ПАРАЛЛЕЛЬНАЯ РАБОТА СИНХРОННОГО ГЕНЕРАТОРА С СЕТЬЮ

Наименование параметра Значение
Тема статьи: ПАРАЛЛЕЛЬНАЯ РАБОТА СИНХРОННОГО ГЕНЕРАТОРА С СЕТЬЮ
Рубрика (тематическая категория) Авто

Особенности работы генератора на сеть большой мощности. Обычно на электростанциях устанавливают несколько синхрон­ных генераторов для параллельной работы на общую электрическую сеть. Это обеспечивает увеличение общей мощности электростанции (при ограниченной мощности каждого из установленных на ней генераторов), повышает надежность энергоснабжения потребителœей и позволяет лучше организовать обслуживание агрегатов. Электрические станции, в свою очередь, объединяют для параллельной работы в мощные энергосистемы, позволяющие наилучшим образом решать задачу производства и распределœения электрической энергии. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, для синхронной машины, установленной на электрической станции или на каком-либо объекте, подключенном к энергосистеме, типичным является режим работы на сеть большой мощности, по сравнению с которой собственная мощность генератора является очень малой. В этом случае с большой степенью точности можно принять, что генератор работает параллельно с сетью бесконечно большой мощности т. е. чтонапряжение сети U c и ее частота f c являются постоянными, не зависящими от нагрузки данного генератора.

Включение генератора на параллельную работу с сетью. В рассматриваемом режиме крайне важно обеспечить возможно меньший бросок тока в момент присоединœения генератора к сети. В противном случае возможны срабатывание защиты поломка генератора или первичного двигателя.

Ток в момент подключения генератора к сети будет равен нулю, в случае если удастся обеспечить равенство мгновенных значений напряжений сети u с и генератора и г:

U cm sin (ω c t - α с) = U гm sin (ω г - α г ).

На практике выполнение условия (6.27) сводится к выполнению трех равенств: значений напряжений сети и генератора U cm = U гm или U c = U г; частот ω c = ω г или f с = f г; их начальных фазα с = α г (совпадение по фазе векторов Ú c и Ú г). Вместе с тем, для трехфазных генераторов нужно согласовать порядок чередования фаз.

Совокупность операций, проводимых при подключении генератора к сети, называют синхронизацией. Практически при синхронизации генератора сначала устанавливают номинальную частоту вращения ротора, что обеспечивает приближенное равенство частот f с ≈ f г а затем, регулируя ток возбуждения, добиваются равенства напряжения U c = U г. Совпадение по фазе векторов напряжений сети и генератора (α с = α г) контролируется специальными приборами - ламповым и стрелочными синхроноскопами .

Ламповые синхроноскопы применяют для синхронизации генераторов малой мощности, в связи с этим обычно их используют в лабораторной практике. Этот прибор представляет собой три лампы, включенные между фазами генератора и сети (рис. 6.32, а). На каждую лампу действует напряжение Δu = u с - u г, ĸᴏᴛᴏᴩᴏᴇ при f с ≠ f г изменяется с частотой Δf = f c - f г, называемойчастотой биений (рис. 6.32,б). В этом случае лампы мигают. При f с ≈ f г разность Δи изменяется медленно, вследствие чего лампы постепенно загораются и погасают.

Обычно генератор подключают к сети в тот момент, когда разность напряжений Δu на короткое время становится близкой нулю, т. е. в серединœе периода погасания ламп. В этом случае выполняется условие совпадения по фазе векторов Ú c и Ú г. Для более точного определœения этого момента часто применяют нулевой вольтметр, имеющий растянутую шкалу в области нуля. После включения генератора в сеть дальнейшая синхронизация частоты его вращения, т. е. обеспечение условия n 2 = n 1 , происходит автоматически.

Генераторы большой мощности синхронизируют с помощью стрелочных синхроноскопов, работающих по принципу вращающегося магнитного поля. В этих приборах при f с ≠ f г стрелка вращается с частотой, пропорциональной разности. частот f с - f г, в одну или другую сторону исходя из того, какая из этих частот больше. При f с = f г стрелка устанавливается на нуль; в данный момент и следует подключать генератор к сети. На электрических станциях обычно используют автоматические приборы для синхронизации генераторов без участия обслуживающего персонала.

Довольно часто применяют метод самосинхронизации, при котором генератор подключают к сети при отсутствии возбуждения (обмотка возбуждения замыкается на активное сопротивление). При этом ротор разгоняют до частоты вращения, близкой к синхронной (допускается скольжение до 2%), за счёт вращающего момента первичного двигателя и асинхронного момента͵ обусловленного индуцированием тока

в демпферной обмотке. После этого в обмотку возбуждения подают постоянный ток, что приводит к втягиванию ротора в синхронизм. При методе самосинхронизации в момент включения генератора возникает сравнительно большой бросок тока, который не должен превышать 3,5I a ном.

Регулирование активной мощности. После включения генератора в сеть его напряжение U становится равным напряжению сети U c . Относительно внешней нагрузки напряжения U и U c совпадают по фазе, а по контуру ʼʼгенератор - сетьʼʼ находятся в противофазе, т. е. Ú = - Ú c (рис. 6.33, а). При точном выполнении указанных трех условий, необходимых для синхронизации генератора, его ток I a после подключения машины к сети равняется нулю. Рассмотрим, какими способами можно регулировать ток I a при работе генератора параллельно с сетью на примере неявнополюсного генератора.

