Операционная система - это посредник между компьютером и пользователем, обеспечивающий их взаимодействие и отвечающий за выполнение программ. Самые известные представители: Linux, Microsoft, Mac OS и так далее. В данной статье мы рассмотрим состав и функции Речь пойдет об общих параметрах без привязки к конкретной ОС.

Из чего состоит операционная система?

Прежде чем рассказать о том, какие бывают функции операционных систем, мы рассмотрим, из чего она состоит.

  1. Программный модуль, который управляет системой файлов.
  2. Драйверы для устройств. Они обеспечивают корректную работу каждого аппаратного элемента компьютера, а также информационный обмен с другими устройствами.
  3. Процессор, отвечающий на команды пользователя.
  4. Сервисные программы. При их помощи есть возможность работать в компьютерных сетях с дисками и файлами.
  5. Модули, обеспечивающие графическую оболочку для пользователя.
  6. Справочная система, помогающая найти ответ на любой вопрос относительно операционной системы и работы с ней.

Функции операционных систем могут меняться в зависимости от вида последних. Классификаций довольно много. Приведем основные.

1. По числу одновременно работающих пользователей ОС бывают: однопользовательские (старые версии, например, MS-DOS, Windows 3.x, ранние версии OS/2) и многопользовательские (например, UNIX, Windows NT).

2. По количеству одновременно выполняемых задач: однозадачные (например, MSX, MS-DOS) и многозадачные Windows 95, UNIX).

Что делает операционная система?

Рассмотрим теперь основные функции операционной системы:

  • выполнение команд пользователя по запросу (запуск и закрытие программ, ввод и вывод информации, освобождение дополнительной памяти и так далее);
  • доступ к (принтеру, мыши, клавиатуре и так далее);
  • загрузка программного обеспечения в оперативную память и его выполнение;
  • осуществление памятью;
  • сохранение данных об ошибках и сбоях в системе;
  • обеспечение интерфейса для пользователя;
  • осуществление доступа к другим носителям информации и управление ним.

То есть все действия, осуществляемые человеком посредством инструментов ввода, производятся компьютером при помощи ОС. Она позволяет обеспечить удобный Также существуют и дополнительные функции операционных систем:

  • многозадачность;
  • разграничение прав доступа;
  • эффективное распределение ресурсов между процессами;
  • защита системы и данных пользователя;
  • взаимодействие между процессорами и их синхронизация.

Системная оболочка, к которой мы так привыкли, предоставляет нам возможность комфортного пользования ресурсами компьютера. Назначение и функции операционных систем - удобство общения с машиной, структуризация и автоматизация процессов. С годами разработчики и создатели оболочек для персональных компьютеров упрощают нам, обычным пользователям, программистам, жизнь за счет введения новых возможностей и сокращения ручной работы. Бытует даже мнение, что в ближайшем будущем машины во многом заменят человека.

2.Понятие файловой системы.

3. Управление установкой, исполнением и удалением приложений

4. Обеспечение взаимодействия с аппаратным обеспечением

5. Обслуживание компьютера

6. Прочие функции операционных систем

1.НАЗНАЧЕНИЕ И ОСНОВНЫЕ ФУНКЦИИ ОПЕРАЦИОННЫХ СИСТЕМ

Операционная система представляет комплекс системных и служебных программных средств. С одной стороны, она опирается на базовое программное обеспечение компьютера, входящее в его систему BIOS (базовая система ввода-вывода), с другой стороны, она сама является опорой для программного обеспечения более высоких уровней - прикладных и большинства служебных приложений.

Приложениями операционной системы принято называть программы, предназначенные для работы под управлением данной системы.

Операционная система предназначена для управления выполнением пользовательских программ, планирования и управления вычислительными ресурсами ЭВМ.

Операционные системы для персональных компьютеров делятся на:

· одно- и многозадачные;

· одно- и многопользовательские;

· непереносимые и переносимые на другие типы компьютеров;

· несетевые и сетевые, обеспечивающие работу в локальной вычислительной сети ЭВМ.

Основная функция всех операционных систем - посредническая. Она заключаются в обеспечении нескольких видов интерфейса:

· интерфейса между пользователем и программно-аппаратными средствами компьютера (интерфейс пользователя);

· интерфейса между программным и аппаратным обеспечением (аппаратно -программный интерфейс);

· интерфейса между разными видами программного обеспечения (программный интерфейс).

Даже для одной аппаратной платформы, например такой, как IBM PC, существует несколько операционных систем. Различия между ними рассматривают в двух категориях: внутренние и внешние. Внутренние различия характеризуются методами реализации основных функций. Внешние различия определяются наличием и доступностью приложений данной системы, необходимых для удовлетворения технических требований, предъявляемых к конкретному рабочему месту.

1.1.Обеспечение интерфейса пользователя

1.1.1.Режимы работы с компьютером

Все операционные системы способны обеспечивать как пакетный, так и диалоговый режим работы с пользователем.

В пакетном режиме операционная система автоматически исполняет заданную последовательность команд.

Суть диалогового режима состоит в том, что операционная система находится в ожидании команды пользователя и, получив ее, приступает к исполнению, а исполнив, возвращает отклик и ждет очередной команды.

