ВведениеЕщё совсем недавно нам казалось, что в начале 2008 года основной "горячей" темой наших публикаций станет сравнение новых процессоров AMD Phenom с обновлёнными четырёхъядерными процессорами Intel Penryn, производимыми с использованием 45-нм технологического процесса. Однако этим ожиданиям оправдаться не суждено, причём вина в этом лежит и на AMD, и на Intel. Действительно, к настоящему времени компания AMD так и не смогла предложить серийные четырёхъядерные процессоры, работающие на достойных частотах. Предлагаемые же модели Phenom показывают провальные результаты даже в сравнении с четырёхъядерными CPU Intel предыдущего поколения, не говоря уже о более совершенных новых процессорах. Вполне логично, что в свете обнаружившегося отсутствия достойных конкурентов для вполне успешно продающихся процессоров Core 2 Quad на старых 65-нм ядрах, компания Intel утратила стимулы для скорейшего обновления своей линейки четырёхъядерных процессоров. Поэтому выход новых CPU в линейке Core 2 Quad, известных сегодня под кодовым именем Yorkfield, отложен на неопределённый срок: как минимум, до февраля или марта. И хотя Intel при этом прикрывается сообщением о найденной в перспективных процессорах проблеме, вызванной наводками в 1333-мегагерцовой фронтальной шине, возникающими при их использовании в гипотетических платах с четырёхслойным дизайном PCB, выглядит оно совершенно неубедительно. Мы же вынуждены констатировать печальный итог: сравнивать Phenom и Penryn стало совершенно бессмысленно, потому что первый – неконкурентоспособен, а второй – пока что иллюзорен и не намерен лишаться неопределённого статуса перспективного продукта.

Но, всё же, темы, достойные нашего внимания, можно найти и на сегодняшнем процессорном рынке. Несмотря на то, что компания Intel решила повременить с выпуском четырёхъядерных процессоров, основанных на 45-нм ядрах, линейка двухъядерных CPU Core2 Duo всё-таки будет обновлена. В ближайшие дни должны быть анонсированы три новых процессора, принадлежащие к этому модельному ряду и имеющие кодовое имя Wolfdale: Core 2 Duo E8500, E8400 и E8200. Эти процессоры базируются на переработанном ядре, производимом по 45-нм техпроцессу, и относятся к тому же семейству Penryn, к которому принадлежат и отложенные Yorkfield. Появление серийных Wolfdale обойти вниманием никак нельзя: эти процессоры обещают поднять производительность двухъядерных предложений Intel на новый уровень, ведь они имеют и более высокие таковые частоты, и больший кэш второго уровня, а также и прочие усовершенствования. При этом, что особенно приятно, их стоимость установлена на том же уровне, что и на старые Core 2 Duo.


Таким образом, на вторую половину января Intel запланировал массирование обновление собственных двухъядерных предложений в ценовом диапазоне от 160 до 260 долларов. Именно это событие и стало основной темой для нашей новой статьи, в которой мы познакомим вас с тем, чего же следует в реальности ожидать от столь многообещающих новинок, нацеленных на использование в настольных компьютерах среднего уровня.

Процессоры линейки Wolfdale: Core 2 Duo E8500, E8400 и E8200

Итак, Wolfdale – это кодовое имя двухъядерных процессоров в семействе Penryn. Как и отложенные четырёхъядерные Yorkfield, процессоры Wolfdale производятся по 45-нм технологическому процессу. Причём, в основе Yorkfield и Wolfdale используются совершенно одинаковые полупроводниковые кристаллы: Yorkfield, по сложившейся традиции, представляет собой склейку из двух двухъядерных кристаллов Wolfdale, выполненную в одном процессорном корпусе. Таким образом, Wolfdale можно рассматривать как базовый строительный материал для формирования всего семейства Penryn, чем он отдельно интересен.

Ядро процессоров Wolfdale имеет площадь 107 кв. мм и состоит из 410 миллионов транзисторов. Эти цифры недвусмысленно наводят на мысль о том, что в Wolfdale по сравнению с 65 нм предшественником Conroe, который содержал 291 миллион транзисторов, сделаны весьма существенные изменения. Собственно, видно это и по фотографии ядер Wolfdale и Conroe: компоновка функциональных блоков несколько изменилась.


Слева – Wolfdale, справа – Conroe (масштаб изображений не сохранён)


Таким образом, ядро Wolfdale – это не просто уменьшенное в связи с переходом на более совершенный техпроцесс ядро Conroe. В новых процессорах инженеры Intel сделали целый ряд усовершенствований (подробнее об особенностях процессоров семейства Penryn можно прочитать в нашем материале "").

Анонсируемая в эти дни линейка двухъядерных процессоров Wolfdale, базирующаяся на новых 45-нм ядрах, изначально будет включать три модели процессоров Core 2 Duo: E8500, E8400 и E8200 с тактовыми частотами 3,16, 3,0 и 2,66 ГГц соответственно. Кроме того, будет доступна и модель с номером E8190, аналогичная Core 2 Duo E8200, но при этом лишённая технологии виртуализации. Позднее к ним присоединится и ещё один, пятый, процессор Core 2 Duo E8300 с частотой 2,83 ГГц, но случится это не ранее второго квартала текущего года.

Полное представление о серийных Core 2 Duo с 45-нм ядрами можно получить из приведённой таблицы.


К указанной в таблице технической информации необходимо приобщить и не менее важную информацию об отпускных ценах производителя на новые CPU:

Core 2 Duo E8500 – 266 долл.
Core 2 Duo E8400 – 183 долл.
Core 2 Duo E8200 – 163 долл.
Core 2 Duo E8190 – 163 долл.

Приятно видеть, что Intel продолжает придерживаться одобряемой пользователями ценовой политики, когда новые процессоры продаются по той же самой стоимости, что и старые, эволюционно вытесняя их с рынка. На этот раз Core 2 Duo E8500 приходит на смену Core 2 Duo E6850, Core 2 Duo E8400 сменяет на своём посту Core 2 Duo E6770, а Core 2 Duo E6550 уступает место для Core 2 Duo E8200. Иными словами, начиная уже с ближайших дней, покупатели двухъядерных CPU получат возможность приобрести более совершенные и высокочастотные процессоры по старой цене.

Давайте взглянем на сами процессоры с кодовым именем Wolfdale.




Как видно по фотографии, новые процессоры с 45-нм ядрами имеют практически такой же внешний вид, что и их 65 нм предшественники.



Слева – Wolfdale, справа – Conroe


Тем не менее, расположение навесных элементов на брюшке двухъядерных CPU разных поколений отличается.

Диагностическая утилита CPU-Z уже хорошо знакома с новыми процессорами. Проблем с правильным определением Core 2 Duo E8500, E8400 и E8200 не возникает никаких.


Заметьте, наши тестовые образцы новых процессоров основываются на ядрах далеко не первой ревизии C0, и в серийные модели пойдёт именно она.

