Под сетевой архитектурой понимают набор стандартов, топологий и протоколов низкого уровня, необходимых для создания работоспособной сети.

За многие годы развития сетевых технологий было разработано много различных архитектур. Рассмотрим их.

Token Ring .

Технология разработана компанией IBM в 1970-х годах, а затем была стандартизована IEEE в «Проекте 802» как спецификация 802.5. Она имеет следующие характеристики:

· физическая топология – «звезда»;

· логическая топология – «кольцо»

· скорость передачи данных – 4 или 16 Мбит/с;

· среда передачи – витая пара (используется 2 пары);

UTP – 150 м (для 4 Мбит/с)

STP – 300 м (для 4 Мбит/с)

или 100 (для 16 Мбит/с);

· максимальная длина сегмента с репитерами:

UTP – 365 м

STP – 730 м

* максимальное количество компьютеров на сегмент – 72 или 260 (в зависимости от типа кабеля)

Для объединения компьютеров в сетях Token Ring используются концентраторы MSAU, неэкранированная или экранированная витая пара (возможно и применение оптоволокна).

К преимуществам архитектуры Token Ring можно отнести высокую дальность передачи при использовании повторителей (до 730 м). Можно использовать в автоматизированных системах в реальном времени.

Недостатки архитектуры – довольно высокая стоимость, низкая совместимость оборудования.

Сетевая среда ARCNet была разработана корпорацией Datapoint в 1977 году. Стандартом она не стала, но соответствует спецификации IEEE 802.4. Это простая, гибкая и недорогая архитектура для небольших сетей (до 256 компьютеров) характеризуется следующими параметрами:

· физическая топология – «шина» или «звезда»;

· логическая топология – «шина»

· метод доступа – передача маркера;

· скорость передачи данных – 2,5 или 20 Мбит/с;

· среда передачи – витая пара или коаксиальный кабель;

· максимальный размер кадра – 516 байт;

· среда передачи – витая пара или коаксиальный кабель

· максимальная длина сегмента:

Для витой пары – 244 м (для любой топологии)

Для коаксиального кабеля – 305 м или 610 м (для топологии «шина» или «звезда», соответственно).

Для соединения компьютеров используются концентраторы. Основной тип кабеля – коаксиальный типа RG-62. Поддерживается также витая пара и оптоволокно. Для коаксиального кабеля используется BNC-коннекторы, для витой пары – коннекторы RJ-45. Основное достоинство не большая стоимость оборудования и сравнительно большая дальность.

AppleTalk .

Фирменная сетевая среда, предложенная компанией Apple в 19883 году и встроенная в компьютеры Macintosh. Она включает в себя целый набор протоколов, соответствующих модели OSI. На уровне сетевой архитектуры используется протокол LokalTalkФ, имеющий следующие характеристики:



· топология – «шина» или «дерево»;

· метод доступа – CSMA/CA;

· скорость передачи данных – 230,4 Кбит/с;

· среда передачи данных – экранированная витая пара;

· максимальная длина сети – 300 м;

· максимальное число компьютеров – 32.

Очень низкая пропускная способность привела к тому, что многие производители стали предлагать адаптеры расширения, позволяющие AppleTalk работать с сетевыми средами большой пропускной способности – EtherTalk, TokenTalk, FDDITalk. В локальных сетях, построенных на базе IBM-совместимых компьютеров сетевая среда AppleTalk практически не встречается.

100VG-AnyLAN .

Архитектура 100VG-AnyLAN была разработана в 90-х годах компаниями AT&T и Hewlett-Packard для объединения сетей Ethernet b Token Ring. В 1995 году эта архитектура получила статус стандарта IEEE 802.12. Она имеет следующие параметры:

· топология – «звезда»;

· метод доступа – по приоритету запроса;

· скорость передачи данных – 100 Мбит/с;

· среда передачи – витая пара категории 3,4 или 5 (используются все 4 пары);

· максимальная длина сегмента (для оборудования HP) – 225 м.

Из-за сложности и высокой стоимости оборудования в настоящее время практически не применяется.

Архитектура для домашних сетей.

Home PNA .

В 1966 году целый ряд компаний объединились для создания стандарта, позволяющего строить домашние сети на основе обычной телефонной проводки. Результатом этой работы стало появление в 1998 году архитектуры Home PNA 1.0, а затем Home PNA 2.0, Home PNA3.0 . Их краткие характеристики:

Таблица № 1. Сравнение стандартов Home PNA.

Во всех указанных стандартах используется самый популярный метод доступа к среде – CSMA/CD; в качестве среды – телефонный кабель; в качестве разъемов – телефонные коннекторы RJ-11. Устройства Home PNA могут работать и с витой парой и с коаксиальным кабелем, причем, дальность передачи существенной возрастает.

Следует не забывать, что телефонные линии в России не отвечают стандартым развитых стран как по качеству, так и по охвату. Цены на адаптеры довольно высоки. Тем не менее, данную архитектуру можно рассматривать в качестве альтернативы для беспроводных сетей в офисных зданиях и жилых домах.

Домашние сети на базе электропроводки.

Эта технология появилась недавно и получила название Home PLC. Оборудование в продаже имеется, но популярности пока не имеет.

Параметры сетей HomePlug:

· топология – «шина»;

· скорость передачи данных – до 85 Мбит/c$

· метод доступа – CSMA/CD;

· среда передачи – электрическая проводка;

Недостатки сетей Home PLC –незащищенность от перехвата, требующая обязательного применения шифрования и большая чувствительность к электрическим помехам. К тому же такая технология пока еще дорога.

Технологии, используемые в современных локальных сетях.

Ethernet .

Архитектура Ethernet объединяет целый набор стандартов, имеющих как общие черты, так и отличные. Первоначально она была создана фирмой Xerox в середине 70-х годов и представляла собой систему передачи со скоростью 2,93 Мбит/с. После доработки с участием компаний DEC и Intel архитектура Ethernet послужила основой принятого в 1985 году стандарта IEEE 802.3, определившая для нее следующие параметры:

· топология – «шина»;

· метод доступа – CSMA/CD;

· скорость передачи – 10 Мбит/с;

· среда передачи – коаксиальный кабель;

· применение терминаторов – обязательно;

· максимальная длина сегмента сети – до 500 м;

· максимальная длина сети – до 2,5 км;

· максимальное количество компьютеров в сегменте – 100;

· максимальное количество компьютеров с сети – 1024.

В исходной версии предусматривалось применение коаксиального кабеля двух типов «толстого» и «тонкого» (стандарты 10Base-5 и 10Base-2 соответственно).

В начале 90-х годов появилась спецификация для построения сетей Ethernet c использованием витой пары (10Base-T) и оптоволокна (10Base-FL). В 1995 году был опубликован стандарт IEEE 802.3u, обеспечивающий передачу на скоростях до 100 Мбит/с. В 1998 году появился стандарт IEEE 802.3z и 802.3ab, а в 2002 году IEEE802.3 ae. Сравнение стандартов приведены в таблице № 12.2.

Таблица № 12.2. Характеристики различных стандартов Ethernet.