Диалоговый режим работы основан на использовании прерываний процессора и прерываний BIOS. Опираясь на эти аппаратные прерывания, операционная система создает свой комплекс системных прерываний. Способность операционной системы прервать текущую работу и отреагировать на события, вызванные пользователем с помощью управляющих устройств, воспринимается нами как диалоговый режим работы.

1.1.2.Виды интерфейсов пользователя

По реализации интерфейса пользователя различают неграфические и графические операционные системы.

Неграфические операционные системы реализуют интерфейс командной строки.

Графические операционные системы реализуют более сложный тип интерфейса, в котором в качестве органа управления кроме клавиатуры может использоваться мышь или адекватное устройство позиционирования. Работа с графической операционной системой основана на взаимодействии активных и пассивных экранных элементов управления. В качестве активного элемента управления выступает указатель мыши - графический объект, перемещение которого на экране синхронизировано с перемещением мыши. В качестве пассивных элементов управления выступают графические элементы управления приложений

Характер взаимодействия между активными и пассивными элементами управления выбирает сам пользователь.

1.2. Обеспечение автоматического запуска

Все операционные системы обеспечивают свой автоматический запуск. Для дисковых операционных систем в специальной (системной) области диска создается запись программного кода. Обращение к этому коду выполняют программы, находящиеся в базовой системе ввода-вывода (BIOS). Завершая свою работу, они дают команду на загрузку и исполнение содержимого системной области диска.

Недисковые операционные системы характерны для специализированных вычислительных систем, в частности для компьютеризированных устройств автоматического управления. Математическое обеспечение, содержащееся в микросхемах ПЗУ таких компьютеров, можно условно рассматривать как аналог операционной системы. Ее автоматический запуск осуществляется аппаратно. При подаче питания процессор обращается к фиксированному физическому адресу ПЗУ (его можно изменять аппаратно с использованием логических микросхем), с которого начинается запись программы инициализации операционной системы.

2.ПОНЯТИЕ ФАЙЛОВОЙ СИСТЕМЫ.

2.1. Организация файловой системы

Все современные дисковые операционные системы обеспечивают создание файловой системы, предназначенной для хранения данных на дисках и обеспечения доступа к ним. Принцип организации файловой системы - табличный. Поверхность жесткого диска рассматривается как трехмерная матрица, измерениями которой являются номера поверхности, цилиндра и сектора.

Под цилиндром понимается совокупность всех дорожек, принадлежащих разным поверхностям и находящихся на равном удалении от оси вращения. Данные о том, в каком месте диска записан тот или иной файл, хранятся в системной области диска в специальных таблицах размещения файлов (FAT-таблицах). Поскольку нарушение FAT-таблицы приводит к невозможности воспользоваться данными, записанными на диске, к ней предъявляются особые требования надежности, и она существует в двух экземплярах, идентичность которых регулярно контролируется средствами операционной системы.

Наименьшей физической единицей хранения данных является сектор. Размер сектора равен 512 байт. Поскольку размер FAT-таблицы ограничен, то для дисков, размер которых превышает 32 Мбайт, обеспечить адресацию к каждому отдельному сектору не представляется возможным. В связи с этим группы секторов условно объединяются в кластеры. Кластер является наименьшей единицей адресации к данным. Размер кластера, в отличие от размера сектора, не фиксирован и зависит от емкости диска.

Операционные системы MS-DOS, OS/2, Windows 95 и Windows NT реализуют 16-разрядные поля в таблицах размещения файлов. Такая файловая система называется FAT 16. Она позволяет разместить в.FAT-таблицах не более 2 16 записей о местоположении единиц хранения данных и, соответственно, для дисков объемом от 1 до 2 Гбайт длина кластера составляет 32 Кбайт (64 сектора). Это не вполне рациональный расход рабочего пространства, поскольку любой файл (даже очень маленький) полностью оккупирует весь кластер, которому соответствует только одна адресная запись в таблице размещения файлов. Даже если файл достаточно велик и располагается в нескольких кластерах, все равно в его конце образуется некий остаток, нерационально расходующий целый кластер.

Для современных жестких дисков потери, связанные с неэффективностью файловой системы, весьма значительны и могут составлять от 25% до 40% полной емкости диска, в зависимости от среднего размера хранящихся файлов. С дисками же размером более 2 Гбайт файловая система FAT 16 вообще работать не может.

2.2. Обслуживание файловой структуры

Несмотря на то что данные о местоположении файлов хранятся в табличной структуре, пользователю они представляются в виде иерархической структуры - людям так удобнее, а все необходимые преобразования берет на себя операционная система. К функции обслуживания файловой структуры относятся следующие операции, происходящие под управлением операционной системы:

§ создание файлов и присвоение им имен;

§ создание каталогов (папок) и присвоение им имен;

§ переименование файлов и каталогов (папок);

§ копирование и перемещение файлов между дисками компьютера и между каталогами (папками) одного диска;

§ удаление файлов и каталогов (папок);

§ навигация по файловой структуре с целью доступа к заданному файлу, каталогу (папке);

§ управление атрибутами файлов.

