С развитием технологий производства дисплеев у пользователей все больше возникает вопросов при выборе подходящего монитора. Помимо его физических размеров, в частности диагонали видимой зоны , необходимо выбрать тип матрицы и сопутствующие параметры - контрастность, цветопередачу, время отклика и прочее. Выбрать монитор, разбираясь во всех этих тонкостях, не составит большого труда, если предварительно изучить принципы его работы и основные характеристики главного его компонента - матрицы, о чем и пойдет речь ниже.

Сравнение типов матриц при разных углах обзора

Общие сведения о дисплеях и их компонентах

Монитор компьютера при всей своей кажущейся простоте, является весьма технически сложным компонентом, который, как и остальное аппаратное обеспечение, имеет множество различающихся параметров, технологий изготовления, а также характеристик. Практически все дисплеи для ПК состоят из следующих частей:

  • корпус, в котором заключена вся электронная начинка. На корпусе также имеются крепления для монтирования дисплея на вертикальные или горизонтальные поверхности;
  • матрица или экран - основной компонент монитора, от которого зависит вывод графической информации. В современных устройствах применяются различные матрицы для мониторов, отличающиеся многими параметрами, среди которых первостепенную важность имеют разрешение, время отклика, яркость, цветопередача и контрастность;
  • блок питания - часть электронной цепи, отвечающая за преобразование тока и питание всей остальной электроники;
  • электронные компоненты на специальных платах, отвечающие за преобразование поступающих на монитор сигналов и их последующий вывод на дисплей для отображения;
  • другие компоненты, среди которых может встречаться маломощная акустическая система, концентраторы USB и прочее.

Совокупность основных параметров дисплея, на основе которой он выполнен, предопределяет сферу его использования. Недорогие потребительские мониторы могут оснащаться экранами с не самыми внушительными характеристиками, поскольку подобные устройства чаще всего недорогие и не требуются для работы в профессиональных графических приложениях. Дисплеи для профессиональных геймеров прежде всего должны иметь минимальную задержку отображения информации, поскольку это критически важно в современных играх. Дисплеи для графических редакторов, используемых дизайнерами, отличаются самые высокими показателями яркости, уровнем цветопередачи и контрастности, ведь точная передача картинки здесь играет самую важную роль.
В настоящее время в дисплеях встречающихся на рынке, как правило, используются несколько видов матриц. В технических описаниях мониторов можно встретить большое их количество, но в основе этого многообразия могут лежать одни и те же базовые технологии, улучшенные или незначительно доработанные для повышения их показателей. К таким основным видам экранов относятся следующие.

  1. «Twisted Nematic» или матрица TN. Ранее к наименованию этой технологии добавлялась приставка «Film», означающая дополнительную пленку на ее поверхности, увеличивающую угол обзора. Но это обозначение все реже встречается в описаниях, поскольку большинство производимых сегодня матриц уже оснащены ею.
  2. «In-Plane Switching» или тип матрицы IPS, как более часто встречающееся наименование в сокращенном виде.
  3. «Multidomain Vertical Alignment» или MVA матрицы. Более современная инкарнация этой технологии обозначается как матрица VA. Данная технология также отличается своими преимуществами и недостатками и является чем-то средним между представленными выше.
  4. «Patterned Vertical Alignment». Разновидность технологии MVA, которая была разработана в качестве конкурентного ответа ее создателям - компании Fujitsu.
  5. «Plane-to-Line Switching». Это один из самых новых типов матриц для дисплеев, который был разработан относительно недавно - в 2010 году. Единственным недостатком этого типа матрицы, при остальных превосходящих конкурирующие технологии характеристиках, является сравнительно длительное время отклика. Также PLS матрица отличается весьма высокой стоимостью.

Матрица TN, TN+film

Тип матрицы TN является одной из самых распространенных и в то же время это весьма устаревшая по современным меркам технология их изготовления. Именно с этой разновидности матриц началось победное шествие жидкокристаллических смену электронно-лучевым трубкам. Стоит отметить, что единственное неоспоримое их преимущество - это крайне малое время отклика и по этому параметру они превосходят даже более современные аналоги. Остальными критически важными для монитора параметрами - контрастностью изображения, его яркостью и допустимыми углами обзора, увы, данный тип матриц не отличается. К тому же стоимость мониторов на основе этой разработки невысокая и можно сказать что это еще один плюс технологии «Twisted Nematic».
Причина основных недостатков «Twisted Nematic» кроется в самой технологии их производства и строении оптических элементов. В матрицах TN кристаллы между электродами (каждый из которых представляет собою отдельный пиксель видимой зоны) располагаются в виде спирали при подаче на них напряжения. От степени ее закругления зависит количество проходящего сквозь нее света, а из множества таких элементов и формируется картинка на экране. Но ввиду неравномерности формирования спирали в каждом элементе матрицы очень падает уровень контрастности выводимого на нее изображения (рис. 1). А учитывая то, что преломление света при прохождении сквозь сформированную спираль сильно отличается от направления взгляда, то угол обзора такой матрицы весьма невелик.

Рис. 1. Сравнение матриц IPS и TN

Дисплеи VA/MVA/PVA

Матрица VA была разработана в качестве альтернативы популярным в то время технологиям TN и уже завоевавшей приверженность пользователей, хоть еще и не так распространенной на рынке IPS. Основное ее конкурентное преимущество разработчики позиционировали как время отклика, составлявшее на момент внедрения на рынок около 25 мс. Еще одним важным преимуществом новой технологии являлся высокий уровень контрастности, опережавший аналогичные показатели в технологиях изготовления матриц TN, а также IPS.
Данная технология, которая изначально называлась «Vertical Alignment», имела также весьма существенный недостаток в виде относительно малых углов обзора. Проблема скрывалась в строении оптических элементов матрицы. Кристаллы каждого элемента матрицы ориентировались вдоль линий напряжения или параллельно им. Это вело к тому, что угол обзора матрицы был, мало того что небольшим, так еще и изображение могло отличаться в зависимости от того, с какой стороны пользователь смотрел на экран. На практике это приводило к тому, что малейшее отклонение угла зрения приводило к сильному градиентному заполнению картинки на экране (рис. 2).

