Предлагаю вашему вниманию статью из цикла материалов в помощь самодеятельным конструкторам СЛА. Научный консультант - профессор кафедры самолетостроения Московского авиационного института, доктор технических наук, лауреат Государственной премии А.А. Бадягин. Статья была опубликована в журнале "Крылья Родины" №2 за 1987 год.

Зачем, спросите вы, нам статья про профиля для сверхлегких летательных аппаратов? Отвечаю - мысли выраженные в этой статье напрямую применимы в авиамоделизме - скорости сопоставимы, а соответственно и подход к конструированию.

Самый лучший профиль

Проектирование самолета обычно начинается с выбора профиля крыла. Посидев неделю-другую над справочниками и атласами, до конца в них не разобравшись, по совету товарища выбирает самый подходящий и строит самолет, который неплохо летает. Выбранный профиль объявляется лучшим. Другой любитель таким же образом выбирает совершенно непохожий профиль и его аппарат летает хорошо. У третьего самолет едва отрывается от земли, и вначале казавшийся наивыгоднейший профиль крыла считается уже не годным.

Очевидно, далеко не все зависит от конфигурации профиля. Попробуем разобраться в этом. Сравним два крыла с совершенно разными профилями, например с симметричным, установленным на Як-55 и несимметричным Clark YH - Як-50. Для сравнения определим несколько условий. Первое: крылья с разными профилями должны иметь удлинение (l).

l=I2/S,
где I - размах, S - площадь.

Второе: поскольку угол нулевой подъемная силы у симметричного профиля равен 00, его поляру (см. рис. 1) сместим влево, что физически будет соответствовать установке крыла на самолете с некоторым положительным углом заклинения.

Теперь взглянув на график можно легко сделать важный вывод: в диапазоне летных углов атаки характеристики крыла практически не зависят от формы профиля. Разумеется, речь идет об удобообтекаемых профилях, не имеющих зон интенсивного срыва потоков диапазоне летных углов атаки. На характеристики крыла, однако, можно существенно повлиять, увеличил удлинение. На графике 1 для сравнения показаны поляры крыльев с теми же профилями, но с удлинением 10. Как видим, они пошли гораздо круче или, как говорят, производная CУ по a стала выше (CУ - коэффициент подъемной силы крыла, a - угол атаки). Это означает, что при увеличении удлинения на одних и тех же углах атаки при, практически, одних и тех же коэффициентах сопротивления Cx можно получить более высокие несущие свойства.

Теперь поговорим о том, что же зависит от формы профиля.

Во-первых, профили имеют разный максимальный коэффициент подъемной силы CУ max. Так у симметричных коэффициент подъемной силы крыла равен 1.2 - 1.4, обычные несимметричные с выпуклой нижней поверхностью могут иметь - до 1.8, с сильной вогнутостью нижней поверхности он иногда достигает 2. Однако надо помнить, что профили с очень высоким CУ max обычно имеют высокие Cx и mz - коэффициент продольного момента. Для балансировки самолета с таким профилем хвостовое оперение должно развивать большую силу. В результате растет его аэродинамическое сопротивление, и общий выигрыш, полученный за счет высоко несущего профиля, существенно снижается.

CУ max существенно влияет только на минимальную скорость самолета - сваливание. Она во многом определяет простоту техники пилотирования машины. Однако влияние CУ max на скорость сваливания заметно проявляется при больших удельных нагрузках на крыло G/S (G - вес самолета). В то же время при нагрузках, характерных для любительских самолетов, то есть в 30 - 40 кг/м2, большой CУ max не имеет существенного значения. Так его увеличение с 1.2 до 1.6 на любительском самолете способно снизить скорость сваливания не более чем на 10 км/ч.