Реализация Скорость Мбит/c Топология Среда передачи Максимальная длина кабеля, м
Ethernet
10Base-5 «шина» Толстый коаксиальный кабель
10Base-2 «шина» Тонкий коаксиальный кабель 185; реально до 300
10Base-T «звезда» Витая пара
10Base-FL «звезда» оптоволокно 500 (станция-концентратор); 200 (между концертраторами)
Fast Ethernet
100Base-TX «звезда» Витая пара категории 5 (используется 2 пары)
100Base-T4 «звезда» Витая пара категории 3,4, 5 (используется четыре пары)
100Base-FX «звезда» Многомодовое или одномодовое оптоволокно 2000 (многомодовый) 15000 (одномодовый) реально – до 40 км
Gigabit Ethernet
1000Dase-T «звезда» Витая пара категории 5 или выше
1000Dase-CX «звезда» Специальный кабель типа STR
1000Dase-SX «звезда» оптоволокно 250-550 (многомодовый), в зависимости от типа
1000Dase-LX «звезда» оптоволокно 550 (многомодовый); 5000 (одномодовый); реально – до 80 км
10 Gigabit Ethernet
10GDase-x «звезда» оптоволокно 300-40000 (в зависимости от типа кабеля и длины волны лазера)

Недостаток сетей Ethernet связан с использованием в них метода доступа к среде CSMA/CD (множественный доступ с контролем несущей и обнаружением столкновений). При увеличении количества компьютеров растет число столкновений, что снижает пропускную способность сети и увеличивает время доставки кадров. Поэтому рекомендуемой нагрузкой сети Ethernet считается уровень в 30-40% от общей полосы пропускания. Этот недостаток легко устраняется путем замены концентраторов мостами и коммутаторами, умеющими изолировать передачу данных между двумя компьютерами в сети от других.

Преимуществ у сети Ethernet очень много. Сама технология проста в реализации. Стоимость оборудования не высока. Можно использовать практически любые виды кабеля. Поэтому в настоящее время данная архитектура сетей можно сказать, что она является господствующей.

Беспроводные сети

Wi-Fi – популярная в мире и быстро развивающаяся в России технология, обеспечивающая беспроводное подключение мобильных пользователей к локальной сети и Интернету (рис.12.5).


В стандарте 802.11 предусматривается использование только полудуплексные приемопередатчики, которые не могут одновременно передавать и принимать информацию. Поэтому в качестве метода доступа к среде во всех стандартах используется метод CSMA/CA (с предотвращением коллизий), позволяющий избегать столкновений.

Основным недостатком сетей Wi-Fi является малая дальность передачи данных, не превышающая для большинства устройств 150 м (максимум 300 м) на открытом пространстве и всего несколько метров в помещении.

Данную проблему решает архитектура WiMAX, разрабатываемая в рамках рабочей группы IEEE 802.16. Реализация этой технологии, также использующей радиосигналы в качестве среды передачи, позволит предоставить пользователям скоростной беспроводной доступ на расстояниях до нескольких десятков км (рис. 10.6.).


Рис. 12.6. Беспроводное подключение мобильных пользователей к локальной сети и Интернету (до десятков км).

Новая технология Bluetooth использует радиосигнал 2,4 Ггц. Она имеет низкое энергопотребление, что позволяет использовать ее в переносных устройствах – ноутбуках, мобильных телефонах (рис.12.7.)



Рис. 12.7. Беспроводное подключение мобильных пользователей к локальной сети и Интернету (до десяти метров).

Bluetooth практически не требует настройки. У нее низкие показатели по дальности (до 10 метров) при 400-700 Кбит/с.

Специализация распределенных вычислений:

Сети и протоколы;

Сетевые мультимедиасистемы;

Распределенные вычисления;

Понятие “сетевая архитектура” включает общую структуру сети, т. е. все компоненты, благодаря которым сеть функционирует, в том числе аппаратные средства и системное программное обеспечение. Здесь будут обобщены уже полученные сведения о типах сетей, принципах их работы, средах и топологиях. Сетевая архитектура это комбинация стандартов, топологий и протоколов, необходимых для создания работоспособной сети.

Ethernet

Ethernetсамая популярная в настоящее время архитектура. Она использует узкополосную передачу со скоростью 10 Мбит/с, топологию “шина”, а для регулирования трафика в основном сегменте кабеляCSMA/CD.

Среда (кабель) Ethernet является пассивной, т. е. получает питание от компьютера. Следовательно, она прекратит работу из-за физического повреждения или неправильного подключения терминатора.

Рис. Сеть Ethernet топологии “шина” с терминаторами на обоих концах кабеля

Сеть Ethernet имеет следующие характеристики:

    традиционная топология линейная шина;

    другие топологии звезда-шина;

    тип передачи узкополосная;

    метод доступа CSMA/CD;

    скорость передачи данных 10 и 100 Мбит/c;

    кабельная система толстый и тонкий коаксиальный.

Формат кадра

Ethernet разбивает данные на пакеты (кадры), формат которых отличается от формата пакетов, используемого в других сетях. Кадры представляют собой блоки информации, передаваемые как единое целое. Кадр Ethernet может иметь длину от 64 до 1518 байтов, но сама структура кадра Ethernet использует, по крайней мере, 18 байтов, поэтому размер блока данных Ethernetот 46 до 1500 байтов. Каждый кадр содержит управляющую информацию и имеет общую с другими кадрами организацию.

Например, передаваемый по сети кадр EthernetIIиспользуется для протоколаTCP/IP. Кадр состоит из частей, которые перечислены в таблице.

Ethernet работает с большинством популярных операционных систем, в их числе:

Microsoft Windows 95;

Microsoft Windows NT Workstation;

Microsoft Windows NT Server;

Token Ring

От других сетей Token Ring отличает не только кабельная система, но и использование доступа с передачей маркера.

Рис. Физическизвезда, логическикольцо

Сеть Token Ring имеет следующие характеристики:

Архитектура

Топология типичной сети Token Ring“кольцо”. Однако в версииIBMэто топология “звезда-кольцо”: компьютеры в сети соединяются с центральным концентратором, маркер передается по логическому кольцу. Физическое кольцо реализуется в концентраторе. Пользователичасть кольца, но они соединяются с ним через концентратор.

Формат кадра

Основной формат кадра Token Ring показан на рисунке ниже и описан в следующей таблице. Данные составляют большую часть кадра.

Рис. Кадр данных Token Ring

Поле кадра

Описание

Стартовый разделитель

Сигнализирует о начале кадра

Управление доступом

Указывает на приоритет кадра и на то, что передаетсякадр маркера или кадр данных

Управление кадром

Содержит информацию Управления доступом к средедля всех компьютеров или информацию “конечной станции”только для одного компьютера

Адрес приемника

Адрес компьютера-получателя

Адрес источника

Адрес компьютера-отправителя

Передаваемая информация

Контрольная последовательность кадра

Конечный разделитель

Сигнализирует о конце кадра

Статус кадра

Сообщает, был ли распознан и скопирован кадр (доступен ли адрес приемника)

Функционирование

Когда в сети Token Ring начинает работать первый компьютер, сеть генерирует маркер. Маркер проходит по кольцу от компьютера к компьютеру, пока один их них не сообщит о готовности передать данные и не возьмет управление маркером на себя. Маркерэто предопределенная последовательность битов (поток данных), которая позволяет отправить данные по кабелю. Когда маркер захвачен каким-либо компьютером, другие компьютеры передавать данные не могут.

