Как отмечалось, инфологическая модель отображает реальный мир в некоторые понятные человеку концепции, полностью независимые от параметров среды хранения данных. Существует множество подходов к построению таких моделей: графовые модели, семантические сети, модель "сущность-связь" и т.д. Наиболее популярной из них оказалась модель "сущность-связь", которая будет рассмотрена в главе 2.

Инфологическая модель должна быть отображена в компьютеро-ориентированную даталогическую модель, "понятную" СУБД. В процессе развития теории и практического использования баз данных, а также средств вычислительной техники создавались СУБД, поддерживающие различные даталогические модели.

Сначала стали использовать иерархические даталогические модели. Простота организации, наличие заранее заданных связей между сущностями, сходство с физическими моделями данных позволяли добиваться приемлемой производительности иерархических СУБД на медленных ЭВМ с весьма ограниченными объемами памяти. Но, если данные не имели древовидной структуры, то возникала масса сложностей при построении иерархической модели и желании добиться нужной производительности.

Сетевые модели также создавались для мало ресурсных ЭВМ. Это достаточно сложные структуры, состоящие из "наборов" – поименованных двухуровневых деревьев. "Наборы" соединяются с помощью "записей-связок", образуя цепочки и т.д. При разработке сетевых моделей было выдумано множество "маленьких хитростей", позволяющих увеличить производительность СУБД, но существенно усложнивших последние. Прикладной программист должен знать массу терминов, изучить несколько внутренних языков СУБД, детально представлять логическую структуру базы данных для осуществления навигации среди различных экземпляров, наборов, записей и т.п. Один из разработчиков операционной системы UNIX сказал "Сетевая база – это самый верный способ потерять данные".

Сложность практического использования иерархических и и сетевых СУБД заставляла искать иные способы представления данных. В конце 60-х годов появились СУБД на основе инвертированных файлов, отличающиеся простотой организации и наличием весьма удобных языков манипулирования данными. Однако такие СУБД обладают рядом ограничений на количество файлов для хранения данных, количество связей между ними, длину записи и количество ее полей.

Сегодня наиболее распространены реляционные модели, которые будут подробно рассмотрены в главе 3.

Физическая организация данных оказывает основное влияние на эксплуатационные характеристики БД. Разработчики СУБД пытаются создать наиболее производительные физические модели данных, предлагая пользователям тот или иной инструментарий для поднастройки модели под конкретную БД. Разнообразие способов корректировки физических моделей современных промышленных СУБД не позволяет рассмотреть их в этом разделе.

Модели организации баз данных

1. Иерархический подход к организации баз данных. Иерархические базы данных имеют форму деревьев с дугами-связями и узлами-элементами данных. Иерархическая структура предполагала неравноправие между данными – одни жестко подчинены другим. Подобные структуры, безусловно, четко удовлетворяют требованиям многих, но далеко не всех реальных задач.

2. Сетевая модель данных. В сетевых БД наряду с вертикальными реализованы и горизонтальные связи. Однако унаследованы многие недостатки иерархической и главный из них, необходимость четко определять на физическом уровне связи данных и столь же четко следовать этой структуре связей при запросах к базе.

3. Реляционная модель. Реляционная модель появилась вследствие стремления сделать базу данных как можно более гибкой. Данная модель предоставила простой и эффективный механизм поддержания связей данных.

Во-первых , все данные в модели представляются в виде таблиц и только таблиц. Реляционная модель – единственная из всех обеспечивает единообразие представления данных. И сущности, и связи этих самых сущностей представляются в модели совершенно одинаково – таблицами . Правда, такой подход усложняет понимание смысла хранящейся в базе данных информации, и, как следствие, манипулирование этой информацией.

Избежать трудностей манипулирования позволяет второй элемент модели – реляционно-полный язык (отметим, что язык является неотъемлемой частью любой модели данных, без него модель не существует). Полнота языка в приложении к реляционной модели означает, что он должен выполнять любую операцию реляционной алгебры или реляционного исчисления (полнота последних доказана математически Э.Ф. Коддом). Более того, язык должен описывать любой запрос в виде операций с таблицами, а не с их строками. Одним из таких языков является SQL.

