы имеем хорошее представление об основах жидкостного охлаждения ПК, поговорим о том, какие системы доступны на рынке.

Выбор системы водяного охлаждения

Есть три основных типа систем водяного охлаждения: внутренние, внешние и встроенные. Главное различие между ними заключается в том, где по отношению к корпусу компьютера расположены их основные компоненты: радиатор/теплообменник, насос и резервуар.

Как следует из названия, встроенная охлаждающая система является составной частью корпуса ПК, то есть вмонтирована в корпус и продаётся в комплекте с ним. Так как вся система водяного охлаждения смонтирована в корпусе, этот вариант, возможно, является самым простым в обращении, потому что и внутри корпуса остаётся больше места, и снаружи нет громоздких конструкций. Недостатком, разумеется, является то, что если вы решите перейти на такую систему, то старый корпус ПК окажется бесполезным.


Если вам нравится корпус вашего ПК, и вы не хотите с ним расставаться, то внутренние и внешние системы водяного охлаждения, вероятно, покажутся более привлекательными. Компоненты внутренней системы помещаются внутрь корпуса ПК. Так как большинство корпусов не рассчитаны на размещение такой системы охлаждения, внутри становится довольно тесно. Однако установка подобных систем позволит сохранить ваш любимый корпус, а также переносить его без особых препятствий.


Третий вариант - внешняя система водяного охлаждения. Она тоже для тех, кто желает оставить старый корпус своего ПК. В таком случае радиатор, резервуар и водяной насос помещаются в отдельный блок вне корпуса компьютера. Вода по трубкам закачивается в корпус ПК, к головке охлаждения, а по обратной трубке нагретая жидкость выкачивается из корпуса в резервуар. Преимущество внешней системы заключается в том, что она может использоваться с любым корпусом. Она также позволяет использовать радиатор большего размера и может обладать лучшей охлаждающей способностью, чем средняя встроенная установка. Недостаток заключается в том, что компьютер с внешней системой охлаждения становится не таким мобильным, как с внутренними или встроенными системами охлаждения.


В нашем случае мобильность не имеет большого значения, однако нам хотелось бы оставить наш "родной" корпус ПК. Кроме того, нас привлекла повышенная эффективность охлаждения внешнего радиатора. Поэтому для обзора мы выбрали внешнюю систему охлаждения. Компания Koolance любезно предоставила нам отличный образец - систему EXOS-2.


Внешняя система водяного охлаждения Koolance EXOS-2.

EXOS-2 представляет собой мощную внешнюю систему водяного охлаждения с охлаждающей способностью свыше 700 Вт. Это не означает, что система потребляет 700 Вт - она потребляет лишь малую часть этого. Это значит, что система может эффективно справляться с тепловыделением в 700 Вт, поддерживая температуру на уровне 55 градусов Цельсия при 25 градусах окружающей среды.

EXOS-2 поставляется со всеми необходимыми трубками и приспособлениями, кроме головок охлаждения (водоблоков). Пользователю придётся купить подходящие головки, в зависимости от того, какие компоненты ПК он хочет охлаждать.

Охлаждение нескольких компонентов

Одним из преимуществ большинства систем жидкостного охлаждения является то, что они расширяемы и могут охлаждать не только процессор, но и другие компоненты. Даже после прохождения через головку охлаждения процессора, вода всё ещё способна охладить, например, чипсет материнской платы и видеокарту. Это основное, но по желанию можно добавить ещё больше компонентов, например жёсткий диск. Для этого каждому компоненту, который будет охлаждаться, потребуется свой собственный водоблок. Конечно, придётся заняться и планированием, чтобы убедиться, что охлаждающая жидкость протекает хорошо.

Почему выгодно объединить все три компонента - центральный процессор, чипсет и видеокарту - с хорошей системой водяного охлаждения?