К имеющейся на скриншоте информации остаётся добавить лишь единственный комментарий. Процессоры Wolfdale получили поддержку дробных коэффициентов умножения, что даёт Intel возможность сделать сетку тактовых частот гуще. Именно это мы и видим на примере Core 2 Duo E8500 – данный процессор имеет множитель 9,5. Следует заметить, что для нормального функционирования такого CPU требуется поддержка дробных множителей со стороны BIOS материнской платы. Впрочем, в ближайшее время соответствующие обновления должны выпустить все ведущие производители материнских плат.

Как мы тестировали

Для изучения производительности новых процессоров Core 2 Duo E8500, E8400 и E8200 и их сравнения с предшествующими и конкурирующими моделями нами было собрано несколько систем, включающих следующий набор оборудования.

Платформа AMD:

Процессор: AMD Athlon 64 X2 6400+ (Socket AM2, 3,0 ГГц, 2x1024 кбайт L2, ядро Windsor).
Материнская плата: ASUS M2R32-MVP (Socket AM2, чипсет AMD 580X).
Память: ).
Графическая карта:
Дисковая подсистема:
Операционная система:

Платформа Intel:

Процессоры:

Intel Core 2 Duo E8500 (LGA775, 3,16 ГГц, 1333 МГц FSB, 6 Мбайта L2, ядро Wolfdale);
Intel Core 2 Duo E8400 (LGA775, 3,0 ГГц, 1333 МГц FSB, 6 Мбайта L2, ядро Wolfdale);
Intel Core 2 Duo E8200 (LGA775, 2,66 ГГц, 1333 МГц FSB, 6 Мбайта L2, ядро Wolfdale);
Intel Core 2 Duo E6850 (LGA775, 3,0 ГГц, 1333 МГц FSB, 4 Мбайта L2, ядро Conroe);
Intel Core 2 Duo E6750 (LGA775, 2,66 ГГц, 1333 МГц FSB, 4 Мбайта L2, ядро Conroe).


Материнская плата: ASUS P5E (LGA775, Intel X38, DDR2 SDRAM).
Память: 2 Гбайта DDR2-800 с таймингами 4-4-4-12-1T (Corsair Dominator TWIN2X2048-10000C5DF ).
Графическая карта: OCZ GeForce 8800GTX (PCI-E x16).
Дисковая подсистема: Western Digital WD1500AHFD (SATA150).
Операционная система: Microsoft Windows Vista x86.

Особо отметим, что использовавшаяся нами для тестирования процессоров Wolfdale материнская плата ASUS P5E c BIOS версии 0502 поддерживает их в полной мере, позволяя изменять множитель этих CPU с шагом 0,5.

Производительность

Общее быстродействие

Выбранный нами тест SYSmark 2007 использует для определения производительности типичные сценарии работы в наиболее распространённых реальных приложениях.















SYSMark 2007 в среднем выявляет примерно 4-процентное преимущество процессоров Wolfdale над Conroe, работающими на аналогичных тактовых частотах. Однако за счёт того, что Intel в обновлённой линейке CPU увеличил частоту своих процессоров, старшая модель Wolfdale опережает старшую модель Conroe на 7 %. Стоимость же этих процессоров разных поколений по официальному прайс-листу Intel одинакова.

Анализ промежуточных результатов SYSMark 2007 показывает, что наибольший прирост быстродействия новые процессоры обеспечивают в сценарии, в котором моделируется подготовка обучающего веб-сайта, содержащего разнообразный медиа-контент. Этот сценарий задействует следующие приложения: Adobe Illustrator CS2, Adobe Photoshop CS2, Macromedia Flash 8 и Microsoft PowerPoint 2003. Наименьшая разница в производительности между Core 2 Duo на 45-нм и 65-нм ядрах наблюдается при изготовлении и обработке видеороликов, в процессе чего задействуются Adobe After Effects 7, Adobe Illustrator CS2, Adobe Photoshop CS2, Microsoft Windows Media Encoder 9 и Sony Vegas 7.

3D игры





















Игроки должны воспринять появление новых процессоров серии Core 2 Duo E8000 с большим воодушевлением. Как известно, скорость работы игровых приложений хорошо реагирует на изменение размера кэш-памяти, что и отмечается в данном случае. В некоторых играх младшему из Wolfdale, Core 2 Duo E8200, удаётся даже опередить по скорости бывшую топовую двухъядерную модель E6850 на 65-нм ядре. Старший же двухъядерный процессор AMD, Athlon 64 X2 6400+, который и раньше-то смотрелся в играх не лучшим образом, теперь вообще оказывается в глубоком нокауте. Он значительно проигрывает по быстродействию даже младшему представителю линейки Wolfdale.

Кодирование медиаконтента












Положение дел вполне ожидаемо: превосходство семейства Core 2 Duo E8000 над предшественниками в лице Core 2 Duo E6000 находится примерно на том же уровне, что и в других тестах. Хотя в скором времени эта картина может измениться в корне: кодеки относятся к числу приложений, которые должны получить значительный выигрыш от оптимизации под набор инструкций SSE4, появившийся в линейке процессоров E8000. Так что пока какие-то окончательные выводы о работе Wolfdale в этой группе задач делать преждевременно.

Финальный рендеринг






В целом, наблюдаемая картина смотрится вполне "в духе" предыдущих результатов. Хорошо распараллеливаемые алгоритмы рендеринга выигрывают от перехода на новое ядро. Здесь же хочется обратить внимание на один любопытный факт, не нашедший отражения на графиках. Дело в том, что хотя это и кажется несколько фантастичным, производительность двухъядерного процессора Core 2 Duo E8500 при финальном рендеринге почти доросла до уровня быстродействия младшего из четырёхъядерных процессоров AMD, Phenom 9500. По данным наших тестов этот процессор AMD в 3ds max 9 набирает 5,61 балла, а в Cinebench R10 – 7114 очков.

Другие приложения












Для этого раздела мы выбрали ещё четыре интересных распространённых задачи, которые тематически не подходят ни к одной из предыдущих частей изложения. Впрочем, и здесь ничего принципиально нового на диаграммах нет: Core 2 Duo E8500, E8400 и E8200 однозначно превосходят модели с 65-нм ядрами с равной частотой, и уж тем более, с равной стоимостью.

Энергопотребление и тепловыделение

Поскольку новый 45-нм технологический процесс должен найти отражение в электрических и тепловых характеристиках новых CPU, мы решили уделить внимание практическим тестам и этих показателей.

В первую очередь мы прибегли к измерению рабочей температуры процессоров при простое и под нагрузкой. Во время тестирования процессоры охлаждались одним и тем же кулером Zalman CNPS9700 LED . Энергосберегающие технологии Enhanced Intel SpeedStep и Cool"n"Quiet 2.0 были включены. Кстати, процессоры Wolfdale, точно также как и их предшественники, в состояниях с низкой загрузкой сбрасывают свой коэффициент умножения до 6x.

