по существу пользовались парадигмой директивного программирования - целью было создание кода, воздействующего должным образом на данные. Этот подход хорош при решении небольших задач, но порождает множество трудноразрешимых проблем при попытке создания больших программных систем .

Одной из альтернатив директивному программированию является объектно-ориентированное программирование , которое действительно помогает справиться с нелинейно растущей сложностью программ при увеличении их объема. Не следует, однако, делать вывод , что использование парадигмы объектно-ориентированного программирования гарантирует успешное решение всех проблем.

Для того чтобы стать профессионалом в программировании, необходимы талант, способность к творчеству, интеллект , знания, логика, умение строить и использовать абстракции и, самое главное, опыт .

В этом параграфе мы продолжим знакомство с базисными концепциями объектно-ориентированного программирования, начатое еще в первой главе книги. Сначала будут обсуждены общие для различных языков программирования понятия ООП , а затем - их реализация в языке Java .

Следует знать, что курс объектно-ориентированного программирования читается студентам-старшекурсникам в течение целого семестра, и поэтому материал, изложенный ниже, представляет собой лишь самое начальное введение в мир ООП . Значительно более полное изложение многих вопросов, связанных с объектно-ориентированными дизайном, проектированием и программированием, содержится в книге , а в третьей главе книги можно найти очень ясное описание всех объектно-ориентированных аспектов языка Java .

Основные концепции ООП

Объектно-ориентированное программирование или ООП (object-oriented programming) - методология программирования , основанная на представлении программы в виде совокупности объектов , каждый из которых является реализацией определенного типа , использующая механизм пересылки сообщений и классы , организованные в иерархию наследования .

Центральный элемент ООП - абстракция . Данные с помощью абстракции преобразуются в объекты, а последовательность обработки этих данных превращается в набор сообщений, передаваемых между этими объектами. Каждый из объектов имеет свое собственное уникальное поведение. С объектами можно обращаться как с конкретными сущностями, которые реагируют на сообщения, приказывающие им выполнить какие-то действия.

ООП характеризуется следующими принципами ( по Алану Кею):

  • все является объектом ;
  • вычисления осуществляются путем взаимодействия (обмена данными) между объектами, при котором один объект требует, чтобы другой объект выполнил некоторое действие; объекты взаимодействуют, посылая и получая сообщения ; сообщение - это запрос на выполнение действия, дополненный набором аргументов, которые могут понадобиться при выполнении действия;
  • каждый объект имеет независимую память , которая состоит из других объектов ;
  • каждый объект является представителем класса , который выражает общие свойства объектов данного типа ;
  • в классе задается функциональность (поведение объекта); тем самым все объекты, которые являются экземплярами одного класса, могут выполнять одни и те же действия;
  • классы организованы в единую древовидную структуру с общим корнем, называемую иерархией наследования ; память и поведение, связанное с экземплярами определенного класса, автоматически доступны любому классу, расположенному ниже в иерархическом дереве.

Определение 10.1 . Абстрагирование (abstraction) - метод решения задачи, при котором объекты разного рода объединяются общим понятием (концепцией), а затем сгруппированные сущности рассматриваются как элементы единой категории.

Абстрагирование позволяет отделить логический смысл фрагмента программы от проблемы его реализации, разделив внешнее описание ( интерфейс ) объекта и его внутреннюю организацию (реализацию).

Определение 10.2 . Инкапсуляция (encapsulation) - техника, при которой несущественная с точки зрения интерфейса объекта информация прячется внутри него.

Определение 10.3 . Наследование (inheritance) - свойство объектов, посредством которого экземпляры класса получают доступ к данным и методам классов-предков без их повторного определения.

Наследование позволяет различным типам данных совместно использовать один и тот же код, приводя к уменьшению его размера и повышению функциональности.

Определение 10.4 .

Я не умею программировать на объектно-ориентированных языках. Не научился. После 5 лет промышленного программирования на Java я всё ещё не знаю, как создать хорошую систему в объектно-ориентированном стиле. Просто не понимаю.

Я пытался научиться, честно. Я изучал паттерны, читал код open source проектов, пытался строить в голове стройные концепции, но так и не понял принципы создания качественных объектно-ориентированных программ. Возможно кто-то другой их понял, но не я.

И вот несколько вещей, которые вызывают у меня непонимание.

Я не знаю, что такое ООП

Серьёзно. Мне сложно сформулировать основные идеи ООП. В функциональном программировании одной из основных идей является отсутствие состояния. В структурном - декомпозиция. В модульном - разделение функционала в законченные блоки. В любой из этих парадигм доминирующие принципы распространяются на 95% кода, а язык спроектирован так, чтобы поощрять их использование. Для ООП я таких правил не знаю.
  • Абстракция
  • Инкапсуляция
  • Наследование
  • Полиморфизм
Смахивает на свод правил, не так ли? Значит вот оно, те самые правила, которым нужно следовать в 95% случаев? Хмм, давайте посмотрим поближе.

Абстракция

Абстракция - это мощнейшее средство программирования. Именно то, что позволяет нам строить большие системы и поддерживать контроль над ними. Вряд ли мы когда-либо подошли бы хотя бы близко к сегодняшнему уровню программ, если бы не были вооружены таким инструментом. Однако как абстракция соотносится с ООП?

Во-первых, абстрагирование не является атрибутом исключительно ООП, да и вообще программирования. Процесс создания уровней абстракции распространяется практически на все области знаний человека. Так, мы можем делать суждения о материалах, не вдаваясь в подробности их молекулярной структуры. Или говорить о предметах, не упоминая материалы, из которых они сделаны. Или рассуждать о сложных механизмах, таких как компьютер, турбина самолёта или человеческое тело, не вспоминая отдельных деталей этих сущностей.

