Главная идея векторного управления заключается в том, чтобы контролировать не только величину и частоту напряжения питания, но и фазу. Другими словами контролируется величина и угол пространственного вектора . Векторное управление в сравнении со обладает более высокой производительностью. Векторное управление избавляет практически от всех недостатков скалярного управления.

    Преимущества векторного управления:
  • высокая точность регулирования скорости;
  • плавный старт и плавное вращение двигателя во всем диапазоне частот;
  • быстрая реакция на изменение нагрузки: при изменении нагрузки практически не происходит изменения скорости;
  • увеличенный диапазон управления и точность регулирования;
  • снижаются потери на нагрев и намагничивание, повышается .
    К недостаткам векторного управления можно отнести:
  • необходимость задания параметров ;
  • большие колебания скорости при постоянной нагрузке;
  • большая вычислительная сложность.

Общая функциональная схема векторного управления

Общая блок-диаграмма высокопроизводительной системы управления скорости переменного тока показана на рисунке выше. Основой схемы являются контуры контроля магнитного потокосцепления и момента вместе с блоком оценки, который может быть реализован различными способами. При этом внешний контур управления скоростью в значительной степени унифицирован и генерирует управляющие сигналы для регуляторов момента М * и магнитного потокосцепления Ψ * (через блок управления потоком). Скорость двигателя может быть измерена датчиком (скорости / положения) или получена посредством оценщика, позволяющего реализовать .

Классификация методов векторного управления

Начиная с семидесятых годов двадцатого века было предложено множество способов управления моментом. Не все из них нашли широкое применение в промышленности. Поэтому, в данной статье рассматриваются только самые популярные методы управления. Обсуждаемые методы контроля момента представлены для систем управления и с синусоидальной обратной ЭДС.

Существующие методы управления моментом могут быть классифицированы различным способом.

    Чаще всего методы управления моментом разделяют на следующие группы:
  • линейные (ПИ, ПИД) регуляторы;
  • нелинейные (гистерезисные) регуляторы.
Метод управления Диапазон регулирования скорости Погрешность скорости 3 , % Время нарастания момента, мс Пусковой момент Цена Описание
1:10 1 5-10 Не доступно Низкий Очень низкая Имеет медленный отклик при изменении нагрузки и небольшой диапазон регулирования скорости, но при этом прост в реализации.
>1:200 2 0 Высокий Высокая Позволяет плавно и быстро управлять основными параметрами двигателя - моментом и скоростью. Для работы данного метода требуется информация о положении ротора.
>1:200 2 0 Высокий Высокая Гибридный метод, разработанный для того чтобы объединить преимущества и .
>1:200 2 0 Высокий Высокая Имеет высокую динамику и простую схему, но характерной особенностью его работы являются высокие пульсации тока и момента.
>1:200 2 0 Высокий Высокая Имеет частоту переключения инвертора ниже чем у других методов и предназначен для уменьшения потерь при управлении электродвигателями большой мощности.

Примечание:

  1. Без обратной связи.
  2. С обратной связью.
  3. В установившемся режиме

Среди векторного управления наиболее широко используются (FOC - field oriented control) и (DTC - direct torque control).

Линейные регуляторы момента

Линейные регуляторы момента работают вместе с широтно-импульсной модуляцией (ШИМ) напряжения. Регуляторы определяют требуемый вектор напряжения статора усредненный за период дискретизации. Вектор напряжения окончательно синтезируется методом ШИМ, в большинстве случаев используется пространственно векторная модуляция (ПВМ). В отличие от нелинейных схем управления моментом, где сигналы обрабатываются по мгновенным значениям, в линейных схемах контроля момента, линейный регулятор (ПИ) работает с значениями усредненными за период дискретизации. Поэтому частота выборки может быть уменьшена с 40 кГц у нелинейных регуляторов момента до 2-5 кГц в схемах линейных регуляторов момента.