Ток, проходящий по обмотке якоря неявнополюсного генератора, можно определить из уравнения (6.23)

Í a = (É 0 - Ú)/(jX сн) = -j(É 0 - Ú)/X сн.

Так как U = U c = const, то силу тока I а можно изменять только двумя способами - изменяя ЭДС Е 0 по величинœе или по фазе. В случае если к валу генератора приложить внешний момент, больший момента͵ крайне важно го для компенсации магнитных потерь мощности в стали и механических потерь, то ротор приобретает ускорение, вследствие чего вектор É 0 смещается относительно вектора Ú на некоторый угол θ в направлении вращения векторов (рис. 6.33,б ). При этом возникает некоторая небалансная ЭДС ΔЕ , приводящая согласно (6.28) к появлению тока I а. Возникающую небалансную ЭДС ΔÉ = É 0 - Ú = É 0 + Ú c = jÍ a X сн можно показать на векторной диаграмме (рис. 6.33, б). Вектор тока I а отстает от вектора ΔЕ на 90°, поскольку его величина и направление определяются индуктивным сопротивлением X сн.

При работе в рассматриваемом режиме генератор отдает в сеть активную мощность

Р = mUI a cos φ и на вал его действует электромагнитный тормозной момент, который уравновешивает вращающий момент первичного двигателя, вследствие чего частота вращения ротора остается неизменной. Чем больше внешний момент, приложенный к валу генератора, тем больше угол θ , а следовательно, ток и мощность, отдаваемые генератором в сеть.

В случае если к валу ротора приложить внешний тормозной момент, то вектор É 0 будет отставать от вектора напряжения Ú на угол θ (рис. 6.33, в ). При этом возникают небалансная ЭДС ΔÉ и ток Í a , вектор которого отстает от вектора ΔÉ на 90°. Так как угол φ > 90°, активная составляющая тока находится в противофазе с напряжением генератора. Следовательно, в рассматриваемом режиме активная мощность Р = mUI a cos φ забирается из сети, и машина работает двигателœем, создавая электромагнитный вращающий момент, который уравновешивает внешний тормозной момент; частота вращения ротора при этом снова остается неизменной.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, для увеличения нагрузки генератора крайне важно увеличивать приложенный кего валу внешний момент (т. е. вращающий момент первичного двигателя), а для уменьшения нагрузки - уменьшать данный момент. При изменении направления внешнего момента (если вал ротора не вращать, а тормозить) машина автоматически переходит из генераторного в двигательный режим.

Регулирование реактивной мощности. В случае если в машинœе, подключенной к сети и работающей в режиме холостого хода (рис. 6.34, а), увеличить ток возбуждения I в, то возрастет ЭДС Е 0 (рис. 6.34, б ),возникнет небалансная ЭДС ΔÉ = - jI а X сн и по обмотке якоря будет проходить ток I а, который согласно (6.28) определяется только индуктивным сопротивлением Х сн машины. Следовательно, ток Í a реактивный: он отстает по фазе от напряжения Ú на угол 90° или опережает на тот же угол напряжение сети Ú c . При уменьшении тока возбуждения ток Í a изменяет свое направление: он опережает на 90° напряжение Ú (рис. 6.34, в ) и отстает на 90° от напряжения Ú c .Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, при изменении тока возбуждения изменяется лишь реактивная составляющая тока I а, т. е. реактивная мощность машины Q. Активная составляющая тока I а в рассматриваемых случаях равна нулю. Следовательно, активная мощность Р = 0, и машина работает в режиме холостого хода.

При работе машины под нагрузкой создаются те же условия: при изменении тока возбуждения изменяется лишь реактивная составляющая тока I а, т. е. реактивная мощность машины Q. Режим возбуждения синхронной машины с током I в.п, при

котором реактивная составляющая тока I а равна нулю, называют режимом полного или нормального возбуждения. В случае если ток возбуждения I в больше тока I в.п, при котором имеется режим полного возбуждения, то ток I а содержит отстающую от U реактивную составляющую, что соответствует активно-индуктивной нагрузке генератора. Такой режим называют режимом перевозбуждения. В случае если ток возбуждения I в меньше тока I в.п, то ток I а содержит реактивную составляющую, опережающую напряжение U , что соответствует активно-емкостной нагрузке генератора. Такой режим называют режимом недовозбуждения.

Перевозбужденная синхронная машина, работающая в режиме холостого хода, относительно сети эквивалентна емкости. Машину, специально предназначенную для работы в таком режиме, называют синхронным компенсатором и используют для повышения коэффициента мощности электрических установок и стабилизации напряжения в электрических сетях. Недовозбужденная синхронная машина, работающая в режиме холостого хода, относительно сети эквивалентна индуктивности.

Возникновение реактивной составляющей тока I а физически объясняется тем, что при работе синхронной машины на сеть бесконечно большой мощности суммарный магнитный поток сцепленный с каждой из фаз, ΣФ = Ф рез + Ф σ = Ф в + Ф а + Ф σ не зависит от тока возбуждения и при всœех условиях остается неизменным, так как

Ú = É 0 + É а + É σа = - Ú c = const.

Следовательно, в случае если ток возбуждения I в больше тока, требуемого для полного возбуждения, то возникает отстающая составляющая тока I а, которая создает размагничивающий поток реакции якоря Ф а; если ток I в меньше тока, крайне важно го для полного возбуждения, то возникает опережающая составляющая тока I а , которая создает подмагничивающий поток реакции якоря Ф а . Во всœех случаях суммарный поток машины ΣФ автоматически поддерживается неизменным.

