О файловых системах читайте в данной статье.

Система управления файлами является основной в абсолютном большинстве со­временных операционных систем. Все современные операционные сис­темы используют файлы и соответствующее программное обеспечение для рабо­ты с ними. Дело в том что, во-первых, через файловую систему связываются по данным многие системные обрабатывающие программы. Во-вторых, с помощью этой системы решаются проблемы централизованного распределения дискового пространства и управления данными. Наконец, пользователи получают более про­стые способы доступа к своим данным, которые они размещают на устройствах внешней памяти.

Существует большое количество файловых систем, созданных для разных уст­ройств внешней памяти и разных операционных систем. В них используются, соответственно, разные принципы размещения данных на носителе. Это системы FAT, FAT32 и NTFS.

Можно сказать, что основное назначение файловой системы и соответствующей ей системы управления файлами - предоставление удобного доступа к данным, организованным в виде файлов, то есть вместо низко­уровневого доступа к данным с указанием конкретных физических адресов нуж­ной нам записи используется логический доступ с указанием имени файла и запи­си в нем.

Файловая система FAT (File Allocation Table - таблица размещения файлов) по­лучила свое название благодаря простой таблице, в которой указываются:

  • непосредственно адресуемые участки логического диска, отведенные для раз­мещения в них файлов или их фрагментов; О свободные области дискового пространства;
  • дефектные области диска (эти области содержат дефектные участки и не га­рантируют чтение и запись данных без ошибок).

В файловой системе FAT дисковое пространство любого логического диска де­лится на две области (рис.) системную область и область данных.

Системная область логического диска создается и инициализируется при форма­тировании, а в последующем обновляется при работе с файловой структурой. Об­ласть данных логического диска содержит обычные файлы и файлы-каталоги; эти объекты образуют иерархию, подчиненную корневому каталогу. Элемент каталога описывает файловый объект, который может быть либо обычным файлом, либо файлом-каталогом. Область данных, в отличие от системной области, доступна через пользовательский интерфейс операционной системы. Системная область состоит из следующих компонентов (расположенных в логическом адресном про­странстве друг за другом):

  • загрузочной записи (Boot Record, BR);
  • зарезервированных секторов (Reserved Sectors, ResSec);
  • таблицы размещения файлов (File Allocation Table, FAT);
  • корневого каталога (Root Directory, RDir).

Таблица размещения файлов является очень важной информационной структу­рой. Можно сказать, что она представляет собой адресную карту области данных, в которой описывается и состояние каждого участка области данных, и принад­лежность его к тому или иному файловому объекту,

Всю область данных разбивают на так называемые кластеры. Кластер представля­ет собой один или несколько смежных секторов в логическом дисковом адресном пространстве (точнее - только в области данных). Кластер - это минимальная адресуемая единица дисковой памяти, выделяемая файлу (или некорневому ката­логу). Кластеры введены для того, чтобы уменьшить количество адресуемых еди­ниц в области данных логического диска.

Каждый файл занимает целое число кластеров. Последний кластер при этом мо­жет быть задействован не полностью, что при большом размере кластера может приводить к заметной потере дискового пространства. На дискетах кластер зани­мает один или два сектора, а на жестких дисках его размер зависит от объема раз­дела. В таблице FAT кластеры, принадлежащие одному файлу (или файлу-каталогу), связываются в цепочки. Для указания номера кластера в файло­вой системе FAT16 используется 16-разрядное слово, следовательно, можно иметь до 2 16 = 65 536 кластеров (с номерами от 0 до 65 535).

Поскольку файлы на диске изменяются (удаляются, перемещаются, увеличива­ются или уменьшаются), то упомянутое правило выделения первого свободного кластера для новой порции данных приводит к фрагментации файлов, то есть дан­ные одного файла могут располагаться не в смежных кластерах, а порой в очень удаленных друг от друга, образуя сложные цепочки. Естественно, что это приво­дит к существенному замедлению работы с файлами.

В связи с тем, что таблица FAT используется при доступе к диску очень интенсив­но, она обычно загружается в оперативную память (в буферы ввода-вывода или в кэш) и остается там настолько долго, насколько это возможно. Если таблица боль­шая, а файловый кэш, напротив, относительно небольшой, в памяти размещаются только фрагменты этой таблицы, к которым обращались в последнее время.

Порой, чтение информации, воспроизведение музыки и фильмов с флешки или внешнего жесткого диска на всех устройствах, а именно: компьютере, бытовом DVD проигрывателе или телевизоре, Xbox или PS3, а также в магнитоле автомобиля может вызвать некоторые проблемы. Здесь поговорим о том, какую файловую систему лучше всего использовать, чтобы флешка всегда и везде читалась без проблем.

Что такое файловая система и какие проблемы с ней могут быть связаны

Файловая система - это способ организации данных на носителей. Как правило, каждая операционная система использует свою файловую систему, но может использовать и несколько. Учитывая то, что на жесткие диски могут быть записаны только двоичные данные, файловая система представляет собой ключевой компонент, который обеспечивает перевод из физической записи в файлы, которые могут быть прочтены ОС. Таким образом, при форматировании накопителя определенным образом и с определенной файловой системой, вы решаете, какие устройства (так как даже ваша магнитола имеет своеобразную ОС) смогут понять, что именно записано на флешке, жестком диске или другом накопителе.

Помимо общеизвестных FAT32 и NTFS, а также несколько менее знакомых рядовому пользователю HFS+, EXT и других файловых систем, существуют еще десятки различных ФС, созданных для различных устройств определенного назначения. На сегодняшний день, когда большинство людей имеют дома более одного компьютера и других цифровых устройств, на которых могут использоваться операционные системы Windows, Linux, Mac OS X, Android и другие, вопрос о том, как отформатировать флешку или иной переносной диск так, чтобы он читался во всех этих устройствах, является достаточно актуальным. И с этим возникают проблемы.

Совместимость

В настоящее время существует две наиболее распространенных файловых системы (для России) - это NTFS (Windows), FAT32 (старый стандарт Windows). Также могут использоваться файловые системы Mac OS и Linux.

Логичным было бы предположить, что современные операционные системы будут работать с файловыми системами друг друга по умолчанию, но в большинстве случаев это не так. Mac OS X не может записывать данные на диск, отформатированный в NTFS. Windows 7 не распознает диски HFS+ и EXT и либо игнорирует их, либо сообщает о том, что диск не отформатирован.

Многие дистрибутивы Linux, например, Ubuntu поддерживают большинство файловых систем по умолчанию. Копирование из одной системы в другую является обычным процессом для Linux. Большинство дистрибутивов поддерживают HFS+ и NTFS «из коробки» либо их поддержка устанавливается одним бесплатным компонентом.

Кроме этого, игровые консоли, такие как Xbox 360 или Playstation 3 предоставляют лишь ограниченный доступ к определенным файловым системам, и позволяют только считывать данные с USB носителя. Чтобы ознакомиться с тем, какие файловые системы и какими устройствами поддерживаются, взгляните на эту таблицу.

Windows XP Windows 7/Vista Mac OS Leopard Mac OS Lion/Snow Leopard Ubuntu Linux Playstation 3 Xbox 360
NTFS(Windows) Да Да Только чтение Только чтение Да Нет Нет
FAT32(DOS, Windows) Да Да Да Да Да Да Да
exFAT(Windows) Да Да Нет Да Да, с пакетом ExFat Нет Нет
HFS+(Mac OS) Нет Нет Да Да Да Нет Да
EXT2, 3(Linux) Нет Нет Нет Нет Да Нет Да

Стоит отметить, что в таблицы отражены возможности ОС по работе с файловыми системами по умолчанию. Как в Mac OS, так и в Windows вы можете загрузить дополнительное программное обеспечение, которое позволит работать с неподдерживаемыми форматами.

FAT32 - давно существующий формат и, благодаря этому, практически все устройства и операционные системы полностью поддерживают его. Таким образом, если вы отформатируете флешку в FAT32, она, почти гарантированно, прочтется где угодно. Однако, с этим форматом существует одна важная проблема: ограничение размера отдельного файла и отдельного тома. Если вам требуется хранить, записывать и считывать огромные файлы, FAT32 может не подойти. Теперь подробнее об ограничениях на размер.

Ограничения на размер файлов в файловых системах

Файловая система FAT32 была разработана достаточно давно и основывается на предыдущих версиях FAT, изначально применявшейся в ОС DOS. Дисков с сегодняшними объемами в то время не существовало, а потому каких-то предпосылок для того, чтобы обеспечить поддержку файлов размером более 4Гб файловой системой не было. На сегодняшний день, многим пользователям приходится сталкиваться с проблемами из-за этого. Ниже вы можете посмотреть сравнение файловых систем по размерам поддерживаемых файлов и разделов.

Современные файловые системы расширили ограничения на размер файлов до пределов, которые пока трудно представить (посмотрим, что будет лет через 20).

Каждая новая система выигрывает у FAT32 по размерам отдельных файлов и отдельного раздела диска. Таким образом, возраст FAT32 сказывается на возможности ее применения для различных целей. Одно из решений - использование файловой системы exFAT, поддержка которых появляется во многих операционных системах. Но, так или иначе, для обычной USB флешки, если на ней не хранятся файлы размером более 4 Гб, FAT32 будет самым лучшим выбором, а флешка будет прочитана практически где угодно.

Должно быть, вы уже неоднократно слышали о таких файловых системах, как FAT32, NTFS и exFAT . Но в чем же между ними разница? Каждый тип обладает своим собственным набором плюсов и минусов. Именно поэтому нет единого варианта. В этой статье мы разберем основные отличия трех файловых систем.

Говоря об операционной системе Windows, мы точно знаем, что она устанавливается только на логический раздел формата NTFS. Съемные накопители и другие устройства хранения, основанные на USB-интерфейсе, используют тип FAT32.

Одним из форматов, которые можно использовать для форматирования Flash-накопителей, является exFAT — преемник старой файловой системы FAT32.

Таким образом, мы имеем три основных формата хранения данных, повсеместно используемых как для Windows, так и для разного рода носителей информации.

Что такое файловая система

Файловая система представляет из себя набор правил, определяющих то, как хранятся и извлекаются документы, хранящиеся на устройстве. Это может быть жесткий диск, Flash-накопитель или SD-карта.