2.3. Создание и именование файлов

Файл - это именованная последовательность байтов произвольной длины. Поскольку из этого определения вытекает, что файл может иметь нулевую длину, то фактически создание файла состоит в присвоении ему имени и регистрации его в файловой системе - это одна из функций операционной системы.

По способам именования файлов различают «короткое» и «длинное» имя. Согласно соглашению 8.3, принятому в MS-DOS, имя файла состоит из двух частей: собственно имени и расширения имени. На имя файла отводится 8 символов, а на его расширение - 3 символа. Имя от расширения отделяется точкой. Как имя, так и расширение могут включать только алфавитно-цифровые символы латинского алфавита.

Соглашение 8.3 не является стандартом, и потому в ряде случаев отклонения от правильной формы записи допускаются как операционной системой, так и ее приложениями(например, в большинстве случаев система «не возражает» против использования некоторых специальных символов, а некоторые версии MS-DOS даже допускают использование в именах файлов символов русского и других алфавитов). Сегодня имена файлов, записанные в соответствии с соглашением 8.3, считаются «короткими».

Основным недостатком «коротких» имен является их низкая содержательность. С появлением операционной системы Windows 95 было введено понятие «длинного» имени. Такое имя может содержать до 256 символов. «Длинное» имя может содержать любые символы, кроме девяти специальных: \ / : * ? " < > |.В имени разрешается использовать пробелы и несколько точек. Расширением имени считаются все символы, идущие после последней точки.

Наряду с «длинным» именем операционные системы Windows 95,98,2000 создают также и короткое имя файла - оно необходимо для возможности работы с данным файлом на рабочих местах с устаревшими операционными системами.

Использование «длинных» имен файлов в операционных системах Windows имеет ряд особенностей.

1. Если «длинное» имя файла включает пробелы, то в служебных операциях его надо заключать в кавычки. Рекомендуется не использовать пробелы, а заменять их символами подчеркивания.

2. В корневой папке диска нежелательно хранить файлы с длинными именами - в отличие от прочих папок в ней ограничено количество единиц хранения, причем, чем длиннее имена, тем меньше файлов можно разместить в корневой папке.

3. Кроме ограничения на длину имени файла (256 символов) существует гораздо более жесткое ограничение на длину полного имени файла (в него входит путь доступа к файлу, начиная от вершины иерархической структуры). Полное имя не может быть длиннее 260 символов.

4. Разрешается использовать символы любых алфавитов, в том числе и русского.

5. Прописные и строчные буквы не различаются операционной системой. Однако символы разных регистров исправно отображаются операционной системой, и, если для наглядности надо использовать прописные буквы, это можно делать.

6. В современных операционных системах любое расширение имени файла может нести информацию для операционной системы. Системы Windows имеют средства для регистрации свойств типов файлов по расширению их имени, поэтому во многих случаях выбор расширения имени файла не является частным делом пользователя. Приложения этих систем предлагают выбрать только основную часть имени и указать тип файла, а соответствующее расширение имени приписывают автоматически.

2.4. Создание каталогов (папок)

Каталоги (папки) - важные элементы иерархической структуры, необходимые для обеспечения удобного доступа к файлам, если файлов на носителе слишком много. Файлы объединяются в каталоги по любому общему признаку, заданному их создателем (по типу, по принадлежности, по назначению, по времени создания и т. п.). Каталоги низких уровней вкладываются в каталоги более высоких уровней и являются для них вложенными. Верхним уровнем вложенности иерархической структуры является корневой каталог диска.

Мы знаем, что в иерархических структурах данных адрес объекта задается маршрутом (путем доступа), ведущим от вершины структуры к объекту. При записи пути доступа к файлу, проходящего через систему вложенных каталогов, все промежуточные каталоги разделяются между собой определенным символом. Во многих операционных системах в качестве такого символа используется «\», например:

2.4.1.Особенности Windows

До появления операционной системы Windows 95 при описании иерархической файловой структуры использовался введенный выше термин каталог. С появлением этой системы был введен новый термин - папка. В том, что касается обслуживания файловой структуры носителя данных, эти термины равнозначны: каждому каталогу файлов на диске соответствует одноименная папка операционной системы. Основное отличие понятий папка и каталог проявляется не в организации хранения файлов, а в организации хранения объектов иной природы.

2.5.Копирование и перемещение файлов.

В неграфических операционных системах операции копирования и перемещения файлов выполняются вводом прямой команды в поле командной строки.

В графических операционных системах существуют приемы работы с устройством позиционирования, позволяющие выполнять эти команды наглядными методами.

2.6.Навигация по файловой структуре

Навигация по файловой структуре является одной из наиболее используемых функций операционной системы. Удобство этой операции часто воспринимают как удобство работы с операционной системой. В операционных системах, имеющих интерфейс командной строки, навигацию осуществляют путем ввода команд перехода с диска на диск или из каталога в каталог. В связи с крайним неудобством такой навигации, широкое применение нашли специальные служебные программы, называемые файловыми оболочками.

