Апрель 4, 2014 | комментариев: 1

Работая за компьютером, часто приходится переносить информацию с одного компьютера на другой. Оптические диски это одни из видов носителей информации. Конечно они появились не сразу. Их предшественниками раньше являлись магнитные дискеты емкостью всего 1.5 Мб (1.44, если быть точнее). Но как носитель информации дискета была не самым лучшим вариантом, поэтому на их смену пришли первые компакт-диски емкостью 650 Мб. Ну а далее вслед появились более емкие — DVD-диски (Digital Versatile Disc). Их емкость может достигать до 18 Гб, хотя стандартом стали диски емкостью 4.7 Гб.

Начиная с 2005 года, на рынке высоких технологий появились 2 формата более совершенных дисков - Blue-Ray, выпущенных компаниями Sony, Matsushita, Samsung, LG, Philips, Thomson, Hitachi, Sharp и Pioneer и HD-DVD, разработанных компаниями Toshiba и NEC. Сегодня наибольшую популярность получили диски Blue-Ray. На него сделали ставку все ведущие компании, включая Microsoft, Apple и Hewlett-Packard.

Несмотря на большую разнообразность форматов дисков, все они записываются по одному принципу. Носителем информации на всех оптических дисках является рельефная подложка из поликарбоната. На нее нанесен специальный тонкий слой светоотражающего вещества. Вся информация считывается со спиральной дорожки, на которую нанесены специальные информационные «точки» — единицы хранения информации, или «питы».

В изготовленных «промышленным» способом дисках носителем информации служит тонкий слой металла, который наносится на отштампованную заранее матрицу из поликарбоната. Запись же на «болванки» осуществляется благодаря наличию на них особого светочувствительного слоя, выгорающего под воздействием высокотемпературного лазерного луча. Это может напомнить нам обычный выжигательный аппарат, только роль выжигателя исполняет лазер, а роль дерева — тонкая металлическая подложка.

На поверхность подложки нанесен тонкий защитный слой прозрачного пластика. Когда по подложке проходится лазерный луч, он оставляет за собой след в виде ямок-точек. В тот момент, когда записывающий лазер работает, на поверхности остается точка, которая не отражает свет, а поглощает его. Когда лазер не работает, поверхность остается не тронутой и отражает луч читающего лазера.

При чтении информации лазером с поверхности диска луч лазера отражается по-разному — с ямок-точек он поглощается, с нетронутой поверхности возвращается в отраженном виде в считывающую головку.

В итоге мы получаем цифровую запись — «ноль» и «единицу» — а с помощью этих сигналов, как известно, и передается любая компьютерная информация.

Помимо «штампованных» болванок, промышленных дисков существуют диски однократной (CD-R, DVD-R) и многократной записи (CD-RW, DVD+RW, DVD-RW). Запись на такие диски осуществляется лазерным лучом: на дисках однократной записи он прожигает в несущем слое крохотные ямочки; при записи же перезаписываемых дисков применяется другая технология. Естественно и здесь имеются поглощающие и отражающие свет участки. Однако это не бугорки или ямки, как в однократных и штампованных дисках. Перезаписываемый диск состоит из специальных слоев, где на металлической основе покоится рабочий, активный слой. Он состоит из специального материала, который под воздействием лазерного луча изменяет свое состояние. Находясь в кристаллическом состоянии, одни участки слоя рассеивают свет, а другие — аморфные — пропускают его через себя, на отражающую металлическую подложку. Благодаря такой технологии, на диск можно записывать информацию большое количество раз.

При записи разных дисков используются разные виды лазера: так, для записи используется «красный» лазер с длиной волны 780 нм для CD и 635 нм для DVD, а для записи Blue-Ray необходим гораздо более мощный лазер — «синий», с длиной волны 405 нм. Чем короче длина волны, тем «тоньше» становится лазерный луч, тем меньше места занимают информационные участки — «питы». А, стало быть, увеличивается емкость диска.

Каждому виду оптических дисков свойственная своя модификация. Если у CD-диски имели лишь две записываемые модификации (CD-R, CD-RW), то у DVD их целых шесть — DVD-R, DVD+R, DVD RAM, DL, DVD-RW, DVD+RW. «Плюс» и «минус» говорит о технологии записи, а модификация DL подразумевает использо-вание двухслойных DVD-дисков емкостью 8,5 Гб!

Штампованные DVD-диски имеют следующие модификации:

  • DVD5 — односторонний однослойный диск емкостью 4,7 Гб;
  • DVD9 — односторонний двухслойный диск емкостью 8,5 Гб;
  • DVD10 — двухсторонний однослойный диск емкостью 9,4 Гб;
  • DVD18 — двухсторонний двухслойный диск емкостью 17 Гб.

Помимо поддерживаемых стандартов дисков, у каждого оптического дисковода существует еще несколько параметров. Первый наиболее важный из них — скорость чтения и записи. За «одинарную» скорость для CD принимается скорость чтения/записи в 150 кб/с, для DVD — 1350 кб/с.

Все многообразие используемых в настоящее время в компьютере и бытовой аппаратуре оптических дисков можно разделить на две основные группы: компакт-диски CD (Compact Disk) и цифровые универсальные диски DVD (Digital Versatile Disk/Digital Video Disk). Диски CD и DVD имеют одинаковые физические размеры (диаметр 120/80 мм), но отличаются плотностью записи данных и характеристиками используемых оптических головок для считывания данных. По функциональному признаку CD и DVD делятся на три категории:

Без возможности записи (только для чтения);

С однократной записью и многократным чтением;

С возможностью перезаписи.

Принцип работы всех существующих ныне оптических дисководов основан на использовании луча лазера для записи и чтения информации в цифровом виде. В процессе записи лазерный луч оставляет на активном слое оптического носителя след, который затем можно прочитать с помощью того же лазерного луча, но меньшей мощности, чем при записи.

Для считывания данных в приводах формата CD используются инфракрасный лазер с длиной волны 780 нм и оптическая система с числовой апертурой 0,45. (Числовая апертура – от лат.apertura – отверстие – равна 0,5·n·sinα, где n – коэффициент преломления среды, в которой находится предмет, α – угол между крайними лучами конического светового потока, входящего в оптическую систему.) Емкость стандартных компакт-дисков, используемых для хранения данных, составляет 650 или 700 Мбайт. Компакт-диски, записанные в формате AudioCD (который был разработан для бытовых звуковоспроизводящих устройств), вмещают до 80 минут стереофонической записи.

Для считывания данных в DVD -приводах используются красный лазер с длиной волны 650 нм и оптическая система с числовой апертурой 0,6. Емкость стандартных DVD-дисков составляет от 4,7 Гбайт и выше.

CD-ROM (Compact Disk Read Only Memory) – неперезаписываемые лазерно-оптические диски, или компакт-диски ПЗУ. Компакт-диск изготавли­вается с использованием очень мощного инфракрасного лазера, который выжигает отверстия диаметром 0,8 микрона на специальном стеклянном контрольном диске. При этом на поверхности образуются углубления – впадины (англ. pit) – и ровные пространства – площадки (англ. land). Запись начинается на некотором расстоянии от отверстия в центре и продвигается к краю по спирали. По этому контрольному диску делается шаблон с выступами в тех местах, где лазер прожег отверстия. В шаблон вводится жидкая смола (поликарбонат), и таким образом получается компакт-диск с тем же набором отверстий, что и в стеклянном диске. На смолу наносится очень тонкий слой алюминия, который покрывается защитным лаком. CD-ROM записываются на фирме-изготовителе и используются для распространения больших объемов информации, предназначенной только для чтения. Пользователь при этом не имеет возможности ни стереть, ни записать информацию на такой диск.

CD-R производятся на основе поликарбонатных заготовок, которые используются и при производстве компакт-дисков. Однако структура имеет некоторые отличия. На диск предварительно наносится спиральная дорожка, между слоем поликарбоната и отражателем находится слой красителя. На начальной стадии слой красителя прозрачен, что дает возможность свету лазера проходить сквозь него и отражаться от слоя отражателя. При записи информации мощность лазера увеличивается и, когда луч достигает красителя, краситель нагревается, в результате разрушается химическая связь. Такое изменение молекулярной структуры создает темное пятно. При чтении фотодетектор улавливает разницу между темными пятнами и прозрачными областями. Это различие воспринимается как различие между впадинами и площадками. В качестве красителя используются металлоазот, цианин, фталоцианин или наиболее перспективный формазан – смесь цианина и фталоцианина. Отражающий слой представляет тончайшую пленку из золота или серебра.

CD-RW позволяют многократно записывать информацию на диски с отражающей поверхностью, под которую нанесен слой типа Ag-In-Sb-Te (серебро-индий-сурьма-теллур) с изменяемой фазой состояния. Этот сплав имеет два состояния: кристаллическое и аморфное, которые обладают разной отражающей способностью. Устройство для записи компакт-диска снабжено лазером с тремя вариантами мощности. При самой высокой мощности лазер расплавляет сплав, переводя его из кристаллического состояния (с высокой отражательной способностью) в аморфное состояние (с низкой отражательной способностью), так получается впадина. При средней мощности сплав расплавляется и возвращается обратно в естественное кристаллическое состояние, при этом впадина снова превращается в площадку. При низкой мощности лазер считывает информацию, определяя состояние материала (никакого перехода состояний при этом не происходит).

DVD - это тот же компакт-диск, изготовленный на основе поликарбоната с впадинами и площадками. Однако существует несколько различий. У DVD впадины меньшего размера (0,4 микрона вместо 0,8, как у обычного), более плотная спираль (0,74 микрона вместо 1,6), используется красный лазерный луч более короткой длины (650 нм вместо 780 нм). В совокупности эти усовершенствования дали семикратное увеличение емкости диска (4,7 Гбайт).

На данный момент существует 4 формата DVD :

1. Односторонние однослойные (4,7Гбайт).

2. Односторонние двуслойные (8,5Гбайт).

3. Двусторонние однослойные (9,4 Гбайт).

4. Двусторонние двуслойные (17 Гбайт).

При двуслойной технологии на нижний отражающий слой помещается полупрозрачный отражающий слой. В зависимости от того, где фокусируется лазер, он отражается либо от одного слоя, либо от другого. Чтобы обеспечить надежное считывание информации, впадины и площадки нижнего слоя должны быть немного больше по размеру, поэтому емкость нижнего слоя немного меньше, чем у верхнего слоя.

DVD обладают следующими достоинствами:

Значительно большая по сравнению с CD емкость;

Совместимость с CD;

Высокая скорость обмена данными с дисководом DVD;

Высокая надежность хранения данных.

Стоит отметить, что появление новых технологий Blu-ray и HD-DVD позволяет разместить на диске информации в несколько раз больше, чем на обычном DVD. В основе этих технологий лежит использование голубого лазера с длиной волны 405 нм. Формат HD-DVD записывает на один слой 15 Гбайт информации и 30 Гбайт на два слоя. Blu-ray, соответственно, хранит 25 и 50 Гбайт.

