42 43 44 45 46 47 48 49 ..

Настройка и регулировка УЗЧ

Чтобы хорошо отрегулировать УЗЧ, нужно иметь ясное представление о назначении и роли всех входящих в него элементов, понимать физические процессы, происходящие в усилителях, и уметь грамотно пользоваться измерительными приборами.

После проверки работоспособности УЗЧ покаскадно проверяют режимы усилительных элементов (транзисторов - или микросхем) по постоянному току и приступают к настройке и регулировке усилителя. Задача настройки и регулировки УЗЧ состоит в том, чтобы с помощью определенных технологических и контрольных операций, например, установления оптимальных режимов работы отдельных элементов (транзисторов, микросхем), выявления и устранения неисправностей, обеспечить выпуск усилителей, соответствующих стандарту или ТУ.

Перед началом измерений проверяют мощность, потребляемую УЗЧ при отсутствии сигнала на его входе. Для этого переключатель переводят в положение II (см. рис. 65). Мощность, потребляемая УЗЧ, определяется вольтметром V и амперметром А, включенными в цепь питания усилителя. По показаниям этих приборов определяют потребляемый ток I0 и напряжение источника питания 11. Класс точности измерительных приборов должен быть не ниже 2,5. Потребляемая УЗЧ мощность рассчитывается по формуле: Рпотр = I0Еист

На вход УЗЧ чаще всего к соответствующим выводам разъема «Магнитофон» от звукового генератора подается номинальное напряжение сигнала на частоте 1000 Гц, соответствующее номинальной мощности в нагрузке. На выходе УЗЧ параллельно звуковой катушке громкоговорителя присоединяют измерительные приборы: электронный вольтметр 6, осциллограф 7 и измеритель нелинейных искажений 8.

Необходимо убедиться в правильности действия регуляторов усиления. Для этого регулятор громкости устанавливают в положение максимального усиления, а напряжение сигнала на входе каскада увеличивают до получения на выходе УЗЧ напряжения, соответствующего номинальной выходной мощности. Затем ручку регулятора громкости ставят в положение минимального усиления (в пределах плавной регулировки) и опять определяют выходное напряжение. Отношение обоих напряжений на выходе УЗЧ, выраженное в децибелах, характеризует глубину регулировки регулятора громкости и должно соответствовать ТУ.

Покаскадную регулировку УЗЧ начинают с оконечного каскада. В схеме, показанной на рис. 62, входной сигнал от звукового генератора через конденсатор Ср поступает на базу транзистора V. Режим каскада будет определяться напряжением источника питания Ек, постоянным напряжением смещения Uбэо на базе транзистора, падения напряжения на резисторах R2 и R0 в цепи эмиттера, служащего для термостабилизации усилителя.

Налаживание такого каскада УЗЧ сводится к регулировке коллекторного тока транзистора подбором резистора R2, при одновременном измерении напряжения Uбэо которое определяется заданным режимом транзистора. Проверку каскада на отсутствие нелинейных искажений с помощью осциллографа производят, подав от звукового генератора номинальное напряжение сигнала на частоте 1000 Гц на вход оконечного каскада. Коэффициент усиления при этом должен быть максимальным. Если УЗЧ исправен и работает без нелинейных искажений, на экране осциллографа можно наблюдать неискаженную форму выходного сигнала.

При увеличении уровня входного сигнала на выходе будут появляться нелинейные искажения сигнала. На рис. 66 приведены осциллограммы изменения формы синусоидальной кривой сигнала на выходе УЗЧ при различных величинах нелинейных искажений (8, 12, 15 и 20%). Для наблюдения низкочастотного сигнала частота развертки осциллографа выбирается в пределах 200-500 Гц.

Если при номинальном входном сигнале каскад вносит нелинейные искажения (форма сигнала в нагрузке искажена), изменяют режим работы каскада. Изменением коллекторного тока (за счет изменения R2, см. рис. 62) добиваются отсутствия нелинейных искажений.

Рис. 66. Осциллограммы изменений формы синусоидальной кривой сигнала на выходе усилителя при различных величинах нелинейных искажений

Настройку двухтактных выходных каскадов начинают, подав напряжение сигнала от генератора к фазоинверсному каскаду. Предварительное налаживание двухтактного оконечного каскада УЗЧ (см. рис. 64) на транзисторах производят, подбирая идентичные транзисторы или регулируя напряжение смещения с помощью резисторов 1-R13 и 1-R14 в базовых цепях. Условием нормальной работы двухтактного оконечного каскада является симметрия его плеч по постоянному и переменному токам. Следует помнить, что отсутствие симметрии плеч приводит к появлению нелинейных искажений и уменьшению динамического диапазона усилителя из-за плохой компенсации фона переменного тока, помех и т. д.

Регулировка фазоинверсных каскадов (см. рис. 61) заключается в установлении одинаковых значений выходного напряжения, сдвинутых одно относительно другого на 180°. Это осуществляют подбором сопротивлений резисторов в цепях коллектора и эмиттера. Настройка предварительных каскадов УЗЧ заключается в обеспечении типового режима работы транзисторов подбором сопротивлений резисторов R2 и R3 (см. рис. 60).

Окончательный этап налаживания УЗЧ заключается в подборе элементов цепей отрицательной обратной связи. Если в процессе регулировки предварительных каскадов УЗЧ выяснится, что чувствительность усилителя излишне велика, усиление можно уменьшить введением более глубокой обратной связи.

В ряде случаев для получения наиболее приятного звучания производят коррекцию частотной характеристики на низких частотах подбором переходных конденсаторов. Номинальная емкость

Переходных конденсаторов должна быть достаточной, чтобы низкие частоты воспроизводились хорошо. Изменение тембра звука с помощью регулятора тембра должно быть плавным.

Громкость воспроизведения при исправном регуляторе также должна плавно изменяться от максимума до минимума. Если при вращении ручек переменных резисторов (регулятора громкости и тембра) будут прослушиваться трески и шорохи, эти резисторы следует заменить, При максимальной громкости в любом положении регулятора тембра усилитель не должен самовозбуждаться.

Заключительным этапом налаживания УЗЧ является его испытание и проверка всех качественных показателей: уровня собственных шумов (фона), нелинейных искажений, номинальной выходной мощности, диапазона воспроизводимых частот и неравномерности частотной характеристики.

Убедившись в нормальной работе УЗЧ, снимают амплитудно-частотную характеристику (например, осциллографом). Если на

Вход УЗЧ от звукового генератора подать номинальное напряжение сигнала, на экране осциллографа можно наблюдать колебания выходного напряжения. При вращении ручки перестройки частоты генератора по диапазону звуковых частот на экране осциллографа видно, что постоянному уровню напряжений входного сигнала будут соответствовать различные уровни выходного напряжения.

Усилитель мощности Ланзар имеет две базовых схемы - первая полностью на биполярных транранзисторах (рис.1), вторая с использованием полевых в предпоследнем каскаде (рис. 2). На рисунке 3 приведена схема этого же усилителя, но выполненная в симмуляторе МС-8. Позиционные номера элементов практически совпадают, поэтому можно смотреть любую из схем.