Для большего понимания, приведем как пример офис обычной компании. Фрагменты установленных документов хранятся в определенном месте, допустим, в ящике стола. И при необходимости открыть их, файловая система обращается к файлам в попытке считать информацию.

Полезные статьи


Предположим на секунду, что такая система вышла из строя и сразу же получим огромное количество неопознанных данных, изучить которые не будет никакой возможности.

На самом деле существует большое количество файловых систем, например Flash File System, Tape File System и Disk File System, однако мы остановимся только на основных — FAT32 , NTFS и exFAT .

Что такое FAT32

Файловая система FAT32 является самой старой и опытной в истории компьютерных технологий. Ее путь начался с оригинальной 8-битной системы FAT в 1977 году, которая функционировала внутри автономного диска Microsoft Standalone Disk Basic-80 . Он был запущен специально для Intel 8080 NCR 7200 в 1977/1978 году, работая терминалом ввода данных с 8-дюймовыми гибкими дисками.

После обсуждений о введении системы с учредителем Microsoft Биллом Гейтсом, код был написан первым наемным сотрудником компании Марком Макдональдом.

Основной задачей файловой системы FAT была работа с данными в операционной системе Microsoft 8080/Z80 на базе платформы MDOS/MIDAS, написанной Марком Макдональдом.

В дальнейшем FAT претерпела некоторые изменения, постепенно переходя от своего первоначального вида к FAT12, FAT16 и, наконец, FAT32, название которой теперь тесно ассоциируется с внешними накопителями.

Основным отличием FAT32 от ее предшественников является преодоление ограниченного объема доступной для хранения информации. 32-разрядная система была выпущена в августе 1995 года вместе с релизом Windows 95 и в своем обновленном варианте позволила увеличить верхние пределы размера файлов и хранилища данных до 4 Гб и 16 Тб.

Таким образом, FAT32 не предназначена для хранения больших объемов данных и установки тяжелых приложений. Именно по этой причине на жестких дисках используется файловая система NTFS , которая позволяет пользователям перестать думать о загружаемых объемах информации.

Резюмируя, система FAT32 идеально подойдет для хранения данных, объем которых не превышает 4 Гб, на любых съемных носителях. Ее популярность не ограничивается только компьютерной сферой. Она используется в игровых консолях, телевизорах с высокой четкостью изображения, DVD-проигрывателях, Blu-Ray плеерах и любых других устройствах с USB-портом. FAT32 поддерживают все версии Windows, Linux и MacOS.

Что такое NTFS

В 1993 году компания Microsoft представила новую файловую систему NTFS (New Technology File System) параллельно с появление операционной системы Windows NT 3.1.

Главной особенностью системы NTFS является отсутствие каких-либо ограничений на размеры загружаемых файлов. Даже в случае попытки превзойти этот лимит, мы бы потерпели неудачу — настолько он велик.

Разработка началась в середине 1980-х годов в период сотрудничества Microsoft и IBM, целью которого было создание новой операционной системы, превосходящей предыдущие по графической производительности.

Тем не менее, союз двух компаний не был долог и, не завершив общий проект, они приняли решение прекратить сотрудничество. Впоследствии Microsoft и IBM сконцентрировались на производстве собственных файловых систем.

Для компьютерных технологий 1989 год ознаменовался созданием HPFS от IBM, которая использовалась для операционной системы OS/2. Несколькими годами позже, в 1993, компания Microsoft запустила NTFS v1.0 , которая стала официальной файловой системой для Windows NT 3.1.

Теоретический размер файла NTFS — 16 Эб — 1 Кб, что составляет 18 446 744 073 709 550 502 байта. В команду разработчиков входили Том Миллер, Гарри Кимуру, Брайан Эндрю, Девид Гебель.

Следующей версией файловой системы стала NTFS v3.1 , запущенная специально для Microsoft Windows XP. В дальнейшем она не претерпевала особых изменений, хотя в нее и было внесено множество различных дополнений. Например, появилась возможность сжатия логических разделов, восстановление и символические ссылки NTFS. Кроме того начальная емкость файловой системы составляла всего 256 Мб из колоссальных 16 Эб — 1 Кб в новых версиях, запущенных с выходом Windows 8.

Говоря о полезных функциях, внедренных в NTFS v3.1, можно отметить расширение поддерживаемых форматов файлов, квоты использования диска, шифрование файлов и создание точек повторной обработки. Примечательным является тот факт, что новые версии NTFS полностью совместимы с предыдущими.

Файловая система NTFS имеет важную особенность, когда дело доходит до ее восстановления, вследствие каких-либо повреждений. Она содержит в себе определенную структуру данных, которая отслеживает любые изменения в системе и с помощью которой всегда можно вернуть работоспособность NTFS.

Данная файловая система поддерживается всеми версиями Windows, начиная с Windows XP. К сожалению, MacOS не разделяет стремление к совместимости, продвигаемое Microsoft. Apple оставили для пользователей возможность чтения данных с дисков NTFS, однако записывать на них не получится. Поддержка данной файловой системы от Linux ограничивается лишь несколькими ее версиями.

Что такое exFAT

ExFAT (Extended FAT) — новая, расширенная файловая система от Microsoft, которая с успехом заменяет своего предшественника на поле, когда дело доходит до больших объемов информации.

Как вы наверняка знаете, большинство современных цифровых фотокамер используют систему exFAT, поскольку она существенно легче NTFS, но, в то же время, позволяет сохранять файлы размером более 4 Гб, в отличие от FAT32.

Таким образом, копируя на Flash-накопитель с файловой системой exFAT документ размером 6 Гб, вы не столкнетесь с негативными последствиями, которые можно наблюдать, используя предшествующую версию системы.

Формат exFAT набирает все большую популярность и используется преимущественно с высокоемкими картами памяти SDXC. Основной причиной тому является небольшой размер файловой системы и, как ранее описывалось, возможность сохранять документы объемом более 4 Гб.

Интересным будет факт, что Microsoft хранит патент США 8321439, позволяющий быстро найти файл при помощи хэша имени. Благодаря данной функции, любой документ можно найти в разы быстрее.

Стоит отметить, что для файловой системы exFAT не было выпущено всех доступных дополнений в общий доступ. Для их приобретения поставщики обязаны приобрести ограниченную лицензию от Microsoft.

Данное действие было предпринято для того, чтобы поставщики не пытались монетизировать продукт Microsoft, отмечая себя частью компании, поскольку они имели бы в наличии исходный код файловой системы.

Поскольку Microsoft неизменны в своем упрямстве, многие пользователи занялись созданием собственными модификациями exFAT, одной из которых стала exfat-fuse . Она обеспечивает операции чтения и записи для дистрибутивов Linux, включая FreeBSD.

Созданная в 2006 году файловая система exFAT, имеющая общий предел объема информации, что и NTFS, является более легкой, поскольку не содержит в себе всевозможных дополнений, как вторая.

ExFAT поддерживает функции чтения, записи и совместима с операционными системами Mac, Android и Windows. Для Linux понадобится вспомогательное программное обеспечение.

Сравнение файловых систем

FAT32:

  • Совместимость: Windows, MacOS, Linux, игровые консоли и устройства с USB-портом.
  • Плюсы: кросс-платформенная совместимость, легкая файловая система.
  • Минусы: ограничения в размерах файлов (доступны документы до 4 Гб) и размеры разделов до 16 Тб.
  • Назначение: съемные накопители. Используется для форматирования Flash-накопителей, однако exFAT предпочтительнее.

NTFS:

  • Совместимость: Windows, MacOS (доступно только чтение), Linux (только чтение для некоторых дистрибутивов), Xbox One.
  • Плюсы: отсутствие ограничений по размеру файлов и разделов.
  • Минусы: ограниченная межплатформенная совместимость.
  • Назначение: хорошо подходит для внутренних жестких дисков, поскольку позволяет хранить информацию большого объема, справиться с которым другие файловые системы не смогут.

exFAT:

  • Совместимость: Windows XP и более поздние версии, MacOS 10.6.5 и выше, Linux (с использованием FUSE), Android.
  • Плюсы: имеет общие положительные эффекты от FAT32 и NTFS, которые включают в себя возможность хранения файлов, размером свыше 4 Гб.
  • Минусы: Microsoft ограничивают использование лицензии.
  • Назначение: позволяет исключить ограничения по размеру файлов для съемных накопителей. Гораздо предпочтительнее своего предшественника FAT32.

В случае необходимости восстановить логический раздел с неизвестной, поврежденной или удаленной файловой системой — вам помогут инструменты Starus Recovery.

Инструмент Starus Partition Recovery , или его аналоги, Starus FAT Recovery, Starus NTFS Recovery, предназначены для работы с определенными файловыми системами - FAT и NTFS. Основной софт способен взаимодействовать с обоими. Cкачать и опробовать программы для восстановления файловых систем FAT32 и NTFS можно совершенно бесплатно!

ВЛАДИМИР МЕШКОВ

Архитектура файловой системы FAT

Общая характеристика файловой системы FAT. Структура раздела с файловой системой FAT

Файловая система FAT (File Allocation Table) была разработана Биллом Гейтсом и Марком Макдональдом в 1977 году и первоначально использовалась в операционной системе 86-DOS. Чтобы добиться переносимости программ из операционной системы CP/M в 86-DOS, в ней были сохранены ранее принятые ограничения на имена файлов. В дальнейшем 86-DOS была приобретена Microsoft и стала основой для ОС MS-DOS 1.0, выпущенной в августе 1981 года. FAT была предназначена для работы с гибкими дисками размером менее 1 Мб и вначале не предусматривала поддержки жёстких дисков.

Структура раздела FAT изображена на рисунке.

В файловой системе FAT дисковое пространство логического раздела делится на две области – системную и область данных (см. рис. 1). Системная область создается и инициализируется при форматировании, а впоследствии обновляется при манипулировании файловой структурой. Системная область файловых систем FAT состоит из следующих компонентов:

  • загрузочная запись (boot record, BR);
  • резервная область;
  • таблицы размещения файлов;
  • область корневого каталога (не существует в FAT32).