Магнитооптические диски

Принцип работы магнитооптического накопителя (Magneto Optical) основан на ис­пользовании двух технологий – лазерной и магнитной.

Принципиальное устройство всех видов магнитооптических дисков одинаково, различие может состоять только в том, что одни диски имеют одну рабочую поверхность, а другие две. Принципиальное строение одностороннего диска показано на рисунке 2.17.

Поверхность магнитооптического накопителя (МОД) покрыта сплавом, свойства которого меняются как под воздействием тепла, так и под воздействием магнитного поля. Если нагреть диск сверх некоторой температуры, то становится возможным изменение магнитной поляризации посредством небольшого магнитного поля. На этом основаны технологии чтения и записи МОД.

Так, при записи лазерный луч нагревает участок диска, куда должна быть произведена запись, до так называемой «точки Кюри» (у большинства применяемых сплавов это со­стояние наступает при температуре около 200 °С).

В точке Кюри падает магнитная проницаемость, и из­менение магнитного состояния частиц может быть произведено относительно небольшим по величине магнитным полем. Поле переводит все битовые ячейки в одинаковое состояние. При этом стирается вся информация на диске.

Затем направление магнитного поля меняется на противоположное, а лазер включается только в те моменты, когда нужно изменить ориентацию частиц в битовой ячейке (значение бита). Потом сплав охлаждается, и частицы его застывают в новом положении.

При чтении применяется лазерный луч низкой мощности. Отраженный свет попадает на светочувствительный элемент, который определяет направление поляризации. В зависимости от этого направления светочувствительный элемент посылает двоичную единицу или двоичный нуль контроллеру магнитооптического дисковода.

Магнитооптические накопители бывают встроенные и внешние. Кроме обычных дисководов большое распространение получают так называемые оптические библиотеки с автоматической сменой дисков, емкость которых может составлять сотни гигабайт и даже несколько терабайт. Время смены диска составляет несколько секунд, а время доступа и скорость обмена данными такие же, как у обычных дисководов.

Флэш-накопители

Носители информации на основе микросхем флэш-памяти сейчас нашли широкое применение в цифровых фотоаппаратах, мобильных телефонах, компьютерах.

Флэш-память – особый вид энергонезависимой перезаписываемой полупроводниковой памяти. Ячейка флэш-памяти состоит из одного транзистора особой архитектуры, в которой можно хранить несколько бит. Основная масса носителей на основе флэш-технологии – это так называемые флэш-карты, которые являются основными но­сителями информации для современной портативной техники. Второе направление, которое сейчас стремительно развивается, – это флэш-память с интерфейсом USB для непос­редственного подключения к компьютеру. Преимуществом флэш-памяти перед жесткими дисками, CD-ROM и DVD является отсутствие движущихся частей, поэтому флэш-память более компактна и обеспечивает более быстрый доступ. Информация, записанная на флэш-память, может храниться очень длительное время (от 20 до 100 лет) и способна выдерживать значительные механические нагрузки (в 5–10 раз превышающие предельно допустимые для обычных жестких дисков). Недостатком, по сравнению с жесткими дисками, является относительно малый объем, а также ограничение по количеству циклов перезаписи (от 10000 до 1000000 для разных типов).

Компьютерные флэш-диски в виде брелока с USB-портом используются как сменные носители информации и имеют объем 16, 32, 64, 128, 256, 512 Мбайт, 1Гбайт, 2Гбайт, 4Гбайт, 8 Гбайт, что не является, конечно, пределом, так как технологии постоянно совершенствуются.

Устройства ввода информации

Устройства ввода информации преобразовывают информацию, поступающую с периферийных устройств, в цифровой вид. Для ввода информации используются следующие устройства: клавиатура, манипуляторы, сканеры, дигитайзеры (цифровые планшеты), сенсорные экраны, средства речевого ввода, цифровые камеры и др.

Клавиатура

Клавиатура является основным средством ввода информации в ПК. Она представляет собой матрицу клавиш, объединенных в единое целое, и электронный блок для преобразования нажатий клавиши в двоичный код. Каждой клавише на клавиатуре соответствует семиразрядный код сканирования (скан-код). При нажатии клавиши аппаратура клавиатуры генерирует однобайтовый код нажатия, а при отпускании соответственно однобайтовый код отпускания. Код нажатия совпадает с кодом сканирования. Код отпускания отличается от кода сканирования наличием единицы в старшем разряде байта. Если клавиша остается нажатой более 0,5с, то автоматически начинают генерироваться коды нажатия с частотой 10 раз в секунду. Автоматическая генерация кода прекращается, если клавишу отпустить или нажать другую клавишу. Так, при «залипании» клавиши, чтобы исключить последствия, достаточно нажать любую другую клавишу. Принцип
действия клавиатуры показан на рисунке 2.19. При нажатии на клавишу сигнал регистрируется контроллером клавиатуры и инициа­лизирует аппаратное прерывание, процессор прекращает работу и выполняет процедуру анализа скан-кода. Прерыва­ние обрабатывается специальной программой, входящей в состав постоянного запоминающего устройства (ПЗУ). Любая клавиатура имеет 4 группы клавиш:

Клавиши пишущей машинки для ввода прописных и строчных букв, цифр и специальных знаков;

Служебные клавиши, меняющие смысл нажатия остальных и осуществляющие другие действия по управлению вводом с клавиатуры (Alt, Ctrl, Shift, Tab, Backspace, Enter, Caps Lock, Num Lock, Print Screen и др.);

Функциональные клавиши (F1-F12), смысл нажатия которых зависит от программного продукта;

Клавиши двухрежимной малой цифровой клавиатуры, обеспечивающие быстрый и удобный ввод цифровой информации, а также управление курсором и переключение режимов работы клавиатуры.

Манипуляторы

Манипуляторы – это устройства, предназначенные для управления курсором (указателем) на экране монитора.

Манипуляторы делают работу пользователя более удобной, особенно в программах с графическим интерфейсом. К манипуляторам относятся: мышь, джойстик, световое перо, трекбол и т. д.

Мышь представляет собой устройство для указания нужных точек на экране дисплея путем перемещения его по плоской поверхности. Координаты местоположения мыши передаются в компьютер и вызывают соответствующее перемещение курсора (указателя) мыши. В соответствии с принципом действия различают опто-механические и оптические мыши.

Принцип работы опто-механической мыши (рис. 2.20) состоит в преобразовании перемещения мыши в электрические импульсы, формируемые с помощью оптопары – светодиодов (источников света) и фотодиодов (приемников света). При перемещении мыши вращение шарика через валики передается на диски с «прорезями». Вращение диска приводит к перекрытию светового потока между светодиодом и фотодиодом, что приводит к появлению электрических импульсов. Частота импульсов соответствует скорости перемещения мыши.

В настоящее время достаточно широко используются оптические мыши. Все современные оптические мыши конструктивно содержат миниатюрную видеокамеру, у которой в качестве светочувствительного элемента используется CMOS-сенсор. (Датчик изображения, содержащий светочувствительный слой кремния, в котором фотоны преобразовываются в электроны. CMOS – Complementary Metal Oxide Semiconductor – КМОП – комплементарная структура «металл-оксид-полупроводник») Напротив сенсора для освещения поверхности под мышью располагается источник света, как правило, красный светодиод. При перемещении мыши сенсор обрабатывает изображения поверхности и в виде сигналов посылает их в специализированный процессор DSP (Digital Signal Pro­cessing – цифровой сигнальный процессор), который анализирует изменения в принятых изображениях и соответственно определяет направление перемещения мыши. Однако оптические мыши нельзя использовать на стеклянных и зеркальных поверхностях.

Существуют и беспроводные мыши, в которых с помощью встроенного передатчика информация передается инфракрасными лучами или радиосигналами. Эти сигналы фик­сируются специальным приемником и поступают в компьютер. При использовании инфракрасного диапазона мышь должна находиться в зоне прямой видимости приемника. Если же используется радиодиапазон, то это условие не является обязательным.

Последним достижением в области создания манипуляторов типа мышь является использование лазерной технологии. При перемещении мыши лазерный луч, отражаясь от поверхности, попадает на сенсор, который обнаруженные изменения поверхности переводит в движение курсора на экране монитора. Использование лазерного луча позволяет мышь сделать более чувствительной по сравнению с обычной оптической мышью, а также использовать ее на любых поверхностях. В то же время лазер невидим и безопасен для человека.

Качество той или иной модели мыши определяется разрешением мыши, которое измеряется в dpi (dot per inch – число точек на дюйм), хотя существует и другая единица cpi (count per inch – число отсчетов на дюйм). Обычно разрешение мыши в зависимости от модели находится в пределах от 300 до 900 dpi. Чем больше разрешение, тем более точно позиционируется курсор мыши. Конструктивно мыши выполнены в форме пластмассовой коробки с кнопками, как правило, с двумя – основной и дополнительной.

Другим манипулятором, в котором перемещение курсора осуществляется ручным вращением шара, выступающего над плоской поверхностью, является трекбол (рис. 2.22, а). Принцип действия такой же, как и у опто-механической мыши. Трекбол, по сути, та же мышь, только перевернутая «брюшком» вверх.

Джойстик – это устройство, которое, как правило, при­меняется в игровых приставках и игровых компьютерах (рис. 2.22, б). Он представляет собой рычаг, перемещение которого приводит к перемещению курсора на экране. На рычаге располагается одна или несколько кнопок. При этом курсор принимает форму какого-либо движущегося объекта.

Световое перо может применяться для указания точки на экране дисплея или для формирования изображений. В наконечнике светового пера установлен фотоэлемент, который реагирует на световой сигнал, передаваемый экраном в точке прикосновения пера. Так как экран монитора состоит из множества точек (пикселей), то при нажатии кнопки на пере передается сигнал в ПК, по которому вычисляются координаты электронного луча в момент его регистрации. Другая область применения светового пера – его совместное использование с дигитайзером. Дигитайзер (цифрователь) – это устройство, предназначенное для ввода графической информации. При перемещении пера по планшету в памяти компьютера фиксируются его координаты, т. е. в этом случае световое перо выполняет «пишущую» функцию.

Сенсорные экраны

Сенсорный экран – это экран, совмещенный с сенсорными устройствами и позволяющий вводить в компьютер информацию прикосновением пальца руки.

В общем случае при работе с сенсорным устройством пользователь касается пальцем курсора (поверхности этого устройства), буквы, числа или другой высвечиваемой фигуры на экране. Независимо от физической природы принципов, положенных в основу функционирования сенсорного устройства, с его поверхностью связывается прямоугольная система координат, которая позволяет фиксировать прикосновение пальца и передавать сигнал в компьютер. По принципу действия различают следующие сенсорные технологии: резистивную, емкостную, инфракрасную и технологию, основанную на поверхностно-акустических волнах (ПВА).