Во-вторых, абстракции в программировании были всегда, начиная с записей Ады Лавлейс, которую принято считать первым в истории программистом. С тех пор люди бесперерывно создавали в своих программах абстракции, зачастую имея для этого лишь простейшие средства. Так, Абельсон и Сассман в своей небезызвестной книге описывают, как создать систему решения уравнений с поддержкой комплексных чисел и даже полиномов, имея на вооружении только процедуры и связные списки. Так какие же дополнительные средства абстрагирования несёт в себе ООП? Понятия не имею. Выделение кода в подпрограммы? Это умеет любой высокоуровневый язык. Объединение подпрограмм в одном месте? Для этого достаточно модулей. Типизация? Она была задолго до ООП. Пример с системой решения уравнений хорошо показывает, что построение уровней абстракции не столько зависит от средств языка, сколько от способностей программиста.

Инкапсуляция

Главный козырь инкапсуляции в сокрытии реализации. Клиентский код видит только интерфейс, и только на него может рассчитывать. Это развязывает руки разработчикам, которые могут решить изменить реализацию. И это действительно круто. Но вопрос опять же в том, причём тут ООП? Все вышеперечисленные парадигмы подразумевают сокрытие реализации. Программируя на C вы выделяете интерфейс в header-файлы, Oberon позволяет делать поля и методы локальными для модуля, наконец, абстракция во многих языках строится просто посредствам подпрограмм, которые также инкапсулируют реализацию. Более того, объектно-ориентированные языки сами зачастую нарушают правило инкапсуляции , предоставляя доступ к данным через специальные методы - getters и setters в Java, properties в C# и т.д. (В комментариях выяснили, что некоторые объекты в языках программирования не являются объектами с точки зрения ООП: data transfer objects отвечают исключительно за перенос данных, и поэтому не являются полноценными сущностями ООП, и, следовательно, для них нет необходимости сохранять инкапсуляцию. С другой стороны, методы доступа лучше сохранять для поддержания гибкости архитектуры. Вот так всё непросто.) Более того, некоторые объектно-ориентированные языки, такие как Python, вообще не пытаются что-то скрыть, а расчитывают исключительно на разумность разработчиков, использующих этот код.

Наследование

Наследование - это одна из немногих новых вещей, которые действительно вышли на сцену благодаря ООП. Нет, объектно-ориентированные языки не создали новую идею - наследование вполне можно реализовать и в любой другой парадигме - однако ООП впервые вывело эту концепцию на уровень самого языка. Очевидны и плюсы наследования: когда вас почти устраивает какой-то класс, вы можете создать потомка и переопределить какую-то часть его функциональности. В языках, поддерживающих множественное наследование, таких как C++ или Scala (в последней - за счёт traits), появляется ещё один вариант использования - mixins, небольшие классы, позволяющие «примешивать» функциональность к новому классу, не копируя код.

Значит, вот оно - то, что выделяет ООП как парадигму среди других? Хмм… если так, то почему мы так редко используем его в реальном коде? Помните, я говорил про 95% кода, подчиняющихся правилам доминирующей парадигмы? Я ведь не шутил. В функцинальном программировании не меньше 95% кода использует неизменяемые данные и функции без side-эффектов. В модульном практически весь код логично расфасован по модулям. Преверженцы структурного программирования, следуя заветам Дейкстры, стараются разбивать все части программы на небольшие части. Наследование используется гораздо реже. Может быть в 10% кода, может быть в 50%, в отдельных случаях (например, при наследовании от классов фреймворка) - в 70%, но не больше. Потому что в большинстве ситуаций это просто не нужно .

Более того, наследование опасно для хорошего дизайна. Настолько опасно, что Банда Четырех (казалось бы, проповедники ООП) в своей книге рекомендуют при возможности заменять его на делегирование. Наследование в том виде, в котором оно существует в популярных ныне языках ведёт к хрупкому дизайну. Унаследовавшись от одного предка, класс уже не может наследоваться от других. Изменение предка так же становится опасным. Существуют, конечно, модификаторы private/protected, но и они требуют неслабых экстрасенсорных способностей для угадывания, как класс может измениться и как его может использовать клиентский код. Наследование настолько опасно и неудобно, что крупные фреймворки (такие как Spring и EJB в Java) отказываются от них, переходя на другие, не объектно-ориентированные средства (например, метапрограммирование). Последствия настолько непредсказуемы, что некоторые библиотеки (такие как Guava) прописывает своим классам модификаторы, запрещающие наследование, а в новом языке Go было решено вообще отказаться от иерархии наследования.

Полиморфизм

Пожалуй, полиморфизм - это лучшее, что есть в объектно-ориентированном программировании. Благодаря полиморфизму объект типа Person при выводе выглядит как «Шандоркин Адам Имполитович», а объект типа Point - как "". Именно он позволяет написать «Mat1 * Mat2» и получить произведение матриц, аналогично произведению обычных чисел. Без него не получилось бы и считывать данные из входного потока, не заботясь о том, приходят они из сети, файла или строки в памяти. Везде, где есть интерфейсы, подразумевается и полиморфизм.