Большинство пользователей понимают необходимость охлаждения процессора. ЦП сильно нагревается в корпусе ПК, а устойчивая работа компьютера зависит от поддержания низкой температуры процессора. Центральный процессор является одной из самых дорогих составляющих компьютера, и чем ниже поддерживаемая температура, тем дольше прослужит процессор. Наконец, охлаждение процессора особенно актуально при разгоне.


Водоблок центрального процессора и аксессуары для сборки.

Идея охлаждения чипсета материнской платы (вернее, северного моста), возможно, не всем знакома. Но учтите, что компьютер устойчив настолько, насколько стабилен его чипсет. Во многих случаях дополнительное охлаждение чипсета может поспособствовать стабильности системы, особенно при разгоне.


Водоблок чипсета и аксессуары для сборки.

Третий компонент очень важен для тех, кто обладает higher-end видеокартой и использует ПК для игр. Во многих случаях графический процессор видеокарты выделяет тепла больше остальных компонентов компьютера. Опять же, чем лучше охлаждение графического процессора, тем дольше он прослужит, тем выше устойчивость и больше возможностей для разгона.

Разумеется, для тех пользователей, кто не намерен использовать свой компьютер для игр и имеет маломощную графическую карту, водяное охлаждение окажется излишеством. Но для современных мощных и сильно нагревающихся видеокарт, водяное охлаждение может стать выгодным приобретением.

Мы собираемся установить охлаждающую систему на нашу видеокарту Radeon X1900 XTX. Хотя эта видеокарта не самая новая и мощная, она всё ещё хоть куда, и к тому же очень сильно нагревается. В случае с данной моделью компания Koolance предлагает не только водоблок для графического процессора/памяти, но и отдельную головку охлаждения для стабилизатора напряжения.


Водоблок для графического процессора и аксессуары для сборки.

Если системы воздушного охлаждения могут поддерживать температуру графического процессора в допустимых пределах, то нам не известны подобные системы, способные урегулировать чрезвычайно высокую температуру регуляторов напряжения на X1900, которая при нагрузках легко может достигать 100 градусов Цельсия. Интересно, как водоблок для регулятора напряжения повлияет на видеокарту X1900.


Водоблок для регулятора напряжения видеокарты и аксессуары для сборки.

Это основные компоненты, которые охлаждаются с помощью воды. Как говорилось выше, есть и другие компоненты, которые можно охлаждать таким образом. Например, компания Koolance предлагает блок питания мощностью 1200 Вт с жидкостным охлаждением. Все электронные компоненты блока питания погружены в жидкость, не проводящую ток, которая прокачивается через собственный внешний радиатор. Это - особый пример альтернативного жидкостного охлаждения, однако такая система отлично справляется с работой.


Koolance: 1200-Вт блок питания с жидкостным охлаждением.

Сейчас можно приступить к установке.

Планирование и установка

В отличие от систем воздушного охлаждения, установка системы жидкостного охлаждения требует некоторого планирования. Жидкостное охлаждение предполагает несколько ограничений, которые пользователь должен принять во внимание.

Во-первых, во время установки следует всегда помнить об удобстве. Трубки с водой должны свободно проходить внутрь корпуса и между компонентами. Кроме того, охлаждающая система должна оставлять свободное место, чтобы в дальнейшем работа с ней и комплектующими не вызывала трудностей.

Во-вторых, течение жидкости не должно быть ничем ограничено. Следует также помнить, что охлаждающая жидкость нагревается при прохождении через каждый водоблок. Если бы мы спроектировали систему таким образом, чтобы вода поступала в каждый последующий водоблок в такой последовательности: сначала к процессору, затем к чипсету, к видеокарте и, наконец, к регулятору напряжения видеокарты, то в водоблок регулятора напряжения всегда поступала бы вода, нагретая всеми предыдущими компонентами системы. Такой сценарий нельзя назвать идеальным для последнего компонента.

Чтобы как-то смягчить эту проблему, неплохо бы пустить охлаждающую жидкость по отдельным, параллельным путям. Если это сделать правильно, то поток воды будет менее нагружен, и в водоблоки каждого компонента будет поступать вода, не нагретая другими компонентами.