Область данных логического диска содержит файлы и каталоги, подчиненные корневому, и разделена на участки одинакового размера – кластеры. Кластер может состоять из одного или нескольких последовательно расположенных на диске секторов. Число секторов в кластере должно быть кратно 2N и может принимать значения от 1 до 64. Размер кластера зависит от типа используемой файловой системы и объема логического диска.

Назначение, структура и типы таблицы размещения файлов

Своё название FAT получила от одноимённой таблицы размещения файлов – File Allocation Table, FAT. В таблице размещения файлов хранится информация о кластерах логического диска. Каждому кластеру соответствует элемент таблицы FAT, содержащий информацию о том, свободен данный кластер или занят данными файла. Если кластер занят под файл, то в соответствующем элементе таблицы размещения файлов указывается адрес кластера, содержащего следующую часть файла. Номер начального кластера, занятого файлом, хранится в элементе каталога, содержащего запись об этом файле. Последний элемент списка кластеров содержит признак конца файла (EOF – End Of File). Первые два элемента FAT являются резервными.

Файловая система FAT всегда заполняет свободное место на диске последовательно от начала к концу. При создании нового файла или увеличении уже существующего она ищет самый первый свободный кластер в таблице размещения файлов. Если в процессе работы одни файлы были удалены, а другие изменились в размере, то появляющиеся в результате пустые кластеры будут рассеяны по диску. Если кластеры, содержащие данные файла, расположены не подряд, то файл оказывается фрагментированным.

Существуют следующие типы FAT – FAT12, FAT16, FAT32. Названия типов FAT ведут свое происхождение от размера элемента: элемент FAT12 имеет размер 12 бит (1,5 байт), FAT16 – 16 бит (2 байта), FAT32 – 32 бита (4 байта). В FAT32 четыре старших двоичных разряда зарезервированы и игнорируются в процессе работы операционной системы.

Корневой каталог

За таблицами размещения файлов следует корневой каталог. Каждому файлу и подкаталогу в корневом каталоге соответствует 32-байтный элемент каталога (directory entry), содержащий имя файла, его атрибуты (архивный, скрытый, системный и «только для чтения»), дату и время создания (или внесения в него последних изменений), а также прочую информацию. Для файловых систем FAT12 и FAT16 положение корневого каталога на разделе и его размер жестко зафиксированы. В FAT32 корневой каталог может быть расположен в любом месте области данных раздела и иметь произвольный размер.

Форматы имен файлов

Одной из характеристик ранних версий FAT (FAT12 и FAT16) является использование коротких имен файлов. Короткое имя состоит из двух полей – 8-байтного поля, содержащего собственно имя файла, и 3-байтного поля, содержащего расширение (формат «8.3»). Если введенное пользователем имя файла короче 8 символов, то оно дополняется пробелами (код 0x20); если введенное расширение короче трёх байтов, то оно также дополняется пробелами.

Структура элемента каталога для короткого имени файла представлена в таблице 1.

Первый байт короткого имени выполняет функции признака занятости каталога:

  • если первый байт равен 0xE5, то элемент каталога свободен и его можно использовать при создании нового файла;
  • если первый байт равен 0x00, то элемент каталога свободен и является началом чистой области каталога (после него нет ни одного задействованного элемента).

Таблица 1. Структура элемента каталога для короткого имени файла

Смещение

Размер (байт) Содержание
0x00 11 Короткое имя файла
0x0B 1 Атрибуты файла
0x0C 1 Зарезервировано для Windows NT.
0x0D 1 Поле, уточняющее время создания файла (содержит десятки миллисекунд). Поле обрабатывается только в FAT32
0x0E 1 Время создания файла. Поле обрабатывается только в FAT32
0x10 2 Дата создания файла. Поле обрабатывается только в FAT32
0x12 2 Дата последнего обращения к файлу для записи или считывания данных. Поле обрабатывается только в FAT32
0x14 2 Старшее слово номера первого кластера файла. Поле обрабатывается только в FAT32
0x16 2 Время выполнения последней операции записи в файл
0x18 2 Дата выполнения последней операции записи в файл
0x1A 2 Младшее слово номера первого кластера файла
0x1C 4 Размер файла в байтах

На использование ASCII-символов в коротком имени накладывается ряд ограничений:

  • нельзя использовать символы с кодами меньше 0x20 (за исключением кода 0x05 в первом байте короткого имени);
  • нельзя использовать символы с кодами 0x22, 0x2A, 0x2B, 0x2C, 0x2E, 0x2F, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x3F, 0x5B, 0x5C, 0x5D, 0x7C;
  • нельзя использовать символ пробела (0x20) в первом байте имени.

В файловых системах FAT32 и VFAT (виртуальная FAT, расширение FAT16) включена поддержка длинных имен файлов (long file name, LFN). Для хранения длинного имени используются элементы каталога, смежные с основным элементом. Имя файла записывается не ASCII-символами, а в Unicode. В одном элементе каталога можно сохранить фрагмент длиной до 13 символов Unicode. Неиспользованный участок последнего фрагмента заполняется кодами 0xFFFF. Структура элемента каталога для длинного имени файла представлена в таблице 2.

Таблица 2. Структура элемента каталога для длинного имени файла

Смещение Размер (байт) Содержание
0x00 1 Номер фрагмента
0x01 10 Символы 1-5 имени файла в Unicode
0x0B 1 Атрибуты файла
0x0C 1 Байт флагов
0x0D 1 Контрольная сумма короткого имени
0x0E 12 Символы 6-11 имени файла в Unicode
0x1A 2 Номер первого кластера (заполняется нулями)
0x1C 4 Символы 12-13 имени файла в Unicode

Загрузочный сектор

В первом секторе логического диска с системой FAT располагается загрузочный сектор и блок параметров BIOS. Начальный участок данного блока для всех типов FAT идентичен (таблица 3). Различия в структуре загрузочных секторов для разных типов FAT начинаются со смещения 0x24. Для FAT12 и FAT16 структура имеет вид, показанный в таблице 4, для FAT32 – в таблице 5.

Таблица 3. Начальный участок загрузочного сектора

Смещение Размер, байт Описание
0x00 3 Безусловный переход (jmp) на загрузочный код
0x03 8 Идентификатор фирмы-изготовителя
0x0B 2 Число байт в секторе (512)
0x0D 1 Число секторов в кластере
0x0E 2 Число резервных секторов в резервной области раздела, начиная с первого сектора раздела
0x10 1 Число таблиц (копий) FAT
0x11 2 Для FAT12/FAT16 - количество 32-байтных дескрипторов файлов в корневом каталоге; для FAT32 это поле имеет значение 0
0x13 2 Общее число секторов в разделе; если данное поле содержит 0, то число секторов задается полем по смещению 0x20
0x15 1 Тип носителя. Для жесткого диска имеет значение 0xF8; для гибкого диска (2 стороны, 18 секторов на дорожке) – 0xF0
0x16 2 Для FAT12/FAT16 это поле содержит количество секторов, занимаемых одной копией FAT; для FAT32 это поле имеет значение 0
0x18 2 Число секторов на дорожке (для прерывания 0x13)
0x1A 2 Число рабочих поверхностей (для прерывания 0x13)
0x1C 4 Число скрытых секторов перед разделом
0x20 4 Общее число секторов в разделе. Поле используется, если в разделе свыше 65535 секторов, в противном случае поле содержит 0.

Таблица 4. Структура загрузочного сектора FAT12/FAT16

Смещение Размер, байт Описание 0x24 1 Номер дисковода для прерывания 0х13 0x25 1 0x26 1 Признак расширенной загрузочной записи (0x29) 0x27 4 Номер логического диска 0x2B 11 Метка диска 0x36 8 Текстовая строка с аббревиатурой типа файловой системы

Таблица 5. Структура загрузочного сектора FAT32

Размер, байт Описание 4 Количество секторов, занимаемых одной копией FAT 2 Номер активной FAT 2 Номер версии FAT32: старший байт - номер версии, младший – номер ревизии. В настоящее время используется значение 0:0 4 Номер кластера для первого кластера корневого каталога 2 Номер сектора структуры FSINFO в резервной области логического диска 2 Номер сектора(в резервной области логического диска), используемого для хранения резервной копии загрузочного сектора 12 Зарезервировано (содержит 0)

Смещение
0x24
0x28
0x2A
0x2С
0x30
0x32
0x34

Кроме перечисленных в таблицах 2-го и 3-го полей, нулевой сектор логического диска должен содержать в байте со смещением 0x1FE код 0x55, а в следующем байте (смещение 0x1FF) – код 0xAA. Указанные два байта являются признаком загрузочного диска.

Таким образом, загрузочный сектор выполняет две важные функции: описывает структуру данных на диске, а также позволяет осуществить загрузку операционной системы.

На логическом диске с организацией FAT32 дополнительно присутствует структура FSInfo, размещаемая в первом секторе резервной области. Эта структура содержит информацию о количестве свободных кластеров на диске и о номере первого свободного кластера в таблице FAT. Формат структуры описан в таблице 6.

Таблица 6. Структура сектора FSInfo и резервного загрузочного сектора FAT32

Размер, байт Описание 4 Значение 0x41615252 – сигнатура, которая служит признаком того, данный сектор содержит структуру FSInfo 480 Зарезервировано (содержит 0) 4 Значение 0x61417272 (сигнатура) 4 Содержит текущее число свободных кластеров на диске. Если в поле записано значение 0xFFFFFFFF, то число свободных кластеров неизвестно, и его необходимо вычислять 4 Содержит номер кластера, с которого дисковый драйвер должен начинать поиск свободных кластеров. Если в поле записано значение 0xFFFFFFFF, то поиск свободных кластеров нужно начинать с кластера номер 2 12 Зарезервировано (содержит 0) 4 Сигнатура 0xAA550000 – признак конца структуры FSInfo

Смещение
0x000
0x004
0x1E4
0x1E8
0x1EC
0x1F0
0x1FC

Для доступа к содержимому файла, находящемуся на разделе с файловой системой FAT, необходимо получить номер первого кластера файла. Этот номер, как мы уже установили, входит в состав элемента каталога, содержащего запись о файле. Номеру первого кластера соответствует элемент таблицы FAT, в котором хранится адрес кластера, содержащего следующую часть файла. Элемент FAT, соответствующий последнему кластеру в цепочке, содержит сигнатуру конца файла. Для FAT12 это значение составляет 0xFFF, для FAT16 – 0xFFFF, для FAT32 – 0xFFFFFFFF.