Рис. 2. Углы обзора монитора с технологией MVA

Избавиться от этого недостатка удалось с развитием технологии в «Multidomain Vertical Alignment», когда группы кристаллов внутри электродов организовали в своеобразные «домен», как это и отображено в названии. Теперь они стали размещаться по-разному в пределах каждого домена, из которых состоит целый пиксель, поэтому пользователь мог смотреть под разными углами на монитор и изображение от этого практически не менялось.
Сегодня дисплеи с MVA экранами используются для работы с текстом и практически непригодны для динамичных изображений, которым отличается любая современная игра или фильмы. Высокая контрастность, равно как и углы обзора позволяют уверенно работать с ними тем, кто работает, например, с чертежами, много печатает и читает.

Не стоит путать контрастность матрицы и такое понятие, как динамическая контрастность монитора. Последняя представляет собою технологию адаптивного изменения яркости экрана в зависимости от выводимого изображения и использует для этого встроенную подсветку. Последние модели мониторов со светодиодной подсветкой обладают отличной динамической контрастностью поскольку время включения светодиода очень малое.

Экран IPS

TFT IPS матрица разрабатывалась с учетом устранения основных недостатков предшествующей технологии - «Twisted Nematic», а именно малых углов обзора и плохой передачи цвета. Из-за своеобразного расположения кристаллов в TN матрице, цвет каждого пикселя варьировался в зависимости от направления взгляда, поэтому пользователь мог наблюдать «переливающуюся» картинку на мониторе. TFT IPS матрица состоит из кристаллов, которые расположены в параллельной плоскости к ее поверхности, а при подаче напряжения на электроды каждого элемента, они разворачиваются на прямой угол.
Последующее развитие технологии привело к появлению таких видов матриц, как Super IPS, Dual Domain IPS и Advanced Coplanar Electrode IPS. Все они, так или иначе, основаны на одном принципе с разницей лишь в расположении жидких кристаллов. На заре своего появления технологию отличал весомый минус - длительное время отклика, составлявшее до 65 мс. Главное же ее преимущество - потрясающая цветопередача и широкие углы обзора (рис. 1), при которых картинка на экране не искажалась, не инвертировалась и не появлялся нежелательный градиент.
Мониторы с IPS матрицей сегодня пользуются огромным спросом и применяются не только в дисплеях для ПК, но и в портативных устройствах - планшетах и смартфонах. Они также применяются в основном там, где важен цвет картинки и максимально точная его передача - при работе с графическим ПО, в дизайне, фотографии и прочее.

Часто многие пользователи путают аббревиатуры IPS или TFT, хотя на самом деле, это в корне разные понятия. «Thin Film Transistor» - это общая технология создания жидкокристаллических матриц, которая может иметь различные воплощения. «In-Plane Switching» - конкретная реализация этой технологии, основанная на своеобразном построении отдельных элементов матрицы и расположения жидких кристаллов в ней. TFT матрица может быть выполнена на базе технологии TN, VA, IPS или других.

Матрица PLS

Тип матрицы PLS – это передовой край развития технологий их создания. Компания Samsung, являющаяся разработчиком этой уникальной технологии, в качестве цели ставила для себя производство матриц, значительно превышающих по параметрам конкурирующую технологию - IPS и во многом ей это удалось. К несомненным преимуществам этой технологии можно отнести:

  • один из самых низких показателей потребления тока;
  • высокий уровень цветопередачи, полностью охватывающий диапазон sRGB;
  • широкие углы обзора;
  • высокая плотность отдельных элементов - пикселей.

Из недостатков стоит выделить время отклика, не превышающее аналогичные показатели в технологии «Twisted Nematic» (рис. 3).

Рис. 3. Сравнение PLS (справа) и TN (слева)

Важно! Выбирая какой тип матрицы монитора лучше, стоит в первую очередь определиться с задачами, поскольку во многих случаях покупка самого современного дисплея может оказаться экономически необоснованной. Новейшие разработки, отличающиеся высоким временем отклика, пригодятся для профессиональных игр или просмотра динамических сцен в видео.

ПОСМОТРЕТЬ ВИДЕО

Мониторы с высоким уровнем цветопередачи подойдут для дизайнеров и художников. А если необходим недорогой монитор для серфинга в сети и работы с текстом, то подойдут варианты на основе старых, но проверенных временем технологий.

К выбору монитора, стоит подойти очень ответственно. Ведь именно он, служит основным объектом передачи информации от компьютера к пользователю. Определённо, никому не хотелось бы монитор с неравномерной подсветкой, битыми пикселями, неправильной цветопередачей и другими недостатками. Данный материал поможет разъяснить некоторые критерии, которые помогут понять что именно вам нужно от монитора.

Выбор хорошего монитора, обусловлен суммой таких характеристик как: тип используемой матрицы , равномерность подсветки , разрешение матрицы , контрастность (в том числе и динамическая), яркость , соотношение сторон , размер экрана , порты коммуникации и внешний вид . Так же, будут упомянуты те факторы, которые отрицательно влияют на здоровье глаз.

Для начала, стоит понять как возникает цветовое ощущение при взгляде на монитор.