Третий элемент реляционной модели требует от реляционной модели поддержания некоторых ограничений целостности. Одно из таких ограничений утверждает, что каждая строка в таблице должна иметь некий уникальный идентификатор, называемый первичным ключом . Второе ограничение накладывается на целостность ссылок между таблицами. Оно утверждает, что атрибуты таблицы, ссылающиеся на первичные ключи других таблиц, должны иметь одно из значений этих первичных ключей.

4. Объектно-ориентированная модель. Новые области использования вычислительной техники, такие как научные исследования, автоматизированное проектирование и автоматизация учреждений, потребовали от баз данных способности хранить и обрабатывать новые объекты – текст, аудио- и видеоинформацию, а также документы. Основные трудности объектно-ориентированного моделирования данных проистекают из того, что такого развитого математического аппарата, на который могла бы опираться общая объектно-ориентированная модель данных, не существует. В большой степени поэтому до сих пор нет базовой объектно-ориентированной модели. С другой стороны, некоторые авторы утверждают, что общая объектно-ориентированная модель данных в классическом смысле и не может быть определена по причине непригодности классического понятия модели данных к парадигме объектной ориентированности. Несмотря на преимущества объектно-ориентированных систем – реализация сложных типов данных, связь с языками программирования и т.п. – на ближайшее время превосходство реляционных СУБД гарантировано.

5.3.3 Модели данных и концептуальное моделирование

Выше уже упоминалось, что схема создается с помощью некоторого языка определения данных. На самом деле она создается на основе языка определения данных конкретной целевой СУБД, являющегося языком относительно низкого уровня; с его помощью трудно описать требования к данным так, чтобы созданная схема была доступна пониманию пользователей самых разных категорий. Чтобы достичь такого понимания, требуется составить описание схемы на некотором, более высоком уровне, которое будем называть моделью данных. При этом под моделью данных мы будем понимать интегрированный набор понятий для описания данных, связей между ними и ограничений, накладываемых на данные в пределах некоторой предметной области.

Модель является представлением объектов и событий предметной области, а также существующих между ними связей. Модель данных можно рассматривать как сочетание трех указанных ниже компонентов.

· Структурная часть, т.е. набор правил, по которым может быть построена база данных.

· Управляющая часть, определяющая типы допустимых операций с данными (сюда относятся операции обновления и извлечения данных, а также операции изменения структуры базы данных).

· Набор ограничений поддержки целостности данных, гарантирующих корректность используемых данных.

Цель построения модели данных заключается в представлении данных в понятном виде. Если такое представление возможно, то модель данных можно будет легко применить при проектировании базы данных. Для отображения архитектуры ANSI-SPARC можно определить следующие три связанные модели данных:

· внешнюю модель данных, отображающую представления каждого существующего в организации типа пользователей;

· концептуальную модель данных, отображающую логическое (или обобщенное) представление о данных, независимое от типа выбранной СУБД;

· внутреннюю модель данных, отображающую концептуальную схему определенным образом, понятным выбранной целевой СУБД.

В литературе предложено и опубликовано достаточно много моделей данных. Они подразделяются на три категории: объектные (object-based) модели данных, модели данных на основе записей (record-based) и физические модели данных. Первые две используются для описания данных на концептуальном и внешнем уровнях, а последняя - на внутреннем уровне.

Объектные модели данных. При построении объектных моделей данных используются такие понятия как сущности, атрибуты и связи. Сущность - это отдельный элемент (сотрудник, изделие, понятие или событие) предметной области, который должен быть представлен в базе данных. Атрибут - это свойство, которое описывает некоторый аспект объекта и значение которого следует зафиксировать, а связь является ассоциативным отношением между сущностями. Ниже перечислены некоторые наиболее общие типы объектных моделей данных.

    • Модель типа "сущность-связь", или ER-модель (Entity-Relationship model).
    • Семантическая модель.
    • Функциональная модель.
    • Объектно-ориентированная модель.

В настоящее время ER-модель стала одним из основных методов концептуального проектирования баз данных. Объектно-ориентированная модель расширяет определение сущности с целью включения в него не только атрибутов, которые описывают состояние объекта, но и действий, которые с ним связаны, т.е. его поведение. В таком случае говорят, что объект инкапсулирует состояние и поведение.

Модели данных на основе записей. В модели на основе записей база данных состоит из нескольких записей фиксированного формата, которые могут иметь разные типы. Каждый тип записи определяет фиксированное количество полей, каждое из которых имеет фиксированную длину. Существует три основных типа логических моделей данных на основе записей: реляционная модель данных (relational data model), сетевая модель данных (network data model) и иерархическая модель данных (hierarchical data model).