Мне правда нравится полиморфизм. Поэтому я даже не стану говорить о его проблемах в мейнстримовых языках. Я также промолчу про узость подхода диспетчеризации только по типу, и про то, как это могло бы быть сделано . В большинстве случаев он работает как надо, а это уже неплохо. Вопрос в другом: является ли полиморфизм тем самым принципом, отличающим ООП от других парадигм? Если бы вы спросили меня (а раз уж вы читаете этот текст, значит, можно считать, что спросили), я бы ответил «нет». И причина всё в тех же процентах использования в коде. Возможно, интерфейсы и полиморфные методы встречаются немного чаще наследования. Но сравните количество строк кода, занимаемое ими, с количеством строк, написанных в обычном процедурном стиле - последних всегда больше. Глядя на языки, поощряющие такой стиль программирования, я не могу назвать их полиморфными. Языки с поддержкой полиморфизма - да, так нормально. Но не полиморфные языки.

(Впрочем, это моё мнение. Вы всегда можете не согласиться.)

Итак, абстракция, инкапсуляция, наследование и полиморфизм - всё это есть в ООП, но ничто из этого не является его неотъемлемым атрибутом. Тогда что такое ООП? Есть мнение, что суть объектно-ориентированного программирования лежит в, собственно, объектах (звучит вполне логично) и классах. Именно идея объединения кода и данных, а также мысль о том, что объекты в программе отражают сущности реального мира. К этому мнению мы ещё вернёмся, но для начала расставим некоторые точки над i.

Чьё ООП круче?

Из предыдущей части видно, что языки программирования могут сильно отличаться по способу реализации объектно-ориентированного программирования. Если взять совокупность всех реализаций ООП во всех языках, то вероятнее всего вы не найдёте вообще ни одной общей для всех черты. Чтобы как-то ограничить этот зоопарк и внести ясность в рассуждения, я остановлюсь только одной группе - чисто объекто-ориентированные языки, а именно Java и C#. Термин «чисто объектно-ориентированный» в данном случае означает, что язык не поддерживает другие парадигмы или реализует их через всё то же ООП. Python или Ruby, например, не буду являться чистыми, т.к. вы вполне можете написать полноценную программу на них без единого объявления класса.

Чтобы лучше понять суть ООП в Java и C#, пробежимся по примерам реализации этой парадигмы в других языках.

Smalltalk. В отличие от своих современных коллег, этот язык имел динамическую типизацию и использовал message-passing style для реализации ООП. Вместо вызовов методов объекты посылали друг другу сообщения, а если получатель не мог обработать то, что пришло, он просто пересылал сообщение кому-то ещё.

Common Lisp. Изначально CL придерживался такой же парадигмы. Затем разработчики решили, что писать `(send obj "some-message)` - это слишком долго, и преобразовали нотацию в вызов метода - `(some-method obj)`. На сегодняшний день Common Lisp имеет развитую систему объектно-ориентированного программирования (CLOS) с поддержкой множественного наследования, мультиметодов и метаклассов. Отличительной чертой является то, что ООП в CL крутится не вокруг объектов, а вокруг обобщённых функций.

Clojure. Clojure имеет целых 2 системы объектно-ориентированного программирования - одну, унаследованную от Java, и вторую, основанную на мультиметодах и более похожую на CLOS.

R. Этот язык для статистического анализа данных также имеет 2 системы объектно-ориентированного программирования - S3 и S4. Обе унаследованы от языка S (что не удивительно, учитывая, что R - это open source реализация коммерческого S). S4 по большей части соотвествует реализациям ООП в современных мейнстримовых языках. S3 является более легковесным вариантом, элементарно реализуемым средствами самого языка: создаётся одна общая функция, диспетчеризирующая запросы по атрибуту «class» полученного объекта.

JavaScript. По идеологии похож на Smalltalk, хотя и использует другой синтаксис. Вместо наследования использует прототипирование: если искомого свойства или вызванного метода в самом объекте нет, то запрос передаётся объекту-прототипу (свойство prototype всех объектов JavaScript). Интересным является факт, что поведение всех объектов класса можно поменять, заменив один из методов прототипа (очень красиво, например, выглядит добавление метода `.toBASE64` для класса строки).

Python. В целом придерживается той же концепции, что и мейнcтримовые языки, но кроме этого поддерживает передачу поиска атрибута другому объекту, как в JavaScript или Smalltalk.

Haskell. В Haskell вообще нет состояния, а значит и объектов в обычном понимании. Тем не менее, своеобразное ООП там всё-таки есть: типы данных (types) могут принадлежать одному или более классам типов (type classes). Например, практически все типы в Haskell состоят в классе Eq (отвечает за операции сравнения 2-х объектов), а все числа дополнительно в классах Num (операции над числами) и Ord (операции <, <=, >=, >). В менстримовых языках типам соответствуют классы (данных), а классам типов - интерфейсы.

Stateful или Stateless?

Но вернёмся к более распространённым системам объектно-ориентированного программирования. Чего я никогда не мог понять, так это отношения объектов с внутренним состоянием. До изучения ООП всё было просто и прозрачно: есть структуры, хранящие несколько связанных данных, есть процедуры (функции), их обрабатывающие. выгулять(собаку), снятьс(аккаунт, сумма). Потом пришли объекты, и это было тоже ничего (хотя читать программы стало гораздо сложней - моя собака выгуливала [кого?], а аккаунт снимал деньги [откуда?]). Затем я узнал про сокрытие данных. Я всё ещё мог выгулять собаку, но вот посмотреть состав её пищи уже не мог. Пища не выполняла никаких действий (наверное, можно было написать, что пища.съесть(собака), но я всё-таки предпочитаю, чтобы моя собака ела пищу, а не наоборот). Пища - это просто данные, а мне (и моей собаке) нужно было просто получить к ним доступ. Всё просто . Но в рамки парадигмы влезть было уже невозможно, как в старые джинсы конца 90-х.