Рисунок 1 Схема усилителя мощности ЛАНЗАР полностью на биполярных транзисторах.
УВЕЛИЧИТЬ


Рисунок 2 Схема усилителя мощности ЛАНЗАР с использованием полевых транзисторов в предпоследнем каскаде.
УВЕЛИЧИТЬ


Рисунок 3 Схема усилителя мощности ЛАНЗАР из симмулятора МС-8. УВЕЛИЧИТЬ

ПЕРЕЧЕНЬ ЭЛЕМЕНТОВ УСТАНОВЛЕННЫХ В УСИЛИТЕЛЕ ЛАНЗАР

ДЛЯ БИПОЛЯРНОГО ВАРИАНТА

ДЛЯ ВАРИАНТА С ПОЛЕВИКАМИ

C3,C2 = 2 x 22µ0
C4 = 1 x 470p
C6,C7 = 2 x 470µ0 x 25V
C5,C8 = 2 x 0µ33
C11,C9 = 2 x 47µ0
C12,C13,C18 = 3 x 47p
C15,C17,C1,C10 = 4 x 1µ0
C21 = 1 x 0µ15
C19,C20 = 2 x 470µ0 x 100V
C14,C16 = 2 x 220µ0 x 100V

R1 = 1 x 27k
R2,R16 = 2 x 100
R8,R11,R9,R12 = 4 x 33
R7,R10 = 2 x 820
R5,R6 = 2 x 6k8
R3,R4 = 2 x 2k2
R14,R17 = 2 x 10
R15 = 1 x 3k3
R26,R23 = 2 x 0R33
R25 = 1 x 10k
R28,R29 = 2 x 3R9
R27,R24 = 2 x 0.33
R18 = 1 x 47
R19,R20,R22
R21 = 4 x 2R2
R13 = 1 x 470

VD1,VD2 = 2 x 15V
VD3,VD4 = 2 x 1N4007

VT2,VT4 = 2 x 2N5401
VT3,VT1 = 2 x 2N5551
VT5 = 1 x KSE350
VT6 = 1 x KSE340
VT7 = 1 x BD135
VT8 = 1 x 2SC5171
VT9 = 1 x 2SA1930

VT10,VT12 = 2 x 2SC5200
VT11,VT13 = 2 x 2SA1943

C3,C2 = 2 x 22µ0
C4 = 1 x 470p
C6,C7 = 2 x 470µ0 x 25V
C5,C8 = 2 x 0µ33
C11,C10 = 2 x 47µ0
C12,C13,C18 = 3 x 47p
C15,C17,C1,C9 = 4 x 1µ0
C21 = 1 x 0µ15
C19,C20 = 2 x 470µ0 x 100V
C14,C16 = 2 x 220µ0 x 100V

R1 = 1 x 27k
R2,R16 = 2 x 100
R8,R11,R9,R12 = 4 x 33
R7,R10 = 2 x 820
R5,R6 = 2 x 6k8
R4,R3 = 2 x 2k2
R14,R17 = 2 x 10
R15 = 1 x 3k3
R26,R23 = 2 x 0R33
R25 = 1 x 10k
R29,R28 = 2 x 3R9
R27,R24 = 2 x 0.33
R18 = 1 x 47
R19,R20,R22
R21 = 4 x 2R2
R13 = 1 x 470

VD1,VD2 = 2 x 15V
VD3,VD4 = 2 x 1N4007

VT8 = 1 x IRF640
VT9 = 1 x IRF9640
VT2,VT3 = 2 x 2N5401
VT4,VT1 = 2 x 2N5551
VT5 = 1 x KSE350
VT6 = 1 x KSE340
VT7 = 1 x BD135
VT10,VT12 = 2 x 2SC5200
VT11,VT13 = 2 x 2SA1943

Для примера возьмем напряжение питания равным ±60 В. Если монтаж выполнен правильно и нет не исправных деталей то получим карту напряжений, показанную на рисунке 7. Токи, протекающие через элементы усилителя мощности показаны на рисунке 8. Рассеиваемая мощность каждого элемента показана на рисунке 9 (на транзисторах VT5, VT6 рассеивается порядка 990 мВт, следовательно корпусу TO-126 требуется теплоотвод ).


Рисунок 7. Карта напряжений усилителя мощности ЛАНЗАР УВЕЛИЧИТЬ


Рисунок 8. Карта токов усилителя мощности УВЕЛИЧИТЬ


Рисунок 9. Карта рассеиваемых мощностей усилителя УВЕЛИЧИТЬ

Несколько слов о о деталях и монтаже:
Прежде всего следут обратить на правильность монтажа деталей, поскольку схема симметричная, то бывают довольно частыми ошибки. На рисунке 10 показано распложение деталей. Регулировка тока покоя (тока, протекающего через оконечные транзисторы при замкнутом на общий провод входе и компенсирующего вольт-амперную характеристику транзисторов) производится резистором Х1. При первом включении движок резистора должен находиться в верхенм по схеме положении, т.е. иметь максимальное сопротивление. Ток покоя должен составлять 30...60 мА. Ставить выше не имеет мысла - ни приборы, ни на слух ощутимых изменений не происходит. Для установки тока покоя производится измерение напряжения на любом из эмиттерных резисторов оконечного каскада и выставляется в соответствии с таблицей:

НАПРЯЖЕНИЕ НА ВЫВОДАХ ЭМИТТЕРНОГО РЕЗИСТОРА, В

СЛИШКОМ МАЛЕНЬКИЙ ТОК ПОКОЯ, ВОЗМОЖНЫ ИСКАЖЕНИЯ "СТУПЕНЬКА", НОРМАЛЬНЫЙ ТОК ПОКОЯ, ВЕЛИКОВАТ ТОК ПОКОЯ - ЛИШНИЙ НАГРЕВ, ЕСЛИ ЭТО НЕ ПОПЫТКА СОЗДАТЬ КЛАСС "А", ТО ЭТО АВАРИЙНЫЙ ТОК .

ТОК ПОКОЯ ОДНОЙ ПАРЫ ОКОНЕЧНЫХ ТРАНЗИСТОРОВ, мА


Рисунок 10 Расположение деталей на плате усилителя мощности. Показаны места, где возникают наиболее часто ошибки монтажа.

Поднимался вопрос о целесообразности использования в эмиттерных цепях оконечных транзисторов керамических резисторов. Можно использовать и МЛТ-2, по два штуки, включенных параллельно с номиналом 0,47...0,68 Ома. Однако вносимые керамическими резисторами искажения слишком малы, а вот тот факт, что они обрывные - при перегрузке они обрываются, т.е. их сопротивление становиться бесконечным, что довольно часто приводит к спасению оконечных транзисторов в критических ситуациях.
Площадь радиатора зависит от условий охлаждения, на рисунке 11 показан один из вариантов, крепить силовые транзисторы к теплоотводу необходимо через изоляционные прокладки . Лучше использовать слюду, поскольку она обладает довольно маленьким тепловым сопротивлением. Один из вариантов крепления транзисторов пказан нарисунке 12.


Рисунок 11 Один из вариантов радиатора для мощности 300 Вт при условии хорошей вентиляции


Рисунок 12 Один из вариантов крепления транзисторов усилителя мощности к радиатору.
Необходимо использовать изоляционные прокладки.

Перед монтажом силовых транзисторов, а так же в случае подозрений на их пробой, силовые транзисторы проверяются тестером. Предел на тестере устанавливается на проверку диодов (рис 13).


Рисунок 13 Проверка оконечных транзисторов усилителя перед монтажом и в случае подозрений на пробой транзисторов после критических ситуаций.