Как и операционные системы, файловые оболочки бывают неграфическими и графическими. Наиболее известная неграфическая файловая оболочка для MS-DOS -диспетчер файлов Norton Commander , а роль графической файловой оболочки для MS-DOS в свое время исполняли программы Windows 1.0 и Windows 2.0, которые постепенно развились до понятия операционной среды (в версиях Windows 3.x) и далее до самостоятельной операционной системы (Windows 95/98).

3. УПРАВЛЕНИЕ УСТАНОВКОЙ, ИСПОЛНЕНИЕМ И УДАЛЕНИЕМ ПРИЛОЖЕНИЙ

3.1.Понятие многозадачности

Работа с приложениями составляет наиболее важную часть работы операционной системы. С точки зрения управления исполнением приложений, различают однозадачные и многозадачные операционные системы.

Однозадачные операционные системы (например, MS-DOS) передают все ресурсы вычислительной системы одному исполняемому приложению и не допускают ни параллельного выполнения другого приложения (полная многозадачность), ни его приостановки и запуска другого приложения (вытесняющая многозадачность). В то же время параллельно с однозадачными операционными системами возможна работа специальных программ, называемых резидентными. Такие программы не опираются на операционную систему, а непосредственно работают с процессором, используя его систему прерываний.

Большинство современных графических операционных систем - многозадачные. Они управляют распределением ресурсов вычислительной системы между задачами и обеспечивают:

§ возможность одновременной или поочередной работы нескольких приложений;

§ возможность обмена данными между приложениями;

§ возможность совместного использования программных, аппаратных, сетевых и прочих ресурсов вычислительной системы несколькими приложениями.

3.2.Вопросы надежности

От того, как операционная система управляет работой приложений, во многом зависит надежность всей вычислительной системы. Операционная система должна предоставлять возможность прерывания работы приложений по желанию пользователя и снятия сбойной задачи без ущерба для работы других приложений. При этом требование надежности операционной системы может входить в противоречие с требованием ее универсальности.

Так, например, наиболее универсальные операционные системы Windows 95,98,2000 могут испытывать общесистемные сбои из-за работы с приложениями, недостаточно четко соблюдающими спецификацию операционной системы. Операционные системы Windows NT , OS/2 и XP обладают повышенной устойчивостью и не выходят из строя при сбое приложений, но имеют меньшую универсальность, и, соответственно, парк доступных приложений для них ограничен.

Поэтому общепринятой является практика, когда программа разрабатывается и отлаживается в операционной системе Windows NT,XP, а ее окончательная сборка и компиляция выполняются в Windows 95/98, 2000.

3.3.Установка приложений

Для правильной работы приложений на компьютере они должны пройти операцию, называемую установкой. Таким образом, дистрибутивный комплект (установочный пакет) программного обеспечения, как правило, представляет собой не законченный программный продукт, а полуфабрикат, из которого в процессе установки на компьютере формируется полноценное рабочее приложение. При этом осуществляется привязка приложения к существующей аппаратно-программной среде и его настройка на работу именно в этой среде.

Устаревшие операционные системы (например, MS-DOS) не имеют средств для управления установкой приложений.

Современные графические операционные системы берут на себя управление установкой приложений. Они управляют распределением ресурсов вычислительной системы между приложениями, обеспечивают доступ устанавливаемых приложений к драйверам устройств вычислительной системы, формируют общие ресурсы, которые могут использоваться разными приложениями, выполняют регистрацию установленных приложений и выделенных им ресурсов.

3.4.Удаление приложений

Процесс удаления приложений, как и процесс установки, имеет свои особенности и может происходить под управлением вычислительной системы. В таких операционных системах, где каждое приложение самообеспечено собственными ресурсами (например, в MS-DOS), его удаление не требует специального вмешательства операционной системы. Для этого достаточно удалить каталог, в котором размещается приложение, со всем его содержимым.

В операционных системах, реализующих принцип совместного использования ресурсов (например, в Windows 95/98), процесс удаления приложений имеет особенности. Нельзя допустить, чтобы при удалении одного приложения были удалены ресурсы, на которые опираются другие приложения, даже если эти ресурсы были когда-то установлены вместе с удаляемым приложениям. В связи с этим удаление приложений происходит под строгим контролем операционной системы.

4. ОБЕСПЕЧЕНИЕ ВЗАИМОДЕЙСТВИЯ С АППАРАТНЫМ ОБЕСПЕЧЕНИЕМ

Средства аппаратного обеспечения вычислительной техники отличаются гигантским многообразием. Ни один разработчик программного обеспечения не в состоянии предусмотреть все варианты взаимодействия их со своей программой.

Гибкость аппаратных и программных конфигураций вычислительных систем поддерживается за счет того, что каждый разработчик оборудования прикладывает к нему специальные программные средства управления - драйверы. Драйверы имеют точки входа для взаимодействия с прикладными программами, а диспетчеризация обращений прикладных программ к драйверам устройств - это одна из функций операционной системы. Строго говоря, выпуская устройство, его разработчик прикладывает к нему несколько драйверов, предназначенных для основных операционных систем, как-то: Windows 95/98, Windows NT, MS-DOS и т. п.