Резистивная технология. Резистивная технология основана на методе замера электрического сопротивления части системы в момент прикосновения. Резистивный экран обладает высокой разрешающей способностью (300 точек/ дюйм), большим ресурсом (10 млн. касаний), небольшим временем отклика (около 10 мс) и низкой стоимостью. Но помимо плюсов есть и минусы, например такие, как 20%-я потеря светового потока.

Емкостная технология. Чувствительный элемент емкостного сенсорного экрана представляет собой стекло, на поверхность которого нанесено тонкое прозрачное проводящее покрытие. При прикосновении к экрану обра зуется емкостна; связь между пальцем и экраном, что вызывает импульс ток в точку контакта (рис. 2.24). Другая емкостная технологи NFI (Dynapro) (рис. 2.25) основана на использовании электромагнитной волны. NFI использует специальную сенсорную электронную схему, которая может определить проводящий объект – палец или проводящее перо ввода – через слой стекла, а также через перчатки или другие потенциальные препятствия (влага, гель, краска и т. д.).

Технология ПАВ (поверхностные акустические волны). В углах такого экрана размещается специальный набор эле­ментов из пьезоэлектрического материала, на которые подается электрический сигнал частотой 5 МГц. (Пьезоэлектрические материалы – это вещества, которым присущ пьезоэлектрический эффект, т.е. возникновение электрического поля под воздействием упругих деформаций – прямой пьезоэлектрический эффект.) Этот сигнал преобразуется в ультразвуковую акустическую волну, направляемую вдоль поверхности экрана. Даже легкое касание экрана в любой его точке вызывает активное поглощение волн, благодаря чему картина распространения ультразвука по его поверхности несколько меняется.

Инфракрасная технология. Вдоль границ сенсорного экрана устанавливаются специальные излучающие элементы, генерирующие световые волны инфракрасного диапазона, световые волны инфракрасного диапазона распространяются вдоль поверхности экрана, образуя на его рабочей поверхности подобие координатной сетки.

Если один из инфракрасных лучей перекрывается попавшим в зону действия лучей посторонним предметом, луч перестает поступать на приемный элемент, что тут же фик­сируется микропроцессором. Стоит отметить, что инфракрасному сенсорному экрану все равно, какой именно предмет помещен в его рабочее пространство: нажатие может осуществляться пальцем, авторучкой, указкой и даже рукой в перчатке. Сенсорные экраны могут быть навесными и встроенными (рис. 2.28).

За последние несколько лет сенсорные экраны заре­комендовали себя как наиболее удобный способ взаимодействия человека с машиной. Применение сенсорных экранов имеет ряд преимуществ, недоступных при использовании любых дру­гих устройств. Так, инфор­мационные системы, сделанные на базе сенсорных киосков, помогают в получении необходимой или интересующей информации в выставочных залах, на вокзалах, в государственных, банковских, финансовых и медицинских учреждениях и др.

Сканеры

Сканер – это устройство, позволяющее передавать в компьютер графическую информацию, размещенную на бу маге или пленке.

Это могут быть тексты, рисунки, схемы, графики, фотографии и др. Сканер, подобно копировальному аппарату, создает копию изображения бумажного документа, но не на бумаге, а в электронном виде.

Принцип действия сканера следующий. Копируемое изображение освещается источником света (как правило, флуоресцентная лампа). При этом луч света осматривает (сканирует) каждый участок оригинала. Отраженный от бумажного листа луч света через уменьшающую линзу попадает на прибор с зарядовой связью (ПЗС). (Устройство, накапливающее электронный заряд при попадании на него светового потока. Уровень заряда зависит от продолжительности и интенсивности освещения. В англоязычной литературе используется определение CCD – Couple-Charget Device) На поверхности ПЗС за счет сканирования формируется уменьшенное изображение копируемого объекта. ПЗС осуществляет преобразование оптической картинки в электрические сигналы. ПЗС представляет собой матрицу, которая содержит большое число полупроводниковых элементов, чувствительных к световому излучению.

В черно-белых сканерах на выходе каждого элемента ПЗС с помощью аналогово-цифрового преобразователя формируется несколько оттенков серого цвета.

В цветных сканерах используется цветовая модель RGB. Сканируемое изображение освещается через вращающийся RGB-светофильтр или последовательно зажигаемыми тремя цветными лампами – красной, зеленой, синей. Сигнал, соответствующий каждому основному цвету, обрабатывается отдельно. Для этого имеются параллельные линейки датчиков, каждая из которых воспринимает свой цвет. Число передаваемых цветов составляет от 256 до 65 536 и даже 16,7 млн. Разрешающая способность сканеров измеряется в количестве различимых точек на дюйм изображения. При этом указывается два значения, например 600×1200 dpi. Первое – это количество точек по горизонтали, оно опреде­ляется матрицей ПЗС. Второе – количество шагов двигателя по вертикали на дюйм. Во внимание следует принимать первое – минимальное значение.

По своему конструктивному исполнению сканеры бывают ручные, планшетные, барабанные, проекционные и др. рис. 2.30).

Устройства вывода информации

Устройства вывода информации – это устройства, которые выводят информацию, обработанную компьютером, для восприятия ее пользователем или для использования другими автоматическими устройствами.

Выводимая информация может отображаться на экране монитора, печататься на бумаге, воспроизводиться в виде звуков, передаваться в виде каких-либо сигналов.

Мониторы и видеоадаптеры

Монитор (дисплей) – это устройство, предназначенное для отображения текстовой и графической информации в целях ви­зуального восприятия ее пользователем.

Монитор является основным периферийным устройством и служит для отображения информации, вводимой с помощью клавиатуры или других устройств ввода (сканер, дигитайзер и др.). Монитор подключается к компьютеру через видеоадаптер. В настоящее время используются следующие типы мониторов:

На базе электронно-лучевой трубки (ЭЛТ);

- жидкокристаллические;

Плазменные (газоразрядные).

Разница между этими мониторами заключается в разных физических принципах формирования изображения.

Мониторы на базе ЭЛТ по принципу действия ничем не отличаются от обычных телевизоров. При формировании изображения видеоданные преобразуются в непрерывный поток электронов, которые «выстреливаются» катодными тушками кинескопа. Получившиеся электронные лучи проводят сквозь специальную направляющую решетку, чем обеспечивается точное попадание электронов в нужную точку, и затем достигают люминесцентного слоя. При бомбардировке электронами люминофор излучает свет.

Существует несколько типов электронно-лучевых трубок, которые различаются между собой устройством направляющей решетки и слоем люминофора.

Наибольшее распространение получили мониторы с так называемой теневой маской. В кинескопе этого типа для позиционирования электронного пучка применяется тонкая металлическая пластина, в которой путем перфорации изготовлено множество отверстий (рис. 2.32, а). Люминофор в таком кинескопе выполнен в виде цветных триад, где каждое троеточие – светящийся элемент красного, зеленого и синего вещества – представляет собой один видимый пиксель.

Другой тип кинескопов, построенных с применением апертурной решетки (рис. 2.32, б), отличается от кинескопов с теневой маской тем, что для точного позиционирования электронного луча служит не громоздкая пластина, а ряд стальных нитей. Люминофор в кинескопе с апертурной решеткой нанесен на внутреннюю поверхность экрана в виде чередующихся вертикальных полосок.

В ЭЛТ с щелевой маской направляющая решетка представляет собой пластину с вертикальными длинными прорезями-щелями (рис. 2.32, в). Люминофор в таких кинескопах наносится либо в виде непрерывных чередующихся полосок, либо в виде эллиптических полосок, по своей форме близких к прорезям в щелевой маске.

Рассмотренные типы кинескопов имеют свои достоинства и недостатки. Так, ЭЛТ с теневой маской благодаря некоторым своим конструктивным особенностям обладает рядом преимуществ по сравнению с другими типами кинескопов: плотное расположение цветных триплетов, позволяющее добиться высокой четкости изображения, и хорошо отлаженная технология производства. Недостатком является снижение срока службы монитора – из-за большой площади перфорированная маска поглощает около 70-85% всех электронов, испускаемых катодами электронной пушки кинескопа, в результате чего уменьшается диапазон яркости и контрастности. Для достижения высокой красочности изображения приходится увеличивать интенсивность электронного потока, что не лучшим образом влияет на срок службы монитора (как правило, жизненный цикл устройства на основе ЭЛТ с теневой маской не превышает 7-8 лет). Область применения таких мониторов – обработка больших массивов текстового материала, верстка, фоторетушь, цветокоррекция и САПР (системы автоматического проектирования).

К основным преимуществам ЭЛТ с апертурной решеткой можно отнести большую яркость и контрастность за счет большей пропускной способности электронов к люминофору и увеличенной площади покрытия экрана люминофором.

Среди недостатков следует отметить возникновение искажений изображения при отображении большого количества коротких штрихов, другими словами, при выводе текста мелким кеглем.

Мониторы, в которых применяются трубки со щелевой маской, сочетают в себе преимущества двух предыдущих типов устройств и свободны от недостатков. Яркие, живые краски, хороший контраст, четкая графика и текст – все это делает их пригодными для удовлетворения запросов любых категорий пользователей. Электронно-лучевые трубки разрабатываются и изготавливаются весьма ограниченным количеством компаний. Все остальные, производящие мониторы, пользуются покупными решениями. Среди наиболее известных компаний-разработчиков можно выделить: Hitachi и Samsung – трубки на основе теневой маски; Sony, Mitsubishi и ViewSonic – ЭЛТ с апертурной решеткой; NEC, Panasonic, LG – устройства, в которых применяется щелевая маска.

Жидкокристаллические мониторы (ЖКМ), или LCD-мониторы (LCD - Liquid Crystal Display) – это цифровые плоские мониторы. Эти мониторы используют прозрачное жидкокристаллическое вещество, которое в виде тонкой пленки расположено между двумя стеклянными пластинами. Пленка представляет собой матрицу, в ячейках которой расположены кристаллы. Рядом с каждой пластиной расположен поляризационный фильтр, плоскости поляризации которых взаимно перпендикулярны.

Из курса физики вы знаете, что если пропускать свет через две пластины, плоскости поляризации которых совпадает, то обеспечивается полное прохождение света. Однако если одну из пластин поворачивать относительно другой, т.е. менять плоскость поляризации, то количество пропускаемого света будет уменьшаться. Когда плоскости поляризации будут взаимно перпендикулярны, прохождение света шокируется.