Набор Koolance EXOS-2, который мы выбрали для данной статьи, предназначен в основном для работы с соединительными трубками сечением 3/8", и водоблок для центрального процессора спроектирован с прессуемыми соединителями на 3/8". Однако головки охлаждения чипсета и видеокарты Koolance спроектированы для работы с соединительными трубками меньшего диаметра - 1/4". Из-за этого пользователь вынужден использовать сплиттер, разделяющий 3/8" трубку на две 1/4" трубки. Эта схема хорошо работает, когда мы разбиваем поток на два параллельных пути. По одной из этих 1/4" трубок будет охлаждаться чипсет материнской платы, а по другой - видеокарта. После того, как вода заберёт тепло от этих компонентов, две 1/4" трубки соединятся вновь в одну 3/8", по которой нагретая вода потечёт из корпуса ПК обратно в радиатор для охлаждения.

Весь процесс представлен на следующей схеме.


Спланированная конфигурация охлаждающей системы.

При планировании расположения собственной системы водяного охлаждения рекомендуем вам начертить простую схему. Это поможет правильно установить систему. Начертив план на бумаге, можно приступать к реальной сборке и установке.

Для начала можно разложить на столе все детали системы и прикинуть необходимую длину трубок. Не обрезайте слишком коротко, оставьте запас; потом вы всегда сможете отрезать лишнее.

После подготовительных работ можно приступать к установке водоблоков. Головка охлаждения Koolance для процессора, который мы используем, требует установки металлической скобы крепления на задней стороне материнской платы за процессором. И что хорошо, эта скоба крепления поставляется вместе с пластмассовой прокладкой, чтобы предотвратить замыкание с материнской платой. Сначала мы достали материнскую плату из корпуса и установили скобу крепления.


Затем можно снять радиатор, который прикреплён к северному мосту материнской платы. Мы воспользовались материнской платой Biostar 965PT, у которой чипсет охлаждается с помощью пассивного радиатора, прикреплённого пластмассовыми фиксаторами.


Чипсет материнской платы без радиатора. Готов к установке водоблока.

После того, как радиатор чипсета снят, следует прикрепить элементы крепления водоблока для чипсета.

Во время установки мы заметили, что элементы крепления водоблока для чипсета, в частности, пластмассовая прокладка, давит на резистор на задней части материнской платы. За этим нужно внимательно следить при установке. Чрезмерно сильное затягивание болтов может нанести непоправимый ущерб материнской плате, поэтому будьте внимательны и осторожны!

После установки элементов крепления головок охлаждения процессора и чипсета можно вернуть материнскую плату в корпус ПК и подумать о подсоединении водоблоков к процессору и чипсету. Не забудьте удалить с процессора и чипсета остатки старой термопасты перед тем, как нанести новый тонкий слой.


Процессор с элементами крепления для водоблока.

Возможно, вам захочется подсоединить трубки для воды к водоблокам до того, как вы установите их на материнскую плату. Но будьте при этом осторожны: можно не рассчитать давление и силу, которые при сгибании трубок приложатся к хрупким чипсету и процессору. Главное - оставить достаточную длину трубок, ведь подрезать их по размерам можно позже.

Сейчас можно осторожно установить водоблоки на процессор и чипсет с помощью предоставленных элементов крепления. Помните, что не нужно прижимать их с силой: достаточно просто хорошо их установить на процессор и чипсет. Применяя силу, можно повредить комплектующие.


После установки водоблоков на процессор и чипсет, можно переключить внимание на видеокарту. Удаляем имеющийся на ней радиатор и заменяем его водоблоком. В нашем случае мы также сняли радиатор стабилизатора напряжения и установили на карту второй водоблок. После того, как водоблоки установлены на видеокарту, можно подсоединить трубки. После этого видеокарту можно вставить в слот PCI Express.