RGB (Red ,Green ,Blue ) – количество цветовых градаций и разнообразий, видимых человеческому глазу, которые могут быть составлены из базовых цветов (красный, зелёный, синий). Так же, это все те основные цвета, которые человек может видеть. Пиксели монитора, состоят из красных, зелёных и синих пикселей, которые при определённой интенсивности яркости могут составлять более сложные цвета. Поэтому — чем более продвинута матрица монитора, тем больше она может отображать градаций цветов, и тем больше у неё возможных градаций для каждого из красного, зелёного и синего пикселей. От качества и типа матрицы зависит точность отображения цвета и уровень статичной контрастности.

Жидкокристаллические матрицы, состоят из не малого количества слоёв и бо льшого количества жидких кристаллов, которые могут выстраивать больше комбинаций, поворачиваясь каждый под разным углом, либо меняя своё положение в определённом ракурсе. Именно поэтому, более простые матрицы работают быстрее. Происходит это благодаря тому, что для занятия необходимой позиции, нужно совершить меньше действий и с меньшей точностью, чем более сложным матрицам.

Давайте разберём всё по порядку.

Тип ЖК матрицы.

Какой же тип матрицы выбрать?

Всё зависит от поставленных задач перед монитором, цены и ваших личных предпочтений.

Начнём самыми простыми и закончим более сложными.

(twisted nematic ) матрица .

Мониторы с данной матрицей – самые распространённые. Первые изобретённые ЖК мониторы, были основаны на технологии TN . Из 100 мониторов в мире, примерно 90 имеют TN матрицу. Являются самыми дешёвыми и простыми в производстве и потому самыми массовыми.

Способны передавать цвет в 18 -и или 24 -х битном диапазоне (6 или 8 бит на каждый канал RGB ), что хоть и является неплохим показателем в сравнении с первыми ЖК мониторами на TN , в наше время этого бывает недостаточно для качественной цветопередачи.

Мониторы матрице TN имеют следующие плюсы:

  • Высокая скорость отклика.

  • Низкая цена.

  • Высокий уровень яркости и возможность использования любых подсветок.

Меньшее время отклика матрицы – положительным образом влияет на картинку в динамичных сценах фильмов и игр, делая картинку менее смазанной и более реалистичной, что улучшает восприятие происходящего на экране. К тому же, при снижении частоты кадров ниже комфортного значения, это ощущается не так выражено как на более медленных матрицах. У медленных матриц, происходит накладывание обновлённого кадра на следующий. Это вызывает моргание и более явное «подтормаживание» картинки на экране.

Производство TN матриц обходится дёшево, потому они имеют более привлекательную конечную цену, чем другие матрицы.

Однако, мониторы с TN матрицей имеют следующие минусы:

  • Маленькие углы обзора. Искажения цвета вплоть до инверсии при взгляде под острым углом. Особенно выражено при взгляде снизу вверх.

  • Довольно плохой уровень контрастности.

  • Неправильная, неточная цветопередача.

Основанные на TN мониторы, можно считать более экологичными в сравнении с мониторами на других LCD матрицах. Они потребляют меньше всего электроэнергии, по причине использования слабомощных подсветок.

Так же, всё большее распространение получают мониторы с подсветкой на LED диодах, которыми оснащаются сейчас большинство TN мониторов. Существенных плюсов LED подсветка не даёт, кроме меньшего энергопотребления и большего срока службы подсветки монитора. Но не каждому она подходит. Бюджетные мониторы оснащаются дешёвыми низкочастотными ШИМ , которые допускают моргание подсветки , что неблагоприятно сказывается на глазах.

Приставка TN +film , указывает на то, что в данную матрицу добавлен ещё один слой, который позволяет немного расширить углы обзора и сделать чёрный цвет, «более чёрным» . Данный тип матрицы с дополнительным слоем, стал стандартом и в характеристиках обычно указывается просто TN .

(In Plane Switching) матрицы .

Данный вид матрицы был разработан компаниями NEC и Hitachi .

Основной целью – было избавление от недостатков TN матриц. Позднее, данная технология была заменена на S —IPS (Super —IPS ). Мониторы с данной технологией производят Dell , LG , Philips , Nec , ViewSonic, ASUS и Samsung (PLS ). Основное предназначение данных мониторов – работа с графикой, обработка фото и другие задачи, где требуется точная цветопередача, контрастность и соответствие стандартам sRGB и Adobe RGB . В основном, используются в сферах профессиональной работы с графикой 2D/3D, фото редакторам, мастерам пред печатной подготовки, но так же популярны среди тех, кто просто хочет радовать свой глаз качественной картинкой.

Основные плюсы IPS матриц:

  • Лучшая в мире цветопередача среди TFT LCD панелей.

  • Высокие углы обзора.

  • Хороший уровень статичной контрастности и точности передачи оттенков.

Данные матрицы (большинство), умеют воспроизводить цветность в 24 бит а (по 8 бит на каждый RGB канал) без ASCR . Конечно, не 32 бита как у ЭЛТ мониторов, но довольно близко к идеалу. К тому же, многие IPS матрицы (P-IPS , некоторые S-IPS ), уже умеют передавать цветность 30 битов , однако стоят они значительно дороже и не предназначены для компьютерных игр.

Из минусов IPS можно отметить:

  • Более высокая цена.

  • Обычно более крупные габариты и вес, в сравнении с мониторами на TN матрице. Большее энергопотребление.

  • Низкая скорость отклика пикселей, но лучше чем у *VA матриц.

  • На данных матрицах, чаще чем на остальных встречаются такие неприятные моменты как glow , «мокрая тряпка » и высокий input-lag .