Полеориентированное управление

Полеориентированное управление (ПОУ, англ. field oriented control, FOC) - метод регулирования, который управляет бесщеточным переменного тока ( , ), как машиной постоянного тока с независимым возбуждением, подразумевая, что поле и могут контролироваться отдельно.

Полеориентированное управление, предложенное в 1970 году Блашке и Хассе основано на аналогии с механически коммутируемым . В этом двигателе разделены обмотки возбуждения и якоря, потокосцепление контролируется током возбуждения , а момент независимо управляется регулировкой тока . Таким образом, токи потокосцепления и момента электрически и магнитно разделены.


Общая функциональная схема бездатчикового полеориентированного управления 1

С другой стороны бесщеточные электродвигатели переменного тока ( , ) чаще всего имеют трехфазную обмотку статора, и вектор тока статора I s используется для контроля и потокосцепления и момента. Таким образом, ток возбуждения и ток якоря объединены в вектор тока статора и не могут контролироваться раздельно. Разъединение может быть достигнуто математически - разложением мгновенного значения вектора тока статора I s на две компоненты: продольную составляющую тока статора I sd (создающую поле) и поперечную составляющую тока статора I sq (создающую момент) во вращающейся dq системе координат ориентированной по полю ротора (R-FOC – rotor flux-oriented control) - рисунок выше. Таким образом, управление бесщеточным двигателем переменного тока становится идентичным управлению и может быть осуществлено используя инвертер ШИМ с линейным ПИ регулятором и пространственно-векторной модуляцией напряжения.

В полеориентированном управлении момент и поле контролируются косвенно посредством управления составляющими вектора тока статора.

Мгновенные значения токов статора преобразовываются к dq вращающейся системе координат с помощью преобразования Парка αβ/dq, для выполнения которого также требуется информации о положении ротора. Поле контролируется через продольную составляющую тока I sd , в то время как момент контролируется через поперечную составляющую тока I sq . Обратное преобразование Парка (dq/αβ), математический модуль преобразования координат, позволяет вычислить опорные составляющие вектора напряжения V sα * и V sβ * .


Для определения положения ротора используется либо датчик положения ротора установленный в электродвигателе либо реализованный в системе управления бездатчиковый алгоритм управления, который вычисляет информацию о положении ротора в режиме реального времени на основании тех данных, которые имеются в системе управления.

Блок-схема прямого управления моментом с пространственно векторной модуляцией с регулировкой момента и потокосцепления с обратной связью работающей в прямоугольной системе координат ориентированной по полю статора представлена на рисунке ниже. Выходы ПИ регуляторов момента и потокосцепления интерпретируются как опорные составляющие напряжения статора V ψ * и V M * в системе координат dq ориентированной по полю статора (англ. stator flux-oriented control, S-FOC). Эти команды (постоянные напряжения) затем преобразуются в неподвижную систему координат αβ, после чего управляющие значения V sα * и V sβ * поступают на модуль пространственно векторной модуляции.


Функциональная схема прямого управления моментом с пространственно векторной модуляцией напряжения

Обратите внимание, что данная схема может рассматриваться как упрощенное управление ориентированное по полю статора (S-FOC) без контура управления током или как классическая схема (ПУМ-ТВ, англ. switching table DTC, ST DTC) в которой таблица включения заменена модулятором (ПВМ), а гистерезисный регулятор момента и потока заменены линейными ПИ регуляторами.

В схеме прямого управления моментом с пространственно векторной модуляцией (ПУМ-ПВМ) момент и потокосцепление напрямую управляются в замкнутом контуре, поэтому необходима точная оценка потока и момента двигателя. В отличии от классического алгоритма гистерезисного , работает на постоянной частоте переключения. Это значительно повышает характеристики системы управления: уменьшает пульсации момента и потока, позволяет уверенно запускать двигатель и работать на низких оборотах. Но при этом снижаются динамические характеристики привода.