Ну ладно, у нас есть методы доступа к данным. Пойдём на этот маленький самообман и притворимся, что данные у нас действительно скрыты. Зато я теперь знаю, что объекты - это в первую очередь данные, а потом уже, возможно, методы их обрабатывающие. Я понял, как писать программы, к чему нужно стремиться при проектировании.

Не успел я насладиться просветлением, как увидил в интернетах слово stateless (готов поклясться, оно было окружено сиянием, а над буквами t и l висел нимб). Короткое изучение литературы открыло чудесный мир прозрачного потока управления и простой многопоточности без необходимости отслеживать согласованность объекта. Конечно, мне сразу захотелось прикоснуться к этому чудесному миру. Однако это означало полный отказ от любых правил - теперь было непонятно, следует ли собаке самой себя выгуливать, или для этого нужен специальный ВыгулМенеджер; нужен ли аккаунт, или со всей работой справится Банк, а если так, то должен он списывать деньги статически или динамически и т.д. Количество вариантов использования возрасло экспоненциально, и все варианты в будущем могли привести к необходимости серьёзного рефакторинга.

Я до сих пор не знаю, когда объект следует сделать stateless, когда stateful, а когда просто контейнером данных. Иногда это очевидно, но чаще всего нет.

Типизация: статическая или динамическая?

Еща одна вещь, с которой я не могу определиться относительно таких языков, как C# и Java, это являются они статически или динамически типизированными. Наверное большинство людей воскликнет «Что за глупость! Конечно статически типизированными! Типы проверяются во время компиляции!». Но действительно ли всё так просто? Правда ли, что программист, прописывая в параметрах метода тип X может быть уверен, что в него всегда будут передаваться объекты именно типа X? Верно - не может, т.к. в метод X можно будет передать параметр типа X или его наследника . Казалось бы, ну и что? Наследники класса X всё равно будут иметь те же методы, что и X. Методы методами, а вот логика работы может оказаться совершенно другой. Самый распространённый случай, это когда дочерний класс оказывается соптимизированным под другие нужды, чем X, а наш метод может рассчитывать именно на ту оптимизацию (если вам такой сценарий кажется нереалистичным, попробуйте написать плагин к какой-нибудь развитой open source библиотеке - либо вы потратите несколько недель на разбор архитектуры и алгоритмов библиотеки, либо будете просто наугад вызывать методы с подходящей сигнатурой). В итоге программа работает, однако скорость работы падает на порядок. Хотя с точки зрения компилятора всё корректно. Показательно, что Scala, которую называют наследницей Java, во многих местах по умолчанию разрешает передавать только аргументы именно указанного типа, хотя это поведение и можно изменить.

Другая проблема - это значение null, которое может быть передано практически вместо любого объекта в Java и вместо любого Nullable объекта в C#. null принадлежит сразу всем типам, и в то же время не принадлежит ни одному. null не имеет ни полей, ни методов, поэтому любое обращение к нему (кроме проверки на null) приводит к ошибке. Вроде бы все к этому привыкли, но для сравнения Haskell (да и та же Scala) заставлют использовать специальные типы (Maybe в Haskell, Option в Scala) для обёртки функций, которые в других языках могли бы вернуть null. В итоге про Haskell часто говорят «скомпилировать программу на нём сложно, но если всё-таки получилось, значит скорее всего она работает корректно».

С другой стороны, мейнстримовые языки, очевидно, не являются динамически типизированными, а значит не обладают такими свойствами, как простота интерфейсов и гибкость процедур. В итоге писать в стиле Python или Lisp также становится невозможным.

Какая разница, как называется такая типизация, если все правила всё равно известны? Разница в том, с какой стороны подходить к проектированию архитектуры. Существует давний спор, как строить систему: делать много типов и мало функций, или мало типов и много функций? Первый подход активно используется в Haskell, второй в Lisp. В современных объектно-ориентированных языках используется что-то среднее. Я не хочу сказать, что это плохо - наверное у него есть свои плюсы (в конце концов не стоит забывать, что за Java и C# стоят мультиязыковые платформы), но каждый раз приступая к новому проекту я задумываюсь, с чего начать проектирования - с типов или с функционала.

И ещё...

Я не знаю, как моделировать задачу. Считается, что ООП позволяет отображать в программе объекты реального мира. Однако в реальности у меня есть собака (с двумя ушами, четырмя лапами и ошейником) и счёт в банке (с менеджером, клерками и обеденным перерывом), а в программе - ВыгулМенеджер, СчётФабрика… ну, вы поняли. И дело не в том, что в программе есть вспомогательные классы, не отражающие объекты реального мира. Дело в том, что поток управления изменяется . ВыгулМенеджер лишает меня удовольствия от прогулки с собакой, а деньги я получаю от бездушного БанкСчёта (эй, где та милая девушка, у которой я менял деньги на прошлой неделе?).

Может быть я сноб, но мне было гораздо приятней, когда данные в компьютере были просто данными, даже если описывали мою собаку или счёт в банке. С данными я мог сделать то, что удобно, без оглядки на реальный мир.

Я также не знаю, как правильно декомпозировать функционал. В Python или C++, если мне нужна была маленькая функция для преобразования строки в число, я просто писал её в конце файла. В Java или C# я вынужден выносить её в отдельный класс StringUtils. В недо-ОО-языках я мог объявить ad hoc обёртку для возврата двух значений из функции (снятую сумму и остаток на счету). В ООП языках мне придётся создать полноценный класс РезультатТранзакции. И для нового человека на проекте (или даже меня самого через неделю) этот класс будет выглядеть точно таким же важным и фундаментальным в архитектуре системы. 150 файлов, и все одинаково важные и фундаментальные - о да, прозрачная архитектура, прекрасные уровни абстракции.