Стоит ли подбирать транзисторы по коф. усиления? Споров на эту тему довольно много и идея подбора элементов тянеться еще с глубоких семидесятых годов, когда качество элементной базы оставляло желать лучшего. На сегодня завод изготовитель гарантирует разброс параметров между транзисторами одной партии не более 2%, что уже само по себе говорит о хорошем качестве элементов. Кроме этого, учитывая то, что оконечные транзисторы 2SA1943 - 2SC5200 прочно обосновались в звукотехнике завод изготовитель начал выпус парных транзисторов, т.е. транзисторы и прямой, и обратной проводимости уже имеют одинаковые параметры, т.е. разницу не боле 2% (рис 14). К сожалению такие пары не всегда встречаютсяв продаже, тем не менее несколько раз нам доводилось покупать "близнецов". Однако даже имея разборос по коф. усиления между транзисторами прямой и обратной проводимости необходимо лишь следить за тем, чтобы транзисторы одной структуры были одной партии, поскольку включены они параллельно и разброс по h21 может вызывать перегрузку одного из транзисторов (у которого этот параметр выше) и как следствие - перегрев и выход из строя. Ну а разброс между транзисторами для положительной и отрицательной полуволн вполне компенсируется отрицательной обратной связью.


Рисунок 14 Транзисторы разной структуры, но одной партии.

Тоже самое относиться и к транзисторам дифкаскада - если они одной партии, т.е. куплены одновременно в одном месте, то шанс на то, что разница в параметрах будет более 5 % ОЧЕНЬ малы. Лично нам больше нравяться транзисторы 2N5551 - 2N5401 фирмы ФАИРЧАЛЬД, однако и ST звучат вполне достойно.
Однако это усилитель собирают и на отечественной элементной базе. Это вполне реально, однако давайте поправку на то, что у купленных КТ817 и найденных на полках у себя в мастерской, купленных еще в 90-х года параметры будут отличаться довольно сильно. Поэтому тут лучше все таки воспользаваться имеющимся почти во всех цифровых тестреах измерителем h21. Правда эта примочка в тестере показываетправду лишь для транзисторов малой мощности. Подбирать при ее помощи транзисторы оконечного каскада будет не совсм правильно, поскольку h21 зависит еще и от протекаемого тока. Именно поэому для отбраковки силовых транзисторов уже делают отдельные проверочные стенды. с регулируемых токо коллектора проверяемого транзистора (рис 15). Градуировка постоянного прибора для отбраковки транзисторов производиться таким образом, чтобы микроамперметр при токе коллектора 1 А отклонялся на половину шкалы, а при токе 2 А - полностью. Собирая усилитель только себе стенд можно и не делать, достаточно двух мультиметров с пределом измерения тока не менее 5 А.
Для произведения отбраковки следует взять любой транзистор из отбраковываемой партии и переменным резистором выставить ток коллектора равным 0,4...0,6 А для транзисторов предпоследнего каскада и 1...1,3 А для транзисторов оконечного каскада. Ну а далее все просто - к клемам подключаются транзисторы и по показаниям амперметра, включенного в коллектор выбираются транзисторы с одинаковыми показаниями, не забывая поглядывать на показания амперметра в базовой цепи - они тоже должны быть похожими. Разброс в 5 % вполне приемлем, для стрелочных индикаторов на шкале можно сделать метки "зеленого коридора" во время градуировки. Следует заметить, что подобные токи вызывают не плохой нагрев кристала транзистора, а учитывая то, что он без теплоотвода длительность замеров не следует растягивать во времени - кнопку SB1 удерживать в нажатом состоянии более чем 1...1,5 сек не следует . Подобная отбраковка прежде всего позвлит отобрать транзисторы с реально похожим коф усиления, а проверка мощных транзисторов цифровым мультиметром есть лишь проверка для успокоения совести - в режиме микротоков у мощных транзисторов коф усиления более 500 и даже небольшой разброс при проверке мультиметром в режимах реальных токов может оказаться огромным. Другими словами - проверяя коф усиления мощного транзистора показанаия мультиметра есть не что иное как абстрактная величина, не имеющая ни чего общего с коф усиления транзистора через переход коллектор-эмиттер протекат хотя бы 0,5 А.


Рисунок 15 Отбраковка мощных транзисторов по коф усиления.

Проходные конденсаторы С1-С3, С9-С11 имеют не совсем типовое включение, по сравнению с заводскими аналогами усилителей. Связанно это с тем, что при таком включении получается не полярный конденсатор довольно большой емкости, а использование плленочного конденсатора на 1 мкФ компенсирует не совсем корректную работу электролитов на высоких частотах. Другими словами эта реализация позволила получить более приятный звук усилителя, по сравнению с одним элетролитом или одним пленочным конденсатором.
В старых версиях Ланзар вместо диодов VD3, VD4 использовались резисторы на 10 Ом. Смена элементной базы позволила немного улучшить работу на пиках сигнала. Для более подробного рассмотрения этого вопроса обратимся к рисунку 3 .
В схеме смоделирован не идеальный источник питания, а более приблежонный к реальному, имеющему свое сопротивление (R30, R31). При воспроизведении синусоидального сигнала напряжение на шинах питания будет иметь вид, показанный на рисунке 16. В данном случае емкость конденсаторов фильтра питания составляет 4700 мкФ, что несколько маловато. Для нормальной работы усилителя емкость конденсаторов питания должна составлять не менее 10000 мкФ на один канал , можно и больше, но существенной разницы уже не заметно. Но вернемся к рисунку 16. Синией линией показано напряжение непосредственно на коллекторах транзисторов оконечного каскада, а красной линией - напряжение питания усилителя напряжения в случае использования резисторов вместо VD3, VD4. Как видно из рисунка напряжение питания оконечного каскада просело с 60 В и распологается между 58,3 В в паузе и 55,7 В на пике синусоидального сигнала. Благодарая тому, что конденсатор С14 не только заражается через развязывающий диод, но и разряжается на пиках сигнала напряжение питания усилителя напряжение приобретает вид красной линии на рисунке 16 и колебается от 56 В до 57,5 В, т.е имеет размах порядка 1,5 В.


Рисунок 16 форма напряжения при использовании развязывающих резисторов.


Рисунок 17 Форма напряжений питания на оконечных транзисторах и усилителе напряжения

Заменив резисторы на диоды VD3 и VD4 мы получаем напряжения, представленные на рисунке 17. Как видно из рисунка амплитуда пульсаций на коллекторах оконечных транзисторах почти не изменилась, а вот напряжение питания усилителя напряжения приобрело совсем другой вид. Прежде всего амплитуда уменьшилась с 1,5 В до 1 В, а так же в тот момент когда проходит пик сигнала напряжение питания УН проседает лишь до половины амплитуды, т.е. примерно на 0,5 В, в то время как при использовании резистора напряжение на пике сигнала проседает 1,2 В. Другими словами - простой заменой резисторов на диоды удалось уменьшить пульсации питания в усилителе напряжения в 2 с лишним раза.
Однако это теоритические выкладки. На практике эта замена позволяет получить "халявных" 4-5 Ватт, поскольку усилителя наступает при более высоком выходном напряжении и уменьшает искажения на пиках сигнала.
После сборки усилителя и регулировки тока покоя следует убедиться в отсутствии постоянного напряжения на выходе усилителя мощности. Если оно выше 0,1 В, то это уже однозначно требует корректировки режимов работы усилителя. В данном случае наиболее простым способом является подбор "подпирающего" резистора R1. Для наглядности приведем несколько вариантов этого номинала и покажем иземения постоянного напряжения на выходе усилителя на рисунке 18.