После установки всех водоблоков следует подсоединить оставшиеся трубки. Последней нужно подключать трубку, которая ведёт к внешнему блоку водяного охлаждения. Убедитесь в правильности направления движения воды: охлаждённая жидкость должна поступать сначала в водоблок процессора.


Настал момент, когда можно заливать воду в резервуар. Наполняйте резервуар только до уровня, указанного в инструкции производителя. По мере заполнения резервуара, вода будет медленно поступать в трубки. Особенно внимательно следите за всеми креплениями и имейте под рукой полотенце на случай непредвиденной утечки жидкости. При малейших признаках протекания, немедленно устраните проблему.


Когда все компоненты собраны вместе, можно заливать охлаждающую жидкость.

Если вы всё сделали аккуратно, и в системе не возникло протечек, то вам нужно прокачать охлаждающую жидкость, чтобы удалить пузырьки воздуха. В случае с Koolance EXOS-2 это достигается путём замыкания контактов на блоке питания ATX, чтобы подать питание водяному насосу, но не подавать питание на материнскую плату.

Пусть система поработает в таком режиме, а вы в это время медленно и осторожно наклоняйте компьютер в одну и другую стороны, чтобы пузырьки воздуха вышли из водоблоков. Когда все пузырьки выйдут, вы, скорее всего, обнаружите, что в систему требуется добавить охлаждающей жидкости. Это нормально. Примерно через 10 минут после заливки в трубках не должно быть видно никаких пузырьков воздуха. Если вы убедились, что пузырьков воздуха больше нет и вероятность протечки исключена, то можно запускать систему по-настоящему.


Тестовая конфигурация и тесты

Все заботы по сборке и установке позади. Настало время посмотреть, какие преимущества даёт система водяного охлаждения.

Аппаратное обеспечение
Процессор Intel Core 2 Duo e4300, 1,8 ГГц (разогнан до 2250 МГц), кэш 2 Мбайт L2
Платформа Biostar T-Force 965PT (Socket 775), чипсет Intel 965, BIOS vP96CA103BS
Оперативная память Patriot Signature Line, 1x 1024 Мбайт PC2-6400 (CL5-5-5-16)
Жёсткий диск Western Digital WD1200JB, 120 Гбайт, 7 200 об/мин, кэш 8 Мбайт, UltraATA/100
Сеть Встроенный адаптер Ethernet 1 Гбит/с
Видеокарта ATI X1900 XTX (PCIe), 512 Мбайт GDDR3
Блок питания Koolance 1200 Вт
Системное ПО и Драйверы
ОС Microsoft Windows XP Professional 5.10.2600, Service Pack 2
Версия DirectX 9.0c (4.09.0000.0904)
Графический драйвер ATI Catalyst 7.2

В нашей тестовой конфигурации мы использовали платформу Core 2 Duo, потому что процессор E4300 очень легко разогнать. Разгон позволил нам посмотреть, насколько высоко поднимется температура, и как с этим справятся стандартная система воздушного охлаждения и наша новая система водяного охлаждения.

Методика проста: максимально разогнать процессор E4300 со штатным воздушным охлаждением, а затем разогнать его с водяным охлаждением и сравнить результаты. Как оказалось, E4300 способен на большее. Мы увеличили частоту процессора с заявленных 1800 МГц до 2250 МГц. При этом процессор E4300 легко справлялся с добавленными 450 МГц без увеличения напряжения или каких-либо других проблем. Однако стандартный кулер не справился с работой, так как при нагрузке температура процессора поднялась до нежелательных 62 градусов Цельсия. Хотя ядро можно было бы разгонять и дальше, дальнейшее повышение температуры могло стать опасным, поэтому мы остановились, зафиксировали результат и установили систему водяного охлаждения.

Прежде чем рассмотреть температуру процессора при нагрузке, давайте взглянем на температуру при простое системы.