Захватив маркер, компьютер отправляет кадр данных в сеть (как показано на рис. ниже). Кадр проходит по кольцу, пока не достигнет узла с адресом, соответствующим адресу приемника в кадре. Компьютер-приемник копирует кадр в буфер приема и делает пометку в поле статуса кадра о получении информации.

Кадр продолжает передаваться по кольцу, пока не достигнет отправившего его компьютера, который и удостоверяет, что передача прошла успешно. После этого компьютер изымает кадр из кольца и возвращает туда маркер.

Рис. Маркер обходит логическое кольцо по часовой стрелке

В сети одномоментно может передаваться только один маркер, причем только в одном направлении.

Передача маркерадетерминистический процесс, это значит, что самостоятельно начать работу в сети (как, например, в средеCSMA/CD) компьютер не может. Он будет передавать данные лишь после получения маркера. Каждый компьютер действует как однонаправленный репитер, регенерирует маркер и посылает его дальше.

Мониторинг системы

Компьютер, который первым начал работу, наделяется системой Token Ring особыми функциями: он должен осуществлять текущий контроль за работой всей сети. Он проверяет корректность отправки и получения кадров, отслеживая кадры, проходящие по кольцу более одного раза. Кроме того, он гарантирует, что в кольце одномоментно находится лишь один единственный маркер.

Распознавание компьютера

После появления в сети нового компьютера система Token Ring инициализирует его таким образом, чтобы он стал частью кольца. Этот процесс включает:

проверку уникальности адреса;

уведомление всех сети о появлении нового узла.

Аппаратные компоненты

Концентратор

В сети TokenRingконцентратор, в котором организуется фактическое кольцо, имеет несколько названий, например:

    MAU ;

    MSAU (MultiStation Access Unit);

    SMAU.

Кабели соединяют клиенты и серверы с MSAU, который работает по принципу других пассивных концентраторов. При подсоединении компьютера он включается в кольцо (см. рис. ниже).

Рис. Формирование кольца в концентраторе (указано направление движения маркера)

Емкость

IBMMSAUимеет 10 портов соединения. К нему можно подключить до восьми компьютеров. Однако сетьTokenRingне ограничивается одним кольцом (концентратором). Каждое кольцо может насчитывать до 33 концентраторов.

Сеть на базе MSAU может поддерживать до 72 компьютеров - при использовании неэкранированной витой пары и до 260 компьютеров - при использовании экранированной витой пары.

Другие производители предлагают концентраторы большей емкости (в зависимости от модели).

Когда кольцо заполнено, т.е. к каждому порту MSAU подключен компьютер, сеть можно расширить за счет добавления еще одного кольца (MSAU).

Единственное правило, которого следует придерживаться: каждый MSAU необходимо подключить так, чтобы он стал частью кольца.

Гнезда “вход” и “выход” на MSAU позволяют с помощью кабеля соединить в единое кольцо до 12 MSAU, расположенных стопкой.

Рис. Добавляемые концентраторы не нарушают логического кольца

2.1.2 Архитектурный принцип построения сетей

Архитектурный принцип построения сетей (за исключением одноранговых сетей, в которых компьютеры равноправны) называется "клиент – сервер".

В одноранговой сети все компьютеры равноправны. Каждый из них может выступать как в роли сервера, т. е. предоставлять файлы и аппаратные ресурсы (накопители, принтеры и пр.) другим компьютерам, так и в роли клиента, пользующегося ресурсами других компьютеров. Например, если на вашем компьютере установлен принтер, то с его помощью смогут распечатывать свои документы все остальные пользователи сети, а вы, в свою очередь, сможете работать с Интернетом, подключение к которому осуществляется через соседний компьютер.

Важнейшими понятиями теории сетей "клиент-сервер" являются "абонент", "сервер", "клиент".

Абонент (узел, хост, станция) - это устройство, подключенное к сети и активно участвующее в информационном обмене. Чаще всего абонентом (узлом) сети является компьютер, но абонентом также может быть, например, сетевой принтер или другое периферийное устройство, имеющее возможность напрямую подключаться к сети.

Сервером называется абонент (узел) сети, который предоставляет свои ресурсы другим абонентам, но сам не использует их ресурсы. Таким образом, он обслуживает сеть. Серверов в сети может быть несколько, и совсем не обязательно, что сервер - самый мощный компьютер. Выделенный (dedicated) сервер - это сервер, занимающийся только сетевыми задачами. Невыделенный сервер может помимо обслуживания сети выполнять и другие задачи. Специфический тип сервера - это сетевой принтер.

Клиентом называется абонент сети, который только использует сетевые ресурсы, но сам свои ресурсы в сеть не отдает, то есть сеть его обслуживает, а он ей только пользуется. Компьютер-клиент также часто называют рабочей станцией. В принципе каждый компьютер может быть одновременно как клиентом, так и сервером.

Под сервером и клиентом часто понимают также не сами компьютеры, а работающие на них программные приложения. В этом случае то приложение, которое только отдает ресурс в сеть, является сервером, а то приложение, которое только пользуется сетевыми ресурсами - клиентом.

2.1.3 Топология локальных сетей

Под топологией (компоновкой, конфигурацией, структурой) компьютерной сети обычно понимается физическое расположение компьютеров сети друг относительно друга и способ соединения их линиями связи. Важно отметить, что понятие топологии относится, прежде всего, к локальным сетям, в которых структуру связей можно легко проследить. В глобальных сетях структура связей обычно скрыта от пользователей и не слишком важна, так как каждый сеанс связи может производиться по собственному пути.

Топология определяет требования к оборудованию, тип используемого кабеля, допустимые и наиболее удобные методы управления обменом, надежность работы, возможности расширения сети. И хотя выбирать топологию пользователю сети приходится нечасто, знать об особенностях основных топологий, их достоинствах и недостатках надо.

Существует три, базовые топологии сети:

а) топология шина

Шина (bus) - все компьютеры параллельно подключаются к одной линии связи. Информация от каждого компьютера одновременно передается всем остальным компьютерам (рис. 1).

Рис. 1 Сетевая топология шина

Топология шина (или, как ее еще называют, общая шина) самой своей структурой предполагает идентичность сетевого оборудования компьютеров, а также равноправие всех абонентов по доступу к сети. Компьютеры в шине могут передавать только по очереди, так как линия связи в данном случае единственная. Если несколько компьютеров будут передавать информацию одновременно, она исказится в результате наложения (конфликта, коллизии). В шине всегда реализуется режим так называемого полудуплексного (half duplex) обмена (в обоих направлениях, но по очереди, а не одновременно).

В топологии шина отсутствует явно выраженный центральный абонент, через которого передается вся информация, это увеличивает ее надежность (ведь при отказе центра перестает функционировать вся управляемая им система). Добавление новых абонентов в шину довольно просто и обычно возможно даже во время работы сети. В большинстве случаев при использовании шины требуется минимальное количество соединительного кабеля по сравнению с другими топологиями.

Поскольку центральный абонент отсутствует, разрешение возможных конфликтов в данном случае ложится на сетевое оборудование каждого отдельного абонента. В связи с этим сетевая аппаратура при топологии шина сложнее, чем при других топологиях. Тем не менее из-за широкого распространения сетей с топологией шина (прежде всего наиболее популярной сети Ethernet) стоимость сетевого оборудования не слишком высока.