Рассмотрим программную реализацию алгоритма чтения для каждого типа FAT, и начнём с FAT16.

Все исходные тексты, рассматриваемые в статье, доступны на сайте журнала.

Программная реализация алгоритма чтения файла с логического раздела с файловой системой FAT16

Разработаем модуль, выполняющий чтение N первых кластеров файла, созданного на разделе с файловой системой FAT16. Параметр N (число кластеров для считывания) является переменной величиной и задается пользователем. Имя файла соответствует формату «8.3», т.е. является коротким. Модуль функционирует под управлением ОС Linux.

Определим необходимые заголовочные файлы:

#include

#include

#include

#include

#include

#include "split.h"

Заголовочный файл split.h имеет следующее содержание:

#include

#define SHORT_NAME 13 // максимальная длина короткого имени файла

struct split_name {

U8 name; // имя файла

U8 ext; // расширение файла

Int name_len, // длина имени файла

Ext_len; // длина расширения файла

Cтруктура split_name предназначена для хранения составных частей короткого имени файла (имени и расширения) и их длин.

В заголовочном файле определены структурные типы, описывающие основные компоненты файловой системы FAT – загрузочный сектор, сектор FSInfo, структуры элементов каталога для короткого и длинного имён файлов.

Рассмотрим кратко поля, которые входят в каждую из этих структур.

    1. Структура загрузочного сектора struct fat_boot_sector:
      • __s8 system_id – системный идентификатор;
      • __u8 sector_size – размер сектора в байтах;
      • __u8 cluster_size – размер кластера в секторах;
      • __u16 reserved – число резервных секторов в резервной области раздела;
      • __u8 fats – количество копий FAT;
      • __u8 dir_entries – количество 32-байтных дескрипторов файлов в корневом каталоге;
      • __u8 sectors – число секторов на разделе; если это поле равно 0, используется поле total_sect;
      • __u8 media – тип носителя, на котором создана файловая система;
      • __u16 fat_length – размер FAT в секторах;
      • __u32 total_sect – размер раздела FAT в секторах (если поле sectors == 0).
      • __u32 fat32_length – размер FAT32 в секторах;
      • __u32 root_cluster – номер первого кластера корневого каталога;
      • __u16 info_sector – номер сектора, содержащего структуру FSInfo.

Следующие поля данной структуры используются только FAT32:

  1. Структура сектора FSInfo struct fat_boot_fsinfo:
    • __u32 signature1 – сигнатура 0x41615252;
    • __u32 signature2 – сигнатура 0x61417272;
    • __u32 free_clusters – количество свободных кластеров. Если поле содержит -1, поиск свободных кластеров нужно начинать с кластера номер 2.
  2. Структура элемента каталога короткого имени struct msdos_dir_entry:
    • __s8 name,ext – имя и расширение файла;
    • __u8 attr – атрибуты файла;
    • __u8 ctime_ms – это поле уточняет время создания файла до мс (используется только FAT32);
    • __u16 ctime – время создания файла (используется только FAT32);
    • __u16 cdate – дата создания файла (используется только FAT32);
    • __u16 adate – дата последнего доступа к файлу (используется только FAT32);
    • __u16 starthi – старшие 16 бит номера первого кластера файла (используется только FAT32);
    • __u16 time,date,start – время и дата создания файла, номер первого кластер файла;
    • __u32 size – размер файла (в байтах).
  3. Структура элемента каталога длинного имени:
    • __u8 id – номер элемента;
    • __u8 name0_4 – символы 1 – 5 имени;
    • __u8 attr – атрибуты файла;
    • __u8 alias_checksum – контрольная сумма короткого имени;
    • __u8 name5_10 – символы 6 – 11 имени;
    • __u8 name11_12 – символы 12 – 13 имени.

Продолжим рассмотрение программной реализации алгоритма и определим имя раздела, на котором создана файловая система FAT16:

#ifndef FAT16_PART_NAME

#define FAT16_PART_NAME "/dev/hda1"

#endif

Глобальные структуры:

struct fat_boot_sector fbs; // структура загрузочного сектора

struct msdos_dir_entry dentry; // структура элемента каталога

Глобальные переменные:

U16 *fat16; // сюда копируем таблицу FAT16

U16 sector_size; // размер сектора (из FAT16)

U16 dir_entries; // число 32-байтных дескрипторов

// в root-каталоге (0 для FAT32)

U16 sectors; // общее число секторов в разделе

U32 fat16_size; // размер FAT16

U32 root_size; // размер корневого каталога

U16 byte_per_cluster; // размер кластера в байтах

U16 next_cluster; // очередной кластер в цепочке

int fat;

Начнём рассмотрение с главной функции:

int main()

Int num;

Задаем полное имя файла, содержимое которого мы хотим прочитать. Напомню, что мы работаем только с короткими именами файлов. Порядок работы с длинными именами в данной статье не рассматривается.

U8 *full_path = "/Folder1/Folder2/text.txt";

Открываем файл устройства:

Hard = open(FAT16_PART_NAME, O_RDONLY);

If(hard < 0) {

Perror(FAT16_PART_NAME);

Exit(-1);

Считываем первые 10 кластеров файла. Считывание выполняет функция fat16_read_file(). Параметры функции – полное имя файла и число кластеров для чтения. Функция возвращает число прочитанных кластеров или -1, если при чтении произошла ошибка:

Num = fat16_read_file(full_path, 10);

If(num < 0) perror("fat16_read_file");

Else printf("Read %d clusters ", num);

Закрываем файл устройства и выходим:

Close(hard);

Return 0;

Функция чтения кластеров файла имеет следующий вид:

int fat16_read_file(__u8 *full_path, int num)

Struct split_name sn; // структура для хранения составных частей файла

U8 tmp_name_buff; // буфер для временного хранения составных элементов полного пути файла

Static int i = 1;

Int n;

U8 *tmp_buff;

U16 start_cluster, next_cluster;

Параметры функции мы перечислили при рассмотрении функции main.

Подготовительные операции – обнуляем буфер tmp_name_buff и структуру struct split_name sn:

Первым символом в абсолютном путевом имени файла должен быть прямой слэш (/). Проверяем это:

Считываем с раздела загрузочный сектор:

If(read_fbs() < 0) return -1;

Считанный загрузочный сектор находится сейчас в глобальной структуре struct fat_boot_sector fbs. Скопируем из этой структуры размер сектора, число записей в корневом каталоге и общее число секторов на разделе:

Определим размер кластера в байтах:

Byte_per_cluster = fbs.cluster_size * 512

Отобразим информацию, находящуюся в загрузочном секторе:

Printf("System id - %s ", fbs.system_id);

Printf("Sector size - %d ", sector_size);

Printf("Cluster size - %d ", fbs.cluster_size);

Printf("Reserved - %d ", fbs.reserved);

Printf("FATs number - %d ",fbs.fats);

Printf("Dir entries - %d ", dir_entries);

Printf("Sectors - %d ", sectors);

Printf("Media - 0x%X ", fbs.media);

Printf("FAT16 length - %u ", fbs.fat_length);

Printf("Total sect - %u ", fbs.total_sect);

Printf("Byte per cluster - %d ", byte_per_cluster);

Вычисляем размер FAT16 в байтах и считываем её:

Fat16_size = fbs.fat_length * 512;

If(read_fat16() < 0) return -1;

Считываем корневой каталог:

If(read_root_dentry() < 0) return -1;

Сейчас указатель dir_entry позиционирован на область памяти, содержащую записи корневого каталога. Размер этой области памяти равен размеру корневого каталога (root_size).

Сохраним (для контроля) содержимое корневого каталога в отдельном файле:

#ifdef DEBUG

Close(fat);

#endif

Вычисляем начало области данных:

Data_start = 512 * fbs.reserved + fat16_size * fbs.fats + root_size;

Имея все записи корневого каталога, мы можем добраться до содержимого файла test.txt. С этой целью организуем цикл. В теле цикла проведем разбор полного имени файла, выделяя его элементы – подкаталоги (их у нас два, Folder1 и Folder2) и имя искомого файла (test.txt).

While(1) {

Memset(tmp_name_buff, 0, SHORT_NAME);

Memset((void *)&sn, 0, sizeof(struct split_name));

For(n = 0 ; n < SHORT_NAME; n++, i++) {

If((tmp_name_buff[n] == "/") || (tmp_name_buff[n] == "?")) {

I++;

Break;

Tmp_name_buff[n] = "?";

Заполняем структуру struct split_name sn соответствующей информацией. Заполнение выполняет функция split_name, при этом выполняется проверка имени файла на соответствие формату «8.3»:

< 0) {

Printf("not valid name ");

Return -1;

Для каждого элемента полного имени файла определяем начальный кластер. Для этого ищем в элементах каталога (начиная с корневого) запись, соответствующую элементу полного имени, и считываем эту запись. Процедуру поиска выполняет функция get_dentry():

If(get_dentry(&sn) < 0) {

Printf("No such file! ");

Return -1;

Проверяем атрибуты файла. Если это каталог, считываем его содержимое и продолжаем цикл:

If(dentry.attr & 0x10) {

If(read_directory(dentry.start) < 0) return -1;

Continue;

Если это файл – считываем первые num кластеров. Для контроля считанную информацию сохраним в отдельном файле:

If(dentry.attr & 0x20) {

Start_cluster = dentry.start;

Tmp_buff = (__u8 *)malloc(byte_per_cluster); // сюда будет считываться содержимое кластера

N = open("clust", O_CREAT|O_RDWR, 0600); // в этом файле сохраним считанную информацию

If(n < 0) {

Perror("open");

Return -1;

Для считывания кластеров файла организуем цикл:

For(i = 0; i < num; i++) {

Считываем содержимое кластера в буфер tmp_buff и сохраняем его в отдельном файле:

< 0) return -1;

< 0) {

Perror("write");

Close(n);

Return -1;

Считываем из FAT16 номер следующего кластера, занятого под данный файл. Если это последний кластер – прерываем цикл и возвращаемся в главную функцию:

#ifdef DEBUG

Printf("OK. Readed ");

Printf("file`s next cluster - 0x%X .. ", next_cluster);