Загрузка процессоров выполнялась при помощи утилиты Prime95 25.5, температурные показатели снимались утилитой CoreTemp 0.96. Полученные результаты приведены в таблице.


Как того и следовало ожидать, в целом процессоры с 45-нм ядром оказываются холоднее своих предшественников с микроархитектурой Core, но разница в температуре при полной загрузке составляет лишь 4-5 градусов. Дело в том, что ядро процессоров Wolfdale имеет меньшую площадь и, соответственно, гораздо более высокую плотность расположения транзисторов на полупроводниковом кристалле, что несколько затрудняет отвод от него теплового потока. Именно поэтому в состоянии покоя Wolfdale и Conroe показывают примерно одинаковые температуры. Что же касается относительно низкой температуры процессора Athlon 64 X2 6000+, TDP которого, к слову, в два раза выше, чем у Core 2 Duo, то обусловлена она не совсем удачным расположением термодатчика на ядре, который находится вдалеке от наиболее горячих участков полупроводникового кристалла этого CPU.

Из сказанного вполне ясно, что измерение температуры процессоров даёт уж слишком субъективную информацию. Поэтому мы уделили внимание и тестам энергопотребления, которые должны показать преимущества нового 45-нм ядра в полной мере. В проведённых опытах нами измерялся ток, проходящий через схему питания процессора, что позволяет оценить энергопотребление самих CPU (без учёта потерь в конвертере питания процессора).


Результаты, показанные новыми процессорами, выпущенными по 45-нм техпроцессу, более чем впечатляющие. Впрочем, иного и не ожидалось, ведь новый технологический процесс позволил не только уменьшить размеры элементов, но и значительно снизить токи утечки – ради этого Intel перешёл на использование в нём транзисторов с металлическим затвором и high-k диэлектриком. В итоге, потребляемая под нагрузкой процессорами Wolfdale мощность сравнима с энергопотреблением CPU двух-трёхлетней давности в состоянии покоя. Собственно, именно этот разительный контраст между поколениями процессоров подчёркивают результаты Athlon 64 X2, процессора, микроархитектура которого под высокие показатели "производительности на Ватт" ещё не оптимизировалась.

Выводы

Собственно, всё ясно и так. Обобщая вышесказанное, можно говорить о том, что новые двухъядерные процессоры Core 2 Duo E8500, E8400 и E8200, основанные на 45-нм ядрах, хороши во всём. Они не только быстрее предшественников при одинаковых тактовых частотах – максимальные достигнутые ими частоты ещё и выше, чем у предыдущих процессоров Intel. Если к этому добавить тот факт, что Intel собирается продавать новинки по тем же ценам, что и Core 2 Duo E6850, E6750 и E6550, то можно говорить о "бесплатном" увеличении быстродействия двухъядерных процессоров Intel на 10...15 %.


Кроме того, перевод процессоров Core 2 Duo на производство по новому технологическому процессу даёт пользователям и дополнительные бонусы. Во-первых, к ним может быть отнесена поддержка перспективного набора инструкций SSE4.1, которая ещё проявит себя в будущем, по мере оптимизации программного обеспечения. Во-вторых, процессоры Wolfdale крайне экономичны. В-третьих, новые процессоры обещают прекрасные возможности разгона, за что они наверняка найдут признание среди оверклокеров.

Иными словами, вторая версия двухъядерных процессоров, основанных на микроархитектуре Core, крайне удачна. Расстраивает лишь то, что появление этих CPU на прилавках магазинов в очередной раз ударит по позициям компании AMD, которая на данный момент не может предложить аналогичные по производительности варианты. Все двухъядерные процессоры этого производителя работают однозначно медленнее новых Core 2 Duo серии E8000, что автоматически "вытесняет" их из ценового диапазона "дороже 150 долларов", где отныне двухъядерные предложения Intel будут господствовать на безальтернативной основе.

Уточнить наличие и стоимость процессоров Intel Core 2 Duo E8000

Другие материалы по данной теме


Phenom: подарок на Новый год от AMD
Вторая итерация микроархитектуры Core: обзор Core 2 Extreme QX9650
Микроархитектура AMD K10

В этом году оверклокеры не могут расслабиться даже в день всенародного празднования православного Рождества Христова. Ведь Intel избрал 7 января для официального объявления своих новых процессоров, относящихся к семейству Penryn. С недавних пор Intel предпочитает массовые анонсы CPU, так и произошло на этот раз. Сегодня компания официально анонсирует сразу 16 процессоров, построенных на инновационных 45 нм ядрах.

Как видим, список новых процессоров включает продукты, ориентированные на разные рынки. Нам из них интересны лишь семь CPU, размещённых в нижней части таблицы: именно эти процессоры нацелены на использование в десктопах и совместимы с LGA775 инфраструктурой. Причём, из этой семёрки в ближайшее время будут доступны лишь четыре двухъядерных CPU. Как известно, начало поставок четырёхъядерных процессоров отложено в связи с обнаружением странной проблемы со стабильностью их работы в четырёхслойных материнских платах. Именно с такими двухъядерными процессорами, известными также под кодовым именем Wolfdale, мы и познакомимся сегодня. А чтобы наше знакомство не было голословным, параллельно мы проведём тесты старшего представителя линейки новых Core 2 Duo, имеющего процессорный номер E8500.

Немного теории

Итак, Wolfdale – это кодовое имя двухъядерных процессоров в семействе Penryn. Как и отложенные четырёхъядерные Yorkfield, процессоры Wolfdale производятся по 45 нм технологическому процессу. Причём, в основе Yorkfield и Wolfdale используются совершенно одинаковые полупроводниковые кристаллы: Yorkfield, по сложившейся традиции, представляет собой склейку из двух двухъядерных кристаллов Wolfdale, выполненную в одном процессорном корпусе. Таким образом, Wolfdale можно рассматривать как базовый строительный материал для формирования всего семейства Penryn, чем он и интересен.

Ядро процессоров Wolfdale имеет площадь 107 кв. мм и состоит из 410 миллионов транзисторов. Эти цифры недвусмысленно наводят на мысль о том, что в Wolfdale по сравнению с 65 нм предшественником Conroe, который содержал 291 миллион транзисторов, сделаны весьма существенные изменения. Собственно, видно это и по фотографии ядер Wolfdale и Conroe: компоновка функциональных блоков несколько изменилась.

Слева – Wolfdale, справа – Conroe (масштаб изображений не сохранён).

Таким образом, ядро Wolfdale – это не просто уменьшенное в связи с переходом на более совершенный техпроцесс ядро Conroe. В новых процессорах инженеры Intel сделали целый ряд усовершенствований.

Естественно, большинство из этих нововведений направлено на увеличение производительности. Наиболее очевидное преимущество Wolfdale заключается в возросшем до 6 Мбайт объёме разделяемой между ядрами кэш-памяти второго уровня. Кроме того, процессоры Wolfdale получили поддержку набора команд SSE4.1, включающего 47 новых инструкций, способных при соответствующей оптимизации приложений ускорить обработку 3D графики и видео, а также научные расчёты.