Я не умею писать эффективные программы. Эффективные программы используют мало памяти - иначе сборщик мусора будет постоянно тормозить выполнение. Но чтобы совершить простейшую операцию в объектно-ориентированных языках приходится создавать дюжину объектов. Чтобы сделать один HTTP запрос мне нужно создать объект типа URL, затем объект типа HttpConnection, затем объект типа Request… ну, вы поняли. В процедурном программировании я бы просто вызвал несколько процедур, передав им созданную на стеке структуру. Скорее всего, в памяти был бы создан всего один объект - для хранения результата. В ООП мне приходится засорять память постоянно.

Возможно, ООП - это действительно красивая и элегантная парадигма. Возможно, я просто недостаточно умён, чтобы понять её. Наверное, есть кто-то, кто может создать действительно красивую программу на объектно-ориентированном языке. Ну что ж, мне остаётся только позавидовать им.

Инкапсуляция. С одной стороны объект, обладает определенными свойствами, которые характеризуют его состояние в данный момент. С другой стороны над объектами возможны операции, которые приводят к изменению этих свойств.Доступ к изменению свойств осуществляется только с помощью методов, присущих данному классу объектов . Есть метод, данное свойство данного объекта можно изменить, нет метода – нельзя. Методы как бы «окружают» свойства объекта, говорят, что свойства «инкапсулированы» в объект. Для обеспечения инкапсуляции класс не должен позволять прямого доступа к своим данным.Инкапсуляция – механизм скрытия всех внутренних деталей объекта, не влияющих на его поведение.

Наследование . Наследование определяет отношение между классами:объекты класса-наследника обладают всеми свойствами и методами объектов класса-родителя и не должны их повторно реализовывать. Т.е. один объект приобретает свойства другого объекта, добавляя к ним свойства, характерные только для него. Например,

Класс «Точка» (родитель)

Класс «Окружность» (наследник)

Свойства

Свойства

Координаты (x,y)

Перемещение

Координаты центра (x,y)

Перемещение

Изменение цвета

Изменение цвета

Изменение радиуса

Полиморфизм (имеющий много форм). К объектам разных классов можно применять один и тот же метод, вот только действовать этот метод будет по-разному. Например, к большинству объектов в Windows&Office можно применять одни и те же методы: копирование, перемещение, переименование, удаление и т.п. Однако, механизмы реализации этих методов для разных классов (файл в Windows и документ Word) неодинаковы.Полиморфизм – возможностьиспользования одних и тех методов для объектов разных классов , только реализация этих методов будет индивидуальной для каждого класса.

    1. Событийный механизм управления

Каждое действие в ОС вызывает событие, которое в виде сообщения передается в приложение (например, двойной щелчок на документе Word сообщает приложению – хватит спать, давай работать). Приложение анализирует сообщение и выполняет соответствующее действие (загружается и открывает документ). Приложения, создаваемые с помощью управляемых событий, также работают по этому принципу. Но при этом часть работы ОС берут на себя. Они перехватывают сообщение и передают его соответствующему объекту (например, «Кнопка»), где затем вызывает соответствующее событие (например, «Нажать»).

В программах, управляемых событиями, нет сплошного кода, который выполняется с начала до конца. После запуска таких программ у пользователя нет четко определенного пути. Он может в любой момент нажать какую-нибудь кнопку, ввести данные текста в соответствующее поле, прекратить обработку и вызвать другую программу.

В соответствии с тем, что определен событийный механизм управления, для каждого объекта (управляющие элементы, формы) в системе определен перечень относящихся к нему событий. Реакцию на событие можно запрограммировать. Для этого с помощью кода создаются процедуры обработки событий (событийные процедуры).

Сначала выбирают объект – элемент управления пользовательского интерфейса, для которого будет записана программа его действий. Далее вызывают список процедур, то есть событий для выбранного объекта, при совершении которых над объектом будет выполняться записанная программа, и выбирают подходящее событие.

В заголовке каждой процедуры, написанной для объекта на форме, указывается имя объекта, для которого написана процедура и название выбранного события, в скобках после имени процедуры записываются ее параметры, которые могут и отсутствовать

В событийной процедуре может участвовать несколько объектов. Например, само событие происходит с первым объектом, в результате второй объект изменяет значение своего свойства, а третий – реализует какой-либо метод.

Отличительные особенности ООП

1) ОО подход сосредотачивается на данных, как наиболее стабильных элементах выч.системы

2) ОО подход позволяет разрабатывать программный код, нацеленный на повторение использования

3) ОО подход обеспечивает лучшую масштабируемость в программных проектах, т.е. создание программ разной степени сложности, поэтому большинство современных технологий проектирования предполагает применение ООп.

В теории программирования ОО подход определен как технология создания сложного ПО, кот. Основано на представлении программы в виде совокупности программных объектов. Основное достоинство ООП - сокращение количества межмодульных вызовов и уменьшение объемов информации, передаваемой между модулями, по сравнению с модульным программированием. Это достигается за счет более полной локализации данных и интегрирования их с подпрограммами обработки, что позволяет вести практически независимую разработку отдельных частей (объектов) программы.

Кроме этого, объектный подход предлагает новые технологические средства разработки, такие как, наследование, полиморфизм, композиция, наполнение, позволяющие конструировать более сложные объекты из более простых. В результате существенно увеличивается показатель повторного использования кодов, появляется возможность создания библиотек объектов для различных применений, и разработчикам предоставляются дополнительные возможности создания систем повышенной сложности.