Рис. 2. Обрыв кабеля в сети с топологией шина

Важное преимущество шины состоит в том, что при отказе любого из компьютеров сети, исправные машины смогут нормально продолжать обмен.

В случае разрыва или повреждения кабеля нарушается согласование линии связи, и прекращается обмен даже между теми компьютерами, которые остались соединенными между собой. Короткое замыкание в любой точке кабеля шины выводит из строя всю сеть.

Отказ сетевого оборудования любого абонента в шине может вывести из строя всю сеть. К тому же такой отказ довольно трудно локализовать, поскольку все абоненты включены параллельно, и понять, какой из них вышел из строя, невозможно.

При прохождении по линии связи сети с топологией шина информационные сигналы ослабляются и никак не восстанавливаются, что накладывает жесткие ограничения на суммарную длину линий связи. Причем каждый абонент может получать из сети сигналы разного уровня в зависимости от расстояния до передающего абонента. Это предъявляет дополнительные требования к приемным узлам сетевого оборудования.

Если принять, что сигнал в кабеле сети ослабляется до предельно допустимого уровня на длине L пр, то полная длина шины не может превышать величины L пр. В этом смысле шина обеспечивает наименьшую длину по сравнению с другими базовыми топологиями.

Для увеличения длины сети с топологией шина часто используют несколько сегментов (частей сети, каждый из которых представляет собой шину), соединенных между собой с помощью специальных усилителей и восстановителей сигналов - репитеров или повторителей (на рис. 3 показано соединение двух сегментов, предельная длина сети в этом случае возрастает до 2 L пр, так как каждый из сегментов может быть длиной L пр). Однако такое наращивание длины сети не может продолжаться бесконечно. Ограничения на длину связаны с конечной скоростью распространения сигналов по линиям связи.

Рис. 3. Соединение сегментов сети типа шина с помощью репитера

б) топология звезда;

Звезда (star) - к одному центральному компьютеру присоединяются остальные периферийные компьютеры, причем каждый из них использует отдельную линию связи (рис. 4). Информация от периферийного компьютера передается только центральному компьютеру, от центрального - одному или нескольким периферийным.

Рис. 4. Сетевая топология звезда

Звезда - это единственная топология сети с явно выделенным центром, к которому подключаются все остальные абоненты. Обмен информацией идет исключительно через центральный компьютер, на который ложится большая нагрузка, поэтому ничем другим, кроме сети, он, как правило, заниматься не может. Понятно, что сетевое оборудование центрального абонента должно быть существенно более сложным, чем оборудование периферийных абонентов. О равноправии всех абонентов (как в шине) в данном случае говорить не приходится. Обычно центральный компьютер самый мощный, именно на него возлагаются все функции по управлению обменом. Никакие конфликты в сети с топологией звезда в принципе невозможны, так как управление полностью централизовано.

Если говорить об устойчивости звезды к отказам компьютеров, то выход из строя периферийного компьютера или его сетевого оборудования никак не отражается на функционировании оставшейся части сети, зато любой отказ центрального компьютера делает сеть полностью неработоспособной. В связи с этим должны приниматься специальные меры по повышению надежности центрального компьютера и его сетевой аппаратуры.

Обрыв кабеля или короткое замыкание в нем при топологии звезда нарушает обмен только с одним компьютером, а все остальные компьютеры могут нормально продолжать работу.

В отличие от шины, в звезде на каждой линии связи находятся только два абонента: центральный и один из периферийных. Чаще всего для их соединения используется две линии связи, каждая из которых передает информацию в одном направлении, то есть на каждой линии связи имеется только один приемник и один передатчик. Это так называемая передача точка-точка. Все это существенно упрощает сетевое оборудование по сравнению с шиной и избавляет от необходимости применения дополнительных, внешних терминаторов.

Серьезный недостаток топологии звезда состоит в жестком ограничении количества абонентов. Обычно центральный абонент может обслуживать не более 8-16 периферийных абонентов. В этих пределах подключение новых абонентов довольно просто, но за ними оно просто невозможно. В звезде допустимо подключение вместо периферийного еще одного центрального абонента (в результате получается топология из нескольких соединенных между собой звезд).

Звезда, показанная на рис. 4, носит название активной или истинной звезды. Существует также топология, называемая пассивной звездой, которая только внешне похожа на звезду (рис. 5). В настоящее время она распространена гораздо более широко, чем активная звезда. Достаточно сказать, что она используется в наиболее популярной сегодня сети Ethernet.

В центре сети с данной топологией помещается не компьютер, а специальное устройство - концентратор или, как его еще называют, хаб (hub), которое выполняет ту же функцию, что и репитер, то есть восстанавливает приходящие сигналы и пересылает их во все другие линии связи.


Рис. 5. Топология пассивная звезда и ее эквивалентная схема

Получается, что хотя схема прокладки кабелей подобна истинной или активной звезде, фактически речь идет о шинной топологии, так как информация от каждого компьютера одновременно передается ко всем остальным компьютерам, а никакого центрального абонента не существует. Безусловно, пассивная звезда дороже обычной шины, так как в этом случае требуется еще и концентратор. Однако она предоставляет целый ряд дополнительных возможностей, связанных с преимуществами звезды, в частности, упрощает обслуживание и ремонт сети. Именно поэтому в последнее время пассивная звезда все больше вытесняет истинную шину, которая считается малоперспективной топологией.

Можно выделить также промежуточный тип топологии между активной и пассивной звездой. В этом случае концентратор не только ретранслирует поступающие на него сигналы, но и производит управление обменом, однако сам в обмене не участвует (так сделано в сети 100VG-AnyLAN).

Большое достоинство звезды (как активной, так и пассивной) состоит в том, что все точки подключения собраны в одном месте. Это позволяет легко контролировать работу сети, локализовать неисправности путем простого отключения от центра тех или иных абонентов (что невозможно, например, в случае шинной топологии), а также ограничивать доступ посторонних лиц к жизненно важным для сети точкам подключения. К периферийному абоненту в случае звезды может подходить как один кабель (по которому идет передача в обоих направлениях), так и два (каждый кабель передает в одном из двух встречных направлений), причем последнее встречается гораздо чаще.

Общим недостатком для всех топологий типа звезда (как активной, так и пассивной) является значительно больший, чем при других топологиях, расход кабеля. Например, если компьютеры расположены в одну линию (как на рис. 1), то при выборе топологии звезда понадобится в несколько раз больше кабеля, чем при топологии шина. Это существенно влияет на стоимость сети в целом и заметно усложняет прокладку кабеля.

в) топология кольцо;

Кольцо (ring) (рис. 6).

Рис. 6. Сетевая топология кольцо

Кольцо - это топология, в которой каждый компьютер соединен линиями связи с двумя другими: от одного он получает информацию, а другому передает. На каждой линии связи, как и в случае звезды, работает только один передатчик и один приемник (связь типа точка-точка). Это позволяет отказаться от применения внешних терминаторов.

Важная особенность кольца состоит в том, что каждый компьютер ретранслирует (восстанавливает, усиливает) приходящий к нему сигнал, то есть выступает в роли репитера. Затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. На практике размеры кольцевых сетей достигают десятков километров (например, в сети FDDI). Кольцо в этом отношении существенно превосходит любые другие топологии.