В операционных системах MS-DOS драйверы устройств загружаются как резидентные программы, напрямую работающие с процессором и другими устройствами материнской платы. Загрузка драйверов устройств может быть ручной или автоматической, когда команды на загрузку и настройку драйверов включаются в состав файлов, автоматически читаемых при загрузке компьютера.

В таких операционных системах, как Windows 95/98 и Windows NT, операционная система берет на себя все функции по установке драйверов устройств и передаче им управления от приложений. Во многих случаях операционная система даже не нуждается в драйверах, полученных от разработчика устройства, а использует драйверы из собственной базы данных.

Каждое подключенное устройство может использовать до трех аппаратных ресурсов устройств материнской платы: адресов внешних портов процессора, прерываний процессора и каналов прямого доступа к памяти. Если устройство подключается к материнской плате через шину PCI, то есть техническая возможность организовать между ним и материнской платой обратную связь. Это позволяет операционной системе анализировать требования устройств о выделении им ресурсов и гибко реагировать на них, исключая захват одних и тех же ресурсов разными устройствами. Такой принцип динамического распределения ресурсов операционной системой получил название plug-and-play, а устройства, удовлетворяющие этому принципу, называются самоустанавливающимися.

Если же устройство подключается к устаревшей шине ISA и не является самоустанавливающимся, то в этом случае операционная система не может динамически выделять ему ресурсы, но, тем не менее, при распределении ресурсов для самоустанавливающихся устройств, она учитывает ресурсы, захваченные им.

5. ОБСЛУЖИВАНИЕ КОМПЬЮТЕРА

Предоставление основных средств обслуживания компьютера - одна из функций операционной системы, она решается внешним образом - включением в базовый состав операционной системы первоочередных служебных приложений.

5.1.Средства проверки дисков

Надежность работы дисков (особенно жесткого диска) определяет не только надежность работы компьютера в целом, но и безопасность хранения данных, ценность которых может намного превышать стоимость самого компьютера. Поэтому наличие средств для проверки дисков является обязательным требованием к любой операционной системе.

Средства проверки принято рассматривать в двух категориях: средства логической проверки, то есть проверки целостности файловой структуры, и средства физической диагностики поверхности. Логические ошибки, как правило, устраняются средствами самой операционной системы, а физические дефекты поверхности только локализуются.

Логические ошибки файловой структуры имеют два характерных проявления: это потерянные кластеры или общие кластеры. Потерянные кластеры образуются в результате неправильного (или аварийного) завершения работы с компьютером. Кроме того, в операционных системах Windows также нельзя выключать компьютер, если не исполнена специальная процедура завершения работы с операционной системой.

Ошибка, проявляющаяся как общие кластеры, характеризуется тем, что, согласно данным FAT-таблиц, два или более файлов претендуют на то, что их данные находятся в одном и том же месте диска. При нормальной работе такой ситуации быть не может, и это свидетельствует об ошибке в.FAT-таблицах. Причиной появления общих кластеров может стать самопроизвольное изменение данных в FAT-таблицах или некорректное восстановление ранее удаленных данных с помощью внесистемных средств.

5.2.Средства «сжатия» дисков

Некоторые операционные системы предоставляют служебные средства для программного «сжатия» дисков путем записи данных на диск в уплотненном виде посредством специального драйвера (резидентного для MS-DOS или работающего в фоновом режиме для Windows).

5.3.Средства управления виртуальной памятью

Ранние операционные системы ограничивали возможность использования приложений по объему необходимой для их работы оперативной памяти.

Современные операционные системы не только обеспечивают непосредственный доступ ко всему полю оперативной памяти, установленной в компьютере, но и позволяют ее расширить за счет создания так называемой виртуальной памяти на жестком диске. Виртуальная память реализуется в виде так называемого файла подкачки. В случае недостаточности оперативной памяти для работы приложения часть ее временно опорожняется с сохранением образа на жестком диске. В процессе работы приложений происходит многократный обмен между основной установленной оперативной памятью и файлом подкачки.

5.4.Средства кэширования дисков

Поскольку, взаимодействие процессора с дисками компьютера происходит намного медленнее операций обмена с оперативной памятью, операционная система принимает специальные меры по сохранению части прочитанных с диска данных в оперативной памяти. В случае, если по ходу работы процессору вновь потребуется обратиться к ранее считанным данным или программному коду, он может найти их в специальной области ОЗУ, называемой дисковым кэшем. В современных операционных системах эту функцию включают в ядро системы, и она работает автоматически, без участия пользователя, хотя определенная возможность настройки размера кэша за ним сохраняется.

5.5.Средства резервного копирования данных

Ценность данных, размещенных на компьютере, принято измерять совокупностью затрат, которые может понести владелец в случае их утраты. Важным средством защиты данных является регулярное резервное копирование на внешний носитель. В связи с особой важностью этой задачи операционные системы обычно содержат базовые средства для выполнения

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-02

Аннотация: Функции операционной системы. Структура операционной системы. Классификация операционных систем. Требования к операционным системам.