В основу ООП положены следующие принципы :

1) абстрагирование;

2) ограничение доступа;

3) модульность;

4) иерархичность;

5) типизация;

6) параллелизм;

7) устойчивость.

Уточним, что представляет собой каждый принцип.

Абстрагирование - процесс выделения абстракций в предметной области задачи. Абстракция - это совокупность существенных характеристик некоторого объекта, которые отличают его от всех других видов объектов и, таким образом, четко определяют особенности данного объекта с точки зрения дальнейшего рассмотрения и анализа. В соответствии с определением применяемая абстракция реального предмета существенно зависит от решаемой задачи: в одном случае нас будет интересовать форма предмета, в другом вес, в третьем - материалы, из которых он сделан, в четвертом - закон движения предмета и т.д. Современный уровень абстракции предполагает объединение всех свойств абстракции (как касающихся состояния анализируемого объекта, так и определяющих его поведение) в единую программную единицу некий абстрактный тип (класс).

Ограничение доступа (Инкапсуляция — это принцип, согласно которому любой класс должен рассматриваться как чёрный ящик — пользователь класса должен видеть и использовать только интерфейсную часть класса (т. е. список декларируемых свойств и методов класса) и не вникать в его внутреннюю реализацию. Поэтому данные принято инкапсулировать в классе таким образом, чтобы доступ к ним по чтению или записи осуществлялся не напрямую, а с помощью методов. Принцип инкапсуляции (теоретически) позволяет минимизировать число связей между классами и, соответственно, упростить независимую реализацию и модификацию классов.) Это сокрытие отдельных элементов реализации абстракции, не затрагивающих существенных характеристик ее как целого.


Необходимость ограничения доступа предполагает разграничение двух частей в описании абстракции:

а) интерфейс - совокупность доступных извне элементов реализации абстракции (основные характеристики состояния и поведения);

б) реализация - совокупность недоступных извне элементов реализации абстракции (внутренняя организация абстракции и механизмы реализации ее поведения).

Ограничение доступа в ООП позволяет разработчику:

1) выполнять конструирование системы поэтапно, не отвлекаясь на особенности реализации используемых абстракций;

2) легко модифицировать реализацию отдельных объектов, что в правильно организованной системе не потребует изменения других объектов.

Сочетание объединения всех свойств предмета (составляющих его состояния и поведения) в единую абстракцию и ограничения доступа к реализации этих свойств получило название инкапсуляции .

Модульность - это принцип разработки программной системы, предполагающий реализацию ее в виде отдельных частей (модулей). При выполнении декомпозиции системы на модули желательно объединять логически связанные части, по возможности обеспечивая сокращение количества внешних связей между модулями. Принцип унаследован от модульного программирования, следование ему упрощает проектирование и отладку программы.

Иерархия - это ранжированная или упорядоченная система абстракций. Принцип иерархичности предполагает использование иерархий при разработке программных систем.

В ООП используются два вида иерархии.

1. Иерархия «целое/часть» - показывает, что некоторые абстракции включены в рассматриваемую абстракцию, как ее части, например, лампа состоит из цоколя, нити накаливания и колбы. Этот вариант иерархии используется в процессе разбиения системы на разных этапах проектирования (на логическом уровне - при декомпозиции предметной области на объекты, на физическом уровне - при декомпозиции системы на модули и при выделении отдельных процессов в мультипроцессной системе).

2. Иерархия «общее/частное» - показывает, что некоторая абстракция является частным случаем другой абстракции, например, «обеденный стол - конкретный вид стола», а «столы - конкретный вид мебели». Используется при разработке структуры классов, когда сложные классы строятся на базе более простых путем добавления к ним новых характеристик и, возможно, уточнения имеющихся.

Один из важнейших механизмов ООП - наследование свойств в иерархии общее/частное. Наследование - это такое соотношение между абстракциями, когда одна из них использует структурную или функциональную часть другой или нескольких других абстракций (соответственно простое и множественное наследование).

Типизация - это ограничение, накладываемое на свойства объектов и препятствующее взаимозаменяемости абстракций различных типов (или сильно сужающее возможность такой замены). В языках с жесткой типизацией для каждого программного объекта (переменной, подпрограммы, параметра и т. д.) объявляется тип, который определяет множество операций над соответствующим программным объектом. Рассматриваемые далее языки программирования на основе Паскаля используют строгую, а на основе С - среднюю степень типизации.

Использование принципа типизации обеспечивает:

1) раннее обнаружение ошибок, связанных с недопустимыми операциями над программными объектами (ошибки обнаруживаются на этапе компиляции программы при проверке допустимости выполнения данной операции над программным объектом);

2) упрощение документирования;

3) возможность генерации более эффективного кода.

Тип может связываться с программным объектом статически (тип объекта определен на этапе компиляции - раннее связывание ) и динамически (тип объекта определяется только во время выполнения программы - позднее связывание ). Реализация позднего связывания в языке программирования позволяет создавать переменные - указатели на объекты, принадлежащие различным классам (полиморфные объекты ), что существенно расширяет возможности языка.

Параллелизм - свойство нескольких абстракций одновременно находиться в активном состоянии, т.е. выполнять некоторые операции.

Существует целый ряд задач, решение которых требует наличия одновременного выполнения некоторых последовательностей действий. К таким задачам, например, относятся задачи автоматического управления несколькими процессами.