Во-вторых, форма профиля существенно влияет на характер поведения самолета на больших углах атаки, то есть на малых скоростях при заходе на посадку, при случайном "перетягивании ручки на себя". При этом для тонких профилей с относительно острым носком характерен резкий срыв потока, что сопровождается быстрой потерей подъемной силы и резким сваливанием самолета в штопор или на нос. Для более толстых с тупым носком характерен "мягкий срыв" с медленным падением подъемной силы. При этом летчик всегда успевает понять, что попал в опасный режим, и вывести машину на меньшие углы атаки, отдав ручку от себя. Особенно опасен резкий срыв, если крыло имеет сужение в плане и более тонкий профиль на конце крыла. В этом случае срыв потока наступает несимметрично, самолет резко сваливается на крыло и переходит в штопор. Именно такой характер появляется у самолетов Як-50 и Як-52, имеющих на конце сильно сужающегося крыла очень тонкий профиль (9% на конце и 14.5% у корня) с очень острым носком - Clark YH. Здесь выявляется важное свойство профилей: более тонкие имеют меньший Cy max и меньшие критические углы атаки, то есть углы, на которых происходит срыв потока.

Гораздо лучшими характеристиками сваливания обладают крылья с постоянной относительной толщиной профиля вдоль размаха. Например, Як-55 с крылом умеренного сужения с постоянным вдоль размаха 18-процентным профилем с тупым носком при выходе на большие углы атаки плавно опускает нос и переходит в пикирование, так как срыв потока наступает в корневой части крыла, что не создает кренящих моментов. Для получения корневого срыва потока лучше, если крыло вообще не имеет сужения в плане. Именно такие крылья установлены на большинстве самолетов первоначального обучения. Ранний корневой срыв можно вызвать также установкой на крыле наплыва, показанного на рис. 2. при этом корневой профиль получает меньшею относительную толщину и "менее несущую форму". Установка такого наплыва на экспериментальном Як-50 когда-то существенно изменила характер сваливания самолета: при выходе на большие углы атаки он уже не валился на крыло, а опускал нос и переходил в пикирование.

Третий парaметр, существенно зависящий от формы профиля, - коэффициент сопротивления Cx. Однако, как показывает практика любительского самолетостроения, его снижение на любительском самолете с удельной нагрузкой 30-40 кг/м2, имеющем максимальную скорость 200-250 км/ч., практически не влияет на летные характеристики. В этом скоростном диапазоне на летные данные практически не влияют и неубирающиеся шасси, подкосы, расчалки и т.д. Даже аэродинамическое качество планера зависит в первую очередь от удлинения крыла. И только при уровне аэродинамического качества 20-25 и l более 15 за счет подбора профиля качество можно повысить на 30-40%. В то время, как на любительском самолете с качеством 10-12 за счет самого удачного профиля качество можно повысить не более, чем на 5-10%. Гораздо проще такое увеличение при необходимости достигается подбором геометрии крыла в плане. Отметим еще одну особенность: в диапазоне скоростей любительских самолетов увеличение относительной толщины профиля вплоть до 18-20% не оказывает практически никакого влияния на аэродинамическое сопротивление крыла, в то же время коэффициент подъемной силы крыла заметно возрастает.

Существенное увеличение несущих характеристик крыла, как известно, может быть достигнуто за счет применения закрылков. Следует отметить одну особенность крыльев с закрылками: CУ max при их отклонении мало зависит от того, какой CУ max имел исходный профиль, а определяется, практически, только типом применяемого закрылка. Самый простой, получивший наибольшее распространение на зарубежных легкомоторных самолетах и его характеристики показаны на рис. 3.

Такие же закрылки используются на самолетах нашего любителя П. Альмурзина. Более эффективными являются щелевые, двухщелевые и подвесные закрылки. На рис. 4 показаны наиболее простые из них и поэтому чаше используемые.

CУ max с одно-щелевым закрылком может достигать 2.3-2.4 и с двухщелевым - 2.6 - 2.7. Во многих учебниках аэродинамики приводятся методики геометрического построения формы щели. Но практика показывает, что теоретически вычисленная щель все равно нуждается в доводке и тонкой настройке в аэродинамической трубе в зависимости от конкретной геометрии профиля, формы крыла и т.д. При этом щель либо работает, улучшая характеристики закрылка, либо не работает вообще, а вероятность того, что теоретически без продувок удается рассчитать и выбрать единственно возможную форму щели, крайне мала. Нечасто это удается даже профессиональным аэродинамикам, а тем более любителям. Поэтому в большинстве случаев на любительских самолетах щели на закрылках и элеронах, даже если они есть, не дают никакого эффекта, и сложный щелевой закрылок работает как простейший. Конечно, их можно пробовать на любительских аппаратах, но прежде стоит хорошо продумать, взвесив все "за" и "против".