В ЖК-мониторах свет от лампы, попадая на первый поляризационный фильтр, поляризуется в одной из плоскостей, например вертикальной, и затем проходит слой жидких кристаллов. Если жидкие кристаллы разворачивают плоскость поляризации светового луча на 90°, то он беспрепятственно проходит через второй поляризационный фильтр, так как плоскости поляризации совпали. Если же поворота не произошло, то световой луч не проходит. Таким образом, подавая напряжение на кристаллы, можно изменять их ори­ентацию, т. е. тем самым регулировать количество света, проходящего через фильтры. В современных ЖК-мониторах каждый кристалл управляется отдельным транзистором, т. е. используется технология TFT (Thin Film Transistor) – технология «тонкопленочных транзисторов». Пиксель в ЖК-мониторе также формируется из красного, зеленого и синего цветов, а различные цвета получаются за счет изме­нения подаваемого напряжения, что приводит к повороту кристалла и соответственно к изменению яркости светового потока.

В плазменных мониторах (PDP - Plasma Display Panel) изображение формируется за счет излучения света газовыми разрядами в пикселях панели. Элемент изображения (пиксель) в плазменном дисплее во многом напоминает обычную люминесцентную лампу. Электрически заряженный газ испускает ультрафиолетовый свет, попадающий на люминофор и возбуждающий его, что вызывает свечение видимым светом соответствующей ячейки. В современных плазменных мониторах используется так называемая технология plasmavision – это множество ячеек, иначе говоря, пикселей, которые состоят из трех субпикселей, передающих цвета – красный, зеленый и синий.

Конструктивно панель состоит из двух плоских стеклянных пластин, расположенных на расстоянии порядка 100 микрон друг от друга. Между ними находится слой инертного газа (как правило, смесь ксенона и неона), на который воздействует сильное электрическое поле. На переднюю прозрачную пластину нанесены тончайшие про­зрачные проводники – электроды, а на заднюю – ответные проводники. Задняя стенка имеет микроскопические ячейки, заполненные люминофорами трех основных цветов (красного, синего и зеленого), по три ячейки на каждый пиксель. Принцип действия плазменной панели основан на свечении специальных люминофоров при воздействии на них ультрафиолетового излучения, возникающего при электрическом разряде в среде сильно разреженного газа. При таком разряде между электродами с управляющим напря­жением образуется проводящий «шнур», состоящий из ионизированных молекул газа (плазмы). Поэтому панели, работающие на этом принципе, и получили название плаз­менных панелей. Ионизированный газ воздействует на специальное флюоресцирующее покрытие, которое, в свою очередь, излучает свет, видимый человеческим глазом.

Качество того или иного монитора можно оценить по следующим основным параметрам:

Разрешающая способность;

Размер экрана;

Количество воспроизводимых цветов;

Частота обновления экрана.

Разрешение монитора. Обычно мониторы могут работать в двух режимах: текстовом и графическом. В текстовом режиме на экране монитора отображаются символе кодовой таблицы ASCII. Максимальное число символов, которое может быть отражено на экране, называется информационной емкостью экрана. В обычном режиме на экране размещается 25 строк по 80 символов в каждой из них, следовательно информационная емкость составляет 2000 символов. В графическом режиме на экран выводятся изображения, формируемые из отдельных элементов – пикселей. В графическом режиме разрешающая способность измеряется максимальным количеством пикселей по горизонтали и по вертикали на экране монитора. Разрешающая способность зависит как от характеристик монитора, так и от видеоадаптера. Чем выше эти значения, тем больше объектов можно разместить на экране, тем лучше детализация изображения. Например, разрешение 800×600 означает, что на экране можно условно провести 800 вертикальных и 600 горизонтальных линий (рис. 2.35). При формировании изображения участвует каждый пиксель экрана, поэтому при разрешении 800×600 число адресуемых ячеек составляет 480000 пикселей. Для ЖК-мониторов разрешение определяется количеством ячеек, расположенных по ширине и высоте экрана. Современные ЖК-мониторы имеют в основном разрешение 1024×768 или 1280×1024.

Наиболее важной характеристикой, определяющей разрешающую способность и четкость изображения на экране, является размер
зерна (dot pitch – шаг расположения точки) люминофора экрана монитора. Величина зерна современных мониторов имеет значение от 0,25 до 0,28 мм. Под зерном понимается расстояние между двумя точками люминофора одного цвета. Для трубок с теневой маской зерно измеряется по диагонали, для двух других по горизонтали. Стандартные значения разрешений: 640×480, 800×600, 1024×768, 1600×1200, 1800×1440 и др.

Размер экрана. В качестве меры обычно используется длина диагонали видимой области изображения. Для жидкокристаллических (ЖК) дисплеев размер видимой области совпадает с размерами панели. Для мониторов с электронно-лучевой трубкой (ЭЛТ) видимая область несколько меньше. Это объясняется конструктивными особенностями самой ЭЛТ. Мониторы с ЭЛТ имеют размеры экрана 14, 15, 17, 19 и 22 дюйма. Для ЖК используются панели 15, 17, 18, 19, 20 и более дюймов.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-12

В отличие от НМД оптический диск, имеет всего одну физическую дорожку в форме непрерывной спирали, идущей от внутреннего диаметра к наружному. Но физическая дорожка может быть разбита на несколько логических. Если для НМД возможна запись на разные дорожки, то запись на оптические диски происходит последовательно по спирали.

Участок на оптическом СD-диске, на котором размещаются данные, называют Іпfоrтаtіоп Аrеа (информационным участком). Этот участок начинается с диаметра 44 мм, заканчивается за 2 ... 3 мм до края диска и содержит такие три зоны (по порядку их размещения от центра диска):

1) зону входного каталога (Lead-іn Zопе);
2) зону данных (Data Zопе), в которой размещаются данные, записанные на диск;
3) зону исходного каталога (Lead-out Zопе) с меткой конца диска.

В конце внешней дорожки и в начале внутренней дорожки размещается средняя зона (MiddleZопе), которая не содержит данные. Эту зону используют для того, чтобы луч лазера мог изменять фокусирование для считывания данных из внутренней дорожки.

Зона входного каталога в СD-дисках содержит содержание ТОС (Таblе оf Соntents), адреса записей, количество заголовков, суммарное время записывания, объем и название диска. Зона данных СD-диска имееет следующую структуру данных. Базовой единицей данных СD-диска есть кадр (frате), который содержит 24 кодированных байта, один байт управления и восемь байтов для корректировки ошибок. Фрейму предшествует 24 бит, любой из которых имеет фиксированное значение (шаблон) и три бита слияния (merge bits). Во время подведения лазера к фрейму именно по шаблону определяется начало фрейма; 98 кадров образовывают сектор, наименьшую адресную единицу данных СD-диска. Сектор содержит 3234 кодированных байта (2352 информационных байтов и 882 байта корректировки ошибок и управления). Из 2352 байт пользовательская информация может занимать 2048 (в режиме «1») или 2336 байт (в режиме «2»). Такая организация записи данных на СD-дисках и использование алгоритмов корректировки ошибок позволяет обеспечить качественное считывание информации с вероятностью ошибки на один бит 10-10.


Обобщенная структура накопителя на оптических дисках

Упрощенная структура НОД приведена на рис. 3.
Для НОД применяются несколько способов записи: абляционный - путем прожигания отверстий в непрозрачной среде носителя; с помощью локального изменения коэффициента отражения среды; перевод запоминающей среды из кристаллической фазы в аморфную и наоборот; трансформирование магнитного состояния структуры; изменение цвета локальной области. Первые два способа используются при «не стираемой» записи, а остальные - для многократной перезаписи информации на НОД.

При записи луч полупроводникового лазерного диода, управляемого данными записи через коллиматор, зеркало и линзу объектива прожигает отверстие в информационном слое диска. Наличие отверстия соответствует записи «1». При считывании неуправляемый лазерный луч (получаемый из делителя луча) выходит на рабочую поверхность через другой делитель луча, зеркало и объектив.
В режиме чтения зеркало перемещается. Свет от лазера проходит через поляризационно-разделительную призму, попадает на поляризационный фильтр (при этом свет поляризуется в определенной плоскости) , а потом фокусируется на поверхности оптического диска. Если луч лазера попадает на плоскую поверхность (lands) диска СD-RОМ или DVD-RОМ, свет отражается почти целиком. Если же свет попадает у углубления (ріts), то большая часть света рассеивается. Отраженный свет через делитель луча попадает на фотодиод, сигнал с которого обрабатывается электронными схемами считывания. Точная установка луча на дорожке обеспечивается сервоблоком дорожки, фокусировка - сервоблоком фокусировки, а постоянное число оборотов - сервоблоком вращения диска (см.рис. 3).

По возможностям записывания дисков дисководы оптических дисков разделяют на дисководы с возможностью как считывания, так и записывание дисков (записывающие дисководы) и дисководы только для считывания, а по типам дисков - на дисководы СD и дисководы DVD.

Рисунок 4

Оптический дисковод состоит из таких основных функциональных узлов:

- загрузочного устройства;
- привода диска;
- оптического блока;
- привода дорожки;

- блока кодирования-декодирования данных;
- системы автоматического регулирования;
- аудиоблока;
- разъемов.

Загрузочное устройство дисководов бывает двух типов: контейнерный (caddy) и лоточный (tray). В дисководе первого типа загрузки в контейнерное устройство диск помещают в пластиковый контейнер и вставляют в дисковод (этот контейнер выполняет такие же функции, что и контейнер гибкого диска 3,5 дюйма). В дисководе второго типа диск помещают на лоток (рис. 3), который выдвигается после нажатия кнопки Еjесt. После повторного нажатия кнопки или легкого нажатия на лоток он всовывается в дисковод (pop-up-механизм).

На передней панели привода, кроме того, расположены: индикатор работы устройства (busy, лампочка), гнездо для подключения головных телефонов или стереосистемы (для прослушивания аудио дисков), регулятор громкости звука (также для аудиоCD).
Предусмотрено также отверстие, с помощью которого можно извлечь компакт-диск даже в аварийной ситуации, например, если даже не срабатывает кнопка Eject. В это отверстие необходимо ввести тонкий стержень на 2-3 см, тогда лоток выдвинется.

Оптический блок содержит оптическую систему дисковода, изображенную на рис. 4. Для считывания данных из дисков СD используют лазер с длиной волны 780 нм (в инфракрасном диапазоне), а для считывания из DVD-дисков - лазер с длиной волны 650 нм (красного цвета). Поэтому дисководы DVD, которые считывают из СD-дисков и DVD-дисков, обычно содержат два лазера с отдельными оптическими системами или общей оптической системой (с переключением на один или второй лазер).