Мониторы на IPS матрице имеют высокую цену в силу сложности технологии их производства.

Бывает много разновидностей и названий, созданных отдельными производителями матриц.

Чтобы не запутаться, мы опишем самые современные виды IPS матриц :

AS — IPS – улучшенная версия S —IPS матрицы, в которой частично была устранена проблема плохой контрастности.

H — IPS – ещё значительнее улучшена контрастность и убрана засветка фиолетовым цветом при взгляде на монитор сбоку. С её выходом в 2006 году, сейчас практически заменила мониторы с S —IPS матрицей. Может иметь как 6 бит, так 8 и 10 бит на канал. От 16.7 млн. до 1 млрд. цветов .

e — IPS – разновидность H-IPS , но более дешёвая в производстве матрица, которая обеспечивает стандартный для IPS цветовой охват в 24 бита (по 8 на RGB -канал). Матрица специально высветлена, что даёт возможность использования LED подсветок и менее мощных CCFL . Нацелена на средний и бюджетный сектор рынка. Подходит практически для любых целей.

P — IPS – самая продвинутая IPS матрица до 2011 года, продолжение развития H-IPS (но по сути, маркетинговое имя от ASUS). Имеет цветовой охват 30 бит (10 бит на каждый канал RGB и достигается скорее всего, посредством 8 бит+FRC), лучшую скорость отклика в сравнении с S-IPS , расширенный уровень контрастности и лучшие углы обзора в своём классе. Не рекомендуется для использования в играх с низкой сменой частоты кадров. Подтормаживания становятся более выраженными накладываясь на скорость отклика, что вызывает моргания и замыленность.

UH-IPS — сравнима с e-IPS . Тоже высветлена для использования совместно с LED подсветками. При этом немного пострадал чёрный цвет.

S-IPS II — аналогична по параметрам с UH-IPS .

PLS — вариация IPS от компании Samsung. В отличии от IPS , есть возможность размещать пиксели более плотно, но при этом страдает контрастность (не очень удачная для этого конструкция пикселей). Контрастность не выше 600:1 — самый низкий показатель среди LCD матриц. Даже у TN матриц данный показатель выше. Матрицы PLS могут использовать любой вид подсветки. По характеристикам, более предпочтительны чем MVAPVA матрицы.

AH-IPS (с 2011) наиболее предпочтительная технология IPS . Максимальный цветовой охват AH-IPS на 2014 год не превышает 8 бит+FRC , что в сумме даёт 1.07 млрд. цветов в самых продвинутых матрицах. Применяются технологии, которые позволяют производить матрицы с высокими разрешениями. Лучшая передача цвета в классе (сильно зависит от производителя и назначения матрицы). Был достигнут небольшой прорыв и в углах обзора, благодаря которому, AH-IPS матрицы вышли практически в один ряд с плазменными панелями. Улучшена свето-пропускаемость IPS матрицы, а значит и максимальная яркость вкупе с уменьшенной потребностью в мощной подсветке, что благотворно влияет на энергопотребление экрана в целом. В сравнении с S-IPS улучшена контрастность. Для геймеров, да и в общую копилку, можно добавить и значительно улучшенное время отклика, которое теперь практически сравнимо с .

(Multi-domainPatterned Vertical Alignment) матрицы (*VA).

Технология была разработана корпорацией Fujitsu .

Является неким компромиссом между TN и IPS матрицами. Цена мониторов на MVA /PVA так же варьируется в пределах цен на TN и IPS матрицы.

Плюсы VA матриц:

  • Высокие углы обзора.

  • Самая высокая контрастность среди TFT LCD матриц. Достигается благодаря пикселю, который состоит из двух частей, каждой из которых можно управлять отдельно.

  • Глубокий чёрный цвет.

Минусы VA матриц:

  • Довольно высокое время отклика.

  • Искажение оттенков и резкое уменьшение контрастности в тёмных участках картинки при перпендикулярном взгляде на монитор.

Принципиальной разницы между PVA и MVA нет.

PVA — является фирменной технологией корпорации Samsung . На самом деле это на 90% та же MVA , но с изменённым расположением электродов и кристаллов. Явных преимуществ PVA над MVA не имеет.

Если вы жалеете денег на высококачественную матрицу на IPS технологии, возможно оптимальным вариантом для вас, будет монитор на xVA матрицах.

Или же можно посмотреть в сторону e-IPS матрицы, которая очень схожа по характеристикам с MVA /PVA . Хотя e-IPS всё же предпочтительней, так как обладает лучшим временем отклика и не имеет проблем с потерей контрастности при прямом взгляде.

Какую же матрицу для монитора выбрать?

Зависит от ваших требований.

TN

TN подходит для:

  • Игры
  • Интернет сёрфинг
  • Экономного пользователя
  • Офисные программы

TN не подходит для:

  • Просмотр фильмов (плохие углы обзора + невнятный чёрный + плохая цветопередача)
  • Работа с цветом и фото
  • Профессиональные программы и пред печатная подготовка

IPS

IPS подходит для:

  • Просмотр фильмов
  • Профессиональные программы и предпечатная подготовка
  • Работа с цветом и фото
  • Игры (+-; только для E-IPS, S-IPS II, UH-IPS)
  • Интернет сёрфинг
  • Офисные программы

IPS не подходит для:

  • Игры (для P-IPS, S-IPS)

*VA

PVA/MVA подходит для:

  • Просмотр фильмов
  • Профессиональные программы и пред печатная подготовка
  • Работа с цветом и фото
  • Интернет сёрфинг
  • Офисные программы

PVA/MVA не подходит для:

  • Игры (слишком низкая скорость отклика)

Разрешение монитора, диагональ и соотношение сторон.