Кое-что изменилось и в глубине исполнительных устройств. Процессоры Wolfdale получили в своё распоряжение новый блок Fast Radix-16 Divider, наращивающий производительность операций деления и вычисления квадратных корней. Также, в новом CPU реализован механизм Super Shuffle Engine, ускоряющий обработку SSE инструкций, требующих выполнения побитовых перестановок.

Перечисленные и некоторые другие усовершенствования, сделанные в Wolfdale, выступают гарантом того, что новые CPU от Intel при аналогичных тактовых частотах работают несколько быстрее старых Conroe. Однако о значительном преимуществе речь всё же не идёт. Wolfdale предлагает лишь косметическое обновление микроархитектуры Core, капитальная переделка которой будет сделана лишь в перспективных процессорах семейства Nehalem, выходящих в конце 2008 года.

Самое же главное в Wolfdale – это, несомненно, принципиально новый 45 нм технологический процесс, который позволил Intel не только значительно увеличить число транзисторов в кристалле без роста его геометрических размеров. Новый техпроцесс, использующий транзисторы с металлическим затвором и диэлектриком на основе соединений гафния с высокой диэлектрической проницаемостью, открывает путь к дальнейшему росту тактовых частот CPU без увеличения их тепловыделения и энергопотребления. Именно этим новые процессоры особенно интересны оверклокерам, которые, безусловно, смогут поставить с их помощью новые рекорды.

Обобщая сказанное, сопоставим основные характеристики процессоров Wolfdale и Conroe:

Core 2 Duo E8000 Core 2 Duo E6000
Кодовое имя Wolfdale Conroe
Технология производства 45 нм 65 нм
Микроархитектура Core (Penryn) Core
Число ядер 2 2
Число кристаллов 1 1
Тактовые частоты 2.66 - 3.16 ГГц 1.86 - 3.0 ГГц
L2 кэш 6 Мбайт 4 Мбайт
Шина 1333 МГц 1066/1333 МГц
Типичное тепловыделение 65 Вт 65 Вт
Упаковка LGA775 LGA775
Enhanced Intel SpeedStep Есть Есть
Intel EM64T Есть Есть
Intel Virtualization Technology Есть Есть
Поддержка SIMD инструкций MMX, SSE, SSE2, SSE3, SSE4.1 MMX, SSE, SSE2, SSE3
Число транзисторов 410 млн. 291 млн.
Площадь кристалла 107 кв. мм 143 кв. мм

После краткого обзора основных особенностей процессоров Wolfdale, давайте перейдём к более близкому знакомству с конкретным представителем этого семейства.

Core 2 Duo E8500 с практической стороны

Core 2 Duo E8500 – это старшая модель в линейке двухъядерных процессоров нового поколения. Соответственно, его тактовая частота равна 3.16 ГГц. Прочие подробности о характеристиках этой новинки можно получить из скриншотов диагностических утилит.

Заметьте, процессоры Wolfdale получили поддержку дробных коэффициентов умножения, что даёт Intel возможность сделать сетку тактовых частот гуще. Именно это мы и видим на примере Core 2 Duo E8500 – данный процессор имеет множитель 9.5x. Очевидно, для нормального функционирования такого CPU требуется поддержка дробных множителей со стороны BIOS материнской платы. Впрочем, в ближайшее время соответствующие обновления должны выпустить все ведущие производители материнских плат.

Производительность

В первую очередь у нас возникло желание оценить практическую пользу от всех усовершенствований, сделанных в Wolfdale. Для этого мы провели сравнение производительности процессоров с микроархитектурой Core, построенных на новом (Wolfdale – 45 нм) и старом (Conroe – 65 нм) ядре и работающих на одинаковой тактовой частоте. В качестве сравниваемых CPU выступили модели Core 2 Duo E6850 и Core 2 Duo E8500.

Тестовая система была собрана из следующих комплектующих:

  • Процессоры:
    • Intel Core 2 Duo E8500 (LGA775, 3.16GHz, 1333MHz FSB, 6MB L2, Wolfdale);
    • Intel Core 2 Duo E6850 (LGA775, 3.0GHz, 1333MHz FSB, 4MB L2, Conroe);
  • Материнская плата: ASUS P5E (LGA775, Intel X38, DDR2 SDRAM).
  • Память: 2 Гбайта DDR2-1066 с таймингами 5-5-5-15 (Corsair Dominator TWIN2X2048-10000C5DF).
  • Графическая карта: OCZ GeForce 8800GTX (PCI-E x16).
  • Дисковая подсистема: Western Digital WD1500AHFD (SATA150).
  • Операционная система: Microsoft Windows Vista x86.

Для того, чтобы сравнение было корректным, оба эти процессора работали при частоте 3.0 ГГц, полученной как 9 x 333 МГц. То есть, частота Core 2 Duo E8500 была понижена на полшага и доведена до частоты Core 2 Duo E8400.

Wolfdale 3.0GHz Conroe 3.0GHz Прирост
производительности
3DMark06 11601 11453 1.3%
3DMark06, CPU 2813 2694 4.4%
Quake 4, 1024x768 HQ 155.23 145.35 6.8%
Half-Life 2 Episode Two, 1024x768 181.26 167.96 7.9%
Crysys, 1024x768 MQ 68.7 65.3 5.2%
Unreal Tournament 3, 1024x768 101.06 96.24 5.0%
World in Conflict, 1024x768 MQ 89 80 11.3%
mp3 Encoding, iTunes 7.4, sec 108 109 0.9%
Xvid 1.2, fps 45.63 43.85 4.1%
DivX 6.8, fps 66.88 63.79 4.8%
Mainconcept H.264 Encoder, fps 35.01 32.32 8.3%
Photoshop CS3, sec 67 72 7.5%
After Effects CS3, sec 383 415 8.4%
WinRAR 3.7, sec 287 307 7.0%
Mathematica 6 3.4 3.25 4.6%
CINEBENCH R10, Rendering 6318 5910 6.9%
3ds Max 9, Rendering 5.21 4.93 5.7%

Полученные результаты вряд ли можно назвать разочаровывающими. Новые процессоры Wolfdale оказываются ощутимо быстрее своих предшественников даже при работе на одинаковых тактовых частотах. Уровень этого выигрыша в среднем составляет 6%, но в некоторых приложениях он может быть значительно сильнее. К этому следует добавить возможность работы процессоров Wolfdale на более высоких тактовых частотах, и в итоге становится понятно, что Intel действительно подготовил потенциальный хит.

Более подробный анализ результатов показывает, что основную роль в повышении производительности новых процессоров играет увеличившийся кэш второго уровня. Действительно, наиболее заметно производительность выросла именно в тех приложениях, которые чувствительны к этому параметру. Например, преимущество Wolfdale над Conroe в играх достигает 11%, а в среднем равно 7.2%.