Рисунок 5. Устройство оптического дисковода: 1 - лоток; 2 - привод дорожки; 3 - интерфейсна шина управления; 4 - оптическая система; 5 - привод дисковода; 6 - диск

Для записывания данных на диск используют отдельный записующий лазер, который работает в импульсном режиме с изменяемой мощностью (для «прожигания» диска, изменения фазового состояния из кристаллического на аморфный и для возвращения в кристаллическое состояние). Обычно записующий и считываемый лазеры имеют общую оптическую систему. Поверхность оптического диска перемещается относительно лазерной головки c постоянной линейной скоростью, а угловая скорость меняется в зависимости от радиального положения головки. Таким образом, чтение внутренних дорожек осуществляется с увеличенным, а наружных - с уменьшенным числом оборотов. Сервомотор по команде от внутреннего микропроцессора привода перемещает отражающее зеркало. Это позволяет точно позиционировать лазерный луч на дорожку. Луч проникает сквозь защитный слой пластика и попадает на отражающий слой алюминия, серебра или золота на поверхности диска. При попадании его на выступ, он отражается на детектор и проходит через призму, отклоняющую его на светочувствительный диод. Если луч попадает в ямку (пит), он рассеивается, и лишь малая часть излучения отражается обратно и доходит до светочувствительного диода. На диоде световые импульсы преобразуются в электрические- яркое излучение преобразуется в “1”, слабое – в “0”. Таким образом ямки воспринимаются дисководом как логические нули, а гладкая поверхность как логические единицы. Отметим, что сформированные лазерным лучом питы очень малы по размеру. Примерно 30-40 впадин соответствуют толщине человеческого волоса, а это примерно 50 мкм.

Привод дорожки по командами, которые поступают от встроенного микропроцессора, перемещает оптическую систему к нужной дорожке на диске для записывания или считывания. Во время записывания лазер выполняет нужную операцию («прожигание» или смену фазы) по командам блока кодирование-декодирование, а во время считывания отраженный от диска луч попадает на фотодетектор, сигналы из которого поступают в блок кодирования-декодирования и систему автоматической слежения.

Блок кодирования-декодирования представляет собой обработчик сигналов, записываемых на диск, или считываемых из диска. В его состав входят устройство кодирования, декодер, оперативное запоминающее устройство и контроллер управления. Устройство кодирования подготавливает данные для записывания на диск, выполняя перекодировки символов соответственно кодированиям ЕFМ (для СD-дисков) или RLL (2,10) (для DVD-дисков) и добавляет в данные синхросигналы и служебную информацию. Декодер выделяет из цифрового потока данные, восстанавливая их первоначальный вид. Оперативное запаминающее устройство выполняет функцию буферной памяти, а контроллер руководит режимами исправления ошибок данных, записанных во всех поддерживаемых дисководом форматах.

Во время записывания или считывание данных из диска возможны нарушения в позиционировании луча лазера вследствие радиальных биений диска. Для того чтобы избежать потерь данных, в оптических дисководах применяют систему автоматического слежения с помощью управляющих сигналов. Для выделения этих сигналов существует несколько способов. Однако наиболее распространенный - это способ, при котором луч лазера после первой линзы (см. рис. 1.) поступает на дифракционные решетки, где расщепляется на три луча, один из которых используется для считывания данных, а два другие применяются системой слежения за дорожкой. Импульсные сигналы из фотодетектора поступают в усилитель системы автоматического регулирования, где отделяются сигналы ошибок слежения и осуществляется корректирование считывающего сигнала.

Аудиоблок оптический дисковод унаследовал от СD-плейеров. Он превращает аудиоданные из цифровой формы в аналоговую. После усиления эти данные передаются или на внешнее устройство, или на наушники.

Рядом с разъемом интерфейса с компьютером и разъемом электропитания оптические дисководы имеют также разъемы для подключения к звуковой карте или аудиоблоку материнской платы.

На передней панели привода, кроме того, расположены: индикатор работы устройства (busy, лампочка), гнездо для подключения головных телефонов или стереосистемы (для прослушивания аудио дисков), регулятор громкости звука (также для аудиоCD).
Предусмотрено также отверстие, с помощью которого можно извлечь компакт-диск даже в аварийной ситуации, например, если даже не срабатывает кнопка Eject. В это отверстие необходимо ввести какую-нибудь тонкую палочку примерно на 2-3 см, тогда лоток выдвинется.

Характеристики оптических дисков и дисководов

Оптический диск характеризуется своим типом (СD-диск или DVD-диск) и емкостью . Емкость диска определяют по его типу и размеру (диаметру). Выпускаются оптические диски диаметром 120 мм (4,7 дюйма) и 80 мм (3,1 дюйма).
СD-диски размером 120 мм имеют емкость 650 или 700 Мбайт (в зависимости от режима записывания), а диски размером 80 мм - емкость 185 Мбайт. Для записывания данных иногда используют оптические визитные карточки (орtісаlbusiness саrds) - диски СD-R прямоугольной формы размером 80 х 61 мм и емкостью 50 Мбайт.

Оптические дисководы имеют такие основные характеристики:

Совместимость;
- скорость передачи данных;
- среднее время доступа;
- емкость кэш-памяти;
- коэффициент ошибок;
- надежность;
- тип устройства;
- тип интерфейса;
- перечень поддерживаемых форматов;
- параметры аудиотракта.

Все дисководы оптических дисков имеют форм-фактор 5,25 дюйма и совместимы по размерами дисков, то есть могут считывать как 120-миллиметровые, так и 80-миллиметровые диски, а также оптические визитные карточки (для считывания дисков последних двух типов в лотке дисковода предусмотрено специальное углубление).

Совместимость разных типов дисководов означает возможность считывания и записывания других типов дисков.
Скорость передачи данных - это максимальная скорость, по которой выполняется обмен данных между дисководом и компьютером. Это важнейшая характеристика оптического дисковода, который почти всегда приводится вместе с названием модели, причем ее задают не количеством мегабайтов за секунду, как для других устройств внешней памяти, а коэффициентом увеличения относительно базовой скорости. Первые дисководы СО имели скорость передачи данных 150 кбайт/с, как и СD-плейери. Эта базовая скорость явным образом недостаточна для считывания, например, видеоданных. Поэтому скорости вращения дисководов и, соответственно, скорости передачи данных стали увеличиваться (сначала в два раза). Такие дисководы (со скоростью передачи данных 300 кбайт/с) стали называть дисководами 2х. В дальнейшем скорости дисководов еще большее повысились. Теперь дисководы имеют максимальную скорость передачи 54х (16,2 Мбайт/с) и выше (до 76х).

Для дисководов DVD вследствие большей плотности данных и высшей скорости вращения значение 1х соответствует скорости передачи данных 1,32 Мбайт/с, то есть дисковод DVD 1x приблизительно соответствет дисководу СD 9х. Максимальное значение для дисководов DVD теперь составляет 16х ли 21,13 Мбайт/с.

Приведенные цифры действительны для считывания данных. Для записывания данных максимальные скорости передачи данных ниже и теперь равняются 40х для записывания дисководов СD-R, 24х - для СD-RW и от 2х до 8х - для DVD. Обычно для дисководов СD-RW указывают в отдельности как скорость записывания, так и скорость считывания, а для записывающих дисководов DVD - скорость записывания DVD-дисков, скорость записывания СD-дисков, скорости считывания DVD-дисков и СD-дисков.

Для записывающих оптических дисков (R ли RW) обычно указывают максимально допустимую скорость их записывания или диапазон допустимых скоростей (например, 24х или 1х-24х).

Среднее время доступа - это время (в миллисекундах), нужен дисководу для пребывания на носителе нужных данных. Очевидно, что работа на внутренних участках диска требует меньшего времени доступа, чем считывание информации из внешних участков. Поэтому в паспорте дисковода приводится среднее время доступа, как среднее значение для выполнения нескольких считываний данных с разных (избранных случайно) участков диска. Среднее время доступа для дисководов СD-RОМ составляет 100 ... 200 мс, а для дисководов новых моделей DVD - 40 ... 250 мс.

Емкость кэш-памяти - это емкость оперативного запоминающего устройства оптического дисковода, используемого для увеличения скорости доступа к данных, записанных на носителе (буферная память). Если для управления дисководом использовать специальные программы-драйверы, то в кэш-память можно заранее записывать содержимое диска. Тогда обращение к фрагменту запрашиваемых данных происходит значительно быстрее. Емкость кэш-памяти современных устройств - от 64 до 2,048 Мбайт.

Буфер дисковода представляет собой память для кратковременного хранения данных, после считывания их с CD-ROM, но до пересылки в плату контролера, а затем в ЦП. Такая буферизация дает возможность дисковому устройству передавать данные в процессор небольшими порциями, а не занимать его время медленной пересылкой постоянного потока данных. Важной характеристикой дисковода является степень заполнения буфера , которая влияет на качество воспроизведения анимационных изображений и видеофильмов. Эта величина определяется как отношение числа блоков данных, переданных в буфер из накопителя и хранящихся в нем до момента начала их выдачи на системную шину, к общему числу блоков, которые способен вмещать буфер. Слишком большая степень заполнения может привести к задержкам при выдаче из буфера на шину; с дугой стороны, буфер со слишком малой степенью заполнения будет требовать больше внимания со стороны процессора. Обе эти ситуации приводят к скачкам и срывам изображения во время воспроизведения.

На пишущих приводах CD-ROM буферная память очень важна, так как она обеспечивает равномерность поступления информации на CD-R или CD-RW. Это позволяет более надёжно производить запись, так как нельзя допускать остановки записи дорожки, иначе может испортиться весь диск.

Уровень качества считывания характеризуется коэффициентом ошибок (Еror Rate). Этот параметр отображает способность оптического дисковода корректировать ошибки записывания-считывания. Обычно значение коэффициента ошибок составляет 10-10...10-12. Коэффициент ошибок представляет собой оценку вероятности искажения информационного бита во время его считывания. Если привод считывает данные из загрязненного или исцарапанного участка диска, он регистрирует группу ошибочных бит. Если ошибку не удается устранить за счет чрезмерности помехоустойчивого кода (применяемого во время записывания-считывания), то привод снижает скорость считывания данных с многоразовым его повторением. Если механизм корректирования ошибок не справляется с устранением сбоя, то на мониторе компьютера появляется сообщение «Сектор не найден» (Sector not found). В случае устранения сбоя дисковод переключается на максимальную скорость считывания данных.

Надежность оптических дисководов, выраженная через МТВF (средняя наработка на отказ - MeanTimeBetweenFailure) , составляет 50...125 тыс. ч, что почти на порядок превышает срок морального старения устройства.

Диски, выполненные методом горячего штампования (СD-RОМ и DVD-RОМ), обеспечивают до 10 000 циклов безошибочного считывания данных. Диски DVD-RАМ можно перезаписывать до 100 000 раз.

По типу устройства дисководы оптических дисков, как и другие устройства внешней памяти, могут быть как внутренними, так и внешними.