Четко выделенного центра при кольцевой топологии нет, все компьютеры могут быть одинаковыми и равноправными. Однако довольно часто в кольце выделяется специальный абонент, который управляет обменом или контролирует его. Понятно, что наличие такого единственного управляющего абонента снижает надежность сети, так как выход его из строя сразу же парализует весь обмен.

Строго говоря, компьютеры в кольце не являются полностью равноправными (в отличие, например, от шинной топологии). Ведь один из них обязательно получает информацию от компьютера, ведущего передачу в данный момент, раньше, а другие - позже. Именно на этой особенности топологии и строятся методы управления обменом по сети, специально рассчитанные на кольцо. В таких методах право на следующую передачу (или, как еще говорят, на захват сети) переходит последовательно к следующему по кругу компьютеру. Подключение новых абонентов в кольцо выполняется достаточно просто, хотя и требует обязательной остановки работы всей сети на время подключения. Как и в случае шины, максимальное количество абонентов в кольце может быть довольно велико (до тысячи и больше). Кольцевая топология обычно обладает высокой устойчивостью к перегрузкам, обеспечивает уверенную работу с большими потоками передаваемой по сети информации, так как в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды), который может быть перегружен большими потоками информации.


Рис. 7. Сеть с двумя кольцами

Сигнал в кольце проходит последовательно через все компьютеры сети, поэтому выход из строя хотя бы одного из них (или же его сетевого оборудования) нарушает работу сети в целом. Это существенный недостаток кольца.

Точно так же обрыв или короткое замыкание в любом из кабелей кольца делает работу всей сети невозможной. Из трех рассмотренных топологий кольцо наиболее уязвимо к повреждениям кабеля, поэтому в случае топологии кольца обычно предусматривают прокладку двух (или более) параллельных линий связи, одна из которых находится в резерве.

Иногда сеть с топологией кольцо выполняется на основе двух параллельных кольцевых линий связи, передающих информацию в противоположных направлениях. Цель подобного решения - увеличение (в идеале - вдвое) скорости передачи информации по сети. К тому же при повреждении одного из кабелей сеть может работать с другим кабелем (правда, предельная скорость уменьшится).

д) др. топологии.

На практике нередко используют и другие топологии локальных сетей, однако большинство сетей ориентировано именно на три базовые топологии.

Топология сети указывает не только на физическое расположение компьютеров, но и на характер связей между ними, особенности распространения информации, сигналов по сети. Именно характер связей определяет степень отказоустойчивости сети, требуемую сложность сетевой аппаратуры, наиболее подходящий метод управления обменом, возможные типы сред передачи (каналов связи), допустимый размер сети (длина линий связи и количество абонентов) необходимость электрического согласования и многое другое.

Более того, физическое расположение компьютеров, соединяемых сетью, почти не влияет на выбор топологии. Как бы ни были расположены компьютеры, их можно соединить с помощью любой заранее выбранной топологии (рис. 8).

В том случае, если соединяемые компьютеры расположены по контуру круга, они могут соединяться, как звезда или шина. Когда компьютеры расположены вокруг некоего центра, их допустимо соединить с помощью топологий шина или кольцо.

Наконец когда компьютеры расположены в одну линию, они могут соединяться звездой или кольцом. Другое дело, какова будет требуемая длина кабеля.


Рис. 8. Примеры использования разных топологий

Необходимо отметить, что топология все-таки не является основным фактором при выборе типа сети. Гораздо важнее, например, уровень стандартизации сети, скорость обмена, количество абонентов, стоимость оборудования, выбранное программное обеспечение. Но, с другой стороны, некоторые сети позволяют использовать разные топологии на разных уровнях. Этот выбор уже целиком ложится на пользователя, который должен учитывать все перечисленные в данном разделе соображения.



Лекция 3. Использование электронной почты. Продолжительность 2 часа. Цель данной темы - дать основные представления о работе и использовании электронной почты в локальных и глобальных компьютерных сетях. Теоретический материал: 1. Введение. 2. Принципы работы электронной почты. 3. Установка почтовых служб на компьютер. 4. Наиболее популярные программы для работы с...

... ; 44 – нарушение правил эксплуатации ЭВМ и их сетей. Существенную роль в реализации несанкционированного доступа к информации играет компьютерная сеть Интернет, являясь чуть ли самым популярным каналом утечки информации. Поэтому на ее примере целесообразно рассмотреть современные угрозы безопасности и методы защиты от них, используемые средства защиты и услуги безопасности. Интернет действительно...

Архитектура сети

Архитектурой компьютера называется его описание на некотором общем уровне, включающее описание пользовательских возможностей программирования, системы команд, системы адресации, организации памяти и т.д. Архитектура определяет принципы действия, информационные связи и взаимное соединение основных логических узлов компьютера: процессора, оперативного ЗУ, внешних ЗУ и периферийных устройств. Общность архитектуры разных компьютеров обеспечивает их совместимость с точки зрения пользователя.

Структура компьютера - это совокупность его функциональных элементов и связей между ними. Элементами могут быть самые различные устройства - от основных логических узлов компьютера до простейших схем. Структура компьютера графически представляется в виде структурных схем, с помощью которых можно дать описание компьютера на любом уровне детализации.

Наиболее распространены следующие архитектурные решения.

Классическая архитектура (архитектура фон Неймана) - одно арифметико-логическое устройство (АЛУ), через которое проходит поток данных, и одно устройство управления (УУ), через которое проходит поток команд - программа.Это однопроцессорный компьютер.

К этому типу архитектуры относится и архитектура персонального компьютера с общей шиной. Все функциональные блоки здесь связаны между собой общей шиной, называемой также системной магистралью.

Физически магистраль представляет собой многопроводную линию с гнездами для подключения электронных схем. Совокупность проводов магистрали разделяется на отдельные группы: шину адреса, шину данных и шину управления.

Периферийные устройства (принтер и др.) подключаются к аппаратуре компьютера через специальные контроллеры - устройства управления периферийными устройствами.

Контроллер - устройство, которое связывает периферийное оборудование или каналы связи с центральным процессором, освобождая процессор от непосредственного управления функционированием данного оборудования.

Сетевая архитектура сродни архитектуре строений. Архитектура здания отражает стиль конструкций и материалы, используемые для постройки. Архитектура сети описывает не только физическое расположение сетевых устройств, но и тип используемых адаптеров и кабелей. Кроме того, сетевая архитектура определяет методы передачи данных по кабелю.

Архитектура сетей

Архитектура сети определяет основные элементы сети, характеризует ее общую логическую организацию, техническое обеспечение, программное обеспечение, описывает методы кодирования. Архитектура также определяет принципы функционирования и интерфейс пользователя.

В данном курсе будет рассмотрено три вида архитектур:

архитектура терминал – главный компьютер;

одноранговая архитектура;

архитектура клиент – сервер.

Архитектура терминал – главный компьютер

Архитектура терминал – главный компьютер (terminal – host computer architecture) – это концепция информационной сети, в которой вся обработка данных осуществляется одним или группой главных компьютеров.

