В нашей статье мы не будем в очередной раз обсуждать тему перехода с традиционных магнитных пластин на твёрдотельные накопители. Нет, мы рассмотрим переход с 3,5" форм-фактора на 2,5" винчестеры, а также распространение меньших по размеру жёстких дисков в корпоративном сегменте. Все крупные производители жёстких дисков сегодня предлагают, по крайней мере, одну линейку 2,5" винчестеров для корпоративного рынка, а некоторые уже объявили о прекращении поддержки высокоскоростных 3,5" винчестеров на 15 000 об/мин. SSD обеспечивают большую производительность, а менее скоростные 3,5" жёсткие диски - ёмкость до 2 Тбайт. Модели же в промежутке, похоже, переходят на 2,5" форм-фактор по причинам, которые мы постараемся выяснить в нашей статье.

Магическое слово в сфере корпоративных хранилищ - это "плотность", под которой обычно подразумевается доступная ёмкость хранения в определённых физических габаритах. Плотность начинается с уровня жёсткого диска, где под ней подразумевается плотность хранения данных на квадратном дюйме поверхности или на пластине. При переходе на системный уровень появляется плотность в расчёте на объём - сколько информации вы сможете хранить в сервере 1U, 2U, 4U или даже в стойке целиком?

Плотность хранения данных взаимосвязана с возможностью увеличения производительности подсистемы хранения данных, что тоже поднимает вопрос о переходе с 3,5" на 2,5" форм-фактор. Действительно, производительность массивов RAID масштабируется при увеличении числа используемых жёстких дисков, поэтому очевидно, что большее количество 2,5" винчестеров даст серьёзное преимущество по сравнению с небольшим массивом из 3,5" HDD. В статье мы рассмотрим производительность, энергопотребление, ёмкости и некоторые сферы применения, например, blade-серверы. Наконец, 2,5" форм-фактор является доминирующим для SSD, что открывает путь для простой и удобной модернизации. Но позвольте начать с обсуждения флэш-технологий.

Флэш повсюду?

В ближайшие годы твёрдотельные накопители появятся во многих клиентских ПК и серверах, поскольку для операционной системы и набора приложений особенно большой ёмкости не требуется. Однако текущий бум технологии SSD связан либо с low-end сегментом, где ёмкость и производительность не так важны, либо с high-end производительным сегментом.

Позвольте вкратце напомнить потенциальные преимущества технологии флэш-памяти.

Самая высокая производительность ввода/вывода : если жёсткие диски корпоративного класса могут обеспечивать несколько сотен операций ввода/вывода в секунду (IOPS), то приличные SSD могут выдавать тысячи операций. Это критично для многих корпоративных применений.

Высокая пропускная способность : жёсткие диски сегодня дают, максимум, 200 Мбайт/с, хотя SSD с лёгкостью превышают данный уровень. Флэш-накопители также дают намного более высокую и стабильную среднюю пропускную способность, чем HDD.

Снижение расходов на обслуживание : поскольку данные динамически распределяются по каналам и ячейкам флэш-памяти контроллером, дефрагментировать SSD не требуется. Дефрагментация может даже ухудшить производительность.

Эффективность энергопотребления : жёстким дискам требуется до 20 Вт энергии, а SSD обычно потребляют очень небольшое количество энергии, как правило, всего несколько ватт. В результате эффективность энергопотребления, выраженная в пропускной способности на ватт или производительности ввода/вывода на ватт, может быть весьма впечатляющей.

Хорошо продуманные SSD могут дать высокую пропускную способность, лучшую эффективность энергопотребления и производительность ввода/вывода, намного превосходящую жёсткие диски. Впрочем, жёсткие диски для массового рынка, которые используются, как минимум, в трёх четвертях всех поставляемых систем и серверов, не могут быть заменены SSD, несмотря на потенциал твёрдотельных накопителей.

Ниже мы вкратце привели список существующих проблем.

Ёмкость : современные SSD для корпоративного рынка дают от 32 до 256 Гбайт, в то время как HDD корпоративного класса имеют ёмкость до 600 Гбайт. А высокоёмкие хранилища теперь можно собирать из 2-Тбайт винчестеров, сертифицированных для корпоративного сегмента.

Цена : цены на SSD для корпоративного рынка начинаются примерно там, где заканчиваются цены на high-end жёсткие диски для этого же рынка.

Валидация : многие жёсткие диски уже валидированы для тех или иных окружений, в то время как SSD - (пока) нет. Это касается совместимости и надёжности, а также предсказуемости производительности.