Подключение дисководов CD-ROM. Первый способ подключения основан на том, что один канал интерфейса IDE может поддерживать два встроенных устройства. Накопитель CD-ROM подключают к плате ввода-вывода через интерфейс IDE вместе с жестким диском по принципу master/slave. Однако в этом случае снижается скорость обмена данными с жестким диском. Одним из способов решения этой проблемы является подключение устройств CD-ROM к различным каналам одного интерфейса EIDE или к двум различным котроллерам IDE. Если CD-ROM имеет SCSI интерфейс, то его соответственно подключают к SCSI контроллеру. Существует также возможность подключения дисководов CD-ROM через контроллер звуковой карты. Также не следует забывать, что современные материнские платы могут содержать встроенные контроллеры SCSI и IDE, что вообще исключает необходимость в дополнительной плате ввода-вывода для подключения дисководов CD-ROM.

Подключение аудиоканалов. Практически каждый дисковод CD-ROM обладает встроенным цифро-аналоговым преобразователем (ЦАП), а также выходным разъемом для вывода стереофонических сигналов. Если на компакт-диске находится аудиоинформация, ЦАП преобразует ее в аналоговую форму и подает сигнал на разъем, предназначенный для наушников, а так же на выходные аудио-разъемы дисковода, с которых в свою очередь, сигнал поступает на усилитель и акустическую систему непосредственно или через звуковую карту. Преимущество активного выхода заключается в том, что аудиосигнал с CD-ROM дополнительно обрабатывается звуковой картой.
Важной характеристикой дисковода СО-RОМ есть перечень поддерживаемых им форматов записывания данных на компакт-диски. Записывать данные на оптические диски можно в разных форматах. Для записывания таких данных, как документы, программы используют форматы СD-ROM (ISO) и DVD-ROM (ISO), а также СО-DОМ (UDF) и DVD-RОМ (UDF).

Форматы СD-RОМ (1S0) и DVD-RОМ (IS0), иногда их называют форматами СD-RОМ и DVD-RОМ, определены в стандарте IS0 9660. В этом стандарте приведены три уровня формата. Формат уровня 1 (lеvеl 1) определяет имена записываемых файлов как имена файлов МS DOS, то есть имена файлов могут содержать до восьми символов по заданным трем символам расширения. Записываемые файлы должны занимать несколько следующих один за одним секторов (нефрагментовання запись). Формат уровня 2 (lеvеl 2) разрешает использовать длинные имена файлов, а формат уровня 3 (lеvеl 3) дополнительно допускает записывать файлы на нескольких участках диска (фрагментированная запись) в пакетном режиме. Для того чтобы можно было записывать длинные имена, определенные в операционной системе Windows, фирма Місrosofі дополнила формат ISO 9660 уровня 1 спецификацией Joliet. Разновидностями формата IS0 9660 являются форматы СD-RОМ (Вооt) и DVD-RОМ (Вооt), в которых записывается на диск (кроме содержания) специальный участок (в начале диска), что разрешает использовать оптический диск как загрузочный.

Если стандарт ISO 9660 предназначен для обеспечения совместимости между дисками СD-RОМ и DVD-RОМ, используемыми в разных компьютерных системах, то формат UDF (UniversalDiskFormatі - универсальный формат дисков) разработан для совместимости оптических дисков только для считывания (RОМ) и записываемых оптических дисков (R или RW) в разных операционных системах. Этот формат, так же, как и IS0 9660, разрешает использовать длинные имена файлов и записывать данные. Данные на оптический диск записывается небольшими порциями в режиме Расket Writing (для СD-дисків) или Іncremental Writing (для DVD-дисков).
Форматы Аиdіо СD и Аиdіо DVD используются для записывания музыки. Это два разных формата. Формат Аиdіо DVD обеспечивает более качественное записывание музыки.

Форматы Video СD (VCD) и VideoDVD используют для записывания фильмов. Это также два разных формата с разными дополнительными возможностями (например, относительно выбора языка озвучивание фильма). Формат VideoDVD обеспечивает блее качественное записывание фильмов. Качественное воспроизведение фильма на СD-дисках обеспечивает формат Super Vіdео СD. Для записывания фильмов в формате Vіdео DVD на СО-диски используют формат mini-DVD.

Приведенные форматы - наиболее распространенные, поскольку разрешают записывать на оптические диски как музыку и фильмы, так и текстовые данные, графические данные и программы. Эти форматы поддерживают большинство дисководов и программы записывания на оптические диски. Существуют также и другие форматы, рассчитанные большей частью на такие виды данных, которые используются намного реже, например Photo СD фирмы Коdak, записывание и воспроизведение высококачественных цифровых фотографий. И фотографии, и музыку можно записывать в форматах IS0 9660 или UDF как обычные графические или звуковые файлы.

Новым, перспективным форматом есть формат Мt. (Моunt) Rаіnіеr , известный также как формат ЕаsуWrіtе. Этот формат записывает данные на оптический диск так же, как и на гибкий. Используя этот формат, к оптическому диску можно обращаться (для считывания или записывания) из любой прикладной задачи без вызова специальных программ считывания-записывания на оптические диски.

Форматы СD-дисков называют иногда по цвету обложки книг, в которых эти форматы описаны. Так, самый первый формат СD - Аudio СD описан в «красной» книге. В «желтой» книге описывается формат СD-RОМ (IS0), в «оранжевой» - форматы СD-R и СD-RW, в «зеленой» - формат СD-I (теперь почти не используют), в «голубой» - Еnhanced СD и в «белой» - Video СD.

Не для кого не секрет, что история началась с грампластинки . Сохранять информацию в домашних условиях проблематично, да и хранился на ней только звук. Принцип работы - не секрет, так виниловый диск был популярен более ста лет, и до сих пор коллекционеры и ди-джеи пользуются и хранят их. Прикольно было смотреть, как иголка, во время прокручивания диска, ходила ходуном вроде бы на идеально ровной спирали. На этом и был построен принцип получения звука. При изменения глубины и ширины канавки, изменялась звуковая волна и дальше усилена трубой (граммофоны, патефоны). С развитием электроники, принцип снятии информации, был сделан на пьезоэлектрической игле и получили современный, до не давних пор, проигрыватель грампластинок.

Вот и подошли 70-е года. И произошёл скачок в носителях информации (магнитные ленты мы пропустим). Изобрели диск, сделанный из поликарбоната, обладавший прозрачностью, с алюминиевым напылением. Поликарбонат служил основой и защищал напыление от внешних воздействий, а на напылении по спирали были прожжены углубления. Принцип снятия и записи информации на этом и основан, как видите не далеко ушли от грампластинки. Тонкий луч отражался от поверхности напыления и приходил на светоприёмник, который в свою очередь определял изменения и относительно полученной информации создавались единицы и нули. А дальше по принципу азбуки Морзе информация преобразуется в музыку, фильмы, фотки, файлы и т.д.

Теперь разберёмся в обозначениях на CD-дисках :

  • CD-ROM – компакт-диск изготовляется на заводе методом штамповки и является не записываемым носителем данных
  • CD-R – одноразовый записываемый компакт-диск. Стандартный объем – 700 Мбайт. Иногда встречаются 800 Мбайтные диски
  • CD-RW – перезаписываемый (многоразовый) компакт-диск. Стандартный объем – 700 Мбайт.
  • А вот с DVD дисками, всё сложилось гораздо сложней. Этот диск был создан для хранения информации в большом объёме и занимались разработками большое колличество фирм (DVD-R и DVD-RW) . Разное напыления имели разнообразные характеристики и бытовые проигрыватели, различных фирм, начали конфликтовать с дисками, отсюда терялось универсальность. Поэтому объеденившись, изобрели новый тип диска, получивший название DVD+R и DVD+RW , стоят они, как ни странно, дешевле. Сейчас уже без разницы какой использовать диск, так как бытовые проигрыватели адаптировали. Есть разница только в перезаписывающих дисках, DVD-RW нужно полностью стирать перед записью, а DVD+R достаточно стереть "шапку" и наложить запись сверху.

  • DVD-R, DVD+R - одноразовый записываемый компакт-диск. Стандартный объем – 4,7 Гбайт
  • DVD-RW, DVD+RW - перезаписываемый (многоразовый) компакт-диск. Стандартный объем – 4,7 Гбайт
  • Как говорится, сколько нам не давай а нам всё мало. По этому прогресс на этом не остановился, двухсторонние и двухслойные и два в одном диски. Ну с двухсторонними , всё просто, напыление нанесли с двух сторон, и как аудиокассету нужно переворачивать диск. Двухслойные - это один из близлежащих к лазеру слоёв, сделали полупрозрачным, и вставать с дивана для переворачивания диска не нужно. Ну а с последним вариантом, возмите два двухслойных и склейте между собой.

  • DVD-5 – однослойный односторонний диск. Объем – 4,7 Гбайта.
  • DVD-9 – двухслойный односторонний диск. Объем – 8,5 Гбайта.
  • DVD-10 – двухсторонний однослойный диск. Объем – 9,4 Гбайта.
  • DVD-14 – двухсторонний диск, имеющий на одной стороне один информационный слой, а на второй - два. Объем – 13,2 Гбайта.
  • DVD-18 – двухсторонний двухслойный диск. Объем – 17 Гбайт.
  • Вот мы и дошли до пика разработок современного мира оптического диска, это - HD-DVD и Blu-ray .
    HD-DVD - это диск, который сделали на основе нашего трудяги, описанного выше, но использование синего лазера.
    Blu-ray - совершенно другая разработка, используется синий лазер.

    Если вспомнить спектр (радугу), то будет видно, что с синего луча, можно получить гораздо тоньше луч, поэтому эти диски гораздо объёмней получились. Но об этом будет в следующей теме .

  • HD DVD-R – одноразовый записываемый HD DVD
  • HD DVD-RW – перезаписываемый (многоразовый) HD DVD диск. Объем диска – 15 Гбайт. Если диск двухслойный – 30 Гбайт.
  • BD-R – это одноразовый записываемый Blu-ray
  • BD-RE – это перезаписываемый (многоразовый) Blu-ray диск. Объем такого диска равен 25 Гбайтам. Если диск двухслойный – 50 Гбайт
  • Вроде, на сегодняшний день, всё. Осталось только немного о хранении и использования диска рассказать. Диск - это не вкусно, грызть его не надо, ну если только у кого то недостаток пластмассы в организме. А так же это не инструмент по игре на нервах, по этому не надо когтями по нему водить. Желательно не гнуть, хоть и ломается сложно, но осколки могут попасть куда не следует, а это отразится на вашем организме. Так же постоянный изгиб нарушает, находящее внутри напыление, он трескается и нули единицы, уже не будут у вас совпадать. На солнце его не жарить, ему элемент D совсем не нужен, а превратиться в зюобразный продукт и его ни куда не пихнёте. Диск с трещиной в привод не вставлять, а то иначе придётся тратится либо на ремонт, либо на покупку нового.

    Я надеюсь ВЫ грамотные и вам не надо всё по пунктам перечислять, к вещам нужно относится бережно и они ВАС за это отблагодарят.

    Справочник DVD

    DVD

    DVD — это семейство оптических дисков, одинакового размера с компакт-дисками (CD), но значительно большей емкости хранения, достигнутой за счет увеличения плотности записи.