Рисунок 18 Изменение постоянного напряжения на выходе усилителя в зависимости от номана R1

Не смотря на то, что на симмуляторе оптимальное постоянное напряжение получилось лишь при R1 равным 8,2 кОм в реальных усилителях этот номинал составляет 15 кОм...27 кОм, в зависимости какого производителя используются транзисторы дифкаскада VT1-VT4.
Пожалуй стоит сказать несколько слов об отличиях усилителей мощности полгостью на биполярных транзисторах и с использованием полевиков в предпоследенм каскаде. Прежде всего при использовании полевых транзисторов ОЧЕНЬ сильно разгружается выходной каскад усилителя напряжения, поскольку затворы полевых транзисторов практически не имеют активного сопротивления - только емкость затвора является нагрузкой. В этом варианте схемотехника усилителя начинает наступать на пятки усилителям класса А, поскольку во всем диапазоне выходных мощностей ток протекающий через выходной каскад усилителя напряжения почти не изменятеся. Увеличение тока покоя предпоследнего каскада, работающего на плавающую нагрузку R18 и базы эмиттерных повторителей мощных транзисторов тоже меняется в небольших пределах, что в итоге привело к довольно заметному снижению THD. Однако в этой бочке меда есть и ложка дегтя - снизился КПД усилителя и уменьшилась выходная мощность усилителя, за счет необходимости подавать на затворы полевиков напряжение более 4 В для их открытия (для биполярного транзистора этот параметр составляет 0,6...0,7 В). На рисунке 19 показан пик синусоидального сигнала усилителя, выполненого на биполярных транзистора (синяя линия) и полевиках (красная линия) при максимальной амплитуде выходного сиганала.


Рисунок 19 Изменение амплитуды выходного сигнала при использовании разной элементной базы в усилителе.

Другими словами снижение THD заменой полевых транзисторов приводит к "недополучению" примерно 30 Вт, а уменьшение уровня THD примерно в 2 раза, так что именно ставить уже решать каждому персонально.
Так же следует помнить, что уровень THD зависит и от собственного коф усиления усилителя. В данном усилителе коф усиления зависит от номиналов резисторов R25 и R13 (при используемых номиналах коф усиления составляет почти 27 дБ). Расчитать коф усиления в дБ можно по формуле Ku =20 lg R25 / (R13 +1) , где R13 и R25 - сопротивление в Омах, 20 - множитель, lg - десятичный логарифм. Если необходимо расчитать коф усиления в разах, то формула приобретает вид Ku = R25 / (R13 + 1) . Этот расчет бывает необходим при изготовлении предварительного усилителя и вычисления амплитуды выходного сигнала в вольтах, чтобы исключить работу усилителя мощности в режиме жесткого клиппинга.
Снижение собственного коф. усиления до 21 дБ (R13 = 910 Ом) приводит к снижению уровня THD примерно в 1,7 раза при той же амплитуде выходного сигнала (увеличена амплитуда входного напряжения).

Ну а теперь несколько слов о самых популярных ошибках при сборке усилителя самостоятельно.
Одной из самых популярных ошибок является монтаж стабилитронов на 15 В не правильной полярностью , т.е. эти элементы работают не в режиме стабилизации напряжения, а как обычные диоды. Как правило такая ошибка вызывает появление на выходе постоянного напряжения, причем полярность может быть как положительной, так и отрицательной (чаще отрицательной). Величина напряжения базируется между 15 и 30 В. При этом ни один элемент не греется. На рисунке 20 показана карта напряжений при не правильном монтаже стабилитронов, которую выдал симмулятор. Ошибочный элементы выделены зеленым цветом.


Рисунок 20 Карта напряжений усилителя мощности с неправильно запаянными стабилитронами.

Следующей популярной ошибкой является монтаж транзисторов "вверх ногами" , т.е. когда путают коллектор и эмиттер местами. В этом случае так же наблюдается постоянное напряжение, отсутствие каких либо признаков жизни. Правда обратное включение транзисторов дифкаскада может привести к выходу их из строя, ну а дальше как повезет. Карта напряжений при "перевернутом" включении показан на рисунке 21.


Рисунок 21 Карта напряжений при "перевернутом" включении транзисторов дифкаскада.

Довольно часто транзисторы 2N5551 и 2N5401 путают местами , причем могут попутать так же и эмиттер с коллектором. На рисунке 22 показана карта напряжений усилителя при "правильном" монтаже попутанных местами транзисторов, а на рисунке 23 - транзисторы не только поменяны местами, но и перевернуты.


Рисунок 22 Транзитсторы дифкаскада попутаны местами.


Рисунок 23 Транзисторы дифкаскада попутаны местами, кроме этого попутаны местами коллектор и эмиттер.

Если попутаны местами транзисторы, а эмиттер-коллектор запаяны правильно, то на выходе усилителя наблюдается небольшое постоянное напряжение, регулируется ток покоя окнечных транзисторов, но звук либо отсутствует полностью, либо на уровне "кажется он играет". Перед монтажом на плату запаянных таким образом тразисторов их следует проверить на работоспособность. Если транзисторы поменяны местами, да еще и поменяны местами эмиттер-коллектор, то тут ситуация уже довольно критическая, поскольку в этом варианте для транзисторов дифкаскада полярность приложенного напряжения является правильной, а вот рабочие режимы нарушены. В этом варианте наблюдается сильный нагрев оконечных транзисторов (протекающий через них ток равен 2-4 А), небольшое постоянное напряжение на выходе и едва слышный звук.
Попутать цоколевку транзисторов последнего каскада усилителя напряжения довольно проблематично, при использовании транзисторов в корпусе ТО-220, а вот транзисторы в корпусе ТО-126 довольно часто впаивают "вверх ногами", меняя местами коллектор и эмиттер . В этом варианте наблюдается сильно искаженный выходной сигнал, плохая регулировка тока покоя, отсутствие нагрева транзисторов последнего каскада усилителя напряжения. Более подробная карта напряжения для этого варианта монтажа усилителя мощности показана на рисунке 24.


Рисунок 24 Транзисторы последнего каскада усилителя напряжения запаяны "вверх ногами".

Иногда путают местами транзисторы последнего каскада усилителя напряжения. В этом случае наблюдается небольшое постоянное напряжение на выходе усилителя, звук если и есть, то очень слабый и с огромными искажениями, ток покоя регулируется только в сторону увеличения. Карта напряжений усилителя с такой ошибкой показана на рисунке 25.


Рисунок 25 Ошибочный монтаж транзисторов последнего каскада усилителя напряжения.