Рассматриваемая архитектура предполагает два типа оборудования:

Главный компьютер, где осуществляется управление сетью, хранение и обработка данных.

Терминалы, предназначенные для передачи главному компьютеру команд на организацию сеансов и выполнения заданий, ввода данных для выполнения заданий и получения результатов.

Главный компьютер через мультиплексоры передачи данных (МПД) взаимодействуют с терминалами.

Классический пример архитектуры сети с главными компьютерами – системная сетевая архитектура (System Network Architecture – SNA).

Одноранговая архитектура

Одноранговая архитектура (peer-to-peer architecture) – это концепция информационной сети, в которой ее ресурсы рассредоточены по всем системам. Данная архитектура характеризуется тем, что в ней все системы равноправны.

К одноранговым сетям относятся малые сети, где любая рабочая станция может выполнять одновременно функции файлового сервера и рабочей станции. В одноранговых ЛВС дисковое пространство и файлы на любом компьютере могут быть общими. Чтобы ресурс стал общим, его необходимо отдать в общее пользование, используя службы удаленного доступа сетевых одноранговых операционных систем. В зависимости от того, как будет установлена защита данных, другие пользователи смогут пользоваться файлами сразу же после их создания. Одноранговые ЛВС достаточно хороши только для небольших рабочих групп.

Архитектура клиент – сервер

Клиент-сервер (англ. Client-server) - вычислительная или сетевая архитектура, в которой задания или сетевая нагрузка распределены между поставщиками услуг (сервисов), называемыми серверами, и заказчиками услуг, называемыми клиентами. Нередко клиенты и серверы взаимодействуют через компьютерную сеть и могут быть как различными физическими устройствами, так и программным обеспечением.Содержание

Преимущества

Делает возможным, в большинстве случаев, распределить функции вычислительной системы между несколькими независимыми компьютерами в сети. Это позволяет упростить обслуживание вычислительной системы. В частности, замена, ремонт, модернизация или перемещение сервера, не затрагивают клиентов.

Все данные хранятся на сервере, который, как правило, защищён гораздо лучше большинства клиентов. На сервере проще обеспечить контроль полномочий, чтобы разрешать доступ к данным только клиентам с соответствующими правами доступа.

Позволяет объединить различные клиенты. Использовать ресурсы одного сервера часто могут клиенты с разными аппаратными платформами, операционными системами и т.п.

Недостатки

Неработоспособность сервера может сделать неработоспособной всю вычислительную сеть.

Поддержка работы данной системы, требует отдельного специалиста - системного администратора.

Высокая стоимость оборудования.

Многоуровневая архитектура клиент-сервер

Многоуровневая архитектура клиент-сервер - разновидность архитектуры клиент-сервер, в которой функция обработки данных вынесена на один или несколько отдельных серверов. Это позволяет разделить функции хранения, обработки и представления данных для более эффективного использования возможностей серверов и клиентов.

Частные случаи многоуровневой архитектуры:

Трёхуровневая архитектура

Сеть с выделенным сервером

Сеть с выделенным сервером (англ. Client/Server network) - это локальная вычислительная сеть (LAN), в которой сетевые устройства централизованы и управляются одним или несколькими серверами. Индивидуальные рабочие станции или клиенты (такие, как ПК) должны обращаться к ресурсам сети через сервер(ы).

Сетевые архитектуры

Сетевые архитектуры разделяются по скорости передачи данных, среде передачи, вариантах реализации, топологии

Ethernet. 10Мбит/с.

  • 10BaseT (Витая пара);
  • 10Base2 (Тонкий коаксиал);
  • 10Base5 (Толстый коаксиал);
  • 10BaseFL (Оптоволокно) .

10Base2 или Тонкий Ethernet

10Base5

IEEE 10Base5 или "толстый" Ethernet - самый старый стандарт среди остальных. В настоящее время затруднительно найти в продаже новое оборудование для построения сети на этом стандарте. Основные его параметры:

10Base-T или Ethernet на витой паре

В 1990 году IEEE опубликовал спецификацию 802.3 для построения сети Ethernet на основе витой пары. l0BaseT (10 - скорость передачи 10 Мбит/с, Base - узкополосная, Т - витая пара) - сеть Ethernet, которая для соединения компьютеров обычно использует неэкранированную витую пару (UTP). Тем не менее и экранированная витая пара (STP) также может применяться в топологии lOBaseT без изменения каких-либо ее параметров. Большинство сетей этого типа строятся в виде звезды, но по системе передачи сигналов представляют собой шину, как и другие конфигурации Ethernet. Обычно концентратор сети lOBaseT выступает как многопортовый (multiport) репитер и часто располагается в распределительной стойке здания. Каждый компьютер подключается к другому концу кабеля, соединенного с концентратором, и использует две пары проводов: одну - для приема, другую - для передачи. Максимальная длина сегмента l0BaseT - 100 м (328 футов). Минимальная длина кабеля - 2,5 м (около 8 футов). Сеть l0BaseT может обслуживать до 1024 компьютеров.

10BaseFL

10BaseFL (10 - скорость передачи 10 Мбит/с, Base - узкополосная передача, FL - оптоволоконный кабель) представляет собой сеть Ethernet, в которой компьютеры и репитеры соединены оптоволоконным кабелем. Основная причина причина популярности 10BaseFL - возможность прокладывать кабель между репитерами на большие расстояния (например между зданиями). Максимальная длина сегмента 10BaseFL - 2000м.

Ethernet. 100Мбит/с.

Новые стандарты Ethernet позволяют преодолеть скорость передачи в 10 Мбит/с.Известны несколько стандартов Ethernet, которые могут удовлетворить возросшие требования, рассмотрим 2 из них:

  • 100BaseVG-AnyLAN Ethernet;
  • 100BaseX Ethernet(Fast Ethernet).

И Fast Ethernet, и 100 Base VG-Any LAN работают примерно в пять-десять раз быстрее, чем стандартный Ethernet. Кроме того, они совместимы с существующей кабельной системой 10BaseT. Это означает, что перейти от l0BaseT к этим стандартам достаточно просто и быстро.

100VG-AnyLAN

100VG (Voice Grade) AnyLAN - новая сетевая технология, которая сочетает в себе элементы Ethernet и Token Ring. Эта технология, разработанная фирмой Hewlett-Packard, в настоящее время совершенствуется стандартом IEEE 802.12. Спецификация 802.12 -стандарт передачи кадров Ethernet 802.3 и пакетов Token Ring 802.5. Эта технология имеет несколько названий:

  • l00VG-AnyLAN;
  • 100Base VG;
  • AnyLAN.

Спецификации

Перечислим возможности некоторых из существующих в настоящее время спецификаций l00VG-AnyLAN:

  • минимальная скорость передачи данных 100 Мбит/с;
  • поддержка каскадируемой топологии «звезда» на основе витой пары категории 3, 4 или 5 и оптоволоконного кабеля;
  • метод доступа по приоритету запроса (различаются два уровня приоритета: низкий и высокий);
  • поддержка средств фильтрации персонально адресованных кадров в концентраторе (для повышения степени конфиденциальности);
  • поддержка передачи кадров Ethernet и Token Ring.