Операционная система (operating system ) – комплекс программ, предоставляющий пользователю удобную среду для работы с компьютерным оборудованием.

Операционная система позволяет запускать пользовательские программы; управляет всеми ресурсами компьютерной системы – процессором (процессорами), оперативной памятью, устройствами ввода вывода; обеспечивает долговременное хранение данных в виде файлов на устройствах внешней памяти; предоставляет доступ к компьютерным сетям.

Для более полного понимания роли операционной системы рассмотрим составные компоненты любой вычислительной системы (рис.1.1).


Рис. 1.1.

Все компоненты можно разделить на два больших класса – программы или программное обеспечение ( ПО , software ) и оборудование или аппаратное обеспечение ( hardware ). Программное обеспечение делится на прикладное, инструментальное и системное. Рассмотрим кратко каждый вид ПО .

Цель создания вычислительной системы – решение задач пользователя. Для решения определенного круга задач создается прикладная программа ( приложение , application ). Примерами прикладных программ являются текстовые редакторы и процессоры (Блокнот, Microsoft Word ), графические редакторы ( Paint , Microsoft Visio), электронные таблицы (Microsoft Excel ), системы управления базами данных (Microsoft Access, Microsoft SQL Server ), браузеры ( Internet Explorer) и т. п. Все множество прикладных программ называется прикладным программным обеспечением ( application software ).

Создается программное обеспечение при помощи разнообразных средств программирования (среды разработки, компиляторы, отладчики и т. д.), совокупность которых называется инструментальным программным обеспечением. Представителем инструментального ПО является среда разработки Microsoft Visual Studio .

Основным видом системного программного обеспечения являются операционные системы. Их основная задача – обеспечить интерфейс (способ взаимодействия) между пользователем и приложениями с одной стороны, и аппаратным обеспечением с другой. К системному ПО относятся также системные утилиты – программы, которые выполняют строго определенную функцию по обслуживанию вычислительной системы, например, диагностируют состояние системы , выполняют дефрагментацию файлов на диске, осуществляют сжатие ( архивирование ) данных. Утилиты могут входить в состав операционной системы.

Взаимодействие всех программ с операционной системой осуществляется при помощи системных вызовов ( system calls) – запросов программ на выполнение операционной системой необходимых действий. Набор системных вызовов образует API – Application Programming Interface ( интерфейс прикладного программирования).

Функции операционной системы

К основным функциям, выполняемым операционными системами, можно отнести:

  • обеспечение выполнения программ – загрузка программ в память, предоставление программам процессорного времени, обработка системных вызовов;
  • управление оперативной памятью – эффективное выделение памяти программам, учет свободной и занятой памяти;
  • управление внешней памятью – поддержка различных файловых систем;
  • управление вводом-выводом – обеспечение работы с различными периферийными устройствами;
  • предоставление пользовательского интерфейса;
  • обеспечение безопасности – защита информации и других ресурсов системы от несанкционированного использования;
  • организация сетевого взаимодействия.

Структура операционной системы

Перед изучением структуры операционных систем следует рассмотреть режимы работы процессоров.

Современные процессоры имеют минимум два режима работы – привилегированный (supervisor mode) и пользовательский (user mode).

Отличие между ними заключается в том, что в пользовательском режиме недоступны команды процессора, связанные с управлением аппаратным обеспечением, защитой оперативной памяти, переключением режимов работы процессора. В привилегированном режиме процессор может выполнять все возможные команды.

Приложения, выполняемые в пользовательском режиме, не могут напрямую обращаться к адресным пространствам друг друга – только посредством системных вызовов.

Все компоненты операционной системы можно разделить на две группы – работающие в привилегированном режиме и работающие в пользовательском режиме, причем состав этих групп меняется от системы к системе.

Основным компонентом операционной системы является ядро (kernel). Функции ядра могут существенно отличаться в разных системах; но во всех системах ядро работает в привилегированном режиме (который часто называется режим ядра, kernel mode).

Термин "ядро" также используется в разных смыслах. Например, в Windows термин "ядро" (NTOS kernel) обозначает совокупность двух компонентов – исполнительной системы (executive layer) и собственно ядра (kernel layer) .

Существует два основных вида ядер – монолитные ядра (monolithic kernel) и микроядра (microkernel). В монолитном ядре реализуются все основные функции операционной системы, и оно является, по сути, единой программой, представляющей собой совокупность процедур . В микроядре остается лишь минимум функций, который должен быть реализован в привилегированном режиме: планирование потоков, обработка прерываний, межпроцессное взаимодействие. Остальные функции операционной системы по управлению приложениями, памятью, безопасностью и пр. реализуются в виде отдельных модулей в пользовательском режиме.

Ядра, которые занимают промежуточные положение между монолитными и микроядрами, называют гибридными (hybrid kernel).

Примеры различных типов ядер:

  • монолитное ядро – MS-DOS, Linux, FreeBSD;
  • микроядро – Mach, Symbian, MINIX 3;
  • гибридное ядро – NetWare, BeOS, Syllable.