Немаловажным оказалось и внедрение Fast Radix-16 Divider: выигрыш в типично вычислительных задачах, например, при финальном рендеринге, также оказывается выше среднего уровня. Не менее ощутимый рост быстродействия заметен при использовании H.264 кодека от Mainconcept и при обработке видео в After Effects CS3: тут, по всей видимости, сказывается появление блока Super Shuffle Engine, ускорившего исполнение некоторых SSE команд.

Что же касается поддержки набора команд SSE4.1, то, несмотря на его потенциальную востребованность, программисты пока что не успели подготовиться к его появлению в современных CPU. Поэтому никаких конкретных выводов мы здесь сделать не можем. Фактически, на данный момент поддержкой новых инструкций может похвастать лишь кодек TMPGenc и, в экспериментальном режиме, DivX. Причём, с DivX ситуация такова, что включение функции Experimental SSE4 full search приводит к падению производительности, что не даёт возможности всерьёз говорить о качественной оптимизации этого кодека под SSE4.1. Тем не менее, мы ожидаем, что приложения, готовые задействовать SSE4.1 инструкции, всё-таки появятся, и тогда значение нового набора SIMD команд сможет быть оценено по достоинству. Например, по нашим данным, соответствующие изменения должны быть сделаны уже в ближайших версиях MainConcept H.264 Encoder, Pinnacle Studio Plus и Sony Vegas.

Разгон

Переходим к наиболее интересному для многих энтузиастов разделу наших испытаний: тестированию процессоров Wolfdale на разгон. На новые процессоры в этом плане возлагаются очень большие надежды.

Исследование оверклокерских возможностей проводилось с использованием той же самой платформы, что и тестирование производительности. Для охлаждения процессора использовался воздушный кулер Zalman CNPS9700 LED. Стабильность работы CPU в разогнанном состоянии проверялась получасовым прогоном утилиты Prime 25.5. В первую очередь мы попробовали разогнать тестовый образец Core 2 Duo E8500 без повышения напряжения питания. В таких условиях процессор смог обеспечить стабильную работу при частотах до 3.66 ГГц.

Разгон, безусловно, хороший. Core 2 Duo, основанные на 65 нм ядрах, могли работать на таких частотах исключительно с повышением напряжения питания. Однако на этой отметке мы не остановились и продолжили оверклокерские эксперименты при увеличении напряжения питания.

Вообще, как показали многочисленные опыты, Wolfdale очень хорошо откликается на рост напряжения. Но мы не ставили своей целью установку очередного рекорда, поэтому увеличили Vcore в BIOS Setup лишь до 1.5 В, что с учётом Vdroop выразилось в 1.42-1.46 реальных Вольт. Такой прирост вольтажа относительно безопасен для процессора, охлаждаемого хорошим воздушным кулером, и может без опаски использоваться в системах, работающих в режиме 24/7. Впрочем, даже в этом случае наш Core 2 Duo E8500 не дал поводов для разочарования.

Процессор удалось заставить стабильно работать на частоте 4.37 ГГц. Сомнений быть не может: процессоры Wolfdale станут очередными любимцами оверклокеров. Ведь такие высоты были недоступны процессорам Conroe без значительного повышения напряжения питания и применения специальных средств охлаждения. Кстати, наш CPU, работающий на частоте 4.37 ГГц, демонстрировал и вполне пристойный температурный режим, не разогреваясь под нагрузкой выше 70 ° C.

Описанные эксперименты были проведены без изменения множителя CPU, во всех случаях он оставался равным штатному значению 9.5x. Именно поэтому максимальная частота FSB, достигнутая нами в предыдущих опытах, составила лишь 460 МГц. Между тем, интерес вызывает и способность процессоров Wolfdale работать на более высоких частотах шины. Поэтому, мы провели ещё один эксперимент, в котором попытались найти предельную частоту FSB нашего процессора, иными словами, его FSB Wall.

Как было установлено, верхняя граница частоты шины для нашего образца Core 2 Duo E8500 оказалась равна 540 МГц. При дальнейшем увеличении FSB стабильность системы терялась. Таким образом, граница FSB Wall у новых процессоров находится на достаточно высоком уровне.

Выводы

Всё говорит о том, что Intel сделал нам очередной подарок. Ведь более быстрый и более разгоняемый, нежели предшественники, процессор Core 2 Duo E8500, согласно официальному прайс-листу, будет продаваться по той же цене, что и Core 2 Duo E6850. И если розничные торговцы не станут делать из Wolfdale источник собственной наживы, Core 2 Duo E8500, как и Core 2 Duo E8400 и Core 2 Duo E8200, могут стать отличным оверклокерским выбором в ценовом диапазоне от 160 до 270 долларов.

Было время, когда основным мерилом производительности процессора считалась рабочая частота. Но гонка за мегагерцами закончилась, и теперь процессорные гиганты Intel и AMD основное внимание уделяют мультиядерности. Активная реклама уже убеждает нас в том, что и двуяхъдерного процессора на данный момент мало для нужд рядового пользователя. Тем более, что множество четырехъядерных моделей уже продаются по доступной цене. Но, как известно, технологические инновации, не имеющие соответствующей поддержки со стороны производителей программного обеспечения, могут и не быть реализованы в жизни.

В данном исследовании мы попытаемся выяснить, существует ли в современных приложениях поддержка многоядерных процессоров. В частности, мы попытаемся ответить, есть ли смысл геймеру покупать сейчас четырехъядерный CPU. Для этого кроме стандартных синтетических тестов, мы проведем тестирование в 8 современных игровых приложениях.

Целью нашего эксперимента стали два процессора Core2Quad Q9300 и Core2Duo E8500, которые в отечественных магазинах предлагаются почти по одной цене. Прежде чем перейти к тестовой методике и результатам тестирования, остановимся немного на самих процессорах.

Новый четырехъядерный процессор Intel основан на 45-нм ядре Yorkfield. Поставляется процессор в BOX-версии.


Внутри коробки имеется кулер и инструкция. Надо отметить, что после перехода на 45-нм техпроцесс производства, компания Intel начала комплектовать свои процессоры кулерами с радиатором уменьшенной толщины, не более 1,5 см в высоту. Ранее такими небольшими радиаторами комплектовались лишь процессоры серии Celeron 4xx . Сейчас же, как видим, такой же компактный кулер идет даже с четырехъядерными процессорами.


Основание радиатора медное. На него уже нанесен термоинтерфейс.


Вот так выглядит лицевая и тыльная сторона процессора:



Процессор работает на тактовой частоте 2,5 ГГц, множитель 7,5, шина FSB 333 МГц (итоговая 1333 МГц). Стандартное напряжение питания 1,15 В.


Это младшая модель в 9-й серии четырехъядерных процессоров, и имеет кэш второго уровня лишь 6 MB, в то время как старшие модели уже 12 MB.