Предпоследний каскад и оконечные транзисторы в усилителе местами путают слишком редко, поэтому этот вариант расматриваться не будет.
Иногда усилитель выходит из строя, самые частые причины для этого перегрев оконечных тразисторов или перегрузка. Недостаточная площадь теплоотвода или плохой тепловой контакт фланцев транзисторов может привести к нагреву кристалла оконечных транзисторов до температуры механического разрушения. Поэтому до полного ввода усилителя мощности в эксплуатацию необходимо убедиться в том, что винты или саморезы, крепящие оконечники к радиатору затануты полностью, изолирующиепрокладки между фланцами транзисторов и теплоотводом имеет хорошую смазку термопастой (рекомендуем старую, добрую КПТ-8), а так же размер прокладок больше размера транзистора минимум на 3 мм с каждой стороны. Если недостаточна площадь теплоотвода, а другого попросту нет, то можно воспользоваться вентиляторами на 12 В, которые используются в компьютерной технике. Если собранный усилитель планируется для работы только на мощностях выше средней (кафе, бары и т.д.) то куллер можно влючить на непрерывную работу, поскольку его все равно не будет слышно. Если же усилитель собран для домашенго использования и будет эксплуатироваться и на малых мощностях, то работу куллера уже будет слышно, а необходимость в охлаждении отпадает - радиатор почти не греется. Для таких режимо работы лучше испозовать управляемык куллеры. Несколько вариантовуправления куллером можно . Предлагаемые варианты управления куллерами основаны на контрле температуры радиатора и вклюячаются лишь по достижении радиатором определенной, регулируемой температуры. Решить проблему выхода из строя окнечных транзисторов можно либо установкой дополнительной защиты от перегрузки, либо аккуратным монтажом проводов идущих на акустическую систему (например использовать для подключения АС к усилителю автомобильных безкислородных проводов, которые кроме уменьшеного активного сопротивления имеют повышенную крепость изоляции, устойчивую к ударам и температуре).
Для примера рассмотрим несколько варианов выхода из строя оконечных транзисторов. На рисунке 26 показана карта напряжений в случае выхода обратных оконечных транзисторов (2SC5200) на обрыв, т.е. переходы отгорели и имеют максимально возможное сопротивление. В этом случае усилитель сохраняет рабочие режимы, на выходе сохраняется напряжение близкое в нулю, но вот качество звука однозначно желает лучше, поскольку воспроизводится только одна полуволна синусоиды - отрицательная (рис 27). Тоже самое будет при обрыве прямых оконечных транзисторов (2SA1943), только воспроизводится будет положительная полуволна.


Рисунок 26 Обратные оконечные транзисторы выгорели до обрыва.


Рисунок 27 Сигнал на выходе усилителя в случае, когда транзисторы 2SC5200 отгорели полностью

На рисунке 27 - карта напряжений в ситуации, когда оконечники вышли из строя и имеют максимально низкое сопротивление, т.е. закорочены. Этот вариант неисправности загоняет усилитель в ОЧЕНЬ жесткие условия и дальнейшие горение усилителя ограничивает только источник питания, поскольку потребляемый в этот момент ток может превысить 40 А. Оставшиеся в живых детали мгновенно набирают температуру, в том плече, где транзисторы еще исправны напряжение немного больше, чем в том, где собственно произошло замыкание на шину питания. Однако именно эта ситуация относиться к наиболее легкой диагностике - достаотчно до включения усилителя проверит мультиметром сопротивление переходов между собой, даже не выпаивая их из усилителя. Предел измерения, установленного на мультиметре - ПРОВЕРКА ДИОДОВ или ЗВУКОВАЯ ПРОЗВОНКА. Как правило выгоревшие транзисторы показывают сопротивление между переходами в диапазоне от 3 до 10 Ом.


Рисунок 27 Карта напряжений усилителя мощности в случае перегорания оконечных транзисторов(2SC5200) на короткое замыкание

Усилитель поведет себя точно так же в случае пробоя предпоследнего каскада - при отгороани выводов будет воспроизводиться только одна полуволна синусоиды, при коротком замыкании переходов - огромное потребление и нагрев.
При перегреве, когда считают, что радиатор на транзисторы последнего каскада усилителя напряжения не нужен (транзисторы VT5, VT6) они могут так же выйти из строя, причем как уйти на обрыв, так и на короткое замыкание. В случае отгорания переходов VT5 и бесконечно большого сопротивления переходов возникает ситуация, когда поддерживать ноль на выходе усилителя не чем, а приоткрытые оконечные транзисторы 2SA1943 потянут напряжение на выходе усилителя к минусу напряжения питания. Если нагрузка подключена, то величина постоянного напряжения будет зависеть от установленного тока покоя - чем он выше, тем будет больше величина отрицательного напряжения на выходе усилителя. Если нагрузка не подключена, то на выходе будет напряжение очень близкое по величине к минусовой шине питания (рис 28).


Рисунок 28 Транзистор усилителя напряжения VT5 "оборвался".

Если же транзистор в последнем каскаде усилителя напряжения VT5 вышел из строя и его переходы замкнулись, то при подключенной нагрузке на выходе будет довольно большое постоянное напряжение и ппротекающий через нагрузку постоянный ток, порядка 2-4 А. Если же нагрузка отключена, то напряжение на выходе усилителя будет почти равно положительной шине питания (рис. 29).


Рисунок 29 Транзистор усилителя напряжения VT5 "замкнулся".

На последок осталось только предложить несколько осцилограмм в наиболее координальных точках усилителя:


Напряжение на базах транзисторов дифкаскада при входном напряжении 2,2 В. Синия линия - базы VT1-VT2, красная линия - базы VT3-VT4. Как видно из рисунка и амплитудат и фаза сигнала практически совпадают.


Напряжение в точке соединения резисторов R8 и R11 (синяя линия) и в точке соединения резисторов R9 и R12 (красная линия). Входное напряжение 2,2 В.


Напряжение на коллекторах VT1 (красная линия), VT2 (зеленая), а так же на верхенм выводе R7 (синяя) и нижнем выводе R10 (сиреневая). ПРовал напряжения вызван рабтой на нагрузку и небольшим уменьшением питающего напряжения.


Напряжение на коллекторах VT5 (синим) и VT6 (красным. Входное напряжение уменьшено до 0,2 В, чтобы было наглядней видно, по по постоянному напряжению имеется разница примерно в 2,5 В

Осталось лишь пояснить на счет блока питания. Прежде всего мощность сетевого трансформатора для усилителя мощности в 300 Вт должна быть не менее 220-250 Вт и этого будет достаточно для воспроизведения даже очень жестких композиций.Более подробно о мощности блока питания усилителей мощности можно . Другими словами, если у вас есть трансформатор от лампового цветного телевизора, то это ИДЕАЛЬНЫЙ ТРАНСФОРМАТОР для одного канала усилителя позволяющего без проблем воспроизводить музыкальные композиции мощностью до 300-320 Вт.
Емкость конденсаторов фильтра блока питания должна быть не менее 10 000 мкФ на плечо, оптимально 15 000 мкФ. При использовании емкостей выше указанного номинала Вы попросту увеличиваете стоимость конструкции без какого либо заметного улучшения качества звука. Не следует забывать, что при использовании таких больших емкостей и напряжении питания выше 50 В на плечо мгновенные токи уже критически огромны, поэтому настоятельно рекомендуется использовать ситемы софт-старта.
Прежде всего настоятельно рекомендутеся перед сборкой какого либо усилителя скачать на ВСЕ полупроводниковые элементы описания заводов производителей (даташиты). Это даст возможность ознакомиться с элементной базой поближе и в случае отсутствия в продаже какого либо элемента найти ему замену. Кроме этого у вас будет под рукой правильная цоколевка транзисторов, что значительно увеличит шансы на правильный монтаж. Особо ленивым предлагается ОЧЕНЬ внимаетльно ознакомиться хотя бы с расположением выводов транзисторов, используемых в усилителе:

.
На последок осталось добавить, что далеко не всем требуется мощность 200-300 Вт, поэтому печатная плата была переработана под одну пару оконечных танзисторов. Данный файл выполнен одним из посетителей форума сайта "ПАЯЛЬНИК" в программе СПРИНТ-ЛАЙОУТ-5 (СКАЧАТЬ ПЛАТУ). Подробности о данной программе находяться .