Итог будет очевидным: технология SSD может действительно давать преимущества, но вам придётся начинать всё с нуля, если требуется правильная реализация.

2,5" против 3,5": примеры накопителей

Сначала хотелось бы напомнить, что 2,5" жёсткие диски корпоративного класса имеют большую высоту, чем 2,5" винчестеры для потребительского рынка. Последние доступны с высотой 9,5 мм (ноутбуки) или 12,5 мм (портативные накопители), но все HDD корпоративного класса имеют высоту 15 мм. Это связано с тем, что им обычно требуется вмещать три физические пластины. То же самое верно и для 12,5-мм 2,5" винчестеров, но увеличение скорости вращения шпинделя до 10 000 об/мин или даже до 15 000 об/мин накладывает свои ограничения. Да и следует помнить, что пластины внутри 2,5" и 3,5" жёстких дисков корпоративного класса на самом деле имеют одинаковый диаметр, то есть основным преимуществом 3,5" винчестера по сравнению с 2,5" является возможность вмещать четыре или даже большее количество пластин. Как видим, это касается максимальной ёмкости, которая, как мы уже упоминали выше, не является приоритетом для данных жёстких дисков корпоративного класса.

3,5" Fujitsu MBA3147RC (15 000 об/мин, 147 Гбайт)



Нажмите на картинку для увеличения.

Для сравнения производительности разных форм-факторов мы взяли жёсткий диск Fujitsu MBA3147RC. Этот накопитель является хорошим примером 3,5" высокопроизводительного жёсткого диска корпоративного класса. Он оснащён буфером 16 Мбайт, интерфейсом SAS на 3 Гбит/с и имеет время наработки на отказ (MTBF) 1,4 миллиона часов. Toshiba, купившая Fujitsu в прошлом году, не планирует выпускать 600-Гбайт 3,5" жёсткий диск, в результате чего линейка MBA заканчивается на отметке 300 Гбайт. Другие популярные продукты - это линейки Hitachi Ultrastar 15K и Seagate Cheetah 15K. Следует отметить, что другие, более новые 3,5" жёсткие диски на 15 000 об/мин дают намного более высокую пропускную способность, но производительность ввода/вывода остаётся на одинаковом уровне, поскольку головки чтения и записи нельзя ускорять бесконечно. Всё же физические ограничения существуют. Более скоростные 3,5" жёсткие диски будут давать от 150 до 200 Мбайт/с.


Нажмите на картинку для увеличения.

2,5" Toshiba MBF2600RC (10 025 об/мин, 600 Гбайт)



Нажмите на картинку для увеличения.

Перед нами один из новейших 2,5" жёстких дисков корпоративного класса. Линейка MBF от Toshiba предлагает ёмкость до 600 Гбайт в 2,5" форм-факторе. Это один из первых жёстких дисков SAS с интерфейсом 6 Гбит/с, который даёт в два раза более высокую пропускную способность, чем у предшественника. Впрочем, в реальности это не так и важно, поскольку производительность передачи данных с пластин не превышает 147 Мбайт/с. Накопитель даёт большую пропускную способность, чем наш 3,5" винчестер Fujitsu, взятый для сравнения, но уступает новейшим жёстким дискам на 15 000 об/мин. Производительность ввода/вывода во многом определяется скоростью вращения шпинделя, от которой зависит задержка на вращение. Схожие продукты доступны от Hitachi (C10K300) и Seagate (NS.2), но только Seagate и Toshiba сегодня поставляют модели с ёмкостью 600 Гбайт.


Нажмите на картинку для увеличения.

2,5" против 3.5": производительность и энергопотребление

Довольно важно сравнить производительность и энергопотребление у 2,5" и 3,5" накопителей. Индекс корпоративной производительности, приведённый выше, базируется на результатах проведённых нами тестов, в нём пропускная способность и производительность ввода/вывода имеют вес 40%, а производительность PCMark Vantage - 20 процентов. Вы можете перейти к разделу тестов, чтобы сравнить отдельные результаты, но картина общей производительности вполне чёткая: новое поколение 600-Гбайт моделей в 2,5" форм-факторе со скоростью вращения шпинделя 10 000 об/мин даёт вполне приличную пропускную способность до, примерно, 150 Мбайт/с, но оно не может обойти 3,5" жёсткие диски на 15 000 об/мин по производительности ввода/вывода. Впрочем, небольшое падение производительности вполне приемлемо, учитывая преимущества 2,5" форм-фактора по сравнению с 3,5", которые мы рассмотрим чуть ниже.