Топология

Сеть 100VG-AnyLAN строится по топологии «звезда», где все компьютеры соединены с концентратором. Сеть можно расширять, добавляя «дочерние» (child) концентраторы к центральному, «родительскому» (parent), который относится к ним так же, как и к компьютерам, т.е. родительские концентраторы управляют передачей компьютеров, соединенных со своими «детьми».

Некоторые соображения

Представленная технология требует использования специальных концентраторов и плат. Кроме того, длина кабеля 100BaseVG, по сравнению с 10BaseT и другими реализациями Ethernet, ограничена: общая длина пары кабелей от концентратора 100BaseVG до компьютеров не может превышать 250 м. Чтобы преодолеть это ограничение, надо использовать специальное оборудование. Ограничения длины кабеля приведут к тому, что для 100BaseVG потребуется больше кабельных стоек, чем для 10BaseT.

100BaseX Ethernet

Этот стандарт, иногда называемый Fast Ethernet, является расширением существующего стандарта Ethernet. Он строится на UTP категории 5, использует метод доступа CSMA/CD и топологию «звезда-шина» (подобно 10BaseT), где все кабели подключены к концентратору.

КУРС «КОМПЬЮТЕРНЫЕ ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ»

ТЕМА 5a

СЕТЕВЫЕ ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

Понятие компьютерных сетей

Компьютерная сеть (КС) – это совокупность нескольких компьютеров или вычислительных систем, объединенных между собой средствами телекоммуникаций в целях эффективного использования вычислительных и информационных ресурсов при выполнении информационно-вычислительных работ.

Задачи, которые решаются с помощью персональных компьютеров, работающих в локальной сети:

1. Разделение файлов. (позволяет многим пользователям одно временно работать с одним и тетм же файлом, который хранится на цен тральном файл-сервере);

2. Передача файлов (позволяет быстро копировать файлы любого размера с одного компьютера на другой);

3. Доступ к информации и файлам (позволяет запускать прикладные программы с любой рабочей станции компьютерной сети);

4. Разделение прикладных программ (дает возможность двум пользователям применять одну и ту же копию программы);

5. Одновременный ввод данных в прикладные программы (сетевые прикладные программы позволяют нескольким пользователям одновременно вводить данные, необходимые для работы этих программ);

6. Разделение принтера, накопителя и т.д.

В глобальном масштабе компьютерные сети позволяют решить следующие задачи:

1. Обеспечение информацией по всем областям человеческой деятельности;

2. Электронные коммуникации (электронная почта, телеконференции и т.д.).

В настоящее время компьютерные сети делят по территориальному размещению на:

1. Локальные компьютерные сети, LAN-сети (Local Area Network);

2. Региональные компьютерные сети, MAN-сети (Metropolitan Area Network);

3. Глобальные компьютерные сети, WAN-сети (Wide Area Network).

Корпоративная сеть – это, как правило, закрытая компьютерная сеть, в состав которой могут входить сегменты LAN-сетей малых, средних и крупных отделений корпорации, объединенные с центральным офисом MAN и WAN компьютерными сетями с использованием сетевых технологий глобальных компьютерных сетей.



Компьютерные сети – это сложный комплекс., включающий в себя технические, программные и информационные средства.

Технические средства составляют:

1. ЭВМ различных типов (от супер до компьютеров малой мощности);

2. Транспортная (телекоммуникационная) среда передачи данных, связывающая вычислительные центры или сервера сети и клиентские машины;

3. Адаптеры (сетевая карта), коммутаторы, концентраторы, шлюзы, маршрутизаторы и другое сетевое оборудование для подключения компьютеров к транспортной телекоммуникационной среде и организации топологии компьютерной сети.

Концентратор (HUB) предназначен для распознавания конфликтов между элементами сети и их ликвидации, а также синхронизации информационных потоков внутри сети.

Коммутатор – аппаратное средство, обеспечивающее прием, контроль поступления и маршрутизацию информационных пакетов.

Маршрутизатор предназначен для организации взаимосвязи между несколькими локальными сетями, объединения их в сети более высокого уровня, распределения потоков информации между сегментами сетей.

Программные средства компьютерных сетей состоят из трех частей: общего, специального и системного программного обеспечения.

Общее программное обеспечение КС включает:

1. Операционную систему (отвечает за распределение потоков заданий и данных между серверами и клиентскими машинами сети, управление подключением и отключением отдельных серверов сети, обеспечение динамики координации работы сети);

2. Систему программирования (включает средства автоматизации составления программ по технологии клиент/сервер, их трансляции и отладки);

3. Систему технического обслуживания (представляет собой комплекс программ для осуществления проверки и профилактики работы технических и программных средств связи).

Архитектура компьютерных сетей

Архитектура компьютерных сетей может рассматриваться с двух точек зрения:

1. С точки зрения топологии КС, т.е. каким образом организована сеть на физическом уровне;

2. С точки зрения ее логической организации, которая включает такие вопросы, как организация доступа пользователей к информационным ресурсам КС, их иерархия, взаимоотношения между компьютерами, сегментами КС, распределения информационных ресурсов по сети (сервера, базы данных и т.д.), управления сетью в целом и др.

При построении компьютерных сетей важным является выбор физической организации связей между отдельными компьютерами, т.е. топологии сети. Топология – описание физических соединений в LAN (или логических связей между узлами), указывающее, какие пары узлов могут связываться между собой.

Наиболее распространены следующие топологии:

1. Шина – кабель, объединяющий узлы в сеть (компьютеры подключаются к одному общему кабелю (шине), по которому и происходит обмен информацией между компьютерами, преимущества - дешевизна и простота разводки кабеля по отдельным помещениям, недостатки - низкая надежность, так как любой дефект общего кабеля полностью парализует всю сеть, а также невысокая производительность, поскольку в любой момент только один компьютер может передавать данные в сеть);

2. Звезда – узлы сети соединены с центром кабелями-лучами (предусматривает подключение каждого компьютера отдельным кабелем к концентратору, который находится в центре сети, преимущества - высокая надежность, недостатки – дороговизна);

3. Кольцо – узлы объединены в сеть замкнутой кривой (данные передаются по кольцу от одного компьютера к другому, как правило, в одном направлении, если компьютер распознает данные как "свои", то он их принимает, такие сети используются, если требуется контроль предаваемой информации, так как данные, сделав полный оборот, возвращаются к компьютеру-источнику);

4. Смешанная топология – комбинация топологий, перечисленных выше.

Наряду с топологией компьютерной сети, определяющей на физическом уровне построение КС, архитектура компьютерной сети определяет на логическом уровне структуру взаимодействия пользователей, компьютеров и ресурсов КС. Именно на этом уровне руководитель концептуально определяет, кто из пользователей или групп пользователей имеет право доступа к тем или иным ресурсам компьютерной сети (компьютерам, сетевым устройствам, файлам и т.д.) и где находятся эти ресурсы. Администратор компьютерной сети реализует выбранную политику с помощью средств администрирования сети.

На логическом уровне локальные сети могут быть:

1. Одноранговые LAN – это сеть, в которой все компьютеры равноправны и могут выступать в роли как пользователей (клиентов) ресурсов, так и их поставщиков (серверов), предоставляя другим узлам право доступа ко всем или к некоторым из имеющихся в их распоряжении локальным ресурсам (файлам, принтерам, программам);

2. LAN с выделенным сервером. Для эффективного администрирования компьютерных сетей используются сети со специальным компьютером (выделенным сервером).