И еще несколько практических советов, которые могут оказаться полезными при постройке любительских самолетов. Профиль крыла желательно очень точно выдерживать на участке от носка до точки максимальной толщины. Хорошо, если эта часть крыла имеет жесткую обшивку. Хвостовая часть может обтягиваться полотном и для упрощения технологии даже спрямляться "под линейку", как показано на рис.5. Лекальная хвостовая часть крыла при полотняной обшивке провисающей между нервюрами, большего смысла не имеет. Заднюю кромку крыла необязательно сводить на острый "нож". Она может иметь толщину 10-15 мм, но не более 1.5% хорды (см. рис. 5). На аэродинамических характеристиках крыла это совершенно не отражается, но эффективнсть элеронов несколько повышает, а технологию и конструкцию упрощает.

Важный элемент профиля - форма носка элерона. Наиболее распространенные варианты показаны на рис.6.

Профиль, образованный "параболой 100", используется на элеронах и рулях, имеющих осевую аэродинамическую компенсацию, когда носок выходит в поток, например на Як-55. такая "затупленная" форма носка при очень большой величине осевой аэродинамической компенсации (20% и выше) приводит к нелинейному росту усилий на ручке управления при отклонении элеронов или рулей. Лучшими в этом отношении являются "заостренные" носки, как на Су-26.

Для хвостового оперения используются симметричные крыльевые профили. Рули, как элероны, могут быть образованы прямолинейными дужками с затупленной задней кромкой. Достаточную эффективность имеет оперение с тонким плоским профилем, как на американских спортивно-пилотажных самолетах "Питтс", "Лазер" и других (см. рис. 7).

Жесткость и прочность оперения обеспечивается расчалками, оно получается очень легким и конструктивно простым. Относительная толщина профиля менее 5%. При такой толщине характеристики оперения вообще не зависят от формы профиля.

Приводим данные по наиболее подходящим для любительских летательных аппаратах профилям. Конечно, возможны и другие варианты, но отметим, что наилучшими свойствами в диапазоне скоростей любительских самолетов обладают 15-18-процентные с тупым носком и с максимальной относительной толщиной, расположенной в пределах 25% хорды.

Рекомендуемые профили имеют следующие особенности: P-II и P-III разработаны в ЦАГИ. У них высокие несущие свойства и хорошие характеристики на больших углах атаки. Широко использовались в 30 -40-х годах, находят применение и в наши дни.

NACA-23015 - последние две цифры означают относительную толщину в процентах, первыё - номер серии. Профиль имеет достаточно высокий Cy max при низком Cx, невысокий коэффициент продольного момента Mz что определяет небольшие потери на балансировку. Характер сваливания у самолётов с этим профилем "мягкий". NACA - 230 с относительной толщиной 12 - 18% используется на большинстве легкомоторных, в том числе и любительских, самолётов США.

NACA - 2418 - для скоростей менее 200 - 250 км/час считается более выгодным, чем NACA - 230. Применяется на многих самолётах, в том числе на чехословацких "Злинах".

GAW - суперкритический профиль разработанный американским аэродинамиком Уиткомбом для легких самолетов. Выгоден при скоростях более 300 км/ч. "Острый" носок предопределяет резкий срыв на больших углах атаки, "отогнутая" вниз задняя кромка способствует повышению Су max.

"Кри-Кри" - ламинаризированный планерный профиль, разработанный западногерманским аэродинамиком Вортманом и несколько измененный конструктором "Кри-Кри" французом Коломбаном. Относительная толщина профиля - 21,7%, за счет чего достигаются высокие несущие характеристики. Как и GAW-1, этот профиль требует очень высокой точности соблюдения теоретического контура и высокого качества отделки поверхности крыла. Приводим координаты профиля в мм, пересчитанные конструктором на хорду крыла самолета "Кри-Кри", равную 480 мм.

П-52 - современный профиль, разработанный в ЦАГИ для легкомоторных самолетов. Имеет тупой носок и спрямленную хвостовую часть.

Як-55 - симметричный профиль для спортивно-пилотажного самолета. На крыле относительная толщина 12-18%, на оперении - 15%. Характер сваливания самолета очень "мягкий" и плавный.

V-16 - французский симметричный профиль, имеет высокий Су max, используется на спортивных самолетах КАП-21, "Экстра-230" и других.