Усилитель низких частот (УНЧ) — это устройство, о предназначении которого знает каждый меломан. Этот компонент аудиосистемы позволяет улучшить качество звучания акустики в целом. Но как и любые другие электронные устройства, АУ может выйти из строя. Подробнее о том, как производится ремонт своими руками усилителей автомобильных аудиосистем, узнайте из этой статьи.

[ Скрыть ]

Типичные неисправности

Перед тем, как ремонтировать, устанавливать и настраивать УНЧ в свой автомобиль, необходимо разобраться в поломке. Рассмотреть все неисправности, которые можно встретить на практике, просто невозможно, поскольку их очень много. Основной задачей ремонта устройства для усиления звука считается восстановление сломавшегося компонента, поломка которого привела к неработоспособности всей платы.

В любой электротехнике, в том числе усилителях, может быть два типа неисправностей:

  • контакт присутствует там, где он не должен находиться;
  • в том месте, где должен быть контакт, он отсутствует.

Проверка на работоспособность

Ремонт автомобильных усилителей в первую очередь начинается с диагностики УНЧ:

  1. Сначала необходимо вскрыть корпус и внимательно осмотреть схему, при необходимости используйте лупу. В ходе диагностики можно заметить разрушенные компоненты схемы: резисторы, конденсаторы, оборванные проводники либо выгоревшие дорожки платы. Но если вы нашли выгоревший компонент, нужно учесть, что его выход из строя может быть следствием перегорания другого элемента, который с виду может показаться целым.
  2. Далее, произведите диагностику блока питания, в частности, проверьте напряжение на выходе. При выявлении выгоревших резисторов эти элементы надо будет менять.
  3. Подайте питание на УНЧ и выход Remout, затем надо замкнуть систему на плюс и посмотреть на диодный индикатор PROTECTION. Если лампочка загорелась, это свидетельствует о том, что устройство ушло в защиту. Причина может заключаться в плохом питании или его отсутствии на плате, поломке транзистора либо проблемах в работе преобразователя напряжения. В некоторых случаях причина кроется в поломке транзисторного усилка мощности для одного из нескольких каналов.
  4. Если после того, как было подано питание, предохранительный элемент не сгорел, нужно проверить уровень напряжения на выходе. Оно должно составлять примерно 2х20 в и больше.
  5. Внимательно осмотрите трансформаторное устройство преобразователя напряжения, возможно, на нем имеются выгоревшие витки или обрывы цепи. Понюхайте этот элемент, может быть, он пахнет горелым. В некоторых моделях УНЧ между выходом ПН и усилком устанавливается диодная сборка — если она выходит из строя, узел также может включать защиту.

Устранение поломок

Ремонт автомобильного усилителя своими руками осуществляется в соответствии с тем, какая неполадка была выявлена при его работе:

  1. Если в автоусилителе сломался транзистор, то перед его непосредственной заменой рекомендуется продиагностировать предохранительный элемент по питанию.Также нужно убедиться в работоспособности диодов на шинах. Если с этими частями все в порядке, установленные транзисторы надо поменять.
  2. Чтобы осуществить более специализированный ремонт, вам потребуется осциллограф. Установив щупы устройства на выводах 9 и 10 платы генератора, необходимо убедиться в наличии сигналов. Если сигналы отсутствуют, то меняется драйвер, если они есть, то производится замена полевых транзисторных элементов.
  3. Значительно реже в процессе ремонта меняются конденсаторы — как показывает практика, такое случается нечасто (автор видео — канал HamRadio Tag).

Основные аспекты настройки усилителя

Теперь перейдем к вопросу — как настроить автомобильный усилитель? Есть несколько вариантов настройки — для использования с сабом и без него.

Как правильно настроить УНЧ без сабвуфера — сначала необходимо выставить такие параметры:

  • bass boost — 0 децибел;
  • уровень — 0 (8V);
  • кроссовер необходимо установить в положение FLAT.

После этого, регулируя настройки аудиосистемы эквалайзером, производится настройка системы под свои предпочтения. Громкость необходимо выставить на максимум и включить какой-нибудь трек. Как настроить для использования с сабвуфером — процедура также не особо сложная.

Для правильной настройки желательно использовать следующие параметры:

  • Bass Boost также следует выставить на уровень 0 децибел;
  • уровень устанавливается на отметку 0;
  • передний кроссовер устанавливается в положение НР, а регуляторный элемент FI PASS необходимо выставить в диапазон от 50 до 80 Герц;
  • что касается заднего кроссовера, то он устанавливается в положение LP, а регулятор Low необходимо установить в диапазоне от 60 до 100 Герц.

Эти параметры соблюдать очень важно, поскольку именно они определяют качество регулировки и, соответственно, звучания аудиосистемы. В целом процедура настройки производится аналогично, для этого используется регулятор уровня для обеспечения более гармоничного звучания. Чувствительность задних и передних динамиков следует подстроить друг под друга.

Если вы в этом ничего не понимаете, лучше туда не лезть, потому что ремонт обойдется дороже после того, что вы еще спалите или поломаете.

Извините, в настоящее время нет доступных опросов.

Правильно собранный УНЧ при соответствии режимов транзисторов диаграммам (см. рис. 63 - 68) и табл. 3 должен сразу нормально работать при подаче на вход сигнала от звукового генератора (ЗГ). Поэтому процесс настройки и регулировки усилителя НЧ сводится к проверке чувствительности, величины нелинейных искажений и частотной характеристики, а также к устранению выявленных при этом неисправностей, из-за которых тот или иной параметр не будет соответствовать норме.

Перед началом измерений целесообразно проверить ток потребления усилителем НЧ при отсутствии сигнала. Для этого вынимаются (выпаиваются) все транзисторы до блока УНЧ и замеряется ток. Например, для радиоприемников типа «Спидола» этот ток составляет 6 - 8 ма. Если же измеренный ток превышает эту величину, необходимо заменить транзистор первого каскада УНЧ на триод с большим коэффициентом усиления.

Далее к входу усилителя НЧ подключается ЗГ. Для приемников типа «Спидола» генератор подсоединяется к контакту 10 платы ПЧ-НЧ (см. рис. 2) или лепестку 1 потенциометра R30 (см. рис. 21), а земляной вывод ЗГ соединяется с контактом 7 платы ПЧ-НЧ или лепестком 3 потенциометра R30. Для остальных приемников звуковой генератор подключается к соответствующим выводам разъема «магнитофон» (Ш).

На выход приемника (рис. 69) параллельно звуковой катушке громкоговорителя подсоединяется ламповый вольтметр (ЛВ), осциллограф и измеритель нелинейных искажений (ИНИ). Для всех приемников эти приборы подключаются к гнездам внешнего громкоговорителя на колодке внешних соединений или к соответствующим контактам разъема «магнитофон» (Ш).

Ниже рассматривается порядок настройки и проверки УНЧ приемников типа «Спидола», «ВЭФ-12», «ВЭФ-201», и «ВЭФ-202». Данные по настройке и проверке УНЧ радиоприемников типа «Океан» сведены в табл. 4; «Спидола-207» и «Спидола-230» - в табл. 5. Настройка приемника «Меридиан-202», имеющего значительные отличия в электрической схеме, описывается в § 18.