#endif

If(next_cluster == EOF_FAT16) {

#ifdef DEBUG

Printf("last cluster. ");

#endif

Free(tmp_buff);

Close(n);

Return ++i;

#ifdef DEBUG

Printf("stop reading ");

#endif

Return i;

Чтение загрузочного сектора FAT16 выполняет функция read_fbs(). Результат помещается в глобальную структуру fbs:

int read_fbs()

If(read(hard,(__u8 *)&fbs, sizeof(fbs)) < 0) return -1;

Return 0;

Чтение таблицы размещения файлов файловой системы FAT16 выполняет функция read_fat16():

int read_fat16()

U64 seek = (__u64)(fbs.reserved) * 512; // смещение к FAT16 от начала раздела

Fat16 = (void *)malloc(fat16_size);

If(pread64(hard, (__u8 *)fat16, fat16_size, seek) < 0) return -1;

Return 0;

Чтение корневого каталога выполняет функция read_root_dentry():

int read_root_dentry()

U64 seek = (__u64)fbs.reserved * 512 + fat16_size * fbs.fats; // смещение к корневому каталогу от начала раздела

Root_size = 32 * dir_entries; // вычисляем размер корневого каталога

Dir_entry = (__u8 *)malloc(root_size);

If(!dir_entry) return -1;

Memset(dir_entry, 0, root_size);

If(pread64(hard, dir_entry, root_size, seek) < 0) return -1;

Return 0;

Чтение кластера, принадлежащего файлу, выполняет функция read_cluster(). Входные параметры функции – номер кластера cluster_num и указатель на буфер __u8 *tmp_buff, куда нужно поместить результат чтения. Смещение к кластеру на разделе вычисляется по формуле (см. ):

SEEK = DATA_START + (CLUSTER_NUM - 2) * BYTE_PER_CLUSTER,

  • SEEK – смещение к кластеру на разделе
  • DATA_START – начало области данных
  • CLUSTER_NUM – порядковый номер кластера
  • BYTE_PER_CLUSTER – размер кластера в байтах

int read_cluster(__u16 cluster_num, __u8 *tmp_buff)

U64 seek = (__u64)(byte_per_cluster) * (cluster_num - 2) + data_start; // вычисляем смещение к кластеру

< 0) return -1;

Return 0;

Функция read_directory выполняет чтение записей каталога (не корневого) и помещает результат в область памяти, на которую настроен указатель dir_entry:

int read_directory(__u16 start_cluster)

Int i = 1;

U16 next_cluster;

For(; ;i++) {

Выделяем память для хранения содержимого каталога, считываем содержимое стартового кластера и получаем из таблицы FAT16 значение очередного кластера:

If(!dir_entry) return -1;

< 0) return -1;

Next_cluster = fat16;

Сохраним содержимое каталога в отдельном файле (для контроля):

#ifdef DEBUG

Printf("Next cluster - 0x%X ", next_cluster);

Fat = open("dir16", O_CREAT|O_WRONLY, 0600);

Write(fat, dir_entry, root_size);

Close(fat);

#endif

Если достигнут последний кластер, выходим из цикла, иначе продолжаем чтение каталога, увеличив размер буфера dir_entry ещё на один кластер:

If(next_cluster & EOF_FAT16) break;

Start_cluster = next_cluster;

Return 0;

Поиск в содержимом каталога элемента, соответствующего искомому файлу, выполняет функция get_dentry(). Входные параметры этой функции – указатель на структуру struct split_name *sn, содержащую элементы короткого имени файла:

Int i = 0;

В глобальном буфере dir_entry находится массив элементов каталога, в котором мы собираемся искать запись файла (или каталога). Для поиска организуем цикл. В теле цикла производим копирование элементов каталога в глобальную структуру dentry и сравниваем значение полей name и ext этой структуры с соответствующими полями структуры struct split_name *sn. Совпадение этих полей означает, что мы нашли в массиве элементов каталога запись искомого файла:

for(; ; i++) {

If(!(memcmp(dentry.name, sn->name, sn->name_len)) &&

!(memcmp(dentry.ext, sn->ext, sn->ext_len)))

Break;

If(!dentry.name) return -1;

#ifdef DEBUG

Printf("name - %s ", dentry.name);

Printf("start cluster - 0x%X ", dentry.start);

Printf("file size - %u ", dentry.size);

Printf("file attrib - 0x%X ", dentry.attr);

#endif

Return 0;

Весь вышеприведенный код находится в каталоге FAT16, файл fat16.c. Для получения исполняемого модуля создадим Makefile следующего содержания:

INCDIR = /usr/src/linux/include

PHONY = clean

Fat16: fat16.o split.o

Gcc -I$(INCDIR) $^ -g -o $@

%.o: %.c

Gcc -I$(INCDIR) -DDEBUG -c $^

Clean:

Rm -f *.o

Rm -f ./fat16

Программная реализация алгоритма чтения файла с логического раздела с файловой системой FAT12

В целом алгоритм чтения файла с раздела FAT12 идентичен алгоритму чтения файла с раздела FAT16. Отличие заключается в процедуре чтения элементов из таблицы FAT12. Таблица FAT16 рассматривалась нами как простой массив 16-разрядных элементов. Для чтения элементов таблицы FAT12 в предложен следующий алгоритм:

  • умножить номер элемента на 1.5;
  • извлечь из FAT 16-разрядное слово, используя в качестве смещения результат предыдущей операции;
  • если номер элемента четный, выполнить операцию AND над считанным словом и маской 0x0FFF. Если номер нечетный, сдвинуть считанное из таблицы слово на 4 бита в сторону младших разрядов.

Базируясь на этом алгоритме, реализуем функцию чтения элементов из таблицы FAT12:

int get_cluster(__u16 cluster_num)

U16 seek;

U16 clust;

Вычисляем смещение в таблице FAT12 и считываем из таблицы 16-разрядное слово:

Seek = (cluster_num * 3) / 2;

Memcpy((__u8 *)&clust, (__u8 *)(fat12 + seek), 2);

Если стартовый номер кластера – четное число, сдвигаем считанное из таблицы значение на 4 бита в сторону младших разрядов, если нечетное – суммируем его с 0x0FFF:

If(cluster_num % 2) clust >>= 4;

Else clust &= 0x0FFF;

Этот фрагмент можно также реализовать на ассемблере:

" xorw %%ax, %%ax "

" btw $0, %%cx "

" jnc 1f "

" shrw $4, %%dx "

" jmp 2f "

"1: andw $0x0FFF, %%dx "

"2: movw %%dx, %%ax "

:"=a" (next)

:"d" (clust), "c" (cluster_num));

Возвращаем результат:

Return clust;

Остановимся чуть подробнее на самом алгоритме. Предположим, что на разделе с FAT12 создан файл, который занимает 9-й и 10-й кластеры. Каждый элемент FAT12 занимает 12 бит. Т.к. из таблицы мы считываем 16-разрядные элементы, то смещение к 9-му элементу будет равно 13 байт (9 * 1.5 = 13, остаток отбрасываем), при этом младшие 4 разряда будут принадлежать 8-му элементу FAT. Их необходимо отбросить, а для этого достаточно сдвинуть считанный элемент на 4 бита в сторону младших разрядов, что и предусмотрено алгоритмом. Смещение к 10-му элементу будет равно 15 байт, и старшие 4 бита будут принадлежать 11-му элементу FAT. Чтобы их отбросить, необходимо выполнить операцию AND над 10-м элементом и маской 0x0FFF, что так же соответствует вышеприведенному алгоритму.

Исходные тексты модуля чтения файла с раздела FAT12 находятся в каталоге FAT12, файл fat12.c.

Программная реализация алгоритма чтения файла с логического раздела с файловой системой FAT32

Алгоритм чтения файла с раздела с файловой системой FAT32 практически не отличается от алгоритма для FAT16, за исключением того, что в FAT32 корневой каталог может располагаться в любом месте раздела и иметь произвольный размер. Поэтому, чтобы было интереснее, усложним задачу – предположим, что нам известен только номер раздела с файловой системой FAT32. Чтобы считать с этого раздела информацию, необходимо вначале определить его координаты – смещение к разделу от начала диска. А для этого надо иметь представление о логической структуре жесткого диска.

Логическая структура жесткого диска

Рассмотрим логическую структуру жесткого диска, соответствующую стандарту Microsoft – «основной раздел – расширенный раздел – разделы non-DOS».

Пространство на жестком диске может быть организовано в виде одного или нескольких разделов, а разделы могут содержать один или несколько логических дисков.

На жестком диске по физическому адресу 0-0-1 располагается главная загрузочная запись (Master Boot Record, MBR). В структуре MBR находятся следующие элементы:

  • внесистемный загрузчик (non-system bootstrap – NSB);
  • таблица описания разделов диска (таблица разделов, partition table, PT). Располагается в MBR по смещению 0x1BE и занимает 64 байта;
  • сигнатура MBR. Последние два байта MBR должны содержать число 0xAA55.

Таблица разделов описывает размещение и характеристики имеющихся на винчестере разделов. Разделы диска могут быть двух типов – primary (первичный, основной) и extended (расширенный). Максимальное число primary-разделов равно четырем. Наличие на диске хотя бы одного primary-раздела является обязательным. Extended-раздел может быть разделен на большое количество подразделов – логических дисков. Упрощенно структура MBR представлена в таблице 7. Таблица разделов располагается в конце MBR, для описания раздела в таблице отводится 16 байт.

Таблица 7. Структура MBR

Смещение Размер, байт 0 446 0x1BE 16 0x1CE 16 0x1DE 16 0x1EE 16 0x1FE 2

Структура записи элемента таблицы разделов показана в таблице 8.