Обсуждение того, к какому типу относится ядро Windows NT, приведено в [ ; ]. В говорится о том, что Windows NT имеет монолитное ядро, однако, поскольку в Windows NT имеется несколько ключевых компонентов, работающих в пользовательском режиме (например, подсистемы окружения и системные процессы – см. Лекцию 4 "Архитектура Windows"), то относить Windows NT к истинно монолитным ядрам нельзя, скорее к гибридным.

Кроме ядра в привилегированном режиме (в большинстве операционных систем) работают драйверы (driver) – программные модули, управляющие устройствами.

В состав операционной системы также входят:

  • системные библиотеки (system DLL – Dynamic Link Library, динамически подключаемая библиотека), преобразующие системные вызовы приложений в системные вызовы ядра;
  • пользовательские оболочки (shell), предоставляющие пользователю интерфейс – удобный способ работы с операционной системой.

Пользовательские оболочки реализуют один из двух основных видов пользовательского интерфейса:

  • текстовый интерфейс (Text User Interface, TUI), другие названия – консольный интерфейс (Console User Interface, CUI), интерфейс командной строки (Command Line Interface, CLI);
  • графический интерфейс (Graphic User Interface, GUI).

Пример реализации текстового интерфейса в Windows – интерпретатор командной строки cmd.exe; пример графического интерфейса – Проводник Windows (explorer.exe).

Классификация операционных систем

Классификацию операционных систем можно осуществлять несколькими способами.

  1. По способу организации вычислений:
    • системы пакетной обработки (batch processing operating systems) – целью является выполнение максимального количества вычислительных задач за единицу времени; при этом из нескольких задач формируется пакет, который обрабатывается системой;
    • системы разделения времени (time-sharing operating systems) – целью является возможность одновременного использования одного компьютера несколькими пользователями; реализуется посредством поочередного предоставления каждому пользователю интервала процессорного времени;
    • системы реального времени (real-time operating systems) – целью является выполнение каждой задачи за строго определённый для данной задачи интервал времени.
  2. По типу ядра:
    • системы с монолитным ядром (monolithic operating systems);
    • системы с микроядром (microkernel operating systems);
    • системы с гибридным ядром (hybrid operating systems).
  3. По количеству одновременно решаемых задач:
    • однозадачные (single-tasking operating systems);
    • многозадачные (multitasking operating systems).
  4. По количеству одновременно работающих пользователей:
    • однопользовательские (single-user operating systems);
    • многопользовательские (multi-user operating systems).
  5. По количеству поддерживаемых процессоров:
    • однопроцессорные (uniprocessor operating systems);
    • многопроцессорные (multiprocessor operating systems).
  6. По поддержке сети:
    • локальные (local operating systems) – автономные системы, не предназначенные для работы в компьютерной сети;
    • сетевые (network operating systems) – системы, имеющие компоненты, позволяющие работать с компьютерными сетями.
  7. По роли в сетевом взаимодействии:
    • серверные (server operating systems) – операционные системы, предоставляющие доступ к ресурсам сети и управляющие сетевой инфраструктурой;
    • клиентские (client operating systems) – операционные системы, которые могут получать доступ к ресурсам сети.
  8. По типу лицензии:
    • открытые (open-source operating systems) – операционные системы с открытым исходным кодом, доступным для изучения и изменения;
    • проприетарные (proprietary operating systems) – операционные системы, которые имеют конкретного правообладателя; обычно поставляются с закрытым исходным кодом.
  9. По области применения:
    • операционные системы мэйнфреймов – больших компьютеров (mainframe operating systems);
    • операционные системы серверов (server operating systems);
    • операционные системы персональных компьютеров (personal computer operating systems);
    • операционные системы мобильных устройств (mobile operating systems);
    • встроенные операционные системы (embedded operating systems);
    • операционные системы маршрутизаторов (router operating systems).

Требования к операционным системам

Основное требование, предъявляемое к современным операционным системам – выполнение функций, перечисленных выше в параграфе "Функции операционных систем". Кроме этого очевидного требования существуют другие, часто не менее важные :

  • расширяемость – возможность приобретения системой новых функций в процессе эволюции; часто реализуется за счет добавления новых модулей;
  • переносимость – возможность переноса операционной системы на другую аппаратную платформу с минимальными изменениями;
  • совместимость – способность совместной работы; может иметь место совместимость новой версии операционной системы с приложениями, написанными для старой версии, или совместимость разных операционных систем в том смысле, что приложения для одной из этих систем можно запускать на другой и наоборот;
  • надежность – вероятность безотказной работы системы;
  • производительность – способность обеспечивать приемлемые время решения задач и время реакции системы.

Резюме

В этой лекции приведено определение операционной системы, представлены виды программного обеспечения, рассмотрены функции и структура операционной системы. Особое внимание уделено понятию "ядра". Также приведены различные способы классификации операционных систем и требования, предъявляемые к современным операционным системам.

В следующей лекции будет представлен обзор операционных систем Microsoft Windows.