    Появление DVD. DVD-форум

    В основе появления DVD дисков лежала идея разработать такой носитель информации, который мог бы одинаково успешно использоваться в звуковой и видео аппаратуре, в компьютерной технике, игровых приставках. Это обеспечило бы сближение разных областей электроники.

    Название DVD первоначально означало Цифровой Видео Диск (Digital Video Disc). Позднее в связи с принятием решения о расширении функций DVD аббревиатура стала читаться иначе — Цифровой Универсальный Диск (Digital Versatile Disk).

    О разработке формата DVD был официально объявлено в сентябре 1995 г. группой из 10 компаний: Hitachi, JVC, Matsushita, Mitsubishi, Philips, Pioneer, Sony, Thomson, Time Warner и Toshiba. В мае 1997 г. на базе этого консорциума был создан DVD-форум — открытая для вступления организация, насчитывающая сегодня более 200 членов.

    Основные задачи этой организации — развитие и продвижение формата DVD, выработка согласованных спецификаций, а также лицензирование деятельности предприятий в области DVD технологии. В рамках форума действуют специальные рабочие группы по различным аспектам DVD технологии. На ряд спецификаций приняты международные стандарты.

    Важнейшие преимущества DVD технологии

    Сегодня DVD — это уже широко распространенная, проверенная временем и в тоже время динамично развивающаяся технология с огромным потенциалом.

    • запись и воспроизведение высококачественного видео и аудио в реальном времени, эффективная работа с компьютерной мультимедийной информацией, а также обеспечение эффективного произвольного доступа к данным, хранимыми в виде множества мелких файлов;
    • объем диска до 4,7 ГБ (около 2-х часов MPEG-2) на сторону для записи в один слой и 8,5 ГБ на сторону для двуслойной записи;
    • возможность записи информации в два слоя на каждую из сторон;
    • единая файловая система UDF;
    • возможность записи и многократной перезаписи DVD дисков;
    • обратная совместимость с существующими CD-дисками — геометрические размеры DVD и CD дисков идентичны, все DVD оборудование способно читать диски CD-Audio и CD-ROM (спецификация MultyRead).

    Первые форматы DVD

    Технология DVD первоначально опиралась 3 основных формата, наличие которых определено специфическими требованиями для различных областей применения DVD:

    • DVD-ROM используется для записи данных, в том числе мультимедийных, используемых в компьютерных технологиях;
    • DVD-Video применяется при записи видеоматериалов для их дальнейшего просмотра на видеотехнике или с помощью присоединенного к компьютеру DVD-ROM привода. Формат обеспечивает защиту от нелегального копирования информации;
    • DVD-Audio используется при записи высококачественного многоканального звука. Кроме того, DVD-форумом рекомендована дополнительная поддержка видео, графики и другой информации.
    Эти форматы описывали диски, предназначенные только для чтения. Информация на такие диски помещается один раз — в процессе их производства. С развитием технологии DVD появились спецификации дисков, обеспечивающие пользователям дисков запись и перезапись информации. Однако основные участники форума не смогли договориться о единой спецификации на такие диски из-за стремления сохранить самостоятельный контроль над своими авторскими техническими разработками. В результате появилось несколько конкурирующих спецификаций (форматы DVD-RAM, DVD-RW, DVD+RW). Рассмотрим перечень развиваемых сегодня форматов DVD дисков.

    Развиваемые форматы DVD

    Только для чтения

    • DVD-ROM
    • DVD-Video
    • DVD-Audio
    Для многократной перезаписи
    • DVD-RAM
    • DVD+RW (не поддержан DVD форумом)
    • DVD-RW
    Для одноразовой записи
    • DVD-R (G)
    • DVD-R (A)
    Для видеозаписи
    • DVD-VR

    Совместимость

    Разработчики не смогли достичь единого подхода при выработке формата записываемых дисков. Конкуренция предопределила отсутствие поддержки одним устройством нескольких записывающих форматов. Поэтому диски, записанные в одном из форматов, как правило, не читаются на приводах других записываемых форматов. Попытка преодолеть разобщенность записывающих форматов предпринята компанией Panasonic, которая в апреле 2001 г. представила устройство, работающее с форматами DVD-RAM и DVD-R(G).

    Некоторые устройства могут не понимать тот формат дисков DVD, который был предложен уже после их выпуска. Естественно, бытовая электроника может быть ориентирована на вполне конкретный сегмент потребительского рынка (DVD-Audio, DVD-Video, оба формата), и не обязательно должна обеспечивать чтение компьютерных дисков, что и определено DVD-форумом. В то же время компьютерные дисководы одинаково хорошо работают с видео, аудио, мультимедийными и другими компьютерными дисками.

    Файловая система UDF

    Большим достижением в обеспечении совместимости в технологии DVD стала принятая в 2000 году единая файловая система MicroUDF. Файловая система MicroUDF — это адаптированная для применения в DVD версия файловой системы UDF (Universal Disk Format), которая, в свою очередь, основана на международном стандарте ISO-13346. Эта файловая система постепенно идет на смену устаревшей ISO9660, созданной в свое время для использования в компакт-дисках. На переходный период (пока не выйдут из обращения компьютерные устройства и диски, работающие в формате ISO9660) будет использоваться файловая система UDF Bridge, которая является некоторой комбинацией MicroUDF и ISO9660. Для записи Audio/Video DVD дисков может использоваться только MicroUDF.

    Возможности файловой системы MicroUDF следующие:

    • независимость от используемой программно-аппаратной платформы (в этом смысле UDF — оптимальный выбор в архивных системах);
    • большая емкость. Весь диск может быть представлен в виде единственного тома;
    • оптимальная скорость передачи. Скорость чтения и записи данных в формате UDF может быть выше, чем производительность многих «родных» файловых систем, когда предаются большие файлы (например, в мультимедийных системах)
    • максимальные возможные размеры файла;
    • использование шрифтового формата UNICODE, что обеспечивает эффективную интернациональную поддержку;
    • поддержка расширенных файловых атрибутов, что используется в некоторых «родных» операционных системах;
    • поддержка длинных имен файлов с расширением ограничений операционной системы. Максимальная длина имени файла 255 символов;
    • взаимозаменяемость DVD дисков в бытовой электронике и компьютерных системах.
    При использовании MicroUDF на одном DVD-диске можно одновременно хранить видеофильмы, аудиозаписи, оцифрованные фотографии и компьютерные файлы. Этим обеспечивается межплатформенная совместимость, т. е. DVD-диск становится единым носителем для Macintosh, DOS/Windows, OS/2, UNIX.

    Перспективы DVD

    Наличие разных стандартов и спецификаций не говорит о том, что DVD технология стоит на месте. Усилия различных компаний сегодня направлены на внедрение технологии «голубого лазера» — с меньшей длиной волны. Это позволит увеличить плотность записи на дисках с вытекающим отсюда улучшением и других характеристик.
    Компания Calimetrics Inc предложила технологию ML (multilevel), позволяющую в три раза повысить емкость стандартного DVD/CD. При этом нет необходимости совершать какие-либо доработки в механизме и оптике существующих приводов. Для внедрения новой технологии достаточно воспользоваться набором микросхем, разработанного этой компанией. Суть технологии заключается в возможности использовать в качестве информационной характеристики глубину питов (до 8 уровней) при работе с дисками. Отметим, что аналогичную технологию, но для CD дисков, разрабатывает компания TDK в сотрудничестве с другими фирмами.

    Форматы DVD только для чтения

    DVD-ROM (Digital Versatile Disc Read Only Memory)

    Диски формата DVD-ROM предназначены для использования в компьютерной технике. Информация заносится на диск единственный раз — при его производстве.

    Прогресс устройств DVD во многом повторяет путь, пройденный CD, и направлен главным обазом на улучшение скоростных характеристик и введение функции записи. Устройства DVD-ROM первого поколения использовали режим CLV и считывали с диска со скоростью 1.38 Мб/с (в традиционном обозначении для DVD это 1х). Устройства второго поколения могли читать DVD с вдвое большей скоростью — 2х (2.8 Мб/с). Современные DVD-ROM — устройства третьего поколения — используют режим контроля вращения (CAV) с максимальной скоростью чтения 4х-6х (5.5 — 8.3 Мб/с) и более. Современные DVD-ROM приводы (дисководы) поддерживают чтение практически всех форматов, включая диски CD.

    DVD-Video

    Формат DVD-Video предназначен для хранения и воспроизведения видео. Как и DVD-ROM, эта спецификация определяет возможность только чтения информации — воспроизведение записей с помощью видеоплееров (видеорекодеров). Спецификация базируется на формате DVD-ROM, но предусматривает специальный способ размещения данных, предотвращающий возможность побитового копирования дисков. Видеоматериалы в закодированном виде размещаются на диске в процессе его производства. Воспроизведение DVD-video возможно только на бытовых видеоплеерах (видеорекодерах) или на DVD-дисководах, подключенных к компьютеру. При использовании компьютерного оборудования декодирование информации осуществляется либо аппаратно, либо программными средствами. Современная спецификация обеспечивает запись на диск высококачественного видео (до 2-х часов в формате сжатия MPEG-2), а также многоканальное звуковое сопровождение на 8 языках, выбор экранного формата, титры на 32 языках, интерактивное управление посредством экранного меню, до 9 угловых направлений просмотра, защиту от нелегального копирования, разграничение просмотра видеопродукции по регионам, управление доступом детей к видеоматериалам.

    DVD-Audio

    Новое поколение музыкального формата после CD. Спецификацией формата определены высококачественный многоканальный звук, поддержка широкого диапазона качества звука (квантование 16, 20, 24 бит при частоте от 44,1 до 192 кГц), воспроизведение DVD плеерами CD дисков, поддержка дополнительной информации (включая видео, текст, меню, заставки, удобную навигационную систему), связь с осуществляющими информационную поддержку web-сайтами, расширение возможностей при появлении новых технологий.

    Существуют две версии формата DVD-Audio: просто DVD-Audio — только для звукового содержания и DVD-AudioV — для звука с дополнительной информацией.

    Выработаны специальные меры защиты дисков от пиратского копирования.

    Форматы DVD для многократной записи

    Многократная запись

    Все известные спецификации перезаписываемых DVD дисков используют технологию многократной записи, основанную на физическом принципе смены фазового состояния (кристаллическое/аморфное) информационного слоя под воздействием лазера с длиной волны 650 (635) нм (phase-change recording). Считывание информации осуществляется путем определения оптических характеристик информационного слоя в различных его фазовых состояниях при отражении лучей лазера (того же, что и при записи).