Не менее интересно взглянуть на энергопотребление в сценарии нагрузки ввода/вывода рабочей станции. Если жёстким дискам на 15 000 об/мин требуется от 7,8 Вт в режиме бездействия до 12,4 Вт при максимальной активности ввода/вывода, то 600-Гбайт 2,5" жёсткий диск Toshiba MBF2600RC урезает это энергопотребление наполовину. Во время интенсивной нагрузки ввода/вывода он потребляет всего 7,1 Вт, что впечатляет. А в режиме бездействия - всего 3,5 Вт.

Наконец, поговорим об эффективности. Энергопотребление снижается намного сильнее, чем производительность, поэтому мы вправе ожидать от 2,5" жёстких дисков большую производительность в расчёте на ватт.

2,5" против 3,5": ёмкость и цена

Нужно учитывать и некоторые другие факторы, прежде чем говорить о ёмкости и плотности. Как правило, производители жёстких дисков пытаются создавать модели с разумным числом вращающихся пластин. Накопители на одной пластине наиболее интересны для потребительского и клиентского рынков, где важны минимальные расходы.

Множество пластин используются для получения более высоких ёмкостей или для достижения нужной ёмкости на проверенной временем технологии и плотности записи. Впрочем, быстрые 3,5" жёсткие диски с большим количеством пластин пытаются сочетать высокую производительность с высокой ёмкостью, что часто сопровождается повышением цены. 3,5" жёсткий диск на 7200 об/мин дёт в три раза большую ёмкость примерно за треть себестоимости, а SSD завоёвывают производительный сегмент.

Остаётся средний уровень ёмкости - его как раз дают продукты для корпоративного массового рынка. И здесь лучше всего себя показывает 2,5" форм-фактор. Да, придётся смириться с небольшим падением производительности, но энергопотребление, эффективность и цена хорошо сбалансированы. Кроме того, один продуктовый цикл часто бывает достаточным, чтобы компенсировать падение производительности. Существующие плотности записи позволяют выпускать 2,5" жёсткие диски на 10 000 об/мин с 200 Гбайт ёмкости на пластину. В итоге Seagate и Toshiba смогли представить модели с ёмкостью 300, 450 и 600 Гбайт. Как мы ожидаем, вскоре за ними последует и Hitachi.

С точки зрения ёмкости

Учитывая, что в одном и том же стоечном пространстве можно уместить намного больше 2,5" винчестеров, чем 3,5", то мы получаем намного более высокую плотность хранения и эффективность энергопотребления на гигабайт. Два 2,5" 300-Гбайт жёстких диска корпоративного класса на 10 000 об/мин в правильном массиве RAID обойдут один 600-Гбайт 3,5" винчестер на 15 000 об/мин. В то же время цена и энергопотребление останутся примерно сравнимыми.

С точки зрения производительности

Если мы посмотрим на сценарий 3,5" против 3,5", то для повышения производительности, ёмкости или эффективности необходимо использовать несколько винчестеров. В крупных корпоративных хранилищах используются не только отдельные жёсткие диски, но и HDD, объединённые в разделы JBOD. Позвольте привести простой пример.

Подсистема хранения должна обеспечивать минимум 1000 операций ввода/вывода в секунду для файлового сервера и должна иметь ёмкость не меньше 3 Тбайт. Идеальным вариантом можно считать хранилище 1U с четырьмя 3,5" винчестерами. Если брать 600-Гбайт жёсткие диски на 15 000 об/мин, то мы получим требуемую производительность, но не добьёмся требуемой ёмкости. Система 2U могла бы увеличить чисто дисков, но и расходы при этом тоже возрастут. Альтернативой можно считать хранилище 1U, которое может вместить десять 2,5" винчестеров. В нашем примере вы можете установить шесть 2,5" 600-Гбайт жёстких дисков на 10 000 об/мин. В массиве RAID 5 они обеспечат требуемую ёмкость и производительность при меньших суммарных затратах, меньшем энергопотреблении и намного более высокой эффективности энергопотребления по сравнению с 3,5" решением.

Наконец, давайте рассмотрим разницу в цене, если вы захотите установить SSD. Один накопитель, скорее всего, даст требуемую производительность, но нам придётся использовать не меньше 24 SSD по 128 Гбайт каждый, чтобы получить желаемую ёмкость. При этом мы даже не обеспечим избыточность хранения, да и получающееся решение будет массивным. Нам придётся продумать массив RAID, найти подходящие RAID-контроллеры и оснастки, чтобы использовать 24 (или более) SSD.