Классификация моделей данных базируется на понятиях о взаимосвязи объектов. Между таблицами базами данных могут существовать четыре типа различных связей: «один к одному»; «один ко многим»; «многие ко многим».

При отношении «один к одному » в каждый момент времени одной записи таблицы «1» соответствует не более одной записи таблицы «2». Например, одному клиенту соответствует только один номер в гостинице. Этот тип связи используют не очень часто, поскольку такие данные могут быть помещены в одну таблицу. Такую связь используют для разделения очень широких таблиц, например, для разделения таблицы с информацией о сотрудниках фирмы на две – служебной и личной информацией.

Связь с отношением «один ко многим » характеризует то, что одному экземпляру информационного объекта «1» соответствует 0,1,2 и более экземпляров объекта «2». Такое отношение существует, например, между таблицами «Поставщики» и «Товары», т.е. каждый поставщик может продавать различные товары, но у каждого товара есть единственный поставщик.

Отношение «многие ко многим » предполагает, что в каждый момент времени одной записи таблицы «1» соответствует несколько экземпляров таблицы «2» и наоборот. Примером может служить связь между информационными объектами «Клиент» и «Банк». Один клиент хранит средства во многих банках. Один банк обслуживает многих клиентов. Реализуется отношение с помощью третьей (связующей) таблицы, ключ которой состоит, по крайней мере, из двух полей, которые являются полями внешнего ключа в исходных таблицах.

Известны три основных типа моделей данных.

Иерархическая модель. Предполагает организацию данных в виде древовидной структуры. Дерево представляет собой иерархию элементов. На самом верхнем уровне структуры находится корень дерева. У одного дерева может быть только один корень, остальные - узлы, называемые порожденными. Каждый узел имеет исходный, находящийся выше него.

Иерархическая базой данных представляет собой как множество отношений и веерных отношений, для которых соблюдаются два ограничения: существует единственное отношение, называемое корневым, которое не является зависимым ни в одном веерном отношении; все остальные отношения (кроме корневого) являются зависимыми отношениями только в одном веерном отношении.

Записью иерархической БД называется множество значений, содержащее одно значение корневого отношения и все вееры, доступные от него. В нашем примере запись образуют данные, относящиеся к одному факультету.

Сетевая модель . В основу модели положены сетевые структуры, в которых любой элемент может быть связан с любым другим элементом. Информационными конструкциями в модели являются отношения и веерные отношения. Последние подразделяют на основные и зависимые. Веерным отношением W(R,S) называется пара отношений R и S и связь между ними при условии, что каждое значение S связано с единственным значением R . Отношение R называют исходным (основным), а S - порожденным (зависимым).

В структуру основного и зависимого отношений вводится дополнительный атрибут, называемый адресом связи, который обеспечивает соответствие каждого значения зависимого отношения S с единственным значением основного отношения R . Адрес связи хранит начальный адрес или номер следующей обрабатываемой записи. Кольцевая структура адресов связи называется веером . Роль "ручки" веера играет запись основного отношения.

Недостатком рассмотренных выше моделей данных является то, что при добавлении новых вершин или установлении новых связей возникают проблемы выгрузки данных из базы и загрузки их в новую структуру. При этом возможна утрата данных или возникновения неопределенных значений данных.

Реляционная модель. В основе структуры данных этоймодели лежит аппарат реляционной алгебры и теории нормализации. Модель предполагает использование двумерных таблиц (отношений).

Ограничения на отношения реляционной модели: каждый элемент таблицы представляет собой простой элемент данных; в таблице нет одинаковых строк; столбцам (полям) присвоены уникальные имена; все строки таблицы имеют одну и ту же структуру; в таблице порядок строк и столбцов произволен.

Связь между таблицами осуществляется посредством значений одного или нескольких совпадающих полей. Каждая строка таблицы в реляционных базах данных уникальна. Для обеспечения уникальности строк используют ключи, которые содержат одно или несколько полей таблицы. Ключи хранятся в упорядоченном виде, что обеспечивает прямой доступ к записям таблицы во время поиска.

Каждая система БД реализует ту или иную модель данных, которая определяет правила порождения допустимых для системы видов структур данных, возможные операции над такими структурами, классы представимых средствами системы ограничений целостности данных. Таким образом, модель данных задает границы множества всех конкретных БД, которые могут быть созданы средствами этой системы.