Таблица 8. Структура записи элемента таблицы разделов

Смещение Размер, байт Содержание
0x00 1 Признак активности (0 - раздел не активный, 0x80 – раздел активный)
0x01 1 Номер головки диска, с которой начинается раздел
0x02 2 Номер цилиндра и номер сектора, с которых начинается раздел
0x04 1 Код типа раздела System ID
0x05 1 Номер головки диска, на которой заканчивается раздел
0x06 2 Номер цилиндра и номер сектора, которыми заканчивается раздел
0x08 4 Абсолютный (логический) номер начального сектора раздела
0x0C 4 Размер раздела (число секторов)

Первым байтом в элементе раздела идет флаг активности раздела (0 – неактивен, 0x80 – активен). Он служит для определения, является ли раздел системным загрузочным и есть ли необходимость производить загрузку операционной системы с него при старте компьютера. Активным может быть только один раздел. За флагом активности раздела следуют координаты начала раздела – три байта, означающие номер головки, номер сектора и номер цилиндра. Номера цилиндра и сектора задаются в формате прерывания Int 0x13, т.е. биты 0-5 содержат номер сектора, биты 6-7 – старшие два бита 10-разрядного номера цилиндра, биты 8-15 – младшие восемь бит номера цилиндра. Затем следует кодовый идентификатор System ID, указывающий на принадлежность данного раздела к той или иной операционной системе. Идентификатор занимает один байт. За системным идентификатором расположены координаты конца раздела – три байта, содержащие номера головки, сектора и цилиндра соответственно. Следующие четыре байта – это число секторов перед разделом, и последние четыре байта – размер раздела в секторах.

Таким образом, элемент таблицы раздела можно описать при помощи следующей структуры:

struct pt_struct {

U8 bootable; // флаг активности раздела

U8 start_part; // координаты начала раздела

U8 type_part; // системный идентификатор

U8 end_part; // координаты конца раздела

U32 sect_before; // число секторов перед разделом

U32 sect_total; // размер раздела в секторах (число секторов в разделе)

Элемент первичного раздела указывает сразу на загрузочный сектор логического диска (в первичном разделе всегда имеется только один логический диск), а элемент расширенного раздела – на список логических дисков, составленный из структур, которые именуются вторичными MBR (Secondary MBR, SMBR).

Свой блок SMBR имеется у каждого диска расширенного раздела. SMBR имеет структуру, аналогичную MBR, но загрузочная запись у него отсутствует (заполнена нулями), а из четырех полей описателей разделов используются только два. Первый элемент раздела при этом указывает на логический диск, второй элемент указывает на следующую структуру SMBR в списке. Последний SMBR списка содержит во втором элементе нулевой код раздела.

Вернемся к рассмотрению модуля чтения файла с раздела FAT32.

Заголовочные файлы:

#include

#include

#include

#include

#include

Сигнатура MBR:

#define SIGNATURE 0xAA55

Файл устройства, с которого будет считываться информация о разделах:

#define DEVICE "/dev/hda"

Размер элемента таблицы разделов (16 байт):

#define PT_SIZE 0x10

Следующий массив структур устанавливает соответствие между кодом типа раздела и его символьным отображением:

struct systypes {

U8 part_type;

U8 *part_name;

struct systypes i386_sys_types = {

{0x00, "Empty"},

{0x01, "FAT12"},

{0x04, "FAT16 <32M"},

{0x05, "Extended"},

{0x06, "FAT16"},

{0x0b, "Win95 FAT32"},

{0x0c, "Win95 FAT32 (LBA)"},

{0x0e, "Win95 FAT16 (LBA)"},

{0x0f, "Win95 Ext"d (LBA)"},

{0x82, "Linux swap"},

{0x83, "Linux"},

{0x85, "Linux extended"},

{0x07, "HPFS/NTFS"}

Определим число элементов в массиве i386_sys_types при помощи макроса PART_NUM:

#define PART_NUM (sizeof(i386_sys_types) / sizeof(i386_sys_types))

Установим ограничение на количество логических дисков:

#define MAX_PART 20

Следующий массив структуры будет содержать информацию о логических дисках на устройстве (жестком диске):

struct pt_struct {

U8 bootable;

U8 start_part;

U8 type_part;

U8 end_part;

U32 sect_before;

U32 sect_total;

} pt_t;

int hard; // дескриптор файла устройства

U8 mbr; // сюда считаем MBR

Номер раздела, на котором создана файловая система FAT32:

#define FAT32_PART_NUM 5

Структуры загрузочного сектора, сектора FSInfo и элемента каталога (определены в файле ):

struct fat_boot_sector fbs;

struct fat_boot_fsinfo fsinfo;

struct msdos_dir_entry dentry;

U32 *fat32 = NULL; // сюда копируем таблицу FAT32

U16 sector_size; // размер сектора (из FAT32)

U16 dir_entries; // 0 для FAT32

U16 sectors; // число секторов на разделе

U32 fat32_size; // размер FAT32

U32 data_start; // начало области данных

U16 byte_per_cluster; // сколько байт в кластере (размер кластера в байтах)

U32 next_cluster; // очередной кластер в цепочке

U32 root_cluster; // ROOT cluster - начальный кластер корневого каталога

U8 *dir_entry = NULL; // указатель на записи каталога

U64 start_seek = 0; // стартовое смещение к разделу (в байтах)

Главная функция:

int main()

Int num = 0;

Int cluster_num = 5; // сколько кластеров считывать из файла

U8 *full_path = "/Folder1/Folder2/readme"; // файл для считывания

Открываем устройство, получаем информацию о таблице разделов на устройстве и отображаем информацию о разделах:

Hard = open(DEV_NAME, O_RDONLY);

If(hard < 0) {

Perror(DEV_NAME);

Exit(-1);

If(get_pt_info(hard) < 0) {

Perror("get_pt_info");

Exit(-1);

Show_pt_info();

Вычисляем стартовое смещение к разделу:

Start_seek = (__u64)(pt_t.sect_before) * 512;

Считываем кластеры, принадлежащие файлу:

Num = fat32_read_file(full_path, cluster_num);

If(num < 0) perror("fat32_read_file");

Else printf("Read %d clusters\n", num);

Close(hard);

Return 0;

Информацию о таблице разделов считывает функция get_pt_info():

int get_pt_info(int hard)

Int i = 0;

U64 seek;

Считываем таблицу разделов из MBR и проверяем сигнатуру:

Read_main_ptable(hard);

If(check_sign() < 0) {

Printf("Not valid signature!\n");

Return -1;

Ищем идентификатор расширенного раздела. Если таковой имеется, вычисляем смещение к расширенному разделу и считываем информацию о логических дисках:

for(; i < 4; i++) {

If((pt_t[i].type_part == 0xF) || \

(pt_t[i].type_part == 0x5) || \

(pt_t[i].type_part == 0x0C)) {

Seek = (__u64)pt_t[i].sect_before * 512;

Read_ext_ptable(hard, seek);

Break;

Return 0;

Функция чтения таблицы разделов read_main_ptable():

void read_main_ptable(int hard)

If(read(hard, mbr, 512) < 0) {

Perror("read");

Close(hard);

Exit(-1);

Memset((void *)pt_t, 0, (PT_SIZE * 4));

Memcpy((void *)pt_t, mbr + 0x1BE, (PT_SIZE * 4));

Return;

Функция проверки сигнатуры check_sign():

int check_sign()

U16 sign = 0;

Memcpy((void *)&sign, (void *)(mbr + 0x1FE), 2);

#ifdef DEBUG

Printf("Signature - 0x%X\n", sign);

#endif

If(sign != SIGNATURE) return -1;

Return 0;

Функция чтения расширенной таблицы разделов:

void read_ext_ptable(int hard, __u64 seek)

Int num = 4; // начиная с этой позиции, массив структур pt_t будет заполняться информацией о логических дисках

U8 smbr;

Входные данные:

  • hard – дескриптор файла устройства;
  • seek – смещение к расширенному разделу от начала диска (в байтах).

Для получения информации о логических дисках организуем цикл:

For(;;num++) {

Считываем SMBR, находящуюся по смещению seek от начала диска:

Memset((void *)smbr, 0, 512);

Pread64(hard, smbr, 512, seek);

Заполняем два элемента таблицы pt_t, начиная с позиции num. Первый элемент будет указывать на логический диск, а второй – на следующую структуру SMBR:

Memset((void *)&pt_t, 0, PT_SIZE * 2);

Memcpy((void *)&pt_t, smbr + 0x1BE, PT_SIZE * 2);

Вносим поправку в поле «Номер начального сектора» – отсчет ведется от начала диска:

Pt_t.sect_before += (seek / 512);

Если код типа раздела равен нулю, то больше логических дисков нет:

If(!(pt_t.type_part)) break;

Вычисляем смещение к следующему SMBR:

Seek = ((__u64)(pt_t.sect_before + pt_t.sect_total)) * 512;

Return;

Функция show_pt_info() отображает информацию о найденных логических дисках на устройстве:

void show_pt_info()

Int i = 0, n;

#ifdef DEBUG

Printf("Число разделов на диске - %d\n", PART_NUM);

#endif

For(; i < MAX_PART; i++) {

If(!pt_t[i].type_part) break;

Printf("\nТип раздела %d - ", i);

For(n = 0; n < PART_NUM; n++) {

If(pt_t[i].type_part == i386_sys_types[n].part_type) {

Printf("%s\n", i386_sys_types[n].part_name);

Break;

If(n == PART_NUM) printf("unknown type\n");

Printf("Признак загрузки - 0x%X\n", pt_t[i].bootable);

Printf("Секторов в разделе %d - %d\n", i, pt_t[i].sect_total);

Printf("Секторов перед разделом %d - %d\n\n", i, pt_t[i].sect_before);

Return;

Чтение кластеров файла с раздела FAT32 выполняет функция fat32_read_file(). Эта функция имеет много общего с функцией fat16_read_file(), поэтому за подробными комментариями обратитесь к п. 6:

int fat32_read_file(__u8 *full_path, int num)

Struct split_name sn;

U8 tmp_name_buff;

Int i = 1, n;

U32 start_cluster, next_cluster;

U8 *tmp_buff;

Подготовительные операции – чистим буфер, структуру и проверяем первый слэш:

Memset(tmp_name_buff, 0, SHORT_NAME);

Memset((void *)&sn, 0, sizeof(struct split_name));

If(full_path != "/") return -1;

Считываем загрузочный сектор:

If(read_fbs() < 0) return -1;

Memcpy((void *)§or_size, (void *)fbs.sector_size, 2);

Memcpy((void *)&dir_entries, (void *)fbs.dir_entries, 2);

Memcpy((void *)§ors, (void *)fbs.sectors, 2);

Считываем структуру FSInfo и отобразим сигнатуру, находящуюся в ней:

If(read_fs_info() < 0) return -1;