Несомненно, чем больше разрешение, тем чётче и плавнее картинка. Видно больше мелких деталей и меньше видны пиксели. Всё становится мельче, однако это не всегда проблема. Практически в любой операционной системе, можно настраивать масштаб и размеры всех элементов начиная размером шрифта, заканчивая размерами значков и выпадающих меню.

Другое дело, если у вас проблемы со зрением или вы не хотите ничего настраивать, то не рекомендуется использовать очень мелкий пиксель. Оптимальная диагональ для FullHD (1920х1080) 23 24 дюйма. Для 1920х1200 24 дюйма, для 1680х1050 22 дюйма, 2560х1440 27 дюймов. Соблюдая данные пропорции, у вас не должно возникнуть никаких проблем с чтением, просмотром изображений и мелких элементов управления интерфейсом.

Самые ходовые и распространённые соотношения сторон – 4:3 , 16:10 , 16:9 .

4:3

В данный момент соотношение сторон в виде «квадрат» (4:3 ) выводится с рынка ввиду своей не удобности и не универсальности. Данный формат, не удобен в первую очередь для просмотра фильмов, так как фильмы имеют широкий формат 21.5/9 , который максимально близок к 16:9 . При просмотре, появляются большие чёрные полосы сверху и снизу, при этом изображение становится гораздо меньше по размеру. При использовании 4:3 также ухудшается видимый обзор в играх, что не позволяет видеть больше. К тому же, формат не является естественным для углов обзора человека.

16:9

Данный формат удобен тем, что он больше стандартизирован под HD фильмы, да и мониторы данного формата, зачастую имеют разрешение FullHD (1920х1080 ) или HDready (1366x 768 ).

Это удобно, ведь фильмы можно просматривать практически во весь экран. Полоски все же остаются, так как современные фильмы имеют стандарт 21.5/9 . Так же, на таком мониторе очень удобно работать с документами в нескольких окнах или программах со сложными интерфейсами.

16:10

Данный вид мониторов, так же практичен как и 16:9 мониторы, но при этом не такой широкий. Подойдёт для тех, у кого ещё не было широкоформатных мониторов, однако предназначен он для профессионалов. Профессиональные мониторы, в основном имеют именно такой формат. Большинство профессиональных программ «заточены» именно под формат 16:10. Он достаточно широк для работы с текстом, кодом, построения 3D/2D графики в нескольких окнах. К тому же, на таких мониторах также удобно играть, смотреть фильмы, делать офисную работу, как и на 16:9 мониторах. При этом они более привычны для углов обзора человека и его можно взять, как компромисс между 4:3 и 16:9 .

Яркость и Контрастность.

Высокая контрастность нужна для того, чтобы лучше отображать чёрный цвет, оттенки и полутона. Это важно при работе с монитором в светлое время суток, так как низкая контрастность – пагубно сказывается на изображении при наличии какого-либо источника света помимо монитора (хотя здесь больше влияет яркость). Хорошим показателем является статическая контрастность — 1000:1 и выше. Вычисляется отношением максимальной яркости (белый цвет) к минимальной (чёрный цвет).

Также, существует система измерения динамической контрастности .

Динамическая контрастность – это автоматическая подстройка ламп монитора монитора, под определённые параметры которые выводятся в данный момент на экран.

Допустим в фильме появилась тёмная сцена, лампы монитора начинают гореть ярче, что увеличивает контрастность и различимость сцены. Однако, данная система работает не мгновенно, да и частенько неправильно из-за того, что не всегда вся сцена на экране имеет тёмные тона. Если будут светлые участки, они будут сильно засвечиваться. Хорошим показателем на момент 2012 года является показатель 10000000:1

Но не стоит обращать на динамическую контрастность никакого внимания. Очень редко когда она приносит ощутимую пользу или вообще адекватно работает. К тому же все эти громадные цифры не показывают реальную картину.

Почему на мониторе с показатель динамической контрастности всегда значительно выше чем на мониторе с ?

Потому что LED подсветка может мгновенно включаться и отключаться. Измерение начинается с полностью выключенной подсветкой, соответственно показатель будет огромным, плюс добавить сюда высокую яркость светодиодов и белый фон как конечную точку. CCFL подсветке требуется более 1 секунды чтобы включиться, поэтому измерение происходит с включенной заранее подсветкой на чёрном фоне.

В первую очередь стоит обращать на статическую контрастность, а не на динамическую. Как бы вам не нравились такие огромные значения в характеристиках. Это всего лишь маркетингивый ход .

Яркость монитора – не самый важный параметр. Тем более это палочка о двух концах. Поэтому можно сказать кратко – хорошим показателем яркости является значение 300кд/м2.

А почему палочка о двух концах – будет сказано чуть ниже, в части «Монитор и Зрение» .

Порты коммуникации.

Совершая выбор монитора, не стоит в этом пункте надеяться на производителя. Самой частой ошибкой бывает – покупка монитора с аналоговым входом и разрешением экрана выше чем 1680х1050 . Проблема в том, что данный устаревающий интерфейс, не всегда способен в условиях квартиры и сопутствующих не идеальных условий в плане помех, обеспечить нужную скорость передачи данных для разрешений выше, чем 1680х1050 . На экране появляются мутности и нечёткости, что может испортить впечатление от монитора. * очень мягко говоря



На борту монитора обязательно должен быть порт или . Наличие DVI и D-Sub это стандарт для современного монитора. Неплохо, так же иметь порт HDMI , иногда может и пригодиться для просмотра HD-видео ресивера или внешнего проигрывателя. Если есть , но нет DVI — всё в порядке. DVI и HDMI совместимы через переходник.