Описание выбранной предметной области в терминах модели данных позволяет получить модель БД. Обычно выделяют три уровня моделей БД .

Мифологическая модель отражает информацию о предметной области без ориентации на конкретную СУБД (или даже на тип предполагаемой к использованию СУБД). В связи с этим некоторые авторы говорят о существовании инфологической модели предметной области, а не БД.

Даталогическая модель БД – модель логического уровня, представляющая собой отображение логических связей между элементами данных независимо от их содержания и среды хранения. Эта модель строится в терминах информационных единиц, допустимых в той СУБД, в среде которой будет создаваться БД. Этап создания данной модели называется даталогическим или логическим проектированием.

Физическая модель БД строится с учетом возможностей по организации и хранению данных, предоставляемых СУБД и используемой программноаппаратной платформой. Она, в частности, определяет используемые запоминающие устройства и способы организации данных в среде хранения.

При проектировании БД первой строится инфологическая модель, после чего – даталогическая, и только после нее – физическая. Более подробно эти этапы будут рассмотрены в следующих главах.

Однако вернемся к рассмотрению моделей данных. Разные авторы приводят несколько различающиеся перечни существующих моделей данных. Например, в предлагается такой список моделей данных и периодов времени, когда в их разработке были получены основные результаты:

  • иерархическая (англ. hierarchical), конец 1960-х и 1970-е гг.;
  • сетевая (англ. network), 1970-е гг.;
  • реляционная (англ. relational), 1970-е и начало 1980-х гг.;
  • "сущность – связь" (англ. entity – relationship), 1970-е гг.;
  • расширенная реляционная (англ. extended relational), 1980-е гг.;
  • семантическая (англ. semantic), конец 1970-х и 1980-е гг.;
  • объектно-ориентированная (англ. object-oriented), конец 1980-х – начало 1990-х гг.;
  • объектно-реляционная (англ. object-relational), конец 1980-х – начало 1990-х гг.;
  • полуструктурированная (англ. semi-structured), с конца 1990-х гг. до настоящего времени.

Первыми появились модели данных, основанные на теории графов, – иерархическая и сетевая. Более подробно они рассмотрены ниже. Следующей появилась разработанная Э. Коддом (Edgar Codd) реляционная модель данных, основанная на математической теории множеств. На сегодняшний день она является самой распространенной, поэтому будет рассматриваться наиболее подробно. Вопросам, связанным с реляционной моделью и логическим проектированием реляционных баз данных, посвящены главы 4 и 5.

Модель "сущность – связь" была предложена П. Ченом (Peter Chen) в 1976 г. в качестве унифицированного способа описания предметной области. Как самостоятельная модель данных (в соответствии с приведенным выше определением) она развития не получила, но стала основой для создания инфологических моделей БД. Этап инфологического проектирования рассмотрен в главе 6.

Семантическая модель, так же как и модель "сущность – связь", используется для построения инфологических моделей. Только в этом случае пользовательские данные представляются в виде набора семантических объектов. Семантический объект – это именованная совокупность атрибутов, которая в достаточной степени описывает отдельный феномен (объект, явление и т.п.).

Объектно-ориентированная и объектно-реляционная модели данных появились в результате распространения объектно-ориентированного подхода в программировании. Объектная модель данных предлагает рассматривать БД как множество объектов, обладающих свойствами инкапсуляции, наследования и т.д. В 1989 г. был опубликован "Манифест систем объектно-ориентированных баз данных", а в 1991 г. образован консорциум ODMG (от англ. Object Data Management Group), который занялся разработкой стандартов. В 2000 г. была опубликована версия стандарта The Object Data Standard: ODMG 3.0, а в 2001 г. группа прекратила свою деятельность. Примерно в то же время велась активная работа по адаптации реляционной модели к требованиям объектно-ориентированного подхода к разработке ПО, что привело к появлению объектно-реляционной модели данных. Позднее объектные расширения были введены в стандарт языка SQL.

К полуструктурированным относят данные, в которых можно выделить некоторую структуру, но она недостаточно строгая по сравнению с реляционными структурами данных (или структурами других традиционных моделей данных) . Наиболее ярким примером полуструктурированных данных являются XML-документы (от англ. extensible Markup Language – расширяемый язык разметки). Действительный (англ. valid) XML-до- кумент должен соответствовать определенному формату описания (схеме), где заданы структура документа, допустимые названия элементов, атрибутов и т.д. Формат XML широко используется для обмена данными между приложениями, и его поддержка обеспечивается многими СУБД.