Множитель процессора варьируется от 6 до 7,5 при активации энергосберегающего режима. Благодаря новому техпроцессу, TDP у Core 2 Quad Q9300 не превышает 95 Вт. Популярный Core 2 Quad Q6600 при частоте 2,4 ГГц имел ный TDP 105 Вт (ревизия G0 уже 95 Вт). Если сравнивать все с тем же Q6600, то новичок имеет более быструю шину 1333 МГц (против 1066 у предшественника). Однако, как следствие, из-за низкого множителя для разгона такого процессора нужна хорошая материнская плата и память, способная работать на высоких частотах.

Тестирование рассматриваемых процессоров производилось на материнской плате Gigabyte P35-S3. И если с разгоном двухядерных процессоров она справляется на отлично, то вот для разгона Quad оказалась не особо приспособленной. Максимальная частота процессора, на которой стабильно работала система, составила 3,3 ГГц.


Далее материнская плата не могла обеспечить стабильную работу, хотя шину держала, но все уперлось в слабоватую подсистему питания.

Отметим, что средний результат разгона данного процессора 3,5 ГГц на воздухе, что тоже не выдающийся результат. Для нашего же эксперимента и частоты 3,3 ГГц вполне достаточно. Ведь главная цель нашего сравнения выявить преимущества четырехядерной архитектуры над двухядерной. Понятное дело, что сравнение двух процессоров на разной частоте в такой ситуации не отображает реального расклада сил. Поэтому оба тестируемых были установлены на один множитель и шину. А параметры эти были выбраны исходя из максимума 3,3 ГГц, на котором стабильно работал Core2Quad Q9300.

Второй испытуемый представлен уже одним из самых мощных современных двухъядерных процессоров Intel.


Стандартная упаковка. Внутри все тот же низкопрофильный кулер, но уже полностью из алюминия, без медной сердцевины.


Непосредственно сам CPU:



Поколение Core 2 Duo 8-й серии основано на ядре Wolfdale и тоже выполнено по нормам 45-нм техпроцесса.

Вот какие данные выдает утилита CPU-Z о данном процессоре:


Множитель E8500 довольно высокий - 9,5. В сочетании с 333 МГц шиной это дает нам итоговые 3,16 ГГц. Из характеристик отметим кэш-память L2 объемом 6 MB, напряжение питания 1,15 В и уровень TDP всего 65 Вт.

На тестовой материнской плате данный процессор удалось легко разогнать до 4,3 ГГц. При этом даже не пришлось повышать напряжение ядра выше 1,4. Подобное напряжение, или более высокое, уже может привести к деградации процессора. Стоит отметить, что такой результат разгона достигнут при использовании воздушного кулера Thermalright Ultra-120 eXtreme.


Для наших экспериментов коэффициент умножения CPU был уменьшен до 7,5 с соответствующим повышением FSB до 440 МГц, что дало те же 3,3 ГГц как и у Q9300 после разгона.

Сравнительные характеристики процессоров

Для более наглядного различия, характеристики рассматриваемых процессоров были занесены в таблицу.

Core2Quad Q9300 Core2Duo E8500
Ядро Yorkfield Wolfdale
Техпроцесс, нм 45 45
Номинальная тактовая частота, МГц 2500 3166
Множитель 6-7,5 6-9,5
FSB/HTT, МГц 1333 1333
кэш L1, КБ 32 32
кэш L2, КБ 3072 x 2 6144
Номинальное напряжение питания, В 1,15 1,15
TDP, Вт 95 65
Поддержка инструкций RISC, IA32, XD bit, MMX, EM64T, SSE, SSE2, Supplemental SSE3, SSE4.1
Прочие особенности VT,EIST,TXT VT,EIST,TXT
Тестовая методика и конфигурация

Итоговые графики включают по четыре результата. Зеленым цветом обозначены результаты процессоров, работавших на номинальных частотах. Красным цветом обозначены результаты процессоров, работавших на одной частоте после разгона. Причем оба наши процессора относятся к поколению Penryn и имеют одинаковый объем кэш-памяти. Так что, во втором случае мы полностью их уравниваем и выявляем лишь непосредственную зависимость быстродействия в приложениях от 2-х или 4-х ядер.

Первая тестовая конфигурация:

  • Процессор: Core 2 Duo E8500 (3,16 ГГц);
  • Процессор: Core 2 Quad Q9300 (2,5 ГГц);
  • Кулер: Thermalright Ultra-120 eXtreme;
  • Материнская плата: Gigabyte P35-S3;
  • Память: 2х1GB TEAM PC8500 (1066 МГц при таймингах 5-5-5-15);
  • Видеокарта: GeForce 8800 GTS 512MB ASUS;
  • Жесткий диск: 320GB Hitachi T7K250;
  • Блок питания: Chieftec CFT-750-14CS;
  • Операционная система: Windows XP SP2, Windows Vista Ultimate;
  • Драйверы видеокарты: GeForce: 175.16.
Вторая тестовая конфигурация имела тот же самый состав, но с измененными частотами процессоров и памяти:
  • Процессор Core 2 Duo E8500 @3,3 ГГц (7,5х440);
  • Процессор Core 2 Quad Q9300 @3,3 ГГц (7,5х440);
  • Память: 2х1GB TEAM PC8500 (1100 МГц при таймингах 5-5-5-15).
Тестирование проводилось в синтетических тестовых пакетах и в реальных игровых приложениях.

Синтетические тесты и прикладное ПО

Начнем с тестовых пакетов компании Futuremark.


В процессорном тесте PCMark2005 на номинальных частотах процессоры показывают почти одинаковый результат, и это при разнице в частоте в 666 МГц. В одинаковых условиях Core 2 Quad оказывается на 25% быстрее.


В 3DMark2006 дополнительные два ядра тоже дают довольно существенное повышение итогового результата.

CineBench

Приложение Cinebench для работы с 3D-графикой является традиционным тестом для измерения производительности процессоров. Вначале взглянем на результаты для однопроцессорного теста.


Тут все вполне ожидаемо. На одной частоте результаты, продемонстрированные процессорами идентичны. Теперь результаты мультипроцессорного теста.


А тут уже закономерно Core 2 Quad оказывается быстрее. На частоте 3,3 ГГц разница в производительности вообще носит чуть ли не линейный характер в зависимости от частоты ядер. Прирост от двух дополнительных ядер составляет 80%.

Еще одно приложение для работы с 3D. На графике отображены результаты встроенного бенчмарка.


В данном приложении разница между 4-х и 2х-ядерным процессором минимальна.

Это специальный бенчмарк на основе кодирования видео. В качестве результата выдает лог-файл с итогами теста. Чтобы привести это в удобный внешний вид, вычислялся средний результат. Для начала просчитан средний результат каждого подтеста (они выполняются в 4 прохода), далее полученные 4 итоговых значения сложены и разделены на 4.