Нелинейные регуляторы момента

Представленная группа регуляторов момента отходит от идеи преобразования координат и управления по аналогии с коллекторным двигателем постоянного тока, являющегося основой для . Нелинейные регуляторы предлагают заменить раздельное управление на непрерывное (гистерезисное) управление, которое соответствует идеологии работы (включено-выключено) полупроводниковых устройств инвертора.

В сравнении с полеориентированным управлением схемы прямого управления моментом имеют следующие характеристики:

    Преимущества:
  • простая схема управления;
  • отсутствуют контуры тока и прямое регулирование тока;
  • не требуется преобразование координат;
  • отсутствует отдельная модуляция напряжения;
  • датчик положения не требуется;
  • хорошая динамика.
    Недостатки:
  • требуется точная оценка вектора магнитного потокосцепления статора и момента;
  • сильные пульсации момента и тока из-за нелинейного (гистерезисного) регулятора и переменной частоты переключения ключей;
  • шум с широким спектром из-за переменной частоты переключения.

Прямое управление моментом

Впервые метод прямого управления моментом с таблицей включения был описан Такахаси и Ногучи в статье IEEJ представленной в сентябре 1984 года и позже в статье IEEE опубликованной в сентябре 1986 года . Схема классического метода прямого управления моментом (ПУМ) на много проще, чем у метода управления по полю (), так как не требуется преобразования систем координат и измерения положения ротора. Схема метода прямого управления моментом (рисунок ниже) содержит оценщик момента и потокосцепления статора, гистерезисные компараторы момента и потокосцепления, таблицу включения и инвертор.

Принцип метода прямого управления моментом заключается в выборе вектора напряжения для одновременного управления и моментом и потокосцеплением статора. Измеренные токи статора и напряжение инвертора используются для оценки потокосцепления и момента. Оцененные значения потокосцепления статора и момента сравниваются с управляющими сигналами потокосцепления статора ψ s * и момента двигателя M * соответственно посредством гистерезисного компаратора. Требуемый вектор напряжения управления электродвигателем выбирается из таблицы включения исходя из оцифрованных ошибок потокосцепления d Ψ и момента d M генерируемых гистерезисными компараторами, а также исходя из сектора положения вектора потокосцепления статора полученного исходя из его углового положения . Таким образом, импульсы S A , S B и S C для управления силовыми ключами инвертора генерируются посредством выбора вектора из таблицы.


Классическая схема прямого управления моментом с таблицей включения с датчиком скорости

Имеется множество вариаций классической схемы нацеленых на улучшение пуска, условий перегрузки, работы на очень низких скоростях, уменьшение пульсаций момента, работу на переменной частоте переключения и уменьшение уровня шумов.

Недостатком классического метода прямого управления моментом является наличие высоких пульсаций тока и в установившемся состоянии. Проблема устраняется повышением рабочей частоты инвертора выше 40кГц, что увеличивает общую стоимость системы управления .

Прямое сомоуправление

Заявка на патент метода прямого самоуправления была подана Депенброком в октябре 1984 года . Блок схема прямого самоуправления показана ниже.

Основываясь на командах потокосцепления статора ψ s * и текущих фазовых составляющих ψ sA , ψ sB и ψ sC компараторы потокосцепления генерируют цифровые сигналы d A , d B и d C , которые соответствуют активным состояниям напряжений (V 1 – V 6). Гистерезисный регулятор момента имеет на выходе сигнал d M , который определяет нулевые состояния. Таким образом, регулятор потокосцепления статора задает отрезок времени активных состояний напряжений, которые перемещают вектор потокосцепления статора по заданной траектории, а регулятор момента определяет отрезок времени нулевых состояний напряжений, которые поддерживают момент электродвигателя в определенном гистерезисом поле допуска.


Схема прямого самоуправления

    Характерными особенностями схемы прямого самоуправления являются:
  • несинусоидальные формы потокосцепления и тока статора;
  • вектор потокосцепления статора перемещается по шестиугольной траектории;
  • нет запаса по напряжению питания, возможности инвертора используются полностью;
  • частота переключения инвертора ниже чем у прямого управления моментом с таблицей включения;
  • отличная динамика в диапазонах постоянного и ослабленного поля.