Аспект структуры определяет, что из себя логически представляет база данных, аспект манипуляции определяет способы перехода между состояниями базы данных (то есть способы модификации данных) и способы извлечения данных из базы данных, аспект целостности определяет средства описаний корректных состояний базы данных.

Модель данных - это абстрактное, самодостаточное, логическое определение объектов, операторов и прочих элементов, в совокупности составляющих абстрактную машину доступа к данным, с которой взаимодействует пользователь. Эти объекты позволяют моделировать структуру данных, а операторы - поведение данных .

В литературе, статьях и в обиходной речи иногда встречается использование термина «модель данных» в смысле «схема базы данных » («модель базы данных»). Такое использование является неверным, на что указывают многие авторитетные специалисты, в том числе К. Дж. Дейт , М. Р. Когаловский, С. Д. Кузнецов. Модель данных есть теория , или инструмент моделирования , в то время как модель базы данных (схема базы данных) есть результат моделирования . По выражению К. Дейта соотношение между этими понятиями аналогично соотношению между языком программирования и конкретной программой на этом языке .

М. Р. Когаловский поясняет эволюцию смысла термина следующим образом. Первоначально понятие модели данных употреблялось как синоним структуры данных в конкретной базе данных . В процессе развития теории систем баз данных термин «модель данных» приобрел новое содержание. Возникла потребность в термине, который обозначал бы инструмент, а не результат моделирования, и воплощал бы, таким образом, множество всевозможных баз данных некоторого класса. Во второй половине 1970-х годов во многих публикациях, посвященных указанным проблемам, для этих целей стал использоваться все тот же термин «модель данных». В настоящее время в научной литературе термин «модель данных» трактуется в подавляющем большинстве случаев в инструментальном смысле (как инструмент моделирования) .

Тем не менее, длительное время термин «модель данных» использовался без формального определения. Одним из первых специалистов, который достаточно формально определил это понятие, был Э. Кодд . В статье «Модели данных в управлении базами данных» он определил модель данных как комбинацию трех компонентов:

См. также

  • Метамоделирование
  • Статья Метамоделирование в Викиучебнике

Примечания

Литература

  • Дейт К. Дж. Введение в системы баз данных = Introduction to Database Systems. - 8-е изд. - М .: «Вильямс», 2006. - 1328 с. - ISBN 0-321-19784-4
  • Когаловский М. Р. Перспективные технологии информационных систем. - М .: ДМК Пресс; Компания АйТи, 2003. - 288 с. - ISBN 5-279-02276-4
  • Когаловский М. Р. Энциклопедия технологий баз данных. - М .: Финансы и статистика, 2002. - 800 с. - ISBN 5-279-02276-4
  • Цикритзис Д., Лоховски Ф. Модели данных = D. Tsichritzis, F. Lochovsky. Data Models. Prentice Hall, 1982. - М .: Финансы и статистика, 1985. - 344 с.

Wikimedia Foundation . 2010 .

Смотреть что такое "Модель данных" в других словарях:

    модель данных - Совокупность правил порождения структур данных в базе данных, операций над ними, а также ограничений целостности, определяющих допустимые связи и значения данных, последовательность их изменения. Примечание Для задания модели данных используется… …

    Модель данных - – способ представления данных информационной модели в вычислительной среде. [ГОСТ 2.053 2006] Рубрика термина: Технологии Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги, Автотехника … Энциклопедия терминов, определений и пояснений строительных материалов

    модель данных - 3.1.7 модель данных (Data Model; DM): Графическое и/или лексическое представление данных, устанавливающее их свойства, структуры и взаимосвязи. [ИСО/МЭК ТО 11404 3:1996, определение 3.2.11] Источник …

    МОДЕЛЬ ДАННЫХ - согласно ГОСТ 2.053–2006 ЕСКД «Электронная структура изделия», – способ представления данных информационной модели в вычислительной среде … Делопроизводство и архивное дело в терминах и определениях

    модель данных многомерная - Модель данных, оперирующая многомерными представлениями данных в виде кубов данных. Такие модели данных стали широко использоваться в середине 90 х годов в связи с развитием технологий OLAP. Операционные возможности многомерных моделей данных… … Справочник технического переводчика