Для проверки чувствительности УНЧ радиоприемников типа «Спидола», «ВЭФ-12», «ВЭФ-201» и «ВЭФ-202» на звуковом генераторе устанавливается частота 1000 гц и выходное напряжение не более 15 же. Регулятор громкости (РГ) ставится в положение максимальной громкости, а регулятор тембра («ВЭФ-12»,« ВЭФ-201» в «ВЭФ-202») - в положение широкой полосы (подъем высоких частот). При этом в громкоговорителе будет прослушиваться звук частотой 1000 гц, а выходной вольтметр покажет величину напряжения этой частоты. Регулятором выхода ЗГ устанавливается такое напряжение, при котором на выходе будет 0,56 в (1,1 в для «ВЭФ-12», «ВЭФ-201» и «ВЭФ-202»). Это напряжение соответствует номинальной выходной мощности. Напряжение на выходе ЗГ и будет чувствительностью тракта НЧ.

Рис. 69. Структурная схема настройки и проверки УНЧ приемников 1,2 - вход блока УНЧ; 3,4 - гнездо внешнего громкоговорителя или разъема «магнитофон» (III)

Параллельно с проверкой чувствительности производится проверка нелинейных искажений тракта усиления НЧ по показанию ИНИ. Коэффициент нелинейных искажений не должен превышать величин, указанных в табл. 2, а изображение синусоиды на экране осциллографа должно быть без искажений. В случае сильных искажений необходимо заменить транзисторы Т9 и Т10. Причинами завышенных нелинейных искажений может быть также неправильная распайка выводов согласующего и выходного трансформаторов (сигнал с выхода УНЧ совпадает по фазе с сигналом на входе). В этом случае необходимо перебросить концы вторичной обмотки трансформаторов. Кроме того, причина может быть в неправильно подобранной емкости конденсатора С80 и С81 («Спидола»), С77 и С76 («ВЭФ-12», «ВЭФ-201», «ВЭФ-202») и сопротивления резистора R36 («Спидола»), R42 («ВЭФ-12», «ВЭФ-201», «ВЭФ-202»).

Таблица 4

Таблица 4

Таблица 5

Для проверки частотной характеристики УНЧ на звуковом генераторе устанавливается частота 1000 гц. Регулятором громкости на выходе УНЧ устанавливается напряжение 0,56 в («Спидола»), 1,1 в («ВЭФ-12», «ВЭФ-201», «ВЭФ-202») и в дальнейшем положение РГ не меняется. Напряжение на входе (мх) не должно превышать 12 мв («Спидола»), 10 мв («ВЭФ-12», «ВЭФ-201», «ВЭФ-202»). Затем на вход УНЧ подается сигнал частотой сначала 200 гц, а потом 4000 гц (полоса воспроизведения), и в обоих случаях регулятором выхода ЗГ устанавливается напряжение u2t которое соответствует напряжению на выходе 0,56 в (1,1 в). Неравномерность частотной характеристики N определяется из соотношения N = 20 lg (и2/u1) и не должна превышать норм, указанных в табл. 2. Коррекция частотной характеристики может быть осуществлена подбором емкости конденсатора С78 («Спидола»), С73 («ВЭФ-12», «ВЭФ-201», «ВЭФ-202»).

Рис. 70. Структурная схема измерения входного сопротивления УНЧ приемников 1,2 - вход УНЧ; Нвх - сопротивление между точками 1 и 2

Иногда полезно знать величину входного сопротивления усилителя НЧ. Для этого собирается схема в соответствии с рис. 70.

Регулятор громкости устанавливается в положение максимальной громкости. От ЗГ на базу первого транзистора усилителя НЧ подается сигнал частотой 1000 гц через резистор R1 (2 - 3 ком) такой величины, чтобы напряжение на выходе было 0,56 в («Спидола») и 1,1 в («ВЭФ-12», «ВЭФ-201», «ВЭФ-202»). В этом случае ламповый вольтметр (ЛВ1) на выходе ЗГ покажет величину напряжения ut, a ЛB2 - и2 (вход УНЧ). Зная величину R1 и напряжения и2 и и1, можно подсчитать входное сопротивление усилителя (RBX) по формуле:

Rвх = u2 R1/uR1 = u2/(u1-u2) R1,

где uR1 == u1 - u2.

Величина резистора R1 подбирается так, чтобы щ та 2и2.

Если на выходе УНЧ напряжение, соответствующее номинальной выходной мощности, может быть получено при очень малых напряжениях на входе, то это будет говорить о близости усилителя к самовозбуждению. Причинами этого явления могут быть положительная обратная связь вместо отрицательной, обрыв в цепи обратной связи или неправильная распайка выводов согласующего (выходного) трансформатора. Этот режим характеризуется очень высоким коэффициентом нелинейных искажений и большой неравномерностью частотной характеристики.

После окончания регулировки УНЧ необходимо включить напряжение питания и проверить на слух работу усилителя НЧ при всех положениях регулятора громкости. При положении РГ, соответствующему минимальной громкости, на выходе приемника не должно быть никакого сигнала, а при максимальной громкости и подаче на вход УНЧ сигнала от ЗГ частотой 1000 гц и величиной 15 - 25 мв форма выходного напряжения должна быть неискаженной и без изломов, ярко светящихся точек и т. д.

Рис. 2. Электромонтажная схема платы ПЧ-НЧ радиоприемников «Спидола», «ВЭФ-Спидола» и «ВЭФ-Спидола-10» Резистор R42 установлен со стороны фольги

Рис. 6. Электромонтажная схема платы ПЧ-НЧ радиоприемников «ВЭФ-12», «ВЭФ-201» и «ВЭФ-202» Резисторы R10, R22 и R47 установлены со стороны фольги

Рис. 10. Электромонтажные схемы планок диапазонов 25 м - П1 31 м - П2, 41 м - ПЗ, 49 м - П4 (а),- 50 - 75 ж - П5 (б); СВ - П6(в) и ДВ - П7(г) радиоприемника «Океан» На планках диапазонов 25 м (П1) и 31 м (П2) дроссель (Др) отсутствует, точки его подсоединения закорочены перемычкой
Рис. 11. Электромонтажная схема платы блока УКВ радиоприемника «Океан»

Рис. 12. Электромонтажная схема платы ВЧ-ПЧ радиоприемника «Океан» На схеме не показаны экраны транзисторов ТЗ, Т4, Т5, Т8 и Т9 и положение подвижных ножей переключателя В1. Точки 20 и 21 платы соединены перемычкой
Рис. 13. Электромонтажная схема платы УНЧ радиоприемника «Океан»

Рис. 15. Электромонтажные схемы планок диапазонов 2о м - П1, 31 м - П2, Им - ПЗ, 49 м - - П4(а); 50 - 75 м - 115(6) радиоприемника «Океан-203» На планках диапазонов 25 м (III) и 31 л (П2) дроссель (Др) отсутствует, точки его подсоединения закорочены перемычкой

Рис. 16. Электромонтажная схема платы блока УКВ радиоприемника «Океан-203»
Рис. 17. Электромонтажная схема платы ВЧ-Г1Ч радиоприемника «Океан-203» На схеме не показаны экраны транзисторов ТЗ, Т4, Т5, Т8 и Т9 и положение подвижных ножей переключателя В1
Рис. 18. Электромонтажная схема платы УНЧ радиоприемника «Океан-203»