Типы подсветок мониторов. Монитор и его влияние зрение .

Что же можно посоветовать, чтобы глаза меньше уставали от монитора?

Яркость подсветки – один из самых важных факторов, который влияет на усталость ваших глаз. Чтобы уменьшить утомляемость — уменьшите яркость до минимального комфортного значения.

Есть другая проблема и присуща она мониторам с . А именно — если снижать яркость, может появиться видимое мерцание , которое ещё больше влияет на утомляемость глаз, чем высокая яркость. Связано это с особенностью регулировки подсветки с использованием . В бюджетных мониторах применяются более дешёвые, низкочастотные ШИМ , которые создают мерцания диодов. Скорость затухания света в диоде значительно выше чем в лампах , именно поэтому у LED подсветки это более заметно . В таких мониторах лучше соблюсти золотую середину между минимальной яркостью и началом видимого мерцания светодиодов.

Если вы имеете какие то проблемы с утомляемостью глаз , то лучше поискать монитор с CCFL подсветкой, либо LED монитор с поддержкой 120 Гц . В 3D мониторах, используются боле высокочастотные ШИМ регуляторы, чем на обычных. Это касается как LED подсветок, так и CCFL .

Так же, чтобы глаза меньше уставали, можно настроить монитор на более мягкие и тёплые тона. Это поможет вам работать за компьютером больше времени и поможет глазам лучше «переключаться» на реальный мир.

Не стоит забывать, что монитор должен быть строго на уровне глаз и стоять устойчиво, не раскачиваясь из стороны в сторону.

Есть миф , что более качественные матрицы дают меньшую усталость для глаз. Это не так, матрицы никоим образом не могут на это влиять. На утомляемость влияет лишь интенсивность и качество реализации подсветки монитора.

Выводы.

Повторим ещё раз самые главные характеристики, на которые стоит обращать внимание при выборе монитора для себя.

class="eliadunit">

Выбор монитора – процесс крайне спорный, субъективный и долгий. Одним подавай глянец на 27”, другие же хотят профессиональное решение с глубоким охватом sRGB и Adobe RGB. Третьи желают максимально низкий отклик матрицы, что критично важно в Action-играх и шутерах. Всем сразу не угодить, да и универсальных решений пока не существует. В одном лишь категории сходятся – это матрица.

На сегодняшний день представлено более 10 различных технологий изготовления матрицы, среди которых IPS, PLS, TFT, TN, PVA и не только. Каждая характеризуется своей светочувствительностью, скоростью отклика (от серого к серому), качеством, насыщенностью и, собственно, цветопередачей. Так какая матрица лучше? Если не вникать в профессиональный сегмент, то сейчас на рынке доминируют варианты на IPS и PLS . Что лучше? Сейчас разберем.

Что нужно знать об IPS

Технология In-Plane-Switching (IPS), известная еще как Super Fine TFT появилась уже в «далеком» 1996 году как альтернатива TN. У истоков стояла NEC и Hitachi. Впоследствии они начали развиваться независимо друг от друга, поэтому нам более известен вариант Hitachi. NEC же обозвал свою матрицу SFT.

Разработка должна была лишить TN+film «детских» болезней в виде углов обзора, контрастности, цветопередачи и времени отклика. С последним пунктом воевали крайне долго, поскольку Twisted Nematic довели параметр до совершенства, сократив до 1 мс. На сегодняшний день обе матрицы имеют схожие параметры быстродействия, только IPS опережает визави во всем остальном.

Также избавились от «волнений» при нажатии на монитор. Ткнув пальцем в экран вы не увидите радужных разводов . Офтальмологи также сходятся во мнении, что IPS куда легче воспринимается глазом, даже не защищенным.

Наиболее распространенные подкатегории:

class="eliadunit">

  • S-IPS – технология с максимально низким откликом;
  • H-IPS – максимальная контрастность и однородность поверхности экрана;
  • P-IPS – обеспечивают охват в 1,07 млрд цветов с глубиной в 30 бит;
  • AH-IPS – цветопередача, улучшенная плотность и яркость при сниженном энергопотреблении.

PLS в качестве альтернативы

Многие думают, что PLS матрица – одна из разновидностей IPS, но на деле это разработка Samsung, применяемая в собственной же продукции. Инженеры не слишком хотят афишировать особенности технологии, потому как производство мониторов на ее основе выходит несколько дешевле при схожем, а то и несколько лучшем качестве, если говорить про массовый рынок, а не профессиональные решения.

Из особенностей нужно отметить высокую плотность пикселей (вплоть до 2560х1440) без искажения картинки и потери качества. Средний отклик не превышает 5 мс, а яркость, контрастность и качество картинки находится на одинаковом уровне, если рассматривать конкурентные модели объективно.

Углы обзора со всех сторон стремятся к 178 градусам, при этом покрытие диапазона sRGB является полным, с какой стороны не глянь. Искажения и инверсии исключены . Подойдут PLS-мониторы людям творческим, а именно дизайнерам и фотографам.

Что купить?

Как видите, разработкой IPS занимается большее число людей, поэтому диапазон категорий матриц крайне широкий. Они подойдут и для дешевых офисных и для элитных дизайнерских мониторов. Главное - внимательно читать маркировку.

PLS - универсальное решение от Samsung, охватывающее все достоинства IPS, правда цена из-за этого несколько выше ввиду затрат на разработку и улучшение технологии. С другой стороны, картинка будет действительно великолепная и в фильмах, и в играх и в графических редакторах. Ну а решать уже вам.

24. 06.2018

Блог Дмитрия Вассиярова.