    модель данных Всемирной таможенной организации - Модель данных и набор данных, разработанные во Всемирной таможенной организации на основе Справочника элементов внешнеторговых данных ООН (СЭВД ООН) [Упрощение процедур торговли: англо русский глоссарий терминов (пересмотренное второе издание)… … Справочник технического переводчика

    Иерархическая модель данных представление базы данных в виде древовидной (иерархической) структуры, состоящей из объектов (данных) различных уровней. Между объектами существуют связи, каждый объект может включать в себя несколько объектов… … Википедия

    - (РМД) логическая модель данных, прикладная теория построения баз данных, которая является приложением к задачам обработки данных таких разделов математики как теории множеств и логика первого порядка. На реляционной модели данных строятся… … Википедия

    У этого термина существуют и другие значения, см. ER. Модель сущность связь (ER модель) (англ. entity relationship model, ERM) модель данных, позволяющая описывать концептуальные схемы предметной области. ER модель используется при… … Википедия

    ГОСТ Р ИСО/МЭК 19778-1-2011: Информационная технология. Обучение, образование и подготовка. Технология сотрудничества. Общее рабочее пространство. Часть 1. Модель данных общего рабочего пространства - Терминология ГОСТ Р ИСО/МЭК 19778 1 2011: Информационная технология. Обучение, образование и подготовка. Технология сотрудничества. Общее рабочее пространство. Часть 1. Модель данных общего рабочего пространства оригинал документа: 5.4.9 AE CE ID … Словарь-справочник терминов нормативно-технической документации

Книги

  • Модель электронного газа и теория обобщенных зарядов для описания межатомных сил и адсорбции , А. М. Долгоносов. В предлагаемой книге рассмотрены четыре ключевые темы атомной и молекулярной физики, квантовой и физической химии: описание атомного электронного газа и следующий из этого вывод основных…

Известны три типа моделей описания баз данных (рис.3.7):

ü иерархическая;

ü сетевая;

ü реляционная.

Основное различие между ними состоит в характере описания взаимосвязей и взаимодействия между объектами и атрибутами базы данных.

Рис 3.7. Основные типы моделей данных

1. Иерархическую модель БД изображают в виде дерева. Каждой вершине соответствует множество экземпляров записей, составляющих логический файл. Вершины расположены по уровням и связаны между собой отношениями подчиненностями. Одна-единственная вершина верхнего уровня является корневой (рис.3.8).

Достоинством модели является:

· простота ее построения;

· легкость понимания сути принципа иерархии;

· наличие промышленных СУБД, поддерживающих данную модель.

Недостатком является сложность операций по включению в иерархию информации о новых объектах базы данных и удалению устаревшей информации.

Рис. 3.8. Иерархическая модель данных

2. Сетевая модель описывает элементарные данные и отношения между ними в виде ориентированной сети. Это такие отношения между объектами, когда каждый порожденный элемент имеет более одного исходного и может быть связан с любым другим элементом структуры рис.3.9).

Сетевые структуры могут быть многоуровневыми, иметь разную степень сложности.

База данных, описываемая сетевой моделью, состоит из областей (области - из записей, а записи - из полей).

Недостатком сетевой модели является ее сложность, возможность потери независимости данных при реорганизации базы данных. При появлении новых пользователей, новых приложений и новых видов запросов происходит рост базы данных, что может привести к нарушению логического представления данных.

Рис.3.9. Сетевая модель данных

3. Реляционная модель БД представляет объекты и взаимосвязи между ними в виде таблиц, а все операции над данными сводятся к операциям над этими таблицами. На этой модели базируются практически все современные СУБД.

Реляционная модель имеет в своей основе понятие «отношения», и ее данные формируются в виде таблиц. Отношение - это двумерная таблица, имеющая свое название, в которой минимальным объектом действий, сохраняющим ее структуру, является строка таблицы (кортеж), состоящая из ячеек таблицы - полей.



Каждый столбец таблицы соответствует только одному компоненту этого отношения. С логической точки зрения реляционная база данных представляется множеством двумерных таблиц различного предметного наполнения.