ПАРАЛЛЕЛЬНАЯ РАБОТА СИНХРОННОГО ГЕНЕРАТОРА С СЕТЬЮ - понятие и виды. Классификация и особенности категории "ПАРАЛЛЕЛЬНАЯ РАБОТА СИНХРОННОГО ГЕНЕРАТОРА С СЕТЬЮ" 2017, 2018.

Необходимость в этом приборе возникает при подключении генератора параллельно к сети переменного тока или к другому генератору. Этот процесс называется синхронизацией .

Чтобы включение прошло без вреда для генератора, добиваются одновременного выполнения трех условий:

  • Напряжения в сети и на генераторе совпадают по величине;
  • Частота генерации равна частоте напряжения в сети;
  • Угол сдвига фаз между напряжениями одноименных фаз сети и генератора равен нулю.

Напряжение на генераторе перед синхронизацией устанавливают равным напряжению сети при помощи контрольных вольтметров. Выходное напряжение регулируют изменением тока в роторе.

Для подгонки частоты генерации (fг) к величине частоты сети (fc) изменяют скорость вращения генератора. На электростанциях для этого регулируется количество пара (воды), подающегося на лопатки турбины.

С углом сдвига фаз намного сложнее. Точного равенства частоты генерации частоте сети добиться невозможно. Но, даже если выполнить это условие, равенства редко удается достичь. Процесс усложняется еще и тем, что для регулировки изменяется скорость вращения вала турбоагрегата. При многотонной массе валов промышленных аппаратов изменение скорости происходит с инерцией, которую трудно учесть.

В итоге после уравнивания частот все равно присутствует разность, называемая частотой скольжения :

Следствием частоты скольжения становится постоянное цикличное изменение угла между напряжениями сети и генератора от нуля до 360 градусов. Чем больше частота скольжения, тем быстрее изменяется угол, и наоборот.

Для визуального отображения угла между напряжениями сети и генератора нужен синхроноскоп . К нему подводятся напряжения одноименных фаз сети и генератора. Нулевое положение стрелки на нем происходит при угле, равным нулю, противоположное значение – при 180 градусах.

Стрелка синхроноскопа при синхронизации постоянно вращается. По направлению вращения определяют, больше частота генерации частоты в сети или меньше. В момент прохода стрелки через нулевое положение генератор включают в сеть.

Включение генератора в момент, когда стрелка показывает на 180 градусов, приводит к возникновению токов через обмотку статора, превышающих расчетный ток короткого замыкания . За время, пока подействует защита, этот ток успеет разрушить обмотку статора. Генератор придется отправить в капитальный ремонт.

Если генератор включить в сеть при меньших углах, но не равных нулю, через обмотку статора произойдет кратковременный бросок тока. Это тоже аварийный режим его работы. Повреждений обмотки не произойдет, но систематическое несинхронное включение агрегата в сеть со временем приведет к поломке. Поэтому несинхронное включение запрещено .

Колонка синхронизации

Для визуального контроля параметров при включении генераторов в сеть на Главном щите управления электростанций устанавливается колонка синхронизации. На ней размещаются приборы:

  • Вольтметр контроля напряжения в сети.
  • Вольтметр контроля напряжения на генераторе.
  • Частотомер сети.
  • Частотомер генератора.
  • Синхроноскоп.

Иногда на колонке дополнительно ставят контрольную лампу, включенную между одной из фаз сети и генератора. Лампа меняет яркость свечения одновременно с движением стрелки синхроноскопа. При угле между напряжениями, равном нулю, она гаснет, при 180 градусах – горит в полную яркость. На передвижных электростанциях такие лампы иногда устанавливаются на всех трех фазах совместно (или вместо) синхроноскопа.

Поскольку генераторов на станциях много, предусматривается возможность для их поочередного подключения к колонке синхронизации.

Автоматические синхронизаторы

Поскольку процесс синхронизации трудно контролировать вручную, он проводится в автоматическом режиме. Для этого на электростанциях устанавливаются приборы, называемые автосинхронизаторами.

Регулирование оборотов генератора в ручном режиме выполняется ключами, подающими импульс на регулирующее устройство. На тепловых электростанциях – это электродвигатель паровой задвижки на входе турбины. Кратковременно поворачивая ключ в положения «Больше» или «Меньше», оперативный персонал открывает или закрывает задвижку. Так обеспечивается регулировка оборотов турбины. Эту же операцию выполняет и автосинхронизатор, работающий в автоматическом режиме.

Как и к синхроноскопу, к нему подключены напряжения с выхода генератора и из сети. Он постоянно контролирует их величины и выдает импульс на включение только в момент выполнения условий, перечисленных в начале этой статьи. Но с одним отличием: команда на включение генератора в сеть выдается заблаговременно, с заданной при настройке синхронизатора задержкой.

Для чего она нужна? Дело в том, что выключатель, включающий генератор в сеть, характеризуется собственным временем включения . Оно небольшое (десятые доли секунды), но этого достаточно, чтобы за время срабатывания стрелка синхроноскопа успела уйти с нулевого положения. Поэтому в настройки синхронизатора и добавляется задержка по времени, называемая временем опережения. Для каждого типа выключателя (масляного, вакуумного, элегазового) она имеет разное значение.

Автосинхронизатор не включает генератор в сеть при частоте скольжения, равной нулю . Процесс регулировки оборотов турбины настолько не стабилен, что частота вращения в любой момент может измениться. Поэтому включение происходит при небольшой частоте скольжения, отличной от нуля.

Процесс синхронизации

Включение генераторов в сеть на электростанциях происходит так.