Матрицы VA – основа дисплеев с уникально высокой контрастностью

Здравствуйте дорогие читатели моего блога, интересующиеся разновидностями ЖК мониторов. Сегодня очередь дошла до матрицы VA, которая имеет свои эксклюзивные достоинства, но в тоже время является компромиссным вариантом между TN и IPS технологиями.

Традиционно напомню историю ее создания и принцип действия. В 1996 году компания Fujitsu представила разновидность ЖК матрицы с вертикальным, относительно плоскости второго поляризатора, позиционированием жидких кристаллов.

Для тех, кто подзабыл, я напомню общий принцип технологии создания изображения в активном TFT дисплее:

  • На экран направлен свет от подсветки;
  • каждый отдельный пиксель состоит из трех мельчайших отверстий с красным, зеленым и синим светофильтром;
  • Перед каждым RGB элементом стоит модуль с двумя взаимно перпендикулярными поляризационными решетками, исключающими прохождение луча;
  • Между ними имеется ЖК с прозрачными электродами. При подаче на них напряжения, кристалл изменяет поляризацию светового потока, позволяя ему проникнуть через вторую фильтрующую решетку и попасть на светофильтр.

Так на экране получается изображение. Но оно может иметь разные свойства в зависимости от способа размещения молекул в кристалле при спокойном и активированном состоянии. Картинка, получаемая на TN панелях, имела множество недостатков, но и создаваемая на экранах, также не была идеальной. Поэтому, то, что удалось поучить на VA матрице, считалось весьма неплохим результатом.

VA технология наиболее близка к IPS, о чем свидетельствуют такие же темные битые пиксели. Но ее особенность заключается в том, что меняя свое положение, кристаллы выполняли основную функцию с наибольшей эффективностью: либо полностью перекрывая поток света, либо обеспечивали прохождение луча с минимальной потерей яркости.

Она так же требовала улучшения, поэтому позже Fujitsu представили новую, усовершенствованную версию – MVA (multi-domain vertical alignment), а Samsung (также работавший в этом направлении) – PVA (plane-to-line switching) матрицу.

Важные «плюсы» и условные «минусы»

О том, что же получили пользователи в лице VA мониторов мы сейчас и поговорим. А так же о том, почему в результате острой конкуренции между разными ЖК технологиями каждая из них осталась востребованной и заняла свою нишу. Все это, конечно, обусловлено свойствами матриц, которые при прочих общих параметрах, напрямую зависят от позиционирования молекул жидких кристаллов:

  • Как я уже упомянул, VA кристаллический модуль полностью блокирует луч, что позволяет получить глубокий черный цвет. С таким же успехом достигается и максимальная яркость белого. Это главное преимущество данной технологии, благодаря чему картинка получается максимально контрастной и четкой. По данному показателю VA мониторы намного опередили своих конкурентов, а значит, они являются лучшим решением для работы с офисными приложениями, конструкторскими программами и редакторами векторной графики. Так же VA экраны высокого разрешения, детально отображающие различные схемы сложных технологических процессов, незаменимы для диспетчерских служб.

  • Цветопередача остается отличной, на уровне IPS экранов. Ведь здесь так же каждый отдельный цвет имеет 8-и битную кодировку, что позволяет получить множество оттенков.

Вместе с высокой контрастностью это позволяет получить потрясающую по красоте картинку. Этим свойством VA экранов, несомненно, предпочтут воспользоваться графические дизайнеры, фотографы и любители смотреть кинофильмы. Следует отметить, что яркое четкое изображение позволяет без проблем использовать такие мониторы в ярко освещенном помещении или на улице;

  • Но за все эти преимущество приходится расплачиваться определенными недостатками. Расположение молекул кристалла позволяет наслаждаться картинкой только, если вы находитесь непосредственно перед экраном. При боковом просмотре существенно ухудшается цветопередача, а различить оттенки в тенях становиться практически невозможным. Да у VA матрицы углы обзора шире, чем у моделей, но до IPS ей все равно далеко. Но, если вы планируете использовать монитор индивидуально, сидя непосредственно перед ним, то данное свойство можно назвать недостатком, лишь условно;

  • Чтобы изменить структуру жидкого кристалла с вертикальным ориентированием молекул требуется больше времени и энергии. Это негативно отражается и на времени отклика пикселя и на энергопотребление. Последний фактор менее критичен, поскольку значительная часть энергии расходуется и на подсветку. А вот размытие при просмотре динамических сцен является веской причиной, не использовать VA экран в играх со стремительным развитием событий. (Кстати, к любителям стратегий это не относиться. Им наоборот нужен такой монитор с высокий четкостью).

Ценовой вопрос затрагивать не хочу, ведь он довольно условный, поскольку на стоимость мониторов с VA матрицей влияют различные сторонние факторы, в том числе бренд производителя. Хотя в этом есть и свои плюсы. Некоторые специально отдают предпочтение более дорогой PVA технологи, зная, что такие экраны выпускает исключительно Самсунг, гарантируя при этом фирменное качество и надежность.

Клуб поклонников VA технологии

Как видите, для каждого типа ЖК дисплея есть свои условия, при которых он максимально проявляет свои лучшие стороны, а его недостатки становятся несущественными. Это относится и к экрана с VA матрицей, ведь он отлично проявляет себя: для решения широкого спектра производственных задач, при просмотре видеоконтента в обычной светлой жилой комнате (а не затемненной, как кинозал), для игр и, конечно, для общения в соцсетях.

Надеюсь, мои дорогие читатели, среди вас обязательно найдутся те, для кого VA матрица станет оптимальным решением при выборе монитора.

На этом я заканчиваю свой рассказ и прощаюсь с вами.

Удачи и до новых встреч!