Заметьте, что работа метода прямого самоуправления может быть воспроизведена с помощью схемы при ширине гистерезиса потока 14%.

Технические различия между векторными и скалярными частотными

преобразователями

Вопрос: На рынке представлены векторные и скалярные частотные преобразователи, причем

векторные ощутимо дороже. Каковы технические различия между ними?

Вопрос не так прост, чтобы ответить на него односложным образом. Сами по себе термины

"векторный" и "скалярный" являются неточными применительно к характеристике

частотных преобразователей. Поскольку речь идет по существу о параметре переменного

тока, то использование термина "скалярный" вообще недопустимо. Из курса элементарной

физики хорошо известно, что скалярная величина - это такая величина, каждое значение которой (в отличие от вектора) может быть выражено одним (действительным) числом,

вследствие чего совокупность значений скаляра можно изобразить на линейной шкале (скале - отсюда название). Длина, площадь, время, температура и т. д. - скалярные величины. Векторными величинами, или векторами, называют величины, имеющие и численное

значение, и направление. В этой связи разделение частотных преобразователей на скалярные

и векторные в принципе некорректно, и отражает стремление менеджеров торговых

компаний обосновать более высокие цены на один из типов преобразователей, якобы имеющий превосходство над другим.

Что касается технической стороны дела, она заключается в следующем.

Основным способом корректировки вращающего момента на валу электродвигателя является

изменение частоты и величины тока обмоток статора, что приводит к изменению силы его

вращающегося магнитного поля. Большинство частотных преобразователей устроены таким

образом, что дают возможность пользователю настроить характеристику выходных

электрических параметров под конкретный вид оборудования. Например, в зависимости от

величины момента инерции приводимого в движение оборудования можно придать

характеристике выходного тока преобразователя линейный, параболический или гиперболический вид.

Так, если необходимо стронуть с места тяжелую массу на приводимом в движение

транспортере, характеристике выходного тока следует придать гиперболический вид. Водяные насосы и вентиляторы желательно приводить в движение по параболической

кривой, что дает экономию электроэнергии. По этому алгоритму работают практически все

частотные преобразователи, называемые неправильным термином "скалярные", более точным названием которых было бы: "частотные преобразователи с предварительной настройкой частоты и величины выходного тока".

Другим эффективным средством повышения момента на валу электродвигателя является

использование 3-й гармоники выходного тока, вектор которой, как и кратных ей более

высоких гармоник, вращается в ту же сторону, что и вектор тока основной гармоники (50

Гц), т.е., имеет прямую последовательность. Другие же вращаются в обратном направлении

и имеют обратную последовательность. Общий ток нейтрали, вычисляемый по формуле:



управления параметрами выходного тока, а именно:

1) Преобразователи с предварительной настройкой параметров выходного тока .

Используются в большинстве общепромышленных приводов как с обратной связью по

контролю технологического параметра так и без нее, включая приводы насосов,

вентиляторов, конвейеров, транспортеров, экструдеров, в том числе одно- и многодвигательные системы.

2) Преобразователи с динамической настройкой параметров выходного тока . Используются в однодвигательных приводах высокоточного технологического

оборудования. Могут быть с обратной связью по контролю положения ротора двигателя и без нее. По точности и глубине регулирования скорости вращения несколько превосходят преобразователи первого типа, но значительно уступают сервоприводам.

Что касается проблемы в целом, следует иметь ввиду, что для решения конкретных задач в области управляемого привода применяются соответствующие электродвигатели со своими

системами управления - шаговые моторы с контроллерами, серводвигатели с контроллерами,

двигатели постоянного тока с контроллерами и, наконец, асинхронные и синхронные

электродвигатели с частотными преобразователями. Попытки создать универсальный привод

заведомо обречены на провал, поскольку конструктивные различия между приводами

слишком велики, а решаемые приводами задачи просто несопоставимы. Невозможно создать из асинхронного двигателя серводвигатель, а из синхронного шаговый, даже если встроить в него полсотни полюсов.