  1. После выхода турбоагрегата на номинальные обороты управление им передается оперативному персоналу Главного щита управления. Персонал турбинного цеха после передачи управления не вмешивается в его работу.
  2. По частотомерам на колонке синхронизации персонал уравнивает частоту генерации с частотой сети, изменяя скорость вращения турбины.
  3. По вольтметрам на колонке синхронизации, изменяя ток в роторе, устанавливается напряжение на статоре генератора, равное напряжению сети. Выполняется это только после уравнивания частот, так как с изменением частоты изменяется и выходное напряжение статора.
  4. Скорость вращения турбины изменяется в большую или меньшую сторону на величину, требуемую для нормальной работы автосинхронизатора.
  5. Автосинхронизатор включается в работу. Анализируя величину частоты скольжения, от выдает импульсы на изменение оборотов турбины, добиваясь требуемой частоты ее вращения.
  6. Подогнав величину скольжения, автосинхронизатор автоматически переключается в режим измерения угла между напряжениями и вычисляет момент, когда подать импульс на включение, чтобы оно произошло при его нулевом значении. Как только этот момент будет достигнут, происходит включение выключателя.

Процесс отличается на разных электростанциях и при применении различных типов синхронизаторов. Они, как и устройства релейной защиты, прошли три стадии развития.

Лабораторная работа №3

ИССЛЕДОВАНИЕ ПАРАЛЛЕЛЬНОЙ РАБОТЫ СИНХРОННОГО ГEHEPATОPA С СЕТЬЮ

Цель работы – изучение методов включения синхронного генератора в сеть, нагружение его активной и реактивной мощностью, снятие U-образной характеристики.

Оборудование и приборы:

Трехфазный синхронный генератор СГР-4,5 , трехфазный асинхронный двигатель ВАО-52-4, комплект измерительных приборов К-50 , индукционный регулятор с выпрямителем, амперметр магнитоэлектрической системы на 10, ламповый синхроскоп ЛС, нулевой вольтметр электромагнитной системы с пределом измерения 250 В.

1. Включить синхронную машину на параллельную работу с сетью:

а) методом точной синхронизации (за помощью синхроноскопа);

б) методом грубой синхронизации.

2. Снять и построить U -образную характеристику генератора при Р 1 = 0.

3. По данным опыта рассчитать и построить зависимость cosj = f(і в) . Перевести синхронную машину в режим двигателя и осуществить регулирование активной и реактивной мощности при постоянном токе статора І 1 = const .

4. Снять характеристики І 1р = f(P 1), і в = f(P 1), cosj = f(P 1) .

Порядок выполнения работы

Условия включения синхронного генератора на параллельную работу.

При включении синхронного генератора на параллельную работу с сетью необходимо соблюдать следующие условия:

1) напряжение (ЭДС ) генератора должно быть равно по величине и быть противоположным по фазе напряжению сети U г = -U c ;

2) частота напряжения генератора должна равняться частоте напряжения сети f г = f с ;

3) порядок следования фаз у генератора и сети должен быть одинаковым.

Совокупность операций по выполнению этих условий, сделанных в режиме холостого хода синхронного генератора, называется синхронизацией.

Включение генератора на параллельную работу с сетью

2.1 По методу точной синхронизации. Точная синхронизация генератора с сетью наступает, когда при одинаковом порядке следования фаз частота и напряжение генератора равны частоте и напряжению сети, а векторы U г и U с встречны один другому, т.е. составляют между собой 180 электрических градусов.

Довговременно поддерживать такой режим в автономно работающем генераторе невозможно. Поэтому на практике домагаються лишь возможно более точного совпадения величин напряжений и приблизительного совпадения частот, при котором осуществляется плавное изменение угла между векторами напряжения генератора и напряжения сети. Уловив момент, когда U г и U с находятся в противофазе, делают включение генератора на сеть.

Для определения момента времени включения генератора на параллельную работу с сетью применяются разные автоматические устройства синхронизации. Наиболее простым является ламповый синхроноскоп.

Синхроноскоп, схема которого приведена на рис. 3.1, состоит из трех ламп, рассчитанных на кратковременную работу при удвоенном фазном напряжении сети; с его помощью можно включить СГ в сеть в момент времени, близкий к режиму точной синхронизации.

Для этого необходимо собрать схему по рис.3.1 (на одновременное погасание ). Основными узлами и элементами схемы являются: сеть, синхронный генератор G , приводной двигатель M , ламповый синхроноскоп ЛС и комплект измерительных приборов К-50 .

Сеть ~220 В

Рисунок 3.1 – Схема исследования паралельной работы синхронного генератора с сетью

Порядок выполнения работы

После сборки схемы (рис. 3.1) включают автомат АП3 и выполняют пуск асинхронного двигателя, который соединен с валом индуктора синхронного генератора. Частота вращения ротора асинхронного двигателя почти равна номинальной частоте вращения индуктора (в условиях лаборатории это примерно 1500 об/мин). Потом включают автомат АП2 и доводят ток возбуждения синхронного генератора до величины, при которой напряжение по показаниям вольтметра комплекта К-50 станет равным фазному значению напряжения сети. В результате при включенном автомате АП2 лампы синхроноскопа выявляются включенными между линейными проводами сети и генератора. Если порядок следования фаз сети и генератора одинаков, тогда лампы загораются одновременно и гаснут одновременно.

Если чередование фаз сети и генератора разное, то лампы загораются и погасают по очереди. В этом случае необходимо остановить генератор и поменять местами два каких-нибудь линейных провода, которые идут от зажимов генератора к комплекту К-50 (следовательно, к сети). Затем снова запускают генератор и проверяют соответствие очередности фаз генератора и сети.