Printf("Signature1 - 0x%X\n", fsinfo.signature1);

Printf("Signature2 - 0x%X\n", fsinfo.signature2);

Fat32_size = fbs.fat32_length * 512; // размер FAT32 в байтах

Data_start = 512 * fbs.reserved + fat32_size * 2; // начало поля данных

Byte_per_cluster = fbs.cluster_size * 512; // размер кластера в байтах

Root_cluster = fbs.root_cluster; // номер кластера корневого каталога

Считываем FAT32:

If(read_fat32() < 0) return -1;

Выделяем память для записей каталога:

Dir_entry = (__u8 *)malloc(byte_per_cluster);

If(!dir_entry) return -1;

Считываем корневой каталог:

If(read_directory(root_cluster) < 0) return -1;

Проводим разбор полного пути файла и разделение каждого элемента на составляющие:

While(1) {

Memset(tmp_name_buff, 0, SHORT_NAME);

Memset((void *)&sn, 0, sizeof(struct split_name));

For(n = 0 ; n < SHORT_NAME; n++, i++) {

Tmp_name_buff[n] = full_path[i];

If((tmp_name_buff[n] == "/") || (tmp_name_buff[n] == "\0")) {

I++;

Break;

Tmp_name_buff[n] = "\0";

If(split_name(tmp_name_buff, &sn) < 0) {

Printf("not valid name\n");

Return -1;

If(get_dentry(&sn) < 0) {

Printf("No such file!\n");

Return -1;

Для получения стартового номера кластера в файловой системе FAT32 необходимо задействовать старшее слово номера первого кластера файла – поле starthi структуры dentry:

Start_cluster = (((__u32)dentry.starthi << 16) | dentry.start);

Проверяем байт атрибутов:

If(dentry.attr & 0x10) { // это каталог

If(read_directory(start_cluster) < 0) return -1;

Continue;

If(dentry.attr & 0x20) { // а это - файл

Tmp_buff = (__u8 *)malloc(byte_per_cluster);

N = open("clust", O_CREAT|O_RDWR, 0600);

If(n < 0) {

Perror("open");

Return -1;

Printf("file`s first cluster - 0x%X .. ", start_cluster);

For(i = 0; i < num; i++) {

Memset(tmp_buff, 0, byte_per_cluster);

If(read_cluster(start_cluster, tmp_buff) < 0) return -1;

If(write(n, tmp_buff, byte_per_cluster) < 0) {

Perror("write");

Return -1;

If(next_cluster == EOF_FAT32) {

Free(tmp_buff);

Close(n);

Return ++i;

Start_cluster = next_cluster;

Return i;

Назначение следующих трёх функций – получить содержимое системной области, т.е. загрузочного сектора, структуры FSInfo и таблицы FAT32:

1) функция read_fbs() выполняет чтение загрузочного сектора:

int read_fbs()

If(pread64(hard, (__u8 *)&fbs, sizeof(fbs), start_seek) < 0) return -1;

Return 0;

2) функция read_fs_info() считывает структуру FSInfo:

int read_fs_info()

U64 seek = (__u64)fbs.info_sector * 512 + start_seek;

If(pread64(hard, (__u8 *)&fsinfo, sizeof(fsinfo), seek) < 0) return -1;

Return 0;

3) функция read_fat32() считывает таблицу FAT32:

int read_fat32()

U64 seek = (__u64)fbs.reserved * 512 + start_seek;

Fat32 = (void *)malloc(fat32_size);

If(!fat32) return -1;

If(pread64(hard, (__u8 *)fat32, fat32_size, seek) < 0) return -1;

Return 0;

Функция read_cluster() выполняет чтения кластера с указанным номером:

int read_cluster(__u32 cluster_num, __u8 *tmp_buff)

U64 seek = (__u64)(byte_per_cluster) * (cluster_num - 2) + data_start + start_seek;

If(pread64(hard, tmp_buff, byte_per_cluster, seek) < 0) return -1;

Return 0;

Чтением каталогов (в том числе и корневого) занимается функция read_directory():

int read_directory(__u32 start_cluster)

Int i = 2;

U32 next_cluster;

Параметры функции – стартовый кластер каталога. Считываем содержимое каталога в глобальный буфер dir_entry:

If(read_cluster(start_cluster, dir_entry) < 0) return -1;

Next_cluster = fat32;

Если каталог занимает один кластер – выходим, если нет – увеличиваем размер памяти и продолжаем чтение:

For(; ;i++) {

Start_cluster = next_cluster;

Dir_entry = (__u8 *)realloc(dir_entry, i * byte_per_cluster);

If(!dir_entry) return -1;

If(read_cluster(start_cluster, (dir_entry + (i - 1) * byte_per_cluster)) < 0) return -1;

Next_cluster = fat32;

If((next_cluster == EOF_FAT32) || (next_cluster == 0xFFFFFF8)) return 0;

Return 0;

Последняя функция, которую мы рассмотрим, ищет в содержимом каталога элемент, соответствующий искомому файлу:

int get_dentry(struct split_name *sn)

Int i = 0;

Указатель dir_entry настроен на область памяти, содержащую массив записей каталога, в котором мы собираемся искать файл (или каталог). Для поиска организуем цикл и найденную запись поместим в глобальную структуру dentry:

For(;;i++) {

Memcpy((void *)&dentry, dir_entry + i * sizeof(dentry), sizeof(dentry));

If(!(memcmp(dentry.name, sn->name, sn->name_len)) &&

!(memcmp(dentry.ext, sn->ext, sn->ext_len)))

Break;

If(!dentry.name) return -1;

Return 0;

На этом рассмотрение модуля чтения файла с раздела FAT32 завершим.

Исходные тексты модуля находятся в каталоге FAT32, файл fat32.c.

Отличия в организации хранения записей о файлах в каталогах для файловых систем FAT и EXT2

Несколько слов об отличиях в организации хранения записей о файлах в каталогах для файловых систем FAT и EXT2. Структура файловой системы EXT2 была рассмотрена в .

C FAT мы только что ознакомились – в ней все элементы каталога имеют фиксированную величину. При создании файла драйвер файловой системы ищет первую незанятую позицию и заполняет её информацией о файле. Если длина каталога не умещается в одном кластере, то под него отводится ещё один кластер и т. д.

Рассмотрим, как обстоят дела в EXT2.

Предположим, у нас есть раздел с файловой системой EXT2, размер блока равен 4096 байт. На этом разделе мы создаем каталог. Размер каталога будет равен размеру блока – 4096 байт. В каталоге операционная система сразу создаёт две записи – запись текущего и запись родительского каталогов. Запись текущего каталога займет 12 байт, в то время как длина записи родительского будет равна 4084 байта. Создадим в этом каталоге какой-нибудь файл. После этого в каталоге будут присутствовать три записи – запись текущего каталога длиной 12 байт, запись родительского каталога длиной уже 12 байт, и запись созданного файла длиной, как вы наверно догадались, 4072 байт. Если мы удалим созданный файл, длина записи родительского каталога опять возрастёт до 4084 байт.

Таким образом, при создании файла драйвер файловой системы EXT2 ищет в каталоге запись максимальной длины и расщепляет её, выделяя место для новой записи. Ну, а если всё-таки места не хватает, под каталог отводится ещё один блок, и длина каталога становится равной 8192 байт.

И в заключение – небольшая правка к статье «Архитектура файловой системы EXT2» .

Эта правка касается функции определения номера inode по имени файла get_i_num(). Старый вариант этой функции выглядел так:

int get_i_num(char *name)

Int i = 0, rec_len = 0;

Struct ext2_dir_entry_2 dent;

For(; i < 700; i++) {

If(!memcmp(dent.name, name, dent.name_len)) break;

Rec_len += dent.rec_len;

Return dent.inode;

Исправленный вариант:

int get_i_num(char *name)

* Параметр функции - имя файла. Возвращаемое значение - номер inode файла.

Int rec_len = 0;

Struct ext2_dir_entry_2 dent; // эта структура описывает формат записи корневого каталога:

* В глобальном буфере buff находится массив записей каталога. Для определения порядкового номера inode файла необходимо найти

* в этом массиве запись с именем этого файла. Для этого организуем цикл:

For(;;) {

/* Копируем в структуру dent записи каталога: */

Memcpy((void *)&dent, (buff + rec_len), sizeof(dent));

* Длина имени файла равная нулю означает, что мы перебрали все записи каталога

* и записи с именем нашего файла не нашли. Значит, пора возвращаться:

If(!dent.name_len) return -1;

/* Поиск выполняется путем сравнения имен файлов. Если имена совпадают - выходим из цикла: */

If(!memcmp(dent.name, name, strlen(name))) break;

/* Если имена не совпали - смещаемся к следующей записи: */

Rec_len += dent.rec_len;

/* В случае успеха возвращаем номер inode файла: */

Return dent.inode;

Литература:

  1. В.Кулаков. Программирование на аппаратном уровне: специальный справочник. 2-е изд. / – СПб.: Питер, 2003 г. – 848 с.
  2. А.В.Гордеев, А.Ю.Молчанов. Системное программное обеспечение / – СПб.: Питер – 2002 г.
  3. Мешков В. Архитектура файловой системы ext2. – Журнал «Системный администратор», № 11(12), ноябрь 2003 г. – 26-32 с.

Вконтакте

FAT - File Allocation Table (таблица размещения файлов) - этот термин относится к одному из способов организации файловой системы на диске. Эта таблица хранит информацию о файлах на жестком диске в виде последовательности чисел, определяющих, где находится каждая часть каждого файла. С ее помощью операционная система выясняет, какие кластеры занимает нужный файл. FAT - является самой распространенной файловой системой и поддерживается подавляющим большинством операционных систем. Сначала FAT была 12-разрядной и позволяла работать с дискетами и логическими дисками объемом не более 16 Мбайт. В MS-DOS версии 3.0 таблица FAT стала 16-разрядной для поддержки дисков большей емкости, а для дисков объемом до 2 047 Гбайт используется 32-разрядная таблица FAT.