Рис. 20. Электромонтажная схема - платы блока УКВ радиоприемника «Океан-205»
Рис. 21. Электромонтажная схема платы УНЧ радиоприемника «Океан-205»
Рис. 22. Электромонтажная схема платы выпрямителя радиоприемника «Океан-205»

Рис. 23. Электромонтажная схема платы переключателей В2 - В5 радиоприемника «Океан-205»
Рис. 24. Электромонтажные схемы планок диапазонов 25 м - П1, 31 ж-П2, 41 м - ПЗ, 49 м - П4(а); 50-75 м - П5(6j; CB - П6(в); ДВ - П7(г) радиоприемника «Океан-205» На планках диапазонов 41 м (ЛЗ) и 49 Л1 (U4) вместо перемычки между точками А и В установлен дроссель (Др)

Рис. 25. Участок электромонтажной схемы платы ВЧ-ПЧ радиоприемника «Океан-205» с измененной печатью
Рис. 27. Электромонтажные схемы планок диапазонов 25 ж - П1, 31 М - .П2, 41 м - ПЗ, 49 м~П4(а); 52-75 м - 115(6); СВ - П6(в); ДВ - П7(г) радиоприемников «Спидола-207» и «Спидола-230»

Рис. 28. Электромонтажная схема платы ПЧ-НЧ радиоприемника «Спидола-207» Экраны транзисторов ТЗ - Т7 показаны условно. Положения подвижных ножей переключателей В1 - В5 не показаны

Другие статьи посвящённые постройке этого УНЧ.

Сборка.

Прямо по ходу монтажа я изготовил жгут или соединительный кабель. Называйте как угодно.

Так как верхнюю и нижнюю крышку нельзя протащить через трубу, то длину кабеля пришлось сделать избыточной. Это должно позволить легко добираться до любого элемента схемы без необходимости отпаивать какие-либо концы.


Жгут обвязал суровой навощённой нитью. Если такой нети нет, то можно изготовить её из обычной, просто протянув нить через свечку.


Светодиодный индикатор включения приклеил термоклеем.

Между микросхемами и радиатором оконечного усилителя проложил прокладку из одного слоя медицинского бинта, обильно смазанного термопастой КПТ- 8. Толщина бинта в сжатом состоянии около 0,1мм. Такого зазора вполне достаточно даже для напряжения 100 Вольт.



Так как вся конструкция собирается посредствам одной единственной шпильки, то для того, чтоб труба хорошо зафиксировалась в заглушках, я одел на выступ каждой заглушки по резиновому колечку (колечки отмечены стрелками).


Окончательная сборка трансформатора.

Я склеил половинки магнитопровода эпоксидной смолой и окончательно собрал трансформатор только после того, как УНЧ был постностью собран и проверен.

Если не склеивать половинки магнитопровода, то трансформатор, скорее всего, будет гудеть. Он может гудеть тише или громче, но слышно будет.

Если же придётся разбивать место склейки, например, для того, чтобы удлинить или укоротить обмотку, то от удара могут отслоиться некоторые пластины броневого сердечника. Если это произойдёт, то полностью избавиться от гудения будет очень сложно. Поэтому, склейку лучше производить в самом конце.


В заключение сборки трансформатора, можно намотать поверх катушки слой электрокартона или бумаги толщиной 0,1мм. На бумагу полезно нанести данные об обмотках. Если поверх бумаги намотать ещё и слой стекло- или лако-ткани, то трансформатор и вовсе приобретёт промышленный вид.

Наладка.

Во время пусконаладочных работ пришлось исправить только одну ошибку. Ошибка эта проявилась в виде небольшого фона в громкоговорителях и вызвана была неправильной разводкой земли на плате блока питания.


Фон появился из-за того, что мизерное напряжение пульсаций проникло на вход стабилизатора напряжения, а оттуда в предварительный усилитель.

На первоначальном варианте печатной платы выводы вторичных обмоток трансформатора, идущие к корпусу, были соединены вместе, что не правильно, так как все земли питания должны соединяться в одной точке, а не в двух.


Первоначальный вариант печатной платы.


А это уже доработанный вариант. При доработке пришлось разрезать одну дорожку поз.1 и добавить один контакт поз.2 для подключения обмотки трансформатора, питающей стабилизатор напряжения.


Кроме этого, в УНЧ всплыл ещё один дефект, который пока устранить не удалось. Это щелчки при включении и выключении УНЧ. Источником щелчков является блок регулировки громкости и тембра.

На картинке эпюра снятая на выходе блока регулировок тембра. Сам запуск и выключение микросхемы происходит очень плавно. И напряжение, и громкость звука увеличиваются в течение пары секунд. Но, на кривой спада и нарастания напряжения есть небольшая ступенька, похоже, вызванная какими-то переходными процессами в микросхеме. Этот перепад попадает на вход оконечников и вызывает щелчки.

Я пока сомневаюсь, что Philips разработал настолько кривую микросхему и грешу на конкретного производителя NXP Semiconductors или партию микросхем. Для начала попробую поискать аналогичную микросхему другого производителя на нашем радиорынке.

Как я уже писал, усилитель, питающийся от двухполярного источника, не создает щелчков при включении и выключении.

Городить же схему отключения громкоговорителей для усилителя, который в этом не нуждается, не хотелось бы.

Так что, если кто-то собирается использовать TDA1524A, то должен обратить внимание на это обстоятельство.

В остальном, сборка прошла без каких-либо осложнений.

Готовый усилитель.

На картинках изображён готовый усилитель.

  1. Щель охлаждения между верхней крышкой и радиатором.
  2. Индикатор включения.
  3. Выключатель сети.
  4. Громкость.
  5. Стереобаланс.
  6. Тембр ВЧ.
  7. Тембр НЧ.
  8. Гнездо подключения телефонов.
  9. Выключатель динамиков.

  1. Держатель предохранителя.
  2. Гнездо сетевого кабеля.
  3. Выход правого канала.
  4. Линейный вход.
  5. Выход левого канала.

  1. Радиатор.
  2. Единственная гайка, которую нужно открутить, чтобы разобрать УНЧ.

  1. Отверстия охлаждения.
  2. Ножки (пробки от каких-то аптечных пузырьков).

Измерения.

Температура окружающей среды – 20ºС.

Напряжение сети – 220В.

Синусоидальный сигнал – аппаратный генератор НЧ.

Музыкальный сигнал – Carlos Santana “Jingo: The Santana Collection”.

Осциллограмма, снятая на нагрузке УНЧ, при подключении к входу генератора НЧ.

Эффективная мощность, ограниченная пульсациями напряжения питания – 2х9 Ватт.


Осциллограмма, снятая на нагрузке, при подключении к входу музыкально сигнала.

Пиковая музыкальная мощность – 2х18 Ватт.


Температура радиатора при продолжительной работе на максимальной мощности, на частоте 1кГц, в режиме ограничения по питанию – 75ºС

Температура радиатора при продолжительном воспроизведении музыки на максимальной громкости ограниченной пульсациями напряжения питания – 65ºС.

Мелкие подробности.

Корпус усилителя оказался достаточно устойчивым. Устойчивость обеспечивается весом силового трансформатора и высоким коэффициентом трения резиновых ножек. При переключении тумблеров, корпус не отрывается от земли, хотя и слегка изменяет положение за счёт эластичности ножек.