Загорание и погасание ламп синхроноскопа осуществляется за счет изменения разбежности потенциалов между одноименными зажимами АП2 и генератора, обусловленного разбежностью частоты сети и генератора при несинхронной частоте вращения генератора. Включение генератора на параллельную работу с сетью с помощью автомата АП1 выполняется в момент погасания ламп. При этом частота погасания и загорания ламп должна быть такой, чтобы лампы загорались и потухали одновременно через 1-2 секунды, что достигается изменением частоты вращения приводного двигателя.

Недостатком этого метода является то, что лампы потухают при разнице напряжений на зажимах ламп 30% U н и при включении генератора в сеть возникает ударный ток. Для исключения ударного тока и установления момента полного погасания ламп, при котором требуется включить АП1 , можно установить по показанию вольтметра V , включенного параллельно одной из ламп. В момент времени, когда напряжение на лампе будет отсутствовать (вольтметр покажет ноль) синхронный генератор включают в сеть.

Критерием удачного включения генератора в сеть служит отсутствие броска тока, что наблюдается по амперметру К-50 . При неточном включении бросок тока может достигать большой величины.

После включения генератора он втягивается в синхронизм и работает синхронно с сетью.

Лампы синхроноскопа можно включить на "бегущий огонь" (вращающийся свет). Для этого присоединение ламп Л2 и Л3 к сети (генератору) изменяют так, как показано на рис. 3.1 штриховыми линиями. Лампы будут загораться и потухать в определенной последовательности. При размещении их по вершинах треугольника создается впечатление вращающегося света. Направление вращения света зависит от того, какая частота больше, – генератора или сети. Включение генератора в сеть выполняется в тот момент времени, когда лампа Л1 целиком гаснет, а две другие горят. Если при включении синхроноскопа на "бегущий свет" лампы одновременно гаснут и затем одновременно загораются – это значит, что порядок прохождения фаз генератора и сети не совпадает.

2.2. Метод самосинхронизации. Широко применяется метод самосинхронизации, названный также методом грубой синхронизации. Это стало возможным благодаря тому, что сети у нас достаточно большой мощности и включение одного генератора не влияет на работу других генераторов, которые параллельно работают на эту сеть с U = U 1н = const и f = f 1н = const .

Метод состоит в следующем. Синхронный генератор после проверки правильности чередования фаз генератора и сети приводят во вращение приблизительно с синхронной частотой вращения; обмотка возбуждения при этом замкнута накоротко. При достижении подсинхронной частоты вращения включают обмотку якоря в сеть с одновременной подачей тока возбуждения в обмотку возбуждения, поступательно увеличивая до значения, при котором генератор втягивается в синхронизм и работает параллельно с сетью в режиме холостого хода.

U-образные характеристики синхронного генератора

U -образные характеристики определяют зависимость тока статора от тока возбуждения і в при постоянной активной мощности генератора (рис. 3.2). В условиях лаборатории характеристику снимают при величине активной мощности генератора, равной нулю, т.е. в режиме холостого хода Р 1 = 0 . Для этого непосредственно после включения генератора на параллельную работу изменением тока возбуждения приводного двигателя и тока возбуждения СГ достигают режима, при котором показания амперметра в цепи генератора будут близкими к 0 , что соответствует режиму холостого хода генератора.

Затем, изменив і в генератора до величины, при которой ток І 1 в статоре станет равным номинальному или немного больше его, записывают первую точку U -образной характеристики. Постепенно увеличивая і в генератора, снимают 3-4 точки левой области кривой І 1 = f(і в) . Обязательно зафиксировать точку U -образной характеристики при минимальном токе статора генератора. Затем, увеличивая і в генератора, снимают точки правой части кривой І 1 = f(і в) .

0,5

Рисунок 3.2 – U-образная характеристика синхронного генератора

Опыт проводить при изменении тока возбуждения от 1 до 10 А.

Правая часть кривой соответствует перевозбужденной машине и отдаче в сеть емкостного тока и реактивной мощности, а левые части – недовозбужденной машине и отдаче в сеть индуктивного тока и потреблению реактивной мощности.

Показания приборов записывают в табл.3.1.

Таблица 3.1 U -образная характеристика синхронного генератора

при U 1 = ... = const, n = n н = const

Р 1 = 0 I 1 , A
i в, А

Контрольные вопросы

1. Какими методами можно включить СГ на параллельную работу с сетью? В чем состоит расхождение методов?

2. Как включить СГ в сеть по методу точной синхронизации?

3. Как включить СГ в сеть по методу самосинхронизации?

4. Какое назначение синхроноскопа?

5. Как проверяется совпадение чередования фаз генератора и сети?

6. Поясните последовательность операций при снятии U -образных характеристик на исследуемой машине при Р 1 = 0.

7. Как по U -образной характеристике рассчитать и построить зависимость cosj от тока возбуждения?

8. Какая фаза тока І 1 , соответствующего минимуму U -образной характеристики синхронного генератора?

9. Почему с увеличением активной мощности Р минимумы кривых смещаются вправо?

10. Какая фаза тока недовозбужденного и перевозбудженного генератора относительно напряжения сети?

11. Поясните – при перевозбуждении или при недовозбуждении СГ отдает реактивную мощность в сеть?

12. Что обозначает угол нагрузки q и от чего зависит его величина?

В отчете представить:

1. Цель работы, оборудование и приборы, содержание работы.

2. Электрическую схему опыта для проведения исследования.