Су-26-18%, Су-26-12% - специальные профили для спортивно-пилотажных самолетов. Су-26-18% использован в корне крыла Су-26, Су-26-12% - в концевой части крыла и на оперении. Профиль имеет "острый" носок, что несколько снижает несущие свойства, но позволяет добиться очень чуткой реакции машины на отклонение рулей. Хотя для новичков такой самолет сложен в пилотировании, опытные спортсмены получают возможность выполнять фигуры, недоступные самолетам с "мягкой" замедленной реакцией на движение ручки, обусловленной тупым носком профиля. Срыв самолета с профилем типа Су-26 происходит быстро и резко, что необходимо при выполнении современных штопорных фигур. Вторая особенность - "поджатие" в хвостовой части, повышающее эффективность элеронов.

Крыло Су-26 имеет большие элероны, занимающие почти всю заднюю кромку. Если "сбить" нейтраль элеронов (обоих сразу) вниз на 10°, Су max увеличится приблизительно на 0,2, приближаясь к Су max хорошего несимметричного профиля. При этом Сх практически не растет, а аэродинамическое качество не падает, то же наблюдается и на других симметричных профилях. На этом основано использование элеронов, кинематически связанных с рулем высоты, выполняющих функции и элеронов, и закрылков одновременно, подобно закрылкам на кордовой пилотажной модели.

Само понятие профиль, я думаю, ясно каждому. Помните, «фото в профиль и анфас»…

профиль крыла в потоке

По простому говоря, это поперечное сечение крыла (не крыльев, а именно крыла, об этом мы с вами договорились ).

Однако по простому, да не совсем, потому что профиль крыла – это, говоря официальным языком, одна из основных составляющих, формирующих летательный аппарат и самолет в частности, так как крыло все же его неотъемлемая часть. Совокупность некоторого количества профилей составляют целое крыло, причем по всему размаху крыла они могут быть разные. А от того, какие они будут, зависит назначение самолета и то, как он будет летать. Например, скоростной и высотный самолет всегда имеет тонкий профиль крыла с острой передней кромкой. Известные предствители этого класса – самолеты МИГ-25 и МИГ-31. В то же время большинство пассажирских лайнеров имеют профиль с большой относительной толщиной и закругленной передней кромкой.

Типов профилей достаточно много, но форма их принципиально всегда каплевидна. Этакая сильно вытянутая горизонтальная капля. Однако капля эта обычно далека от совершенства, потому что кривизна верхней и нижней поверхностей у разных типов разная, как впрочем и толщина самого профиля. Классика – это когда низ близок к плоскости, а верх выпуклый по определенному закону. Это так называемый несимметричный профиль, но есть и симметричные, когда верх и низ имеют одинаковую кривизну.

Каждый образец математически рассчитывается согласно законам королевы авиационных наук аэродинамики. А потом продувается в аэродинамической трубе на различных режимах для иммитации полетных условий и сбора необходимых характеристик.

Эволюция профиля крыла. Исторические разработки NASA.

Всеми полученными данными потом могут пользоваться разработчики различной авиационной техники (от авиа моделистов до современных самолетов) для выбора подходящего варианта. Существуют даже так называемые таблицы профилей. А профиль крыла, о котором мы говорим, вообще-то более точно называется аэродинамический профиль крыла , потому что это один из основных терминов, которыми оперирует аэродинамика.

Разработка аэродинамических профилей проводилась практически с начала истории авиации, проводится она и сейчас.

Делается это в специализированных учреждениях. Ярчайшим представителем такого рода учреждений в России является ЦАГИ – Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского. А в США – такие функции выполняет Исследовательский центр в Лэнгли (подразделение NASA).

Фотографии кликабельны.