Этот тест тоже очень чувствителен к многоядерным процессорам. Преимущество Core 2 Quad над Core 2 Duo достигает 84%.

SuperPi 8M


Программа для расчета числа Пи, как видим, никак не реагирует на дополнительные два ядра. Даже наоборот, результаты Core 2 Duo немного лучше (на 8 секунд или 4,5%).

В популярном архиваторе использовался встроенный тест.


В WinRAR все выглядит довольно хорошо для четырехъядерного процессора, который уверенно обгоняет Core2Duo на 17-25%.

Измерялось время декодирования одного 700 MB файла в avi с использованием кодека DivX 6.6.1, который умеет использовать более двух ядер для распараллеливания расчетов.


Как видим, разница между процессорами в одинаковых условиях небольшая. Core 2 Quad с поставленной задачей справился лишь на 12 секунд быстрее, а это всего лишь 2,2 %. Игровые приложения

В игровых тестах мы решили отойти от обычного способа тестирования. Традиционно такие тесты проводятся в низких разрешениях. Но ведь никто не будет играть на видеокарте GeForce 8800GTS 512MB и Core 2 Quad в разрешении 800х600. Хотелось бы увидеть реальный эффект от более мощного процессора, чтобы убедиться, что пользователь что-то все же получит в итоге. Поэтому кроме невысокого разрешения 1024х768 дополнительно проводился еще тест в 1280х1024. Настройки графики в играх на максимальных значениях, но без активации сглаживания.

TimeShift

В этой игре проигрывался 5 раз один и тот же короткий участок с перестрелкой, чтобы воссоздать типичную игровую ситуацию и задействовать механизм расчета интеллекта ботов.



Эта игра оказывается равнодушна не только к многоядерным процессорам, но и к их разгону. Разница в результатах минимальная, хотя в разрешении 1280х1024 имеет место тенденция к доминированию Core2Quad (если конечно разницу в 1% можно воспринимать серьезно).

Call of Duty 4

Традиционно для теста использовался игровой уровень WarPig , максимально насыщенный противниками, сценами взрывов и перестрелками. Для более точных результатов замер производительности этой игровой сцены производился 7 раз.



На эту игру вновь не влияет разгон процессора, несмотря на 32%-прирост частоты у Core 2 Quad. Зато Core 2 Duo внезапно показывает лучшие результаты, независимо от своей частоты. Причем, больше заметны они не в низком, а в более высоком разрешении. Здесь в абсолютно одинаковых условиях система на двухъядерном процессоре оказывается на 6% быстрее системы с четырехъядерным Core.

Unreal Tournament 3

Эта игра известна своей процессорозависимостью. И, по словам разработчиков, производительность в игре хорошо масштабируется на многоядерных системах. Для теста был выбран уровень ShangriLa. Матч с участием 10 ботов, длительностью 5 минут, переигрывался 3 раза, средние результаты приведены в диаграмме.



По результатам, без сомнения, видна сильная зависимость игры от мощности процессора. Увеличение частоты Core 2 Quad на 32% дает прирост FPS в игре на 15-20%. А вот никакого преимущества дополнительные два ядра не дают. Скорее даже наоборот, Core 2 Duo в одинаковых условиях снова показывает немного лучший результат.

Race Driver: GRID

Новый автосимулятор на движке DIRT, который тоже известен своей процессорозависимостью. Для теста одна трасса переигрывалась три раза для каждого режима.



Вот он первый момент торжества четырехядерного процессора. В низком разрешении мы видим довольно неплохое его преимущество в 10%. В высоком разрешении оно уже почти не заметно. Также игра сильно чувствительна к повышению тактовой частоты. В низком разрешении разгон Core 2 Quad дает почти 22% прироста производительности.

Crysis DX9

Для теста в данной игре использовался стандартный игровой бенчмарк GPU.



В низком разрешении видна существенная зависимость от рабочей частоты процессора, а вот два дополнительные ядра "погоды не делают". В разрешении 1280х1024 результаты полностью идентичны, все начинает упираться в возможности видеокарты.

Devil May Cry4 Benchmark DX10

Игра, которую в скором времени компания Capcom портирует с консолей на нашу платформу РС. А пока у нас есть только специальный игровой бенчмарк. Отметим сразу, что особой разницы между рендерингом под DirectX 9 и DirectX 10 в данной игре нет, да и разница в производительности минимальна. Поэтому для теста сразу была выбрана именно DX10-версия. Тест состоит из четырех игровых сцен. Для общей наглядности высчитаны средние значения и по ним построены диаграммы.



Игра абсолютно равнодушна к тому, какой процессор установлен в системе. Хотя, возможно, это особенность данного тестового бенчмарка.

Assasin’s Creed DX10

Популярная игра . Большое количество NPC в кадре и множество деталей окружения. Впору увидеть хотя бы здесь триумф Core 2 Quad. По причине случайной генерации людей и их небольшой свободы поведения абсолютно повторить одинаковый эпизод нельзя, но свести к минимуму разницу в измерениях можно. Для этого три раза переигрывался короткий участок, состоящий из прогулки по небольшой городской площади в толпе людей.


Наконец-то триумф Core 2 Quad. Несмотря на относительно низкий FPS в сравнении с остальными играми, система на базе двухъядерного Core безнадежно уступает системе с процессором, количество ядер которого равно четырем. Даже без разгона он обеспечивает более высокие результаты. В процентном соотношении это 9-15 % преимущества над двухъядерным сотоварищем.

Выводы

Подводя итоги, стоит сказать, что Core 2 Quad более предпочтителен в тех приложениях, которые имеют соответствующую программную оптимизацию. Для тех, кто профессионально занимается, к примеру, 3D-графикой, без сомнения четырехъядерный процессор будет целесообразнее.

В современных играх, как и ожидалось, ситуация не столь однозначна. Если рассматривать результаты процессоров без разгона, то Core 2 Quad отходит на второе место. Если же оценивать результаты процессоров в одинаковых условиях, то можно констатировать, что частенько даже Core 2 Duo оказывается быстрее на один-два процента. Это, возможно, является результатом более быстрой работы с разделяемым L2 кэшем у Wolfdale, а может и с некими другими архитектурными особенностями. Из 8 игр только две имеют оптимизацию под многоядерные процессоры. Так что, если смотреть в ближайшее будущее, то Core 2 Quad Q9300 при своей цене для геймера не выгоден абсолютно. Но не все так печально, ведь две игры это тоже результат, а значит их будет становиться все больше.

Также стоит обратить внимание довольно ощутимую процессорозависимость у большей части рассматриваемых игр, причем, иногда она заметна даже в высоких разрешениях. Тот же графически ресурсоемкий Crysis сильно отреагировал на подъем тактовой частоты центрального процессора.