3. Условия, которые требуется выполнить при включении генератора в сеть.

4. Таблицу измеряемых величин для построения U-образной характеристики.

5. График U-образной характеристики.

6. Письменные ответы на контрольные вопросы 1,2,3,4,5,6,7,8.


ЛабораторнаЯ рАбота 4


Похожая информация.


Как уже отмечалось, для включения генераторов постоянного тока на параллельную работу необходимо, чтобы напряжения на зажимах их были одинаковыми и чтобы полярность включаемого генератора соответствовала полярности сети. При этом напряже­ние подключаемого генератора устанавливают несколько выше напряжения работающих генераторов, чтобы сразу же после за­мыкания контактов выключателя генератор принял на себя часть нагрузки работающих машин. Затем по мере прогрева привод­ного двигателя подключаемого генератора напряжение на его зажимах увеличивают и одновременно уменьшают напряжение работающих машин так, чтобы напряжение на шинах осталось без изменения.

Процесс перераспределения нагрузки протекает следующим образом. Например, при увеличении тока возбуждения подклю­чаемого генератора возрастает его напряжение, от чего увеличи­вается нагрузка и снижается частота вращения приводного дви­гателя. При этом начинает действовать регулятор частоты, уве­личивая подачу топлива или пара (в зависимости от типа привод­ного двигателя), и восстанавливает частоту вращения агрегата при соответственно увеличенной его мощности.

При необходимости отключения одного из генераторов умень­шают его возбуждение и одновременно увеличивают возбуждение других машин так, чтобы напряжение на шинах оставалось по­стоянным. Эту операцию производят до тех пор, пока ток генера­тора не станет равным нулю.

Следует иметь в виду, что при чрезмерном уменьшении напря­жения отключаемого генератора его ток может изменить направ­ление и машина перейдет в двигательный режим, что может привести к аварии. Во избежание этого предусматривается уста­новка реле обратного тока, отключающего генератор при измене­нии направления тока.

Условия параллельного включения СГ, по существу, те же, что и генераторов постоянного тока, но напряжения СГ изменя­ются по величине и по знаку. Поэтому у СГ имеется в виду совпа­дение мгновенных значений их напряжений, т. е. u1=u2, что оп­ределяет следующие условия включения СГ на параллельную ра­боту.

Формы кривых напряжений u1 и u2 должны быть одинако­выми;

Действующие значения напряжений должны быть равны между собой;

Напряжения должны совпадать по фазе;

Частоты должны быть одинаковыми;

Порядок чередования фаз (для 3-фазных машин) должен быть одинаковым.

Выполнение первого условия обеспечивается конструкцией со­временных генераторов, последнего-при монтаже, а остальных- в зависимости от того, как производятся операции, связанные с включением генераторов на параллельную работу. Выполнение их контролируется вольтметрами, синхроноскопами и частотомерами.


При несоблюдении условий включения СГ на параллельную работу, например при неравенстве действующих значений напря­жений, могут возникнуть большие уравнительные токи. При не­выполнении третьего и четвертого условий возникают напряже­ния биения.

Представим напряжения U1 и U2 в виде двух векторов, один из которых неподвижен, а другой вращается относительно пер­вого со скоростью, равной разности угловых скоростей 2pf1-2pf2.

Пусть в некоторый момент времени векторы U1 и U2 распо­ложены так, как показано на рис. 120. Их геометрическая сумма определяет напряжение DU, под влиянием которого по цепи пой­дет ток биений Iб, отстающий от напряжения DU по фазе на 90°. В отличие от уравнительного тока ток биения близок по фазе к напряжению U2 и находится в противофазе с напряжением U1. Таким образом, в рассматриваемый момент ток является актив­ным и не только нагружает генераторы, но и влияет на работу при­водных двигателей.

Напряжение биений возникает при несин­хронной работе генераторов и зависит от величины рассогласо­вания частот и от угла сдвига фаз между напряжениями. Макси­мального значения, равного 2Um, напряжение биения достигает при угле сдвига фаз, равном 180°.

Итак, невыполнение условий безаварийного включения генера­торов на параллельную работу приводит к возникновению пере­ходных процессов, которые сопровождаются толчками уравнитель­ного тока между генераторами, и механического момента на валах приводных двигателей. Эти явления обычно сопровождаются зна­чительными отклонениями напряжения судовой сети.

Все это может привести к тому, что не только включаемый ге­нератор не войдет в синхронизм, но могут выпасть из синхро­низма и другие параллельно работающие генераторы. Вот поче­му включение генератора на параллельную работу с другими, уже работающими, представляет собой весьма ответственную задачу, которая должна выполняться при строгом соблюдении всех усло­вий, гарантирующих параллельную работу ГА судовой электро­станции.

Процесс включения генераторов переменного тока на парал­лельную работу при выполнении указанных выше условий назы­вается синхронизацией.

Синхронизация предусматривает выполнение следующих основ­ных требований:

Уравнительный ток в первый момент включения должен быть возможно меньшим;

После включения генераторы должны оставаться в синхро­низме;

Процесс синхронизации не должен вызывать отклонения пара­метров судовой сети выше допустимых.

Синхронные генераторы могут включаться на параллельную работу способами точной синхронизации, грубой синхронизации и самосинхронизации, причем эти способы включения осуществля­ются как вручную-оператором, так и автоматически.