Контрольные вопросы

  1. Дайте определение понятию "операционная система".
  2. Назовите примеры прикладного, инструментального и системного программного обеспечения.
  3. Дайте определение понятий "системный вызов", "API", "драйвер", "ядро".
  4. Какие виды ядер вы знаете? К каким видам относятся ядра известных вам операционных систем?
  5. Чем ядро отличается от операционной системы?
  6. Приведите несколько способов классификации операционных систем.
  7. Назовите требования к современным операционным системам и объясните, что они означают.

02.05.2017

От выбора операционной системы напрямую зависит, какие возможности будут у вашего компьютера. ОС – это совокупность программ, которые обеспечивает запуск других утилит, управления данными и распределения ресурсов. Просто установить любую ОС не получится, стоит разобраться, выполнение каких функций вы на нее возлагаете.

Что должна уметь ОС компьютера

Независимо от выбора ОС, есть основные функции, которые есть в каждой из них:

  • интерфейс между ОС и пользователем;
  • запуск программ;
  • управление аппаратными ресурсами;
  • программная поддержка;
  • безопасность информации;
  • тестирование неисправностей;
  • обработка ошибок.

Разновидности операционных систем

Первая ОС MS DOS была лишена графического интерфейса, она обладала ограниченными функциями. Сначала появилась графическая оболочка Windows для MS DOS, а потом и ее полноценная замена — MS Windows 95. Все версии в разное время стали популярными и устанавливаются на компьютерах разных марок производителей по всему миру.

Следом за Windows пришла популярность Linux, которая позаимствовала у ОС UNIX идею командной строки. Стоит отметить, что Linux оснащена интерфейсом, который превосходит даже Windows, но это не повлияло на большое количество пользователей последней. Однако Linux продолжает свое восхождение и некоторых пользователей удается переманить.

Существуют и другие виды системы для компьютера, так IBM и Microsoft в далеком прошлом сотрудничали для создания ОС OS/2, позже Майкрософт ушла от разработки. Еще одна ОС MacOS работает на ПК Macintosh.

По каким параметрам оценивают операционную систему

Самое простое различие ОС – это доступность: платные и бесплатные. Linux распространяется бесплатно, Windows – платно. Две эти операционные системы с графическим интерфейсом, в отличие от MS DOS – текстовый.

Так же важно понимать, сколько задач выполняет ОС: многозадачная или однозадачная. Например, MS DOS способна работать с одной программой, а UNIX, OS/2, Windows – многозадачные, поддерживают запуск сразу несколько программ.

Не последнее место в выборе ОС занимает количество возможных пользователей. Если вы единственный пользователь тогда этот вопрос можно упустить, но если компьютер используют несколько людей, имеет смысл обратить внимание на UNIX и Windows. Подробную информацию о преимуществах каждой ОС можно узнать на сайте производителя, а о недостатках в отзывах пользователей.

ОС выступает в качестве посредника между пользователем и технической составляющей персонального компьютера. Именно на операционную систему возложено большое число функций для стабильной и эффективной работы устройства. Какие функции выполняет операционная система? Она выполняет три основных функции: распределение, осуществление текущего контроля и планирование. Операционная система многим напоминает инженеров на заводе - так же планирует, когда запускать ту или иную службу и в какой очередности, чтобы не было системного конфликта.

Функция распределения

В функции операционной системы входит очень важная функция - распределения. ОС распределяет очередность запуска тех или иных программ и приложений. Важно понимать, что каждая запущенная программа требует определенного объема памяти, поэтому запуск всех программ одновременно технически невозможен. Поэтому есть очередь запуска, которая осуществляет свою деятельность благодаря функции распределения. Кроме этого, функция распределения управляет сетевыми устройствами, устройствами ввода-вывода и прочими периферийными аппаратами.

Функция планирования

Каждая операционная система выполняет функции планирования. Как уже говорилось, персональный компьютер не в состоянии работать сразу с тысячами задач, для этого существует функция планирования. Зачастую мы одновременно работаем в текстовом редакторе, отправляем файлы на печать и сканируем документы. Так вот, чтобы все эти процессы работали, операционная система скоординирует работу всех процессов - они будут выполняться максимально эффективно и не потребуют много времени. Функции операционной системы позволяют устанавливать приоритеты выполнения задач, что, несомненно, сказывается на скорости выполнения всех процессов.

Функция контроля

Как и любая многозначная система, операционная система контролирует всю деятельность программ и прочих процессов компьютера. Отвечающая за контроль функция так и называется - функция контроля. Операционная система позволяет максимально эффективно использовать программные и технические средства. ОС отслеживает все процессы компьютера и ведет специальный журнал, в котором отражаются все процессы, в том числе какие программы запущены, используются и т.д., что позволяет мониторить всю ситуацию с персональным компьютером и предотвратить несанкционированный доступ к персональным данным. Существуют и другие функции операционной системы, мы упомянули лишь самые основные. В оперативной памяти компьютера хранится только небольшая часть ОС - ядро операционной системы, а большая часть хранится на жестком диске. Однако при выполнении какой-либо программы операционная система загружает ОЗУ. Размеры ОЗУ не безграничны, поэтому контроль за выполнением программ очень важен. Функции операционной системы максимально упрощают контроль процессов, происходящих в компьютере, и позволяют с максимальной точностью выявить проблему в случае ее возникновения.