Давайте поговорим о том, сколько накопителей могут работать в серверах типичных стоечных форм-факторов. Следующие цифры базируются на моделях с передней загрузкой устройств. Впрочем, конечно, бывают и стоечные серверы, в которых используется . Кроме того, бывают и другие опции, например, две системы внутри одного blade-корпуса, добавление или исключение оптического привода, более функциональная панель с интерфейсами ввода/вывода и так далее. Таким образом, в зависимости от конкретного продукта, у него может быть и меньше отсеков, чем приведено в списке.

Стоечный сервер 3,5" отсеки для приводов 2,5" отсеки для приводов
1U 4 10
2U 12 24
3U 16 -
4U 36 -

Серверы 2U могут вместить 20 2,5" жёстких дисков при их горизонтальной установке, либо 24 накопителя, если они установлены вертикально. Кроме того, оснастки и отсеки для 2,5" жёстких дисков требуют намного меньше места, чем для сравнимых 3,5" решений, поскольку накопители меньше по всем трём измерениям.

Решения 3U обычно поддерживают 16 3,5" жёстких дисков. Честно говоря, мы не встречали решений 3U и более крупных, в которых работает ещё большее количество 2,5" жёстких дисков, поскольку даже в сервер 2U можно установить 24 накопителя.

Некоторые специальные решения позволяют вместить большую вычислительную мощность в очень ограниченное пространство. Хорошим примером можно считать Supermicro SC809T-1200B , сдвоенную систему 1U, которая обеспечивает четыре 2,5" отсека для каждого внутреннего сервера. Поскольку на передней панели необходимы элементы управления, в подобную систему нельзя вместить максимум из десяти 2,5" жёстких дисков.

Blade-серверы


Нажмите на картинку для увеличения.

На фотографии выше показана небольшая стойка 12U, вмещающая три устройства: систему 4U снизу, blade-шасси 7U с 10 модулями посередине и сервер 2U сверху. Как правило, blade-серверы устанавливаются в шасси 7U, причём допускается установка до 10 blade-серверов и разнообразных модулей. Если обычные стоечные серверы включают блоки питания и поддержку сети, то у blade-серверов общее питания и сеть. Конечно, blade-серверы являются наиболее эффективным способом увеличения плотности вычислений в серверном окружении.

И здесь проявляется серьёзное преимущество 2,5" жёстких дисков по сравнению с 3,5" моделями: последние просто не уместятся в отдельные blade-серверы, то есть все blade-серверы должны оснащаться 2,5" винчестерами. Это экономит не только место, но и энергию. Действительно, в полное шасси с 10 blade-серверами можно установить до 60 2,5" жёстких дисков. Умножьте 60 на потребление 7,1 Вт у Toshiba MBF2600RC под интенсивной нагрузкой ввода/вывода, и вы получите типичное энергопотребление 426 Вт. Напротив, то же количество 3,5" винчестеров потребует шасси не меньше 9U и 744 Вт питания.

Многие blade-серверы поддерживают три или шесть 2,5" винчестеров (для сдвоенных blade), что позволяет настроить массив с избыточностью и приличной производительностью.

Тестовая конфигурация

Системное аппаратное обеспечение
CPU Intel Core i7-920 (45 нм, 2,66 ГГц, кэш L2 8 Мбайт)
Материнская плата (Socket 1366) Supermicro X8SAX, Revision: 1.1, чипсет: Intel X58 + ICH10R, BIOS: 1.0B
Память 3 Гбайт DDR3-1333 Corsair CM3X1024-1333C9DHX
Системный HDD Seagate NL35 400 Гбайт, ST3400832NS, 7200 об/мин, SATA/150, кэш 8 Мбайт
Блок питания OCZ EliteXstream 800 Вт, OCZ800EXS-EU
Тесты
Измерение производительности h2benchw 3.12
PCMark Vantage 1.0
Производительность ввода/вывода IOMeter 2006.07.27
Fileserver-Benchmark
Webserver-Benchmark
Database-Benchmark
Workstation-Benchmark
Streaming Reads
Streaming Writes
Системное ПО и драйверы
Операционная система Windows Vista Ultimate SP1
Драйверы чипсета Intel INF Chipset Installation Utility 9.1.0.1007
Графические драйверы AMD Catalyst 8.12
Intel Matrix Storage Drivers 8.7.0.1007

Диаграммы передачи данных

Помните, что PCMark Vantage - это не серверный тест. Однако он полезен для выявления разницы между жёсткими дисками для разных сегментов рынка. Результаты теста больше зависят от пропускной способности, чем от производительности ввода/вывода.