Что же делать? Все гениальное просто - достаточно правильно спроектировать привод с

учетом необходимого момента на валу в самом неблагоприятном диапазоне частот

вращения, а управление технологическим параметром поручить ПИД-регулятору, который имеется в большинстве скалярных преобразователей. автор статьи

большинстве современных т.н. "скалярных" преобразователей.

Преобразователь частоты регулирует момент и скорость вращения асинхронного двигателя, используя один из двух основных методов частотного управления - скалярный или векторный. Рассмотрим подробнее особенности этих методов.

Линейная скалярная рабочая характеристика ПЧ

При работе асинхронного электродвигателя от скалярного частотного преобразователя напряжение на двигателе понижается линейно с понижением частоты. Это происходит из-за того, что применяется широтно-импульсная модуляция (ШИМ), при которой отношение действующего напряжения к частоте является константой во всем диапазоне регулирования.

Вольт-частотная (вольт-герцовая) рабочая характеристика ПЧ будет линейной, пока напряжение на возрастет до предела, определяемого напряжением питания преобразователя. Скалярное управление не позволяет двигателю развить требуемую мощность на низких частотах (мощность зависит от напряжения), и момент на валу сильно падает.

Квадратичная скалярная рабочая характеристика

В некоторых случаях, например, при работе преобразователя на мощные вентиляторы и насосы, используют квадратичную вольт-частотную характеристику с пониженным моментом, что позволяет учесть механику процесса, снизить токи, и, соответственно, потери на низких частотах.

Основной минус скалярной вольт-частотной характеристики

У линейной и квадратичной вольт-частотной зависимости, при её простоте и широком распространении, есть большой минус – падение мощности на валу, а значит падение момента и частоты вращения двигателя. При этом происходит так называемое скольжение, когда частота вращения ротора отстает от частоты вращения электромагнитного поля.

Для устранения этого эффекта используется компенсация скольжения, позволяющая скорректировать выходную частоту (обороты двигателя) при возрастании момента нагрузки. Если правильно выбрать значение компенсации, фактическая скорость вращения при большой нагрузке будет приближаться к скорости вращения на холостом ходу.

Кроме этого, в большинстве ПЧ с линейной вольт-частотной характеристикой имеется функция компенсации момента на низких скоростях. Данная функция реализуется за счет повышения напряжения на низких частотах и при неправильном применении может вызвать перегрев двигателя.

Оба параметра компенсации имеют неизменное (установленное при настройке) значение и от нагрузки не зависят.

Преимущества векторного управления

Существует множество задач, когда нужно обеспечить заданную частоту вращения, и описанный недостаток становится очень актуальным. В таких случаях применяют векторное частотное управление, при котором контроллер вычисляет напряжение, необходимое для поддержания момента, обеспечивающего стабильную частоту. В отличие от скалярного режима, здесь происходит «умное» управление магнитным потоком ротора.

Векторное управление асинхронным двигателем особенно актуально на низких частотах – ниже 10 Гц, когда рабочий момент двигателя сильно падает. Кроме того, данный метод позволяет держать стабильную скорость (с предсказуемым линейным изменением) при разгоне. Это достигается за счет получения высокого пускового момента вплоть до выхода двигателя на режим.

Важно и то, что при векторном управлении происходит сбережение электроэнергии (в некоторых случаях – до 60%), поскольку большую часть времени частотный преобразователь передает в двигатель ровно столько энергии, сколько необходимо для поддержания заданной скорости.

Различают два вида векторного управления - без датчика скорости (без обратной связи, или бессенсорное) и с обратной связью, когда в качестве датчика, как правило, используется энкодер.