В реляционной базе данных СУБД поддерживает извлечение информации из БД на основе логических связей. При работе с БД не надо программировать связи с файлами, что позволяет одной командой обрабатывать все файлы данных и повышать эффективность программирования БД. Благодаря снижению требований к квалификации разработчиков существенно расширяется круг пользователей баз данных, информационные базы данных стали стандартом СУБД для информационных систем.

Рис.3.10 Реляционная модель данных

В зависимости от содержания отношения реляционные базы данных бывают:

ü объектными, в которых хранятся данные о каком-либо одном объекте, экземпляре сущности. В них один из атрибутов однозначно определяет объект и называется ключом отношения, или первичным атрибутом. Остальные атрибуты функционально зависят от этого ключа;

ü связными, в которых хранятся ключи нескольких объектных отношений, по которым между ними устанавливаются связи.



Достоинства реляционной модели:

· простота построения;

· доступность понимания;

· возможность эксплуатации базы данных без знания методов и способов ее построения;

· независимость данных;

· гибкость структуры и др.

Недостатки реляционной модели:

· низкая производительность по сравнению с иерархической и сетевой моделями;

· сложность программного обеспечения;

· избыточность элементов.

В последние годы все большее признание и развитие получают объектно-ориентированные базы данных (ООБД).

Принципиальное отличие реляционных и объектно-ориентированных баз данных заключается в следующем : в ООБД модель данных более близка сущностям реального мира, объекты можно сохранить и использовать непосредственно, не раскладывая их по таблицам, типы данных определяются разработчиком и не ограничены набором предопределенных типов.

Традиционными областями применения объектных СУБД являются системы автоматизированного проектирования (САПР), моделирование, мультимедиа.

К объектным СУБД можно отнести СУБД ONTOS - одного из лидеров направляя ООБД, Jasmine. ODB-Jupiter - первый российский продукт такого рода, ORACLE 8.0.

Базы знаний - это специальные компьютерные системы, основанные на обобщении, анализе и оценке знаний высококвалифицированных специалистов-экспертов.

Например, «КонсультантПлюс», «Гарант Сервис».

Основными элементами информационной технологии, используемой в БЗ являются:

Интерфейс пользователя,

База знаний,

Интерпретатор,

Модуль создания системы,

Интерфейс используется для ввода запросов и команд в экспертную систему и получает выходную информацию из нее.

Выходная информация включает не только само решение, но необходимые объяснения, которые могут быть двух видов:

1) по запросам, т.е. те, которые пользователь может получить в любой момент;

2) которые пользователь получает уже при выдаче решения, т.е. то, каким образом получается решение (например, каким образом влияет на прибыль и издержки выбранная цена и т.д.).

К базе знаний относятся факты, характеризующие проблемную область, а также их логическая взаимосвязь. Центральным звеном здесь являются правила, которые даже в простейшей задаче экспертных систем могут насчитывать тысячи. Правила определяют порядок действий в конкретной ситуации при выполнении того или другого условия.

Интерпретатор в определенном порядке проводит обработку знаний, находящихся в базе. Используются также и дополнительные блоки: база данных, блоки расчета, ввода, корректировки данных.

Модуль создания системы служит для создания набора правил, внесения в них изменений. Здесь могут использоваться как специальные алгоритмические языки (ЛИСП, Пролог), так и оболочки экспертных систем.

Более совершенным считается использование оболочек экспертных систем, т.е. программных средств, ориентированных на решение определенной проблемы путем создания соответствующей ей базы знаний. Этот путь, как правило, более быстрый и менее трудоемкий.

Контрольные вопросы

1. В чем различие между информацией и данными?

2. Как выражается адекватность информации?

3. Назовите признаки классификации экономической информации.

4. Что такое структура информации?

5. Чем показатель отличается от реквизита?

6. Укажите основные свойства информации.

7. Что входит в состав информационного обеспечения?

8. Чем внемашинное информационное обеспечение отличается от внуримашинного?

9. Какие бывают классификаторы и с какой целью разрабатываются классификаторы?

10. Каково назначение штрихового кодирования? В чем его особенности?

11. Определите понятия «классификаторы» и «коды».

12. Чем автоматизированные банки данных отличаются от баз знаний?

13. Что входит в состав автоматизированных банков данных?

14. Чем клиент-серверная архитектура отличается от файл-серверной?

15. Укажите основные характеристики СУБД.

16. Что подразумевает обеспечение целостности данных?

17. Охарактеризуйте типы моделей описания баз данных.

4. информационные технологии в управлении и экономике