С этой точки зрения покупка процессоров Core 2 Quad приобретает смысл в случае их разгона. Но для успешного оверклокинга вам понадобится более дорогая материнская плата, чем для Core 2 Duo. Да и предел по максимальной частоте у Quad все равно меньше, чем у Core 2 Duo. Поэтому и это преимущество вновь тает за некими далекими перспективами, которые вы пока не особо то и не почувствуете. А через пару лет, когда пойдет повальная оптимизация программного обеспечения под четырехядерные процессоры, то сомнительно, что современные Core 2 Quad просто смогут физически показать достойные результаты. Так что, для игровой машины лучшим вариантом все еще остается разогнанный Core 2 Duo, а время для перехода на четырехядерные CPU еще не настало.

Выражаем благодарность компании DC-Link , в частности Александру aka Punisher"у,
за предоставленные на тестирование процессоры, память, видеокарту и блок питания.

Нажмите на картинку для увеличения.

Подход к разгону процессоров Intel для массового рынка всегда одинаков: поскольку вы не можете увеличить множитель процессора, то придётся повышать второй параметр, а именно, частоту Front Side Bus. Каждая high-end материнская плата на чипсете Intel P35 или X38 позволяет увеличить частоту FSB со штатных 333 МГц (FSB1333 QDR) до, как минимум, 450 МГц. А хорошие материнские платы позволяют повысить это значение выше 500 МГц.

Наш процессор Core 2 Duo E8500 работает на 3,16 ГГц с шиной 333 МГц и множителем 9,5. Первым шагом мы решили увеличить частоту шины до 400 МГц (FSB1600), которая является шиной по умолчанию для следующего поколения чипсетов Intel (X48 и P45, известные как Eaglelake и Bearlake). Множитель 9,5 при этом дал частоту 3,8 ГГц, причём система работала абсолютно стабильно.

С нашим образцом Wolfdale мы без проблем получили частоту 3 800 МГц. Материнская плата Gigabyte X38-DQ6 автоматически увеличила напряжение питания со штатных 1,225 В до 1,345 В.

Мы выставили делитель памяти 1:1, чтобы не выходить за пределы штатной частоты DDR2-800 в 400 Мгц.

С помощью механизма автоматического разгона Gigabyte мы смогли получить 4 ГГц, но при этом на компоненты материнской платы не подавалось большее напряжение, которое, как мы обнаружили, необходимо для высоких тактовых частот.

Затем мы попытались получить 4 ГГц. Поскольку автоматическая функция разгона не позволила получить стабильную работу на частоте 4 ГГц и выше из-за отсутствующей опции регулировки напряжения компонентов, мы решили продолжать разгон вручную. 422-МГц FSB с множителем 9,5 дала нам тактовую частоту 4 009 МГц. Хотя для работы на 4 009 МГц напряжения ядра 1,345 В было достаточно, нам пришлось увеличить напряжение чипсета X38 на +0,25 В, напряжение FSB - на +0,15 В, а напряжение памяти - на +0,3 В, поскольку частота DDR2 тоже увеличилась с 400 до 422 МГц. Мы не меняли задержки, так как для их сохранения мы увеличили напряжение.

Мы были приятно обрадованы, что функция Intel "Enhanced SpeedStep", которая позволяет снижать тактовые частоты и напряжение ядра, когда процессор находится при малой нагрузке или бездействует, полноценно работала на нашей тестовой системе. Хотя на частоту FSB и памяти технология "SpeedStep" не влияет, про напряжение процессора такого не скажешь. Но в нашем сценарии разгона мы не хотели, чтобы система снижала штатное напряжение CPU, поскольку штатных 0,95 В на частоте 2 000 МГц (333 МГц x6) явно не хватит для работы разогнанного до 2 532 МГц процессора в режиме "SpeedStep" (422 МГц x6). Снижение одной только тактовой частоты уже позволяет экономить энергию.

Было интересно обнаружить, что технология "Enhanced SpeedStep" работала и после сильного разгона системы. Множитель в режиме бездействия падал с x9,5 до x6.



СОДЕРЖАНИЕ

Intel Core 2 Duo E8500 - процессор, обзор с разборкой

Как-то этот процессор мне раньше не попадал в руки - все то иль другое... но сегодня я кратко познакомлюсь с Intel Core 2 Duo E8500, на сокете LGA775, работающий на частоте 3166 МГц. Хоть это и старенький "камень", его время давно ушло, но стоит ему посвятить страничку памяти...

На металлической крышке видим маркировку Intel Core 2 DUO E8500 SLB9K 3.16GHZ/6M/1333/06 L015A908 e4. Ниже код 2L01463 8A1576.

На обратной стороне стандартные контактные площадки и группа SMD деталей...

Запускаем программу CPU-Z и смотрим информацию об процессоре. Как видим, без нагрузки процессор снижает тактовую частоту до 2 ГГц...

Смотрим в программе AIDA64 данные на процессор

Запускаем в AIDA64 тесты процессора, получаем такие данные: CPU Queen - 13430 чуть хуже конкурента Phenom X4 9500. CPU PhotoWorxx - 13138, CPU ZLib - 41109 Кб/с, CPU AES - 11811, FPU Julia - 5878, FPU Mandel - 3014, FPU SinJulia - 1573.

Как видим очень неплохой процессор для своего времени...

Так получилось, что человек, которому принадлежал этот процессор, решил его немного разогнать. Как известно, процессоры Core 2 Duo очень хорошо разгонялись и процессоры на ядре Wolfdale не исключение. Ну ладно, разогнал процессор с хорошей системой воздушного охлаждения и успокойся! Но его одолел зуд и он решил снять металлическую крышку с процессора, чтобы, дескать, убрать эту прослойку и прижать медную подошву кулера прямо к кристаллу процессора... одного не учел - с некоторых пор Intel начала припаивать эти крышки к кристаллу... и как результат - оторвал сам кристалл от платы с контактами. Естественно, я и решил запечатлеть этот "дерзкий полет мысли оверклокера"...

+ Щелкните по рисунку, чтобы увеличить!

Итак, мне во второй раз попал в руки этот процессор, но уже в разрушенном виде... Текстолитовая плата с контактами, на которой распаивается кристалл очень тонкая. Крышка увесистая и сделана не из алюминия, а медного сплава - латунь. Толщина пластины 1,6-1,7 мм, она сделана с бортиками - они не в счет. К текстолиту пластина крепится через слой клея или герметика, нанесенного по краю. А вот сам кристалл припаян оловом к этой крышке... Олово очень мягкое, вряд ли в нем имеется какое-то количество серебра... Вероятно это легкоплавкий сплав Вуда или Розе, или еще чего схожее...

Итак, жизнь этого процессора закончена, к сожалению не совсем достойно, хотя и послужила ради Науки (пусть и одного незадачливого оверклокера)... Хозяин купил новый такой же процессор, и все равно хочет снять крышку, для этого у него есть паяльный фен... так что, вполне вероятно - Продолжение следует...

Как вывод - это был хороший процессор, недорогой и высокопроизводительный.

Михаил Дмитриенко, Алма-Ата, 2015 г.