Существует много серверов компьютерной сети, например, сервер печати, сервер баз данных, сервер приложений, файл-сервер и т.д. В отличие от перечисленных выше сервер компьютерной сети осуществляет управление сетью и на нем, в частности, находятся базы данных, содержащие учетные записи пользователей сети, определяющих их политику доступа к ресурсам КС.

В компьютерных сетях с выделенным сервером рабочие станции подключаются к выделенным серверам, а серверы в свою очередь группируются в домены.

Домен (Domain) – группа компьютеров и периферийных устройств, с общей системой безопасности. В OSI (ниже рассматривается эта модель) термин "домен" используется применительно к административному делению сложных распределенных систем. В сети Internet-часть иерархии имен.

Доменная организация сети позволяет:

1. Упростить централизованное управление сетью;

2. Облегчить создание сетей методом объединения существующих сетевых фрагментов;

3. Обеспечить пользователям однократную регистрацию в сети для доступа ко всем серверам и ресурсам информационной системы независимо от места регистрации.

Важным фактором, определяющим архитектуру компьютерной сети, является ее масштабируемость и, в частности, доменной архитектуры.

При объединении доменов следует выделить три основные модели отношений:

1. Модель мастер-домена (один из доменов объявляется главным, и в нем хранятся записи всех пользователей сети, остальные домены являются ресурсными, все ресурсные домены доверяют главному домену, который является главным мастер-доменом, такая архитектура плохо масштабируется (изменяется число доменов));

2. Модель с несколькими мастер-доменами (несколько доменов объявляются главными, и в каждом из них хранятся учетные записи подмножества пользователей сети, остальные домены являются вторичными, данная модель хорошо масштабируется);

3. Модель полностью доверительных отношений (не существует главного домена, и каждый из них может содержать как учетные записи, так и ресурсы, данная модель хорошо подходит для создания сколь угодно больших сетей, однако чрезвычайно сложна для администрирования сети).

5.3. Internet\Intranet технологии

Интернет изначально строилась как сеть, объединяющая большое количество существующих локальных, и ее предшественницей, как уже упоминалось, являлась сеть ARPANET. Идея создания Интернет возникла в связи с необходимостью построения отказоустойчивой сети, которая могла бы продолжать работу, даже если большая часть ее стала неработоспособной. Решение состояло в том, чтобы создать сеть, где информационные пакеты могли бы передаваться от одного узла к другому без какого-либо централизованного контроля. Если основная часть сети не работает, пакеты самостоятельно должны передвигаться по сети до тех пор, пока не достигнут точки своего назначения. Одновременно сеть должна быть достаточно устойчивой к возможным ошибкам при передаче пакетов, т.е. обладать механизмом контроля пакетов и обеспечить наблюдение за доставкой информации.

Основой сети Интернет является стек проколов TCP/IP (Transmission Control Protocol/Internet Protocol). TCP обеспечивает на передающем компьютере разбивку отправляемого сообщения на куски, так называемые дейтаграммы, восстановление на принимающем компьютере сообщения из поступающих дейтаграмм в нужном порядке, повторную отправку не доставленных или поврежденных дейтаграмм. IP выполняет функции маршрутизации и доставки по адресу отдельных дейтаграмм. Стек TCP/IP изначально был разработан для сети ARPANET и рассматривался как экспериментальный протокол для сети с коммутацией пакетов. Эксперимент дал положительный результат и этот протокол был принят в промышленную эксплуатацию, а в дальнейшем расширялся и совершенствовался в течение нескольких лет. В 1983 г. министерство обороны США объявило о переходе к технологии Интернет. Это означало, что с данного момента все компьютеры, присоединенные к глобальной сети, должны использовать стек TCP/IP.

Существует много причин, почему протоколы TCP/IP были выбраны за основы сети Интернет. Это прежде всего возможность работы с указанными протоколами как в локальных, так и глобальных сетях. Кроме того, эти протоколы обеспечивают взаимодействие компьютеров, работающих под управлением различных операционных систем.

Как уже указывалось выше, задачей протокола IP является маршрутизация пакетов сообщений. Маршрутизация между локальными сетями осуществляется в соответствии с IP-адресами. IP-адрес назначается администратором сети во время конфигурации компьютеров и маршрутизаторов. IP-адрес состоит из двух частей: номера локальной сети и номера хоста в ней. Хост представляет собой объект сети, который может передавать и принимать IP-адреса, например, компьютер или маршрутизатор.

Номер локальной сети как составной части Интернет назначается по рекомендации специального подразделения Интернет- Internet Network Information Center (InterNIC). Обычно диапазоны адресов у InterNIC получают специальные организации, занимающиеся поставкой услуг Интернет, - провайдеры. Последние распределяют IP-адреса между своими абонентами. Номер хоста в локальной сети администратор назначает произвольно. IP-адрес имеет длину 4 байта и обычно записывается в виде четырех чисел, представляющих значение каждого байта в десятичной форме и разделенных точками (например, 128.9.1.28). Все IP-адрееа, а значит, и подключаемые к Интернет сети, делятся на четыре класса: класс А, класс В, класс D и класс Е. Сети класса А предназначены главным образом для использования крупными организациями, так как количество таких сетей- 126. Но количество хостов в них составляет 16 777 216. Класс В имеет 65 536 сетей и такое же количество хостов. Класс С определяет 16 777 216 сетей и всего лишь по 256 компьютеров в каждой сети. Сети класса D - это особый класс, т.е. такие IP-адреса присваиваются специфическим сетям, а класс Е зарезервирован для будущих применений.

Поскольку при работе в сети Интернет использовать цифровую адресацию сетей крайне неудобно, то вместо цифр используются символьные имена, называемые доменными именами.

Доменом называется группа компьютеров, объединенных одним именем. Символьные имена дают пользователю возможность лучше ориентироваться в киберпро-странстве Интернет, поскольку запомнить имя всегда проще, чем цифровой адрес. Для преобразования имен в цифровой адрес разработана специальная система DNS (Domain Name System), для реализации которой был создан специальный сетевой протокол DNS. Кроме того, в сети созданы специальные информационно-поисковые компьютеры-серверы (DNS-серверы). DNS-серверы обеспечивают однозначное соответствие между символьными адресами и физическими цифровыми IP-адресами, передаваемыми по сети Интернет. Каждый домен должен иметь свой DNS-сервер. В результате этого в сети Интернет функционирует огромное количество DNS-серверов, которые хранят имена хостов (поддоменов) своего домена. Как и цифровой IP-адрес, имя сервера разделяется точками для удобства построения иерархии в домене на основании имен. По правилам построения имени иерархия задается справа налево. Например, в адресе www.microsoft.com домен верхнего уровня com. По имени можно получить информацию о профиле организации или ее местоположении. Шесть доменов высшего уровня определены следующим образом: gov - правительственные организации, mil - военные организации, edu - образовательные организации, com - коммерческие организации, org - общественные организации, net - организации, предоставляющие сетевые услуги, как правило, региональные сетевые организации.

Кроме того, все страны мира имеют свое собственное символьное имя, обозначающее домен верхнего уровня этой страны. Например, by-Беларусь, de-Германия, us-США, ru-Россия и т.д.