В мониторах производители устанавливают матрицы изготовленные по различным технологиям, применяются следующие типы матриц TN, IPS, VA с различными модификациями. На рисунке ниже можно посмотреть как меняется картинка на различных экранах при просмотре изображения под углом.

TN матрицы

TN+film — первые TFT панели, выпускаются и сейчас в качестве недорогих экранов, преимущество дешевизна производства. Недостаток небольшие углы просмотра, уменьшение яркости и контрастности если смотреть сбоку. Сначала были матрицы TN потом была добавлена специальная плёнка для улучшения цветопередачи своеобразный фильтр и матрицы стали называть TN+film.

Матрицы изготовленные по IPS технологии.

  • IPS Generations Summary (Hitachi)
  • PLS — Plane to Line Switching (Samsung)
  • AD-PLS — Advanced PLS (Samsung)
  • S-IPS — Super IPS (NEC, LG.Display)
  • E-IPS, AS-IPS — Enhanced and Advanced Super IPS (Hitachi)
  • H-IPS — Horizontal IPS (LG.Display)
  • e-IPS (LG.Display)
  • UH-IPS и H2-IPS (LG.Display)
  • S-IPS II (LG.Display)
  • p-IPS — Performance IPS (NEC)
  • AH-IPS — Advanced High Performance IPS (LG.Display)
  • AHVA — Advanced Hyper-Viewing Angle (AU Optronics)

IPS — одна из первых технологий производства TFT экранов, была придумана в 1996 году (Hitachi) как альтернатива TN дисплеям, имеет широкие углы обзора, более глубокий чёрный цвет, хорошая цветопередача, недостаток большое время отклика, что делало их не пригодными для игр.

PLS — (Plane-к-Line Switching) samsung перевёл название панели как «переключение-из-плоскости-в-линию» получилась полная абракадабра, дословный перевод «Самолетом до линии переключения» тоже не несёт никакого смысла. Скорей всего под данным лозунгом хотели показать, что монитор имеет высокое время отклика и со скоростью самолёта может переключать картинку. PLS это по сути матрица IPS только изготавливается другой компанией которая придумала своё обозначение и свою технологию производства. К плюсам относится:

  • время отклика составляет 4 мили секунды (GTG). GTG это время необходимое для изменения яркости пикселя с минимальной яркости к максимальной.
  • Широкие углы обзора без потери яркости картинки.
  • Увеличенная яркость дисплея

AD-PLS — та же панель PLS но как заявляет samsung немного изменена технология производства, как говорят многие эксперты, это просто пиар.

S-IPS — усовершенствованная технология IPS в этом направлении проводят разработки компании NEC A-SFT, A-AFT, SA-SFT, SA-AFT, а также LG.Display (S-IPS, e-IPS, H-IPS, p-IPS ). Благодаря усовершенствованию технологий удалось достичь уменьшения времени отклика до 5 мили секунд, что сделало эти дисплеи пригодными для игр.

S-IPS II — следующее поколение S — IPS панелей, уменьшение энергоёмкости.

E-IPS, AS-IPS — Enhanced and Advanced Super IPS, разработки (Hitachi) одно из улучшений IPS технологий увеличение яркости и уменьшение времени отклика

H-IPS — Horizontal IPS, (LG.Display) в этом типе матрицы пиксели размещены горизонтально. улучшена цветопередача и контрастность. Большая половина современных IPS панелей имеет горизонтальное расположение пикселей.

e-IPS (LG.Display) следующее усовершенствование производства матрицы дешевле в производстве но имеют недостаток немного меньшие углы обзора.

UH-IPS и H2-IPS — второе поколение H-IPS технологи усовершенствованная матрица, увеличена яркость панели.

p-IPS — Performance IPS тоже самое что и H-IPS маркетинговое название матрицы от NEC.

AH-IPS — модификация матрицы для дисплеев с высоким разрешением (UHD), аналог H-IPS.

AHVA — Advanced Hyper-Viewing Angle такое обозначение получили дисплеи компании (AU Optronics), компания образована от слияния Acer Display Technology и подразделения по производству экранов корпорации BenQ.

PVA матрицы — Patterned Vertical Alignment

  • S-PVA — Super PVA
  • cPVA
  • A-PVA — Advanced PVA

PVA матрицы были разработаны Samsung имеют хорошую контрастность, но обладают рядом недостатков, основной потеря контрастности изображения при просмотре под углом. Что бы перидически обновлять линейку производства, через определённый промежуток времени выходила новая модель экрана, поэтому существуют следующие типы экранов VA.

  • S-PVA — Super PVA улучшенная матрица за счёт изменения технологии производства.
  • cPVA — упрощённая технология производства по качеству экран хуже чем S — PVA
  • A-PVA — Advanced PVA небольшие абсолютно не существенные изменения.
  • SVA — очередная модификация.

VA — Vertical Alignment

  • MVA — Multi-Domain Vertical Alignment (Fujitsu)
  • P-MVA — Premium MVA
  • S-MVA — Super MVA
  • AMVA — Advanced MVA

Технология производства TFT дисплеев (VA) была разработана Fujitsu в 1996 году как альтернатива TN матрицам, экраны изготовленные по этой технологии имели недостатки в виде большого времени отклика и небольших углах просмотра но имели значительно лучшие характеристики цветности. Что бы побороть недостатки технология производства усовершенствовалась.

MVA — следующая версия технологии 1998 год отличие было в том что пиксель состоял из нескольких частей, это позволяло достичь более качественного изображения.

P-MVA, S-MVA — улучшена цветопередача и контрастность.

AMVA — следующее поколение производства, уменьшение времени отклика, улучшение цветовой передачи.