Профили крыла планеров В6356b- самый известный и распространенный во всем мире профиль , «выигравший» большинство соревнований самого высокого ранга. Он действительно универсален и имеет неплохие перспективы на будущее. Данный профиль применяли одессит В.Чоп (чемпион мира 1975 и 1987 года) и эстонец А. Лепп (чемпион Европы 1988 и чемпион мира 1989 года). Если Чоп использовал этот профиль в чистом виде, то Лепп сильно модернизировал его в сторону увеличения кривизны профиля без изменения толщины. От редакции. Небольшое замечание по поводу «модернизации», которую провел А. Лепп. Изменение кривизны или формы средней линии дает столь выраженные изменения характеристик, что теперь можно говорить о совершенно новом профиле (созданном, правда, с использованием тех или иных готовых компонентов). Кроме того, нужно помнить, что нередко цифры в «названии» профиля обозначают его геометрические параметры. Это относится и к профилям Бенедека. В нашем случае цифровой ряд 6356 обозначает, что толщина профиля равна 6%, максимальная вогнутость располагается на 35% хорды от носика, и вогнутость профиля равна 6%. Здесь уместно заметить, что профили типа NACA шифруются аналогично, но у них на первом месте стоит не толщина профиля, а величина вогнутости. В любом случае понятно, что изменение формы средней линии неизбежно должно приводить и к замене цифрового «названия» профиля.

Thomann F4. Этот профиль долгое время был самым популярным в Европе и обеспечивал весьма высокие для той поры результаты. Он применялся с турбулизатором типа «зигзаг», располагаемом на расстоянии 5 мм от передней кромки и имевшим ширину 7 мм при толщине 1 мм с углом «зуба» 60°.

Ritz-7455G. Данный профиль создан известным американским планеристом, чемпионом мира 1959 года Д. Ритцем.

Ritz-7455G уже 20 лет как получил «путевку в жизнь» на моделях планеров российских спортсменов. Одним из первых его применил ленинградец Ю. Яблоков, на рубеже 80-х годов ставший первым из советских планеристов обладателем Кубка мира (он был также победителем Кубков и Чемпионатов СССР). Ведущие московские спортсмены С. Макаров и М. Кочкарев, являющиеся сегодня законодателями технической моды в классе F1A, как и чемпион мира 1997 года киевлянин В. Стамов, применяют этот профиль уже более 10 лет. Они слегка модернизировали его для улучшения технологии сборки крыльев на стапелях.

Купфер. В свое время отечественные планеристы создали ряд профилей , имевших несомненную перспективу. Особо стоит отметить разработку доктора технических наук М. Купфера. Его профиль в конце 50-х годов был продут в аэродинамической трубе и показал выдающиеся характеристики. Из-за малой относительной толщины он тогда не получил распространения. Сейчас создание жестких крыльев малой толщины не представляет большой проблемы. Поэтому, возможно, теперь профиль Купфера сможет занять должное место на моделях планеров.

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРОФИЛЯ

рис 1. Геометрические характеристики профиля.

Хорда профиля (b) - отрезок прямой, соединяющий две наиболее удалённые точки профиля.

Толщина профиля (Сmax) - величина максимального утолщения профиля.

Относительная толщина профиля (С) - отношение максимальной толщины С макс к хорде, выраженное в процентах:

С до 13% считается тонким или средним профилем, свыше 13% - толстым профилем.

Кривизна профиля (f) - наибольшее расстояние от средней линии до хорды, выраженное в процентах.

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ КРЫЛА

Геометрические характеристики крыла сводятся в основном к характеристикам формы крыла в плане и к характеристикам профиля крыла. Крылья современных самолетов по форме в плане могут быть (Рис. 1): эллипсовидные (а), прямоугольные (б), трапециевидные (в), стреловидные (г) и треугольные (д)

Наилучшей в аэродинамическом отношении является эллипсовидная форма, но такое крыло сложно в производстве, поэтому редко применяется. Прямоугольное крыло менее выгодно с точки зрения аэродинамики, но значительно проще в изготовлении. Трапециевидное крыло по аэродинамическим характеристикам лучше прямоугольного, но несколько сложнее в изготовлении.

Стреловидные и треугольные в плане крылья в аэродинамическом отношении на дозвуковых скоростях уступают трапециевидным и прямоугольным, но на околозвуковых и сверхзвуковых имеют значительные преимущества. Поэтому такие крылья применяются только на самолетах, летающих на околозвуковых и сверхзвуковых скоростях.

Рис. 1 Формы крыльев в плане

Рис. 2 Угол поперечного V крыла

Рис. 3 Геометрические характеристики крыла

Форма крыла в плане характеризуется размахом, площадью удлинением, сужением, стреловидностью (Рис. 3) и поперечным V (Рис. 2)

Размахом крылаL называется расстояние между концами крыла по прямой линии.