    Материал для многократной записи

    В качестве рабочего используется материал AVIST, созданный компанией TDK в 1995 году. Характеристики этого материала практически идеально удовлетворяют требованиям технологии перезаписи DVD-дисков:

    • высокая отражающая способность — до 25-35 %, что вполне достаточно для совместимости DVD-дисков при воспроизведении;
    • легкость замены фазового состояния как при высоких, так и при низких скоростях записи, что особенно важно при работе с различными приложениями. Приложения, работающие с перезаписываемыми компакт-дисками (например CD-E), осуществляют запись со скоростью менее 3 м/с. Работа с данными в формате DVD-RAM требует от рабочего слоя более высокой скорости записи — от 3 до 6 м/с. При работе с видеоинформацией, подвергнутой компрессии, скорость записи должна превышать 6 м/с;
    • отличное соотношение сигнал-шум и характеристики изменения фазы позволили компании TDK добиться сверхмалых размеров маркера (менее 0,66 мм);
    • AVIST выдерживает как минимум 1000 циклов перезаписи даже на скоростях менее 3 м/с. При более высоких скоростях записи количество циклов перезаписи возрастает.
    Каждый из форматов имеет свои достоинства и недостатки, что определило их области применения. Наиболее распространенным на сегодня является формат DVD-RAM в силу более низкой стоимости работающих с ним приводов и дисков.

    DVD-RAM (Digital Versatile Disc Random Access Memory)

    Перезаписываемый формат, разработанный компаниями Panasonic, Hitachi, Toshiba.

    Формат одобрен DVD-форумом в июле 1997 г. Оборудование и диски этого формата тестировались в течение 3-х месяцев в более чем 20 компьютерных компаниях-производителях всего мира. Свыше 160 участников форума проголосовало за принятие спецификации. На сегодня это самый распространенный DVD формат в компьютерной индустрии.

    DVD-RAM приводы читают диски DVD-ROM. В свою очередь, диски DVD-RAM могут быть прочитаны только приводами DVD-ROM так называемого третьего поколения, выпускаемыми с середины 1999 г.

    Первое поколение дисков DVD-RAM вмещало 2.6 ГБ на сторону. Диски современного — второго — поколения несут 4.7 ГБ на стороне или 9.4 ГБ для двусторонней модификации.

    Выпускаются два типа односторонних DVD-RAM дисков — в картридже и без картриджа. Диски в картридже в основном предназначены для бытовой видеоаппаратуры, где необходимо исключить влияние внешних факторов при интенсивном ручном использовании. Картриджи в свою очередь могут быть двух видов — открываемые и цельные.

    Важнейшие достоинства дисков формата DVD-RAM — это возможность перезаписи до 100 000 раз и наличие механизма коррекции ошибок записи.

    Самое большое число циклов перезаписи среди всех DVD, механизм коррекции ошибок и произвольный доступ к диску как при записи, так и при чтении предопределили максимальную эффективность этого формата во вторичных устройствах хранения данных. Подавляющее большинство устройств массового хранения информации — роботизированные DVD библиотеки — использует именно эту технологию.

    Диски DVD-RAM могут использоваться для записи и воспроизведения потокового видео на оборудовании, поддерживающем спецификацию DVD-VR (см. ниже).

    DVD+RW (Digital Versatile Disc ReWritable)

    Формат DVD+RW продвигается только его разработчиками — компаниями Hewlett-Packard, Mitsubishi Chemical, Philips, Ricoh, Sony и Yamaha (не поддержан DVD-форумом).

    На дисках DVD+RW можно записать как потоковое видео или звук, так и компьютерные данные. Диски формата DVD+RW могут быть перезаписаны около 1000 раз.

    На базе DVD+RW создан формат записи потокового видео — DVD+RW Video Format. Устройства и диски, работающие в этом формате, позиционируется на рынке как полностью совместимые с оборудованием, работающим в форматах DVD-Video. Это значит, что диски DVD+RW, содержащие видеоматериалы, могут быть воспроизведены на выпущенной ранее бытовой аппаратуре DVD.

    Компания Philips заявила о начале выпуска своего DVD видеорекордера в сентябре 2001 г. Диски формата DVD+RW, записанные на этом устройстве, также читаются обычными DVD-Video плеерами. Это решение было предложено как ответный шаг на принятую DVD форумом спецификацию DVD-VR (см. ниже).

    DVD-RW (Digital Versatile Disc ReRecordable)

    Встречаются другие названия этого формата: DVD-R/W и реже DVD-ER.

    DVD-RW — формат многократной записи, разработанный компанией Pioneer. Диски формата DVD-RW вмещают 4,7 ГБ на одну сторону, выпускаются в односторонней и двусторонней модификациях и могут быть использованы для хранения видео, аудио и других данных.

    Диски формата DVD-RW могут быть перезаписаны до 1000 раз. В отличие от форматов DVD+RW и DVD-RAM диски DVD-RW могут быть прочитаны на приводах DVD-ROM первого поколения.

    Компания TDK заявляет, что долговечность выпускаемых ею дисков DVD-RW составляет около 100 лет.

    Форматы DVD для однократной записи

    DVD-R (Digital Versatile Disc Recordable)
    DVD-R — формат однократной записи, разработанный компанией Pioneer. Устройства на базе этого формата были первыми, которые записывали на дисках DVD. Технология записи аналогична используемой в CD-R и базируется на необратимом изменении под воздействием лазера спектральных характеристик информационного слоя, покрытого специальным органическим составом.

    На диски DVD-R могут быть записаны как компьютерные данные, мультимедийные программы, так и видео/аудио информация. В зависимости от типа записанной информации диски могут быть прочитаны на других, совместимых с записанным форматом типах устройств, включая DVD-Video видеоплееры и большинство DVD-ROM приводов. Односторонние диски DVD-R вмещают 4,7 или 3,95 ГБ на сторону. Двусторонние диски выпускаются только общей емкостью 9,4 ГБ (4,7 ГБ на сторону). В настоящее время формат не поддерживает технологию записи в два слоя.

    Долговечность дисков DVD-R оценивается сроком более 100 лет.

    Для защиты от нелегального копирования разработаны две спецификации: DVD-R(A) и DVD-R(G). Две эти версии одной спецификации используют различную длину волны лазера при записи информации. Таким образом, диски могут быть записаны только на соответствующем их спецификации оборудовании. Воспроизведение дисков может осуществляться одинаково успешно на любом оборудовании, поддерживающем формат DVD-R.

    DVD-R(A) (DVD-R for Authoring) используется в профессиональных приложениях. В частности, поддержка специального формата (Cutting Master Format) позволяет применять эти диски для записи исходной реплики информации (пре-мастеринг) вместо обычного использования для этих целей DLT лент.

    DVD-R(G) (DVD-R for General) предназначена для более широкого применения. Диски этого формата защищены от возможности побитового копирования на них информации с других дисков. Формат поддерживается в устройствах массового хранения (например, в роботизированных DVD библиотеках, предлагаемых самой компанией Pioneer).

    Спецификация DVD-VR основана на DVD-RAM и поддержана DVD-форумом. Формат DVD-VR позволяет записать в реальном времени до 2 часов высококачественного видео в формате MPEG-2 на односторонний диск DVD-RAM емкостью 4,7 ГБ и обеспечивает такие возможности, как редактирование уже записанных видеоматериалов, запись различных типов статических изображений. Электронику на базе этого формата выпускают, к примеру, компании Panasonic, Toshiba, Samsung, Hitachi.

    Справочные таблицы

    Таблица 1. Емкости DVD дисков

    Формат Спецификация Количество сторон Количество слоев на сторону Емкость, ГБ*
    DVD-Video и DVD-ROM DVD-5 1 1 4.7, или более 2 часов видео
    DVD-9 1 2 8.5, или более 4 часов видео
    DVD-10 2 1 9.4, или более 4,5 часов видео
    DVD-14 2 1+2 13.2, или более 6,5 часов видео
    DVD-18 2 2 17.1, или более 8 часов видео
    DVD-RAM (DVD-VR) DVD-RAM 1.0 1 1 2.6
    2 1 5.2
    DVD-RAM 2.0 1 1 4.7
    2 1 9.4
    DVD-R DVD-R 1.0 1 1 3.9
    DVD-R 2.0 1 1 4.7
    2 1 9.4
    DVD-RW DVD-RW 2.0 1 1 4.7
    2 1 9.4

    * 1ГБ — 1 миллиард байт

    Таблица 2. Основные параметры DVD дисков последних модификаций

    Параметр Тип диска
    DVD-ROM DVD-RAM DVD-RW DVD+ RW DVD-R
    Емкость одной стороны 4,7 ГБ 4,7 ГБ 4,7 ГБ 4,7 ГБ 4,7 ГБ
    Длина волны лазера 650 650 650 650 650 (G)
    635 (A)
    Отража- тельная способность 18-30% (двух- слойного) 15-25% (2,6) 18-30%
    Способ записи Оттиск с матрицы при производстве Смена фазы Смена фазы Смена фазы Смена цвета красителя
    Форма записи Не применимо Wobbled Land& Groove Wobbled groove Wobbled groove Wobble pre-groove
    Межтре- ковое расстояние 0,74 мкм 0.615 мкм 0.74 мкм 0.74 мкм
    Минимальная длина пита 0,40 0,28 0,40
    Число зон Не применимо 35 Не применимо Не применимо Не применимо
    Способ контроля вращения* CAV ZCLV
    CAV в пределах зоны
    CLV CLV (для видео) или CAV (для данных) CLV
    Скорость записи данных до 8,31 МБ/с (чтение) 2,77 МБ/с 11-26 Mbit/s, 2,77 МБ/с
    Файловая система Micro UDF и/или ISO9660 UDF/UDF Bridge UDF/UDF Bridge UDF/UDF Bridge Тип1 UDF Bridge Тип2 UDF
    Стоимость односторон- него диска (дисковода) $20-30($500) $10-15 ($1000)

    * CLV — (Constant Linear Velocity) постоянная линейная скорость

    CAV — (Constant Angular Velocity) постоянная угловая скорость

    ZCLV — (Zone Constant Linear Velocity) зонная постоянная линейная скорость

    Форматы DVD дисков Типы DVD приводов
    DVD-RAM DVD-RW DVD-R(G) DVD-R(A) DVD+ RW DVD-Video DVD-Audio DVD-player (универ.)
    Ч З Ч З Ч З Ч З Ч З Ч З Ч З Ч З
    DVD-ROM + + + + + + +
    DVD−R(G) + + + + + + + ? + + +
    DVD−R(A) + + + + + + + +
    DVD−RAM + + + +
    DVD-RW + + + + + + + + + +
    DVD+RW + + + + + + + + +
    DVD-Video + + + + + + +
    DVD-Audio + + + + + + +
    DVD-AudioV + + + + + + +

    Примечание — в некоторых случаях «+» означает, что чтение или запись не противоречат спецификациям DVD форума, однако такие устройства могут пока быть не представлены на рынке.
    «-» означает, что спецификацией не определено обязательное требование по чтению или записи, однако на рынке могут быть устройства, обеспечивающее эту возможность