Точная синхронизация . При точной синхронизации напряжение подключаемого СГ должно несколько превышать напряжение на шинах, а частота вращения СГ должна быть близкой номиналь­ной. Для этого обычно на ГРЩ располагают кнопочные посты управления серводвигателями SB1 и SB2 (рис. 121), воздейст­вующие на регуляторы частоты вращения приводных двигателей ПД. Включая серводвигатель Ml или М2 в ту или иную сторону, повышают или понижают частоту вращения подключаемого СГ до нужного значения. Затем, пользуясь синхроноскопом SS, улав­ливают момент близкого совпадения по фазе напряжения на ши­нах и напряжения подключаемого СГ и выключателем Q включают генератор на параллельную работу.

Наибольшее применение получили синхроноскопы 2-х типов: на лампах накаливания и сельсинах. В простейшем случае синхроноскоп может быть выполнен на одной лампе, включенный между одноименными фазами сети и включаемого генератора.

На практике чаще всего используется 3-х ламповая схема синхроноскопа, причем возможно 2 варианта ее выполнения. На погасание ламп и на « вращение огня». В первом случае лампы включены между одноименными фазами А-А, В-В, С-С. В этом случае на каждой лампе напряжение биения может изменяться с частотой равной разности f3=f1-f2, см. рис. 122. Причем момент погасания лампы свидетельствует о совпадении векторов напряжения U1 и U2, то есть все лампы будут гореть пульсирующим огнем.

Во втором случае используются схемы вращения огня, одна из ламп включена между одноименными фазами, например А-А, а две другие – между разноименными, см. рис. 123.

В результате схема дает эффект вращения огня, со скоростью – пропорциональной разности частот, при этом направление вращающегося огня зависит от того, отстает или опережает вектор напряжения включаемого генератора от вектора напряжения сети.

Здесь момент включения генераторного выключателя выбирается по двум факторам: возможно низкая скорость вращения огня, и момент погасания ламп включенными между одноименными фазами.

Второй тип синхроноскопа выполненный на сельсинах, представляет стрелочный прибор в котором вращается со скоростью равной частоте сети, и по ее положению определяется момент включения.

После подключения СГ постепенно, известным способом уве­личивают его нагрузку, для чего воздействуют посредством кно­почных постов на регуляторы приводных двигателей: у подклю­чаемого генератора в сторону увеличения частоты вращения, у работающего-в сторону снижения ее в таких пределах, чтобы частота сети оставалась неизменной.

При одинаковых генераторах и малом значении Хс (эквивалентное индуктивное сопротивление соединительной цепи) наибольшее значение уравнительного тока

При этом уравнительный ток равен ударному току ко­роткого замыкания одного ге­нератора.

Таким образом, включению СГ на параллельную работу способом точной синхрониза­ции должны предшествовать замеры и сравнения следую­щих величин работающего и подключаемого генераторов: напряжения, частоты, угла сдвига d между векторами напря­жения.

Подключение генератора к системе производится при выполне­нии следующих условий:

u1»u2, f1»f2, d=0.

На зажимах одноименных фаз двух несинхронно работающих генераторов возникает напряжение биения, огибающая которого показана на рис. 125. Эта кривая характеризуется периодом бие­ния tб и максимальным значением напряжения Uбmах.

Подключение генератора на параллельную работу следовало бы производить в точке, где uб=0, так как при этом выполня­ются указанные выше условия. Однако, принимая во внимание определенную продолжительность срабатывания выключателя, оператор должен воздействовать на его цепь управления не в мо­мент времени, соответствующий uб=o, а с некоторым опереже­нием tоп, равным времени срабатывания аппарата tср. Сказан­ное выше обусловливает высокие требования в отношении точно­сти выполнения операций по синхронизации генераторов.

Грубая синхронизация. Отличается от точной синхронизации тем, что генератор подключается на шины не прямо, а через ре­активное сопротивление Хр, включенное в каждую фазу, которое после втягивания СГ в синхронизм отключается контакторами К1 и К2 (рис. 124). Введение сопротивления между генераторами ограничивает уравнительные токи даже при значительных сдви­гах напряжения генераторов по фазе и потому не требует особой точности при выборе момента включения коммутационного ап­парата.

Наибольшее значение уравнительного тока

где U-напряжение синхронизируемого генератора.

Реактор для синхронизации генераторов мощностью 50 - 1500 кВт имеет индуктивное сопротивление 1,3-1,8 (о е) при разности частот 2 Гц, массу обмотки 90 кг.

Правильный расчет и выбор реактора, а также установление допустимых пределов разности частот синхронизируемых генерато­ров обеспечивают втягивание в синхронизм генераторов в тече­ние 1,5-3 с Максимальные всплески токов и провалы напряже­ния при этом не превышают допустимых значений Так как про­цесс грубой синхронизации проходит довольно быстро, реакторы рассчитываются на кратковременную работу.

Отсутствие необходимости в точном выборе момента включе­ния генератора является существенным достоинством способа гру­бой синхронизации, а к его недостаткам следует отнести наличие специальных реакторов и коммутационных аппаратов

Самосинхронизация . При самосинхронизации частоту вращения подключаемою генератора доводят до значения, близкого к но­минальному, и без возбуждения подсоединяют к шинам работа­ющего генератора, затем подают возбуждение, и генератор втягивается в синхронизм

Так как ЭДС подключаемого генератора равна нулю, то максимальное значение уравнительною тока в момент замыкания контактов будет вдвое меньше возможного максимального тока при синхронизации возбужденных генераторов Однако уравнительный ток все же значителен и может вызвать большие кратко­временные провалы напряжения в сети. Скачок тока при подключении генератора зависит от соотношения мощностей работающего и подключаемого генераторов. При включении СГ у параллельно работающего генератора, имеющего такую же мощность, напряже­ние может снизиться до 50 % номинального, а у генераторов, мощность которых представляет 25-30% мощности ЭС, -до 15-20 %. Генераторы различной мощности при самосинхрониза­ции надежно втягиваются в синхронизм При этом начальный ток статора составляет (2-4,5) Iном, провалы напряжения-до 20- 40 %, время синхронизации-до 1-1,5 с при скольжении ±2-3%.