Векторное управление без обратной связи

В этом случае частотный преобразователь вычисляет скорость вращения двигателя по математической модели на основе ранее введенных данных (параметров двигателя) и данных о мгновенных значениях тока и напряжения. Опираясь на полученные расчеты, ПЧ принимает решение об изменении выходного напряжения.

Перед включением векторного бессенсорного режима необходимо тщательно выставить номинальные параметры двигателя: напряжение, ток, частоту, скорость (обороты), мощность, количество полюсов, а также сопротивление обмоток и индуктивные параметры. Если какие-то значения неизвестны, рекомендуется провести автотестирование двигателя на холостом ходу. Некоторые модели частотных преобразователей устанавливают параметры по умолчанию для стандартного двигателя после введения номинальных значений. Также необходимо задать пределы временных и токовых параметров векторного управления.

Векторное управление с обратной связью

Этот режим отличается более высокой точностью управления скоростью двигателя. Обратную связь обеспечивает энкодер, который сопрягается с частотным преобразователем через дополнительный модуль.

Энкодер устанавливается на валу электродвигателя либо последующего механизма и передает данные о текущей частоте вращения. На основании полученной информации преобразователь меняет напряжение, момент и, соответственно, скорость двигателя. Стоит добавить, что при больших динамических нагрузках (частых изменениях момента) и работе на пониженных скоростях рекомендуется применение принудительного охлаждения внешним вентилятором.

Другие полезные материалы:

Скалярное управление (частотное) - метод управления бесщеточным переменного тока, который заключается в том, чтобы поддерживать постоянным отношение напряжение/частота (В/Гц) во всем рабочем диапазоне скоростей, при этом контролируется только величина и частота питающего напряжения.

Отношение В/Гц вычисляется на основе номинальных значений ( и частоты) контролируемого электродвигателя переменного тока. Поддерживая постоянным значение отношения В/Гц мы можем поддерживать относительно постоянным магнитный поток в зазоре двигателя. Если отношение В/Гц увеличивается тогда электродвигатель становится перевозбужденным и наоборот если отношение уменьшается двигатель находится в недовозбужденном состоянии.


Изменение напряжения питания электродвигателя при скалярном управлении

На низких оборотах необходимо компенсировать падение напряжения на сопротивлении статора, поэтому отношение В/Гц на низких оборотах устанавливают выше чем номинальное значение. Скалярный метод управления наиболее широко используется для управления асинхронными электродвигателями.

В применении к асинхронным двигателям

При скалярном методе управления, скорость контролируется установкой величины напряжения и частоты статора, таким образом, чтобы магнитное поле в зазоре поддерживалось на нужной величине. Для поддержания постоянного магнитного поля в зазоре, отношение В/Гц должно быть постоянным на разных скоростях.


При увеличении скорости напряжение питания статора так же должно пропорционально увеличиваться. Однако синхронная частота асинхронного двигателя не равна частоте вращения вала, а зависит от нагрузки. Таким образом система контроля со скалярным управлением без обратной связи не может точно контролировать скорость при наличии нагрузки. Для решения этой задачи в систему может быть добавлена обратная связь по скорости, а следовательно и компенсация скольжения .


Недостатки скалярного управления

    Метод скалярного управления относительно прост в реализации, но обладает несколькими существенными недостатками:
  • во-первых, если не установлен датчик скорости нельзя управлять скоростью вращения вала , так как она зависит от нагрузки (наличие датчика скорости решает эту проблему), а вслучае с при изменении нагрузки - можно совсем потерять управление;
  • во-вторых, нельзя управлять . Конечно, эту задачу можно решить с помощью датчика момента, но стоимость его установки очень высока, и будет скорее всего выше самого электропривода. При этом управление моментом будет очень инерционным;
  • также нельзя управлять одновременно моментом и скоростью.

Скалярное управление достаточно для большинства задач в которых применяется электропривод с диапазоном регулирования частоты вращения двигателя до 1:10.

Когда требуется максимальное быстродействие, возможность регулирования в широком диапазоне скоростей и возможность управления моментом электродвигателя используется .