Площадь крыла в плане S кр ограничена контурами крыла.

Площадь трапециевидного и стреловидного крыльев вычисляет как площади двух трапеций

(2.1)

где b 0 - корневая хорда, м;

b к - концевая хорда, м;

- средняя хорда крыла, м.

Удлинением крыла l называется отношение размаха крыла к средней хорде

(2.2)

Если вместо b ср подставить его значение из равенства (2.1), то удлинение крыла будет определяться по формуле

(2.3)

Для современных сверхзвуковых и околозвуковых самолетов удлинение крыла не превышает 2- 5. Для самолетов малых скоростей величина удлинения может достигать 12-15, а для планеров до 25.

Сужением крыла h называется отношение осевой хорды к концевой хорде

(2.4)

Для дозвуковых самолетов сужение крыла обычно не превышает 3, а для околозвуковых и сверхзвуковых оно может изменяться в широких пределах.

Углом стреловидности c называется угол между линией передней кромки крыла и поперечной осью самолета. Стреловидность также может быть замерена по линии фокусов (проходящей на расстоянии 1/4 хорды от ребра атаки) или по другой линии крыла. Для околозвуковых самолетов она достигает 45°, а для сверхзвуковых - до 60°.

Углом поперечного V крыла называется угол между поперечной осью самолета и нижней поверхностью крыла (Рис. 2). У современных самолетов угол поперечного V колеблется от +5° до -15°.

Профилем крыла называется форма его поперечного сечения. Профили могут быть (Рис. 4): симметричными и несимметричными. Несимметричные в свою очередь могут быть двояковыпуклыми, плосковыпуклыми, вогнутовыпуклыми и.S-образными. Чечевицеобразные и клиновидные могут применяться для сверхзвуковых самолетов.

На современных самолетах применяются в основном симметричные и двояковыпуклые несимметричные профили.

Основными характеристиками профиля являются: хорда профиля, относительная толщина, относительная кривизна (Рис. 5).

Хордой профиля b называется отрезок прямой, соединяющий две наиболее удаленные точки профиля.

Рис. 4 Формы профилей крыла

1 - симметричный; 2 - не симметричный; 3 - плосковыпуклый; 4 - двояковыпуклый; 5 - S-образный;6 -ламинизированный; 7 - чечевицеобразный; 8 - ромбовидный; 9 - D видный

Рис. 5 Геометрические характеристики профиля:

b - хорда профиля; С макс - наибольшая толщина; f макс - стрела кривизны; х с - координата наибольшей толщины

Рис. 6 Углы атаки крыла

Рис. 7 Полная аэродинамическая сила и точка ее приложения

R - полная аэродинамическая сила; Y - подъемная сила; Q - сила лобового сопротивления; a- угол атаки; q - угол качества

Цель работы

Исследовать обтекание профиля крыла без учета его размаха, т.е. крыла бесконечного размаха. Выяснить, как меняется картина обтекания профиля при изменении угла атаки. Исследование провести для трех режимов – дозвукового взлетно-посадочного, дозвукового крейсерского и сверхзвукового полетов. Определить подъемную силу и силу сопротивления, действующие на крыло. Построить поляру крыла.

КраТкая теория

Профиль крыла – сечение крыла плоскостью, параллельной плоскости симметрии самолета (сечение А-А). Иногда под профилем понимают сечение, перпендикулярное передней или задней кромке крыла (сечение Б-Б).

Хорда профиля b – отрезок, соединяющий наиболее удаленные точки профиля.

Размах крыла l – расстояние между плоскостями, параллельными плоскости симметрии и касающимися концов крыла.

Центральная (корневая) хорда b 0 – хорда в плоскости симметрии.

Концевая хорда b K – хорда в концевом сечении.

Угол стреловидности по передней кромке χ ПК – угол между касательной к линии передней кромки и плоскостью, перпендикулярной центральной хорде.

Как было указано в предыдущей работе, полная аэродинамическая сила R раскладывается на подъемную силу Y и силу сопротивления X :

Подъемная сила и сила сопротивления определяются по похожим формулам:

где C Y и С Х – коэффициенты подъемной силы и силы сопротивления соответственно;

ρ – плотность воздуха;

V – скорость тела относительно воздуха;

S – эффективная площадь тела.