Система FAT32 - более новая файловая система на основе формата FAT, она поддерживается Windows 95 OSR2, Windows 98 и Windows Millennium Edition. FAT32 использует 32-разрядные идентификаторы кластеров, но при этом резервирует старшие 4 бита, так что эффективный размер идентификатора кластера составляет 28 бит. Поскольку максимальный размер кластеров FAT32 равен 32 Кбайт, теоретически FAT32 может работать с 8-терабайтными томами. Windows 2000 ограничивает размер новых томов FAT32 до 32 Гбайт, хотя поддерживает существующие тома ЕАТ32 большего размера (созданные в других операционных системах). Большее число кластеров, поддерживаемое FAT32, позволяет ей управлять дисками более эффективно, чем FAT 16. FAT32 может использовать 512-байтовые кластеры для томов размером до 128 Мбайт.

Файловая система FAT 32 в Windows 98 используется в качестве основной. С этой операционной системой поставляется специальная программа преобразования диска из FAT 16 в FAT 32. Windows NT и Windows 2000 тоже могут использовать файловую систему FAT, и поэтому можно загрузить компьютер с DOS-диска и иметь полный доступ ко всем файлам. Однако некоторые из самых прогрессивных возможностей Windows NT и Windows 2000 обеспечиваются ее собственной файловой системой ntfs (NT File System). ntfs позволяет создавать на диске разделы объемом до 2 Тбайт (как и FAT 32), но, кроме этого, в нее встроены функции сжатия файлов, безопасности и аудита, необходимые при работе в сетевой среде. А в Windows 2000 реализуется поддержка файловой системы FAT 32. Установка операционной системы Windows NT начинается на диске FAT, но по желанию пользователя в конце установки данные на диске могут быть конвертированы в формат ntfs.

Можно сделать это и позже, воспользовавшись утилитой Convert.exe, поставляемой вместе с операционной системой. Преобразованный к системе ntfs раздел диска становится недоступным для других операционных систем. Чтобы вернуться в DOS, Windows 3.1 или Windows 9x, нужно удалить раздел ntfs, а вместо него создать раздел FAT. Windows 2000 можно устанавливать на диск с файловой системой FAT 32 и ntfs.

Возможности файловых систем ЕАТ32 гораздо шире возможностей FAT16. Самая важная ее особенность в том, что она поддерживает диски объемом до 2 047 Гбайт и работает с кластерами меньшего размера, благодаря чему существенно сокращает объемы неиспользуемого дискового пространства. Например, жесткий диск объемом 2 Гбайт в FAT16 использует кластеры размером по 32 Кбайт, а в FAT32 - кластеры размером по 4 Кбайт. Чтобы по возможности сохранить совместимость с существующими программами, сетями и драйверами устройств, FAT32 реализована с минимальными изменениями в архитектуре, API-интерфейсах, структурах внутренних данных и дисковом формате. Но, так как размер элементов таблицы FAT32 теперь составляет четыре байта, многие внутренние и дисковые структуры данных, а также API-интерфейсы пришлось пересмотреть или расширить. Отдельные API на ЕАТ32-дисках блокируются, чтобы унаследованные дисковые утилиты не повредили содержимое FAT32-дисков. На большинстве программ эти изменения никак не скажутся. Существующие инструментальные средства и драйверы будут работать и на FAT32-дисках. Однако драйверы блочных устройств MS-DOS (например, Aspidisk.sys) и дисковые утилиты нуждаются в модификации для поддержки FAT32. Все дисковые утилиты, поставляемые Microsoft (Format, Fdisk, Defrag, а также ScanDisk для реального и защищенного режимов), переработаны и полностью поддерживают FAT32. Кроме того, Microsoft помогает ведущим поставщикам дисковых утилит и драйверов устройств в модификации их продуктов для поддержки FAT32. FAT32 эффективнее FAT16 при работе с дисками большего объема и не требует их разбиения на разделы по 2 Гбайт. Windows 98 обязательно поддерживает FAT16, так как именно эта файловая система совместима с другими операционными системами, в том числе сторонних компании. В MS-DOS реального режима и в безопасном режиме Windows 98, файловая система FAT32 работает значительно медленнее, чем FAT16. Поэтому, при запуске программ в режиме MS DOS желательно включить в файл Autoexec.bat или PIF-файл команду для загрузки Smartdrv.exe, что ускорит дисковые операции. Некоторые устаревшие программы, рассчитанные на спецификацию FAT16, могут сообщать неправильную информацию об объеме свободного или общего дискового пространства, если он больше 2 Гбайт. Windows 98 предоставляет новые API-интерфейсы для MS-DOS и Win32, которые позволяют корректно определять эти показатели. В табл. 1 приведены сравнительные характеристики FAT16 и FAT32.

Таблица 1. Сравнение файловых систем FAT16 и FAT32

Реализована и используется большинством операционных систем (MS-DOS, Windows 98, Windows NT, OS/2, UNIX).

На данный момент поддерживается только в Windows 95 OSR2 и Windows 98.

Очень эффективна для логических дисков размером менее 256 Мбайт.

Не работает с дисками объемом менее 512 Мбайт.

Поддерживает сжатие дисков, например по алгоритму DriveSpace.

Не поддерживает сжатие дисков.

Обрабатывает максимум 65 525 кластеров, размер которых зависит от объема логического диска. Так как максимальный размер кластеров равен 32 Кбайт, FAT16 может работать с логическими дисками объемом не более 2 Гбайт.

Способна работать с логическими дисками объемом до 2 047 Гбайт при максимальном размере кластеров в 32 Кбайт.

Чем больше размер логического диска, тем меньше эффективность хранения файлов в FAT"16-системе, так как увеличивается и размер кластеров. Пространство для файлов выделяется кластерами, и поэтому при максимальном объеме логического диска файл размером 10 Кбайт потребует 32 Кбайт, а 22 Кбайт дискового пространства пропадет впустую.

На логических дисках объемом менее 8 Гбайт размер кластеров составляет 4 Кбайт.

Максимально возможная длина файла в FAT32 равна 4 Гбайт за вычетом 2 байтов. Win32-приложения могут открывать файлы такой длины без специальной обработки. Остальные приложения должны использовать прерывание Int 21h, функцию 716С (FAT32) с флагом открытия, равным EXTEND-SIZE (1000h).

В файловой системе FAT32 на каждый кластер в таблице размещения файлов отводится по 4 байта, тогда как в FAT16 - по 2, а в FАТ12 - по 1,5.

Старшие 4 бита 32-разрядного элемента таблицы FAT32 зарезервированы и не участвуют в формировании номера кластера. Программы, напрямую считывающие РАТ32-таблицу, должны маскировать эти биты и предохранять их от изменения при записи новых значений.

Итак, FAT32 обладает следующими преимуществами в сравнении с прежними реализациями файловой системы FAT:

    поддерживает диски объемом до 2 Тбайт;

    эффективнее организует дисковое пространство. FAT32 использует кластеры меньшего размера (4 Кбайт для дисков объемом до 8 Гбайт), что позволяет сэкономить до 10-15% пространства на больших дисках по сравнению с FAT;

    корневой каталог FAT 32, как и все остальные каталоги, теперь не ограничен, он состоит из цепочки кластеров и может быть расположен в любом месте диска;

    имеет более высокую надежность: FAT32 способна перемещать корневой каталог и работать с резервной копией FAT, кроме того, загрузочная запись на FАТ32-дисках расширена и теперь включает резервную копию критически важных структур данных, а это означает, что FАТ32-диски менее чувствительны к возникновению отдельных сбойных участков, чем существующие FAT-тома;

    программы загружаются на 50% быстрее.

Таблица 2. Сравнение размеров кластеров

Объем диска

Размер кластеров в FAT16, Кбайт

Размер кластеров в FAT32, Кбайт

256 Мбайт-511 Мбайт

Не поддерживается

512 Мбайт -1023 Мбайт

1024 Мбайт - 2 Гбайт

2 Гбайт - 8 Гбайт

Не поддерживается

8 Гбайт-16 Гбайт

Не поддерживается

16 Гбайт-32 Гбайт

Не поддерживается

Более 32 Гбайт

Не поддерживается

Усовершенствованная утилита дефрагментации дисков оптимизирует размещение файлов приложения, загружаемых в момент его запуска. Возможно преобразование диска в ЕАТ32 с помощью утилиты Drive Converter (FAT32), но после этого рекомендуется запустить утилиту Disk Defragmenter, - иначе компьютер будет работать с диском медленнее, чем раньше. При использовании FAT32 становится невозможной конфигурация с альтернативной загрузкой Windows 98 и Windows NT 4.0, так как последняя не поддерживает FAT32. FAT32 распределяет дисковое пространство гораздо экономичнее предыдущих версий файловой системы FAT. Благодаря этому на больших дисках удается высвободить десятки и даже сотни мегабайтов, а в сочетании с усовершенствованной утилитой дефрагментации дисков FAT32 значительно сокращает время загрузки приложений. Процедура преобразования файловой системы на жестком диске в FAT32 с помощью Drive Converter (FAT32) достаточно проста. Для этого последовательно необходимо открыть меню Start (Пуск), подменю programs (Программы), Accessories (Стандартные), System Tools (Служебные) и выбрать команду Drive Converter (FAT32) (Преобразование диска в FАТ32). Преобразование может повлиять на функции спящего режима (hibernate features) (сохранения состояния компьютера на диск), предусмотренные во многих компьютерах. Системы, в которых режим сна реализован через АРМ BIOS или ACPI (Advanced Configuration and Power Interface) S4/BIOS, должны поддерживать FAT32, - только тогда они будут корректно работать в Windows 98.

Большинство изготовителей BIOS включают в нее средства защиты от вирусов, отслеживающие изменения в главной загрузочной записи MBR (Master Boot Record). Кроме того, устаревшие антивирусные утилиты, устанавливаемые как резидентные программы или драйверы реального режима, могут обнаруживать изменение MBR при загрузке MS-DOS. Так как преобразование в FAT32 приводит к неизбежной модификации MBR, некоторые средства проверки на вирусы могут ошибочно счесть это признаком инфицирования системы. Поэтому, если антивирусная утилита, обнаружив изменение MBR, предлагает "вылечить" ее. Лучше всего удалить антивирусное программное обеспечение и отключить встроенные в BIOS средства защиты от вирусов перед преобразованием диска в FAT32. Потом можно вновь установить антивирусную утилиту и активизировать встроенные в BIOS средства защиты от вирусов.