Наиболее известный метод экономии энергии – сокращение частоты вращения электродвигателя переменного тока. Поскольку мощность пропорциональна кубу скорости вращения вала, то небольшое снижение скорости может привести к значительной экономии электричества. Насколько это актуально для производства, понимает каждый. Но как этого достичь? На этот и другие вопросы мы ответим, но прежде, поговорим о видах управления асинхронными двигателями.

Электрический привод переменного тока – это электромеханическая система, которая служит основой большинству технологических процессов. Важная роль в ней принадлежит преобразователю частоты (ПЧ), отвечающему заглавную «игру главной скрипки дуэта»–асинхронного двигателя (АД).

Немного элементарной физики

Со школьной скамьи мы имеем ясное представление о том, что напряжение – это разность потенциалов между двумя точками, а частота – это величина, равная количеству периодов, которые ток успевает пройти буквально за секунду.

В рамках технологического процесса часто приходится изменять рабочие параметры сети. Для этой цели существуют преобразователи частоты: скалярный и векторный. Почему их так называют? Начнём с того, что особенные черты каждого типа становятся понятными из их названия. Вспомним основы элементарной физики и позволим себе называть ПЧ для упрощения короче. «Векторник» имеет определённое направление и подчиняется правилам векторов. «Скалярник» ничего этого не имеет, поэтому алгоритм метода управления им, естественно, очень простой. С названиями, кажется, определились. Теперь о том, как различные физические величины из математических формул связаны между собой.

Помните, что как только скорость уменьшается, вращающий момент увеличивается и наоборот? Значит, чем больше вращение ротора, тем больший поток пойдет через статор, и, следовательно,будет наводиться большее напряжение.

Тоже самое лежит в принципе действия в рассматриваемых нами системах, только в«скалярнике» управляется магнитное поле статора, а в «векторнике»играет роль взаимодействие магнитных полей статора и ротора.В последнем случае технология позволяет улучшать технические параметры работы двигательной установки.

Технические различия преобразователей

Отличий существует много, выделим самые основные, и без научной паутины слов. У скалярного (бездатчикового) частотника зависимость U/F – линейная и диапазон скоростного регулирования довольно небольшой. Кстати сказать, поэтому на низких частотах недостаёт напряжения для поддержания крутящего момента, и приходится порой настраивать вольт-частотную характеристику (ВЧХ) под рабочие условия, то же самое происходит при максимальной частоте выше 50 Гц.

При вращении вала в широком скоростном и низкочастотном диапазоне, а также выполнении требований авторегулирования момента, используют метод векторного управления с обратной связью. В этом проявляется еще одно различие: у «скалярника» обычно такой обратной связи нет.

Какие же выбрать ЧП? В применении того или другого устройства, главным образом, руководствуются сферой использования электрического привода. Однако в особых случаях выбор типа преобразователя частоты становится безвариантным. Во-первых: есть явная, заметная разница в цене (скалярные стоят намного дешевле, нет надобности в дорогостоящих вычислительных ядрах). Поэтому удешевление производства порой перевешивает в принятии решения по выбору. Во-вторых: есть сферы применения, в которых возможно только их использование, к примеру, в конвейерных линиях, где несколько электродвигателей синхронно управляются от одного (ЧРП).

Скалярный метод

Асинхронный электропривод со скалярным управлением скоростью (т. е. по ВЧХ) так и остаётся по сегодняшнее время самым распространенным. В основе метода лежит то, что скорость двигателя является функцией выходной частоты.

Скалярное управление двигателями – оптимальный выбор для случаев, когда нет переменной нагрузки, и в хорошей динамике нет также потребности. Для работы «скалярника» не требуются какие-либо датчики. При использовании рассматриваемого метода, нет необходимости в дорогостоящем цифровом процессоре, как в случае с векторным управлением.