В исследованиях обычно имеют дело не самими силами Y и Х , а с их коэффициентами C Y и C X .

Рассмотрим обтекание воздушным потоком тонкой пластины:

Если установить пластину вдоль потока (угол атаки равен нулю), то обтекание будет симметричным. В этом случае поток воздуха пластиной не отклоняется и подъемная сила Y равна нулю. Сопротивление X минимально, но не нуль. Оно будет создаваться силами трения молекул воздуха о поверхность пластины. Полная аэродинамическая сила R минимальна и совпадает с силой сопротивления X .

Начнем понемногу отклонять пластину. Из-за скашивания потока сразу же появляется подъемная сила Y . Сопротивление X немного увеличивается из-за увеличения поперечного сечения пластины по отношению к потоку.

По мере постепенного увеличения угла атаки и увеличения скоса потока подъемная сила увеличивается. Очевидно, что сопротивление тоже растет. Здесь необходимо отметить, что на малых углах атаки подъемная сила растет значительно быстрее, чем сопротивление .

По мере увеличения угла атаки воздушному потоку становится все труднее обтекать пластину. Подъемная сила хотя и продолжает увеличиваться, но медленнее, чем раньше. А вот сопротивление растет все быстрее и быстрее, постепенно обгоняя рост подъемной силы. В результате полная аэродинамическая сила R начинает отклоняется назад.

И тут вдруг картина резко меняется. Воздушные струйки оказываются не в состоянии плавно обтекать верхнюю поверхность пластины. За пластиной образуется мощный вихрь. Подъемная сила резко падает, а сопротивление увеличивается. Это явление в аэродинамике называют СРЫВ ПОТОКА. «Сорванное» крыло перестает быть крылом. Оно перестает лететь и начинает падать

Покажем зависимость коэффициентов подъемной силы С Y и силы сопротивления С Х от угла атаки α на графиках.

Объединим получившиеся два графика в один. По оси абсцисс отложим значения коэффициента сопротивления С Х , а по оси ординат – коэффициент подъемной силы С Y .

Получившаяся кривая называется ПОЛЯРА КРЫЛА – основной график, характеризующий летные свойства крыла. Откладывая на осях координат значения коэффициентов подъемной силы C Y и сопротивления C X , этот график показывает величину и направление действия полной аэродинамической силы R .

Если считать, что воздушный поток движется вдоль оси C X слева направо, а центр давления (точка приложения полной аэродинамической силы) находится в центре координат, то для каждого из разобранных ранее углов атаки вектор полной аэродинамической силы будет идти из начала координат в точку поляры, соответствующую заданному углу атаки. На поляре можно легко отметить три характерные точки и соответствующие им углы атаки: критический, экономический и наивыгоднейший.

Критический угол атаки – это угол атаки, при превышении которого происходит срыв потока. При этом С Y максимально и ЛА может удерживаться в воздухе на минимально возможной скорости. Это полезно при заходе на посадку. Смотри точку (3) на рисунках.

Экономический угол атаки – это угол атаки, на котором аэродинамическое сопротивление крыла минимально. Если установить крыло на экономический угол атаки, то оно сможет двигаться с максимальной скоростью.

Наивыгоднейший угол атаки – это угол атаки, на котором отношение коэффициентов подъемной силы и сопротивления C Y /C X максимально. В этом случае угол отклонения аэродинамической силы от направления движения воздушного потока максимален. При установке крыла на наивыгоднейший угол атаки оно полетит дальше всего.

Аэродинамическое качество крыла – это отношение коэффициентов C Y /C X при установке крыла на наивыгоднейший угол атаки.

Порядок выполнения работы

    Подбор профиля крыла:

Обширная библиотека авиационных профилей находится на сайте Иллинойского университета: http://aerospace.illinois.edu/m-selig/ads/coord_database.html

Здесь собрано база из примерно 1600 разнообразных профилей крыла. Для каждого профиля имеется его рисунок (в формате *.gif) и таблица координат верхней и нижней части профиля (в формате *.dat). База находится в свободном доступе, постоянно обновляется. Кроме того, на этом сайте имеются ссылки на другие библиотеки профилей.

Выбираем любой профиль и скачиваем *.dat файл к себе на компьютер.