Способ самосинхронизации не может быть применен, когда оба генератора работают с нагрузкой и включение их на парал­лельную работу производится с целью перевода всей нагрузки на один генератор или для создания в системе вращающегося резер­ва мощности.

Самосинхронизация генераторов осуществляется крайне про­сто, так как при этом способе включения СГ не нужно улавли­вать моменты совпадения фаз ЭДС подключаемого и работаю­щего генераторов. Тем не менее из-за возможных больших прова­лов напряжения этот способ синхронизации на судовых электро­станциях применения не находит и может использоваться лишь в отдельных электрических установках, например в гребных элект­рических установках.

Автоматическая синхронизация . Включение СГ на параллельную работу способом точной синхронизации требует от обслуживаю­щего персонала соответствующих знаний и навыков. При непра­вильном включении генератора судно может полностью или ча­стично остаться без электроэнергии. При этом могут лишиться питания и механизмы, от которых зависит живучесть судна.

В настоящее время применяются устройства автоматической точной синхронизации генераторов, которые позволяют произво­дить включение СГ на параллельную работу практически без скачков тока и провалов напряжения в судовой сети.

При этом необходимо соблюдение следующих уже известных нам условий:

Скольжение не превосходит допустимой величины;

Угол сдвига фаз между сравниваемыми напряжениями в мо­мент замыкания контактов выключателя близок к нулю;

Разность амплитуд сравниваемых напряжений не превышает допустимой величины.

При полуавтоматической точной синхронизации подгонка ча­стоты подключаемого генератора осуществляется вручную дистан­ционно с пульта управления специальным ключом, а включение автомата-от сигнала синхронизатора.

При ручной точной синхронизации операции по подгонке ча­стоты и включение автомата производятся дистанционно вручную с контролем по синхроноскопу и частотомерам, установленным на пульте управления.

Для осуществления автоматической, полуавтоматической и ручной синхронизации на пульте управления кроме автоматиче­ского синхронизатора и синхроноскопа установлены ключи син­хронизации. Эти ключи представляют собой универсальные па­кетные переключатели на два рабочих положения: «Автома­тическая синхронизация» и «Ручная синхронизация», и нулевое положение, когда все цепи разомкнуты.

В том случае, когда мощность потребителя становится больше номинальной мощности работающего генератора, параллельно ему включают другой генератор.

Для включения синхронного генератора на параллельную работу с электрической сетью или другим, уже работающим синхронным генератором необходимо выполнить следующие условия:

напряжение подключаемой машины должно быть равно напряжению сети или работающей машины;

частота подключаемого генератора должна быть равна частоте сети;

напряжения всех фаз подключаемой машины должны быть противоположны (по фазе) напряжениям соответствующих фаз сети или работающей машины;

для подключения на параллельную работу трехфазного синхронного генератора необходимо также обеспечить одинаковое чередование фаз подключаемой машины и сети.

Подготовку к включению на параллельную работу синхронного генератора ведут следующим образом. Приводят во вращение первичный двигатель и регулируют его скорость вращения так, чтобы она была примерно равна номинальной. Затем возбуждают генератор и, следя за показаниями вольтметра, подключенного к зажимам статора, регулируют напряжение машины при помощи реостата в цепи возбуждения до тех пор, пока оно не станет равным напряжению сети. Воздействуя на регулятор первичного двигателя и наблюдая за показаниями частотомера, устанавливают более точно скорость машины так, чтобы частота генератора была равна частоте сети. Тем самым первое и второе условия для включения на параллельную работу будут выполнены.

Для выполнения третьего условия служат фазные лампы. Последние включаются по двум схемам: на потухание (рис. 282, а) и на вращение света (рис. 282, б). Лампы, включенные по схеме а, при одинаковом чередовании фаз сети и машины будут сначала быстро и одновременно мигать, затем мигание их становится все реже и реже, и когда лампы медленно погаснут, нужно включить рубильник генератора.

Для более точного определения момента включения рубильника часто применяют так называемый нулевой вольтметр, имеющий двустороннюю шкалу.

При одинаковом чередовании фаз сети и машины лампы, включенные по схеме б, будут мигать поочередно, и если их расположить по кругу, то получится впечатление вращающегося света. Генератор нужно включить в момент, когда лампы, включенные накрест (между фазами А и В), загорятся полным накалом, а третья лампа погаснет.

При неодинаковом порядке чередования фаз лампы, включенные по схеме а, дадут вращение света, а по схеме б будут одновременно загораться и потухать. Для изменения порядка чередования фаз машины два любых ее провода, подходящие к рубильнику, нужно поменять местами.

Включение фазных ламп высоковольтных генераторов осуществляется через измерительные трансформаторы напряжения. Чередование фаз машины можно также определить, пользуясь особым прибором - фазоуказателем, представляющим собой небольшой асинхронный двигатель. Направление вращения диска фазоуказателя показывает порядок чередования фаз.

На современных электростанциях момент включения синхронных генераторов на параллельную работу определяется с помощью специального прибора - синхроноскопа.

Процесс подготовки генератора для включения его на параллельную работу называется синхронизацией.