Реальный параллелизм достигается только при реализации задач такого типа на многопроцессорных системах, когда имеется возможность выполнения каждого процесса отдельным процессором. Системы с одним процессором имитируют параллелизм за счет разделения времени процессора между задачами управления различными процессами. В зависимости от типа используемой операционной системы (одно- или мультипрограммной) разделение времени может выполняться либо разрабатываемой системой (как в MS DOS), либо используемой ОС (как в системах Windows).

Устойчивость - свойство абстракции существовать во времени независимо от процесса, породившего данный программный объект, и/или в пространстве, перемещаясь из адресного пространства, в котором он был создан.

Различают:

1) временные объекты, хранящие промежуточные результаты некоторых действий, например, вычислений;

2) локальные объекты, существующие внутри подпрограмм, время жизни которых исчисляется от вызова подпрограммы до ее завершения;

3) глобальные объекты, существующие пока программа загружена в память;

4) сохраняемые объекты, данные которых хранятся в файлах внешней памяти между сеансами работы программы.

Все указанные выше принципы в той или иной степени реализованы в различных версиях объектно-ориентированных языков.

Класс (classes ) является типом данных, определяемых пользователем. В классе задаются свойства и поведение какого-либо предмета или процесса в виде полей данных и функций для работы с ними.

Существенным свойством класса является то, что детали его реализации скрыты от пользователей класса за интерфейсом. Таким образом, класс как модель объекта реального мира является черным ящиком, замкнутым по отношению к внешнему миру.

Идея классов является основной объектно-ориентированного программирования (ООП). Основные принципы ООП были разработаны еще в языках Simula-67 иSmallTalk, но в то время не получили широкого распространения из-за трудностей освоения и низкой эффективности реализации.

Конкретные величины типа данных «класс» называют экземплярами класса илиобъектами (objects ) .

Подпрограммы, определяющие операции над объектами класса, называются методами (methods ). Вызовы методов называютсясообщениями (messages ). Весь набор методов объекта называется протоколом сообщений (messageprotocol), илиинтерфейсом сообщений (message interface ) объекта. Сообщение должно иметь, по крайней мере, две части: конкретный объект, которому оно должно быть послано, и имя метода, определяющего необходимое действие над объектом. Таким образом, вычисления в объектно-ориентированной программе определяются сообщениями, передаваемыми от одного объекта к другому.

Объекты взаимодействуют между собой, посылая и получая сообщения. Сообщение – это запрос на выполнение действия, содержащий набор необходимых параметров. Механизм сообщения реализуется с помощью вызова соответствующих функций. С помощью ООП легко реализуется так называемая событийно-управляемая модель, когда данные активны и управляют вызовом того или иного фрагмента программного кода.

ООП - это метод программирования, развивающий принципы структурного программирования и основанный на следующих абстракциях данных:

I. Инкапсуляция : объединение данных с процедурами и функциями в единый блок программного кода (данные и методы работы с ними рассматриваются как поля объекта).

II. Наследование – передача методов и свойств от предка к потомку, без необходимости написания дополнительного программного кода (наличие экземпляров класса; потомки, прародители, иерархия).

III. Полиморфизм – возможность изменения одинаковых по смыслу свойств и поведения объектов в зависимости от их типа (единое имя для некого действия, которое по-разному осуществляется для объектов иерархии).

Инкапсуляция

Впервые понятие инкапсуляции было использовано в языках, поддерживающих так называемый абстрактный подход к программированию (например, Модула-2). Основная идея абстрактного подхода заключается в том, чтобы, скрыв от пользователя структуру информации об объекте, дать ему возможность получать необходимые для работы с объектом данные только через процедуры, относящиеся к этому объекту. Такой прием позволяет значительно повысить надежность и мобильность разработанного программного обеспечения. Надежность повышается вследствие того, что все процедуры для работы с данными об объекте относительно просты и прозрачны, а значит, могут быть разработаны более качественно. При изменении структуры данных достаточно переработать только программы, непосредственно связанные с объектом, а более сложные программы, использующие данный объект, изменять не нужно. Данное обстоятельство повышает как надежность, так и мобильности созданных программ.

Наследование

Во второй половине 1980-х годов для многих разработчиков программного обеспечения стало очевидным, что одной из наилучших возможностей для повышения производительности их труда является повторное использование программ. Вполне очевидно, что абстрактные типы данных с их инкапсуляцией и управлением доступом должны использоваться многократно. Проблема, связанная с повторным использованием абстрактных типов данных, почти во всех случаях заключается в том, что свойства и возможности существующих типов не вполне подходят для нового использования. Старые типы необходимо, по крайней мере минимально, модифицировать. Такие модификации могут быть трудновыполнимыми и требовать от человека понимания части, если не всего целиком, существующего кода. Кроме того, во многих случаях модификации влекут за собой изменения во всех программах-клиентах.

Вторая проблема, связанная с программированием, ориентированным на данные, заключается в том, что все определения абстрактных типов данных являются независимыми и находятся на одном и том же уровне иерархии. Это часто не позволяет так структурировать программу, чтобы она соответствовала своей проблемной области. Во многих случаях исходная задача содержит категории связанных между собой объектов, являющихся как наследниками одних и тех же предков (т.е. находящихся на одном и том же уровне иерархии), так и предками и наследниками (т.е. состоящих в отношении некоторой субординации друг с другом).