    Редактирование *.dat файла с координатами профиля:

Перед тем, как импортировать файл с координатами профиля в SW, его необходимо подкорректировать в Microsoft Excel. Но если напрямую открыть этот файл в Excel, то все координаты окажутся в одном столбце.

Нам же необходимо, чтобы координаты X и Y профиля были в разных столбцах.

Поэтому мы сначала запускаем Excel, а затем открываем из него наш *.dat файл. В выпадающем списке указываем «Все файлы». В мастере текстов формат данных указываем – с символом-разделителем «Пробел».


Теперь X и Y координаты каждая в своем столбце:

Теперь удаляем строку 1 с текстом, строку 2 с посторонними данными и пустую строку 3. Далее просматриваем все координаты и тоже удаляем пустые строки, если они имеются.

Еще добавляем третий столбец для координаты Z . В этом столбце все ячейки заполняем нулями.

И смещаем всю таблицу влево.

Отредактированный *.dat файл должен выглядеть примерно так:

Сохраняем этот файл, как текстовый файл (с разделителями табуляции).

    Создание профиля в SW:

В SW создаем новую деталь.

Запускаем команду «Кривая через точки XYZ» на вкладке «Элементы».

Откроется окно:

Нажимаем ОК и вставляем в документ кривую профиля крыла.

Если выдается предупреждение, что кривая самопересекается (это возможно для некоторых профилей), то нужно вручную в Excel отредактировать файл, чтобы устранить самопересечение.

Теперь эту кривую нужно преобразовать в эскиз. Для этого создаем на передней плоскости эскиз:

Запускаем команду «Преобразование объектов» на вкладке «Эскиз» и в качестве элемента для преобразования указываем нашу кривую профиля.

Поскольку исходная кривая очень маленького размера (хорда профиля всего 1 мм!), то с помощью команды «Масштабировать объекты» увеличиваем профиль в тысячу раз, чтобы значения аэродинамических сил более-менее соответствовали реальным.

Закрываем эскиз и с помощью команды «Вытянутая бобышка/основание» выдавливаем эскиз в твердотельную модель длиной 1000 мм. Выдавливать можно на самом деле на любую длину, все равно мы будем решать задачу двумерного обтекания.

    Обдувка профиля в модуле Flow Simulation:

На необходимо выполнить обдувку полученного профиля в трех скоростных режимах: дозвуковом взлетно-посадочном (50 м/с), дозвуковом крейсерском (250 м/с) и сверхзвуковом (500 м/с) при разных углах атаки: –5°, 0°, 10°, 20°, 30°, 40°.

При этом необходимо построить картины в сечении для каждого случая и определить подъемную силу и силу сопротивления, действующие на профиль.

Таким образом, необходимо 18 раз выполнить расчет во Flow Simulation и заполнить такую таблицу:

Скоростной режим

Углы атаки, град

Дозвуковой

взлетно-посадочный,

Дозвуковой

крейсерский,

Сверхзвуковой,

Вращение крыла в SW выполняется с помощью команды «Переместить/копировать тела» .

Общие параметры проекта такие: тип задачи (внешняя без учета замкнутых полостей), тип текучей среды (воздух, ламинарное и турбулентное течение, большие числа Маха для сверхзвукового режима), скорость в направлении оси Х V Х = 50, 250 и 500 м/с. Остальные параметры оставляем по умолчанию.

В свойствах расчетной области указываем тип задачи – 2D моделирование .

Указываем цель расчета – поверхностная, ставим метки для средних скоростей по X и Y , а также для сил по X и Y .

В заключение, строятся 6 графиков – зависимости подъемной силы Y и силы сопротивления X от угла атаки α , а также 3 поляры крыла.

Контрольные вопросы

    Что такое профиль крыла?

    Что такое угол атаки?

    Что такое размах крыла?

    Чем обтекание крыла конечного размаха отличается от обтекания крыла с бесконечным размахом?

    Что такое хорда крыла?

    Какие бывают хорды у крыла?

    Как определить подъемную силу и силу сопротивления (формулы)?

    Как выглядят графики зависимости C Y и C X от угла атаки α ?

    Что такое поляра крыла?

    Какие характерные точки есть на поляре?

    Что такое аэродинамическое качество крыла?