Метод часто применяется для автоуправления , вентиляторными, компрессорными и иными агрегатами.Здесь требуется, чтобы поддерживалась или скорость вращения вала движка с применением датчика, или иной заданный показатель (к примеру, температура жидкости, контролируемая по соответствующему прибору слежения).

При скалярном управлении частотно-амплитудное изменение напряжения питания определяется по формуле U/fn = const. Это позволяет обеспечить постоянный магнитный поток в двигателе. Способ достаточно простой, легко реализуется, но не без некоторых существенных недостатков:

  • не представляется возможным одновременное регулирование моментом и скоростью, поэтому выбирается та величина, которая с технологической точки зрения самая значимая;
  • узкий диапазон скоростного регулирования и низкий момент на малых скоростях;
  • плохая работа с динамически изменяющейся нагрузкой.

А что собой представляет векторный метод?

Векторный метод

Он возник в процессе усовершенствования, и применяется при требовании реализовать максимальное быстродействие, регулирование в широком скоростном диапазоне и управляемость момента на валу.

В новейших моделях электрических приводов в систему управления (СУ) по этому типу внедряется математическая модель двигателя, которая способна рассчитать момент движка и скорость вращения вала. При этом требуется лишь установка датчиков тока фаз статора.

Сегодня обладают достаточным числом достоинств:

  • высокая точность;
  • без рывков, плавное вращение АД;
  • широкий диапазон регулирования;
  • быстрое реагирование на изменение нагрузки;
  • обеспечение рабочего режима двигателя, при коем уменьшаются потери на нагрев и намагничивание, а это ведёт к заветному увеличению КПД!

Плюсы, безусловно, очевидны, но метод векторного управления не лишён и недостатков, таких, как вычислительная многосложность и потребность в знании технических показателей АД. Помимо этого, наблюдаются большие, чем у «скалярника», амплитуды скоростных колебаний при постоянной нагрузке. Главная задача при изготовлении частотного преобразователя(«векторника») – обеспечение высокого момента при небольшой скорости вращения.

Схема векторного СУ с блоком широтно-импульсной модуляции (АИН ШИМ) выглядит примерно так:

На изображённой схеме контролируемым объектом является асинхронный двигатель, имеющий связь с датчиком (ДС) на валу. Изображённые блоки – это в действительности звенья цепи СУ, реализуемой на контроллере. Блок БЗП задаёт значения переменных. Логические блоки (БРП) и (БВП) регулируют и вычисляют переменные уравнения. Сам контроллер и другая механическая часть системы находится в электрическом шкафу.

Вариант с частотным микроконтроллером

Частотный преобразователь тока/напряжения предназначен для плавного регулирования основных величин, а также других показателей работы оборудования. Он функционирует как «скалярник» и «векторник» одновременно, используя математические модели, запрограммированные во встроенном микроконтроллере. Последний монтируется в специальный щиток и является одним из узлов информационной сети системы автоматизации.

Блочный контроллер/преобразователь частоты последнее слово техники, в схеме с ними используют дросселя и , уменьшающие интенсивность входных помех. Надо отметить, что за рубежом данному вопросу уделяется особое внимание.В отечественной же практике использование ЕМС фильтров пока остаётся слабым звеном, так как даже не существует толковой нормативной базы. Сами фильтры у нас применяются чаще там, где они не нужны, и где они действительно необходимы, про них почему-то забывают.

Заключение

Дело в том, что электродвигателю в обычном режиме работы от сети свойственно иметь стандартные параметры, это не всегда приемлемо. Устраняется сей факт путём ввода различных редукторных механизмов для снижения частоты до необходимой. На сегодня сформировались две СУ: бездатчиковая и датчиковая система с обратной связью. Их основное отличие в точности контроля. Наиболее точная, конечно, вторая.

Существующие рамки расширяются с помощью использования разных современных СУ АД, обеспечивающих повышенное качество регулирования, высокую перегрузочную способность. Для рентабельного производства, продолжительности срока службы оборудования и экономичного расхода энергии эти факторы имеют большое значение.