Наследование позволяет решить как проблемы модификации, возникающие в результате повторного использования абстрактного типа данных, так и проблемы организации программ. Если новый абстрактный тип данных может наследовать данные и функциональные свойства некоторого существующего типа, а также модифицировать некоторые из этих сущностей и добавлять новые сущности, то повторное использование значительно облегчается без необходимости вносить изменения в повторно используемый абстрактный тип данных. Программисты могут брать существующий абстрактный тип данных и создавать по его образцу новый тип, соответствующий новым требованиям задачи. Предположим, что в программе есть абстрактный тип данных для массивов целых чисел, включающий в себя операцию сортировки. После некоторого периода использования программа модифицируется и требует наличия не только абстрактного типа данных для массивов целых чисел с операцией сортировки, но и операции вычисления арифметического среднего для элементов объектов, представляющих собой массивы. Поскольку структура массива скрыта в абстрактном типе данных, без наследования этот тип должен быть модифицирован путем добавления новой операции в эту структуру. При наличии наследования нет необходимости в модификации существующего типа; можно описать подкласс существующего типа, поддерживающий не только операцию сортировки, но и операцию для вычисления среднего арифметического.

Класс, который определяется через наследование от другого класса, называется производным классом (derived class ) , илиподклассом (subclass ) . Класс, от которого производится новый класс, называетсяродительским классом (parent class ) , илисуперклассом (superclass ) .

В простейшем случае класс наследует все сущности (переменные и методы) родительского класса. Это наследование можно усложнить, введя управление доступом к сущностям родительского класса.

Это управление доступом позволяет программисту скрыть части абстрактного типа данных от клиентов. Такое управление доступом обычно есть в классах объектно-ориентированных языков. Производные классы представляют собой другой вид клиентов, которым доступ может быть либо предоставлен, либо запрещен. Чтобы это учесть, некоторые объектно-ориентированные языки включают в себя третью категорию управления доступом, часто называемую защищенной (protected), которая используется для предоставления доступа производным классам и запрещения доступа другим классам.

В дополнение к наследуемым сущностям производный класс может добавлять новые сущности и модифицировать методы. Модифицированный метод имеет то же самое имя и часто тот же самый протокол, что и метод, модификацией которого он является. Говорят, что новый метод замещает (override) наследуемую версию метода, который поэтому называется замещаемым (overriden) методом. Наиболее общее предназначение замещающего метода - выполнение операции, специфической для объектов производного класса и не свойственной для объектов родительского класса.

Разработка программы для объектно-ориентированной системы начинается с определения иерархии классов, описывающей отношения между объектами, которые войдут в программу, решающую поставленную задачу. Чем лучше эта иерархия классов соответствует проблемной части, тем более естественным будет полное решение.

Недостаток наследования как средства, облегчающего повторное использование кода, заключается в том, что оно создает зависимость между классами в иерархии наследования. Это умаляет одно из преимуществ абстрактных типов данных, заключающееся в их взаимной независимости. Конечно, не все абстрактные типы данных должны быть полностью независимыми, но в общем случае независимость абстрактных типов данных является одним из их самых сильных положительных свойств. Однако увеличение возможности повторного использования абстрактных типов данных без создания зависимостей между некоторыми из них может оказаться трудной задачей, если не совсем безнадежной.

Полиморфизм

Третьим свойством объектно-ориентированных языков программирования является вид полиморфизма, обеспечиваемый динамическим связыванием сообщений с определениями методов. Это свойство поддерживается путем разрешения определения полиморфных переменных типа родительского класса, которые также могут ссылаться на объекты любых подклассов данного класса. Родительский класс может определять метод, замещаемый в его подклассах. Операции, определяемые этими методами, похожи, но должны уточняться для каждого класса в иерархии. Когда такой метод вызывается через полиморфную переменную, этот вызов динамически связывается с методом в соответствующем классе. Одна из целей динамического связывания - обеспечить более легкое расширение программных систем при их разработке и поддержке. Такие программы можно писать для операций над объектами настраиваемых классов. Эти операции являются настраиваемыми в том смысле, что их можно применять к объектам любого класса, производного от одного и того же базового класса.

Вычисления в объектно-ориентированных языках

Все вычисления в полностью объектно-ориентированном языке выполняются с помощью передачи сообщения объекту для вызова одного из его методов. Ответом на сообщение является объект, возвращающий результат вычислений, выполненных этим методом. Выполнение программы на объектно-ориентированном языке можно описать как моделирование набора компьютеров (объектов), взаимодействующих друг с другом с помощью обмена сообщениями. Каждый объект - абстракция компьютера в том смысле, что он хранит данные и обеспечивает выполнение процессов для манипуляции этими данными. Кроме того, объекты могут передавать и получать сообщения. В сущности, это основные свойства компьютера - хранить и обрабатывать данные, а также передавать и получать сообщения.

Суть объектно-ориентированного программирования состоит в решении задач с помощью идентификации соответствующих реальных объектов и обработки, требуемой для этих объектов; и последующем моделировании этих объектов, их процессов и необходимых связей между ними.

Библиотека визуальных компонентов (Visual Component Library, VCL)

Delphi содержит большое количество классов, предназначенных для быстрой разработки приложений. Библиотека написана на Object Pascal и имеет непосредственную связь с интегрированной средой разработки приложений Delphi.

Все классы VCL расположены на определенном уровне иерархии и образуют дерево (иерархию) классов .

Знание происхождения объекта оказывает значительную помощь при его изучении, так как потомок наследует все элементы объекта-родителя. Так, если свойство Caption принадлежит классу TControl, то это свойство будет и у его потомков, например, у классов TButton и TCheckBox и у компонентов - кнопки Button и независимого переключателя CheckBox соответственно. Фрагмент иерархии классов с важнейшими классами показан на рис.

Кроме иерархии классов, большим подспорьем в изучении системы программирования являются исходные тексты модулей, которые находятся в каталоге SOURCE главного каталога Delphi.