В режиме простоя водяное охлаждение даёт приличное снижение температуры процессора, примерно на 10 градусов. Однако это не такое уж большое достижение, если учесть, что собственный кулер процессора относится к классу low-end, а высококачественный воздушный кулер мог бы быть эффективнее. Тем не менее, стоит помнить, что водяное охлаждение не может снижать температуру так, чтобы она была ниже, чем температура окружающей среды, которая в нашем случае была около 22 градусов Цельсия.

При нагрузке системы - десятиминутный прогон стресс-теста Orthos - установка водяного охлаждения действительно показала, на что она способна.

Вот это уже на самом деле интересно. Штатный воздушный кулер не может даже поддерживать температуру процессора ниже нежелательно высоких для него 60 градусов, а система водяного охлаждения снизила температуру до 49 градусов при самой низкой скорости вентиляторов. Кроме снижения температуры, система водяного охлаждения работает гораздо тише, чем штатный кулер процессора.

При максимальной скорости вентиляторов в системе водяного охлаждения температура процессора опускается ниже 40 градусов! Это на 24 градуса ниже, чем со штатным кулером при нагрузке, и практически столько же, сколько собственный кулер выдаёт при простое. Результат производит впечатление, хотя при высокой скорости вентиляторов система водяного охлаждения производит больше шума, чем хотелось бы. Однако скорость вентиляторов регулируется по 10-бальной шкале, и вряд ли в повседневном использовании придётся устанавливать её на полную мощность. Orthos нагружает процессор сильнее, чем другие тесты, и нам было весьма интересно посмотреть, на что способна система водяного охлаждения.

В заключение обратите внимание на результаты, полученные для видеокарты. Обычно X1900 XTX нагревается очень сильно, но в нашем распоряжении был один из лучших воздушных кулеров - Thermalright HR-03. Посмотрим, какими преимуществами обладает водяное охлаждение по сравнению с этим кулером после 10 минут стресс-теста Atitool в режиме тестирования на артефакты.

Температура, поддерживаемая штатным кулером, ужасна: 89 градусов на графическом процессоре и свыше 100 градусов на стабилизаторе напряжения! Кулер Thermalright HR-03 потрясающе сработал, охладив графический процессор до 65 градусов, но температура стабилизаторов напряжения по-прежнему слишком высока - 97 градусов!

Система водяного охлаждения снизила температуру графического процессора до 59 градусов. Это на 30 градусов лучше, чем со штатным кулером, и всего на 6 градусов лучше, чем с HR-03, что ещё больше подчёркивает её эффективность.

Отдельный водоблок для стабилизатора напряжения демонстрирует отличный результат. HR-03 не имеет средств для охлаждения стабилизатора напряжения, а водоблок снизил температуру до 77 градусов, что на 25 градусов лучше, чем со штатным кулером. Это очень хороший результат.

Заключение

Результаты, полученные при тестировании с использованием системы водяного охлаждения, достаточно очевидны: жидкостное охлаждение намного эффективнее воздушного.

Водяное охлаждение доступно сейчас не только ограниченному кругу профессионалов, но и простым пользователям. К тому же, современные системы водяного охлаждения, такие, как EXOS-2, очень легко устанавливать, они работают по принципу "включай и работай", в отличие от старых систем, которые требовали сборки. Кроме того, современные наборы водяного охлаждения с подсвеченными и стилизованными корпусами выглядят очень симпатично.

Если вы энтузиаст и испробовали уже все системы воздушного охлаждения, то жидкостное охлаждение будет для вас следующим логическим шагом. Конечно, существует риск, и оборудование для водяного охлаждения будет стоить больше, чем для воздушного, но выгода очевидна.

Мнение редактора

Долгое время я избегал водяного охлаждения, так как опасался, что от него будет больше проблем, чем пользы. Но сейчас могу с уверенностью сказать, что моё мнение изменилось: системы водяного охлаждения гораздо легче устанавливать, чем я думал, а результаты охлаждения говорят сами за себя. Также хотелось бы выразить благодарность компании Koolance за предоставленный нам набор EXOS-2, работа с которым доставила удовольствие.