Температура поверхности дисков не очень отличается, поскольку 3,5" винчестер способен рассеивать своё тепло по намного большей поверхности.

Энергопотребление в режиме бездействия 3,5 Вт по сравнению с 7,8 Вт является существенным преимуществом.

Да и при нагрузке пиковой пропускной способностью 6,1 Вт у 2,5" накопителя - это существенно лучше 11,3 Вт.

Энергопотребление 2,5" винчестера Toshiba MBF2600RC под небольшой ограниченной нагрузкой весьма близко к режиму бездействия. 3,5" Fujitsu MBA3147RC на 15 000 об/мин при данной нагрузке находится ближе к пиковому энергопотреблению.

В сценарии нагрузки ввода/вывода разница по эффективности не такая существенная, но результаты у 2,5" жёсткого диска Toshiba почти удваиваются.

Заключение

Наверное, было бы слишком банально сказать, что 2,5" жёсткие диски лучше, чем 3,5" винчестеры. Форм-фактор 2,5" нельзя назвать превосходным во всех отношениях, следует всё же учитывать разницу в плотности хранения данных, да и в скорости вращения шпинделя. В целом, 3,5" жёсткие диски на 7200 об/мин останутся весьма важными для систем с высокой ёмкостью, а 2,5" производительные жёсткие диски найдут в ближайшие годы широкое применение в серверах. SSD тоже становятся всё более интересными, но пока, в основном, это касается окружений с высокой производительностью или модернизации накопителей на 15 000 об/мин.

Без сомнения, высокая скорость вращения шпинделя и самые современные технологии дают очень высокую пропускную способность. Но производительность ввода/вывода всё равно ограничена физической производительностью головок чтения/записи. Поскольку ускорять их работу до бесконечности не получится, они естественным образом ограничивают производительность ввода/вывода. Диаметр пластин 3,5" и 2,5" винчестеров для корпоративного сегмента остаётся постоянным, поэтому и производительность ввода/вывода меняется слабо. В нашем тестировании 3,5" жёсткий диск Fujitsu на 15 000 об/мин оказался быстрее 2,5" модели Toshiba на 10 000 об/мин только по той причине, что он имеет более высокую скорость вращения шпинделя, которая приводит к уменьшению задержки вращения.

Пару слов об интерфейсе: выбор SAS 6 Гбит/с или 3 Гбит/с может быть важен для подключения оснасток и систем JBOD к контроллеру или host-адаптеру, но для отдельных накопителей это не имеет значения.

Что касается корпоративных окружений, то легко увидеть, что, как правило, вы можете уместить в два раза больше 2,5" жёстких дисков в стоечное пространство для 3,5" винчестеров. Blade-серверы не поддерживают 3,5" винчестеры вообще из-за их физических габаритов. Поскольку ёмкость и производительность ввода/вывода почти идентичны между 3,5" и 2,5" жёсткими дисками корпоративного уровня, но энергопотребление и габариты у 2,5" моделей намного меньше, в итоге мы получаем удвоение эффективности и плотности хранения данных при переходе на 2,5" винчестеры.

Оформление запроса

Пожалуйста, заполните контактные поля формы


Получать IT-новости

Поля, помеченные * обязательны для заполнения

Плюсы и минусы перехода с дисков 3,5” на диски 2,5” в серверах и системах хранения HP.

Сергей Панин, Nstor

Более года назад компания HP прекратила выпуск серверов с дисками SCSI и начала производство серверов с дисками SAS и SATA форм-фактора 2,5” и 3,5”. В настоящем обзоре мы рассмотрим все особенности этих дисков и произведен сравнительный анализ различных моделей. В данный момент в серверах и системах хранения HP используются следующие диски:

Таблица 1: Жесткие диски форм-фактора 2,5” (SFF)
Форм-фактор Объем, Gb Скорость, об/мин Интерфейс Количество портов
2,5” 36 15000 SAS 3Gbit/s 1
2,5” 36 15000 SAS 3Gbit/s 2
2,5” 72 10000 SAS 3Gbit/s 1
2,5” 72 10000 SAS 3Gbit/s 2
2,5” 72 15000 SAS 3Gbit/s 1
2,5” 72 15000 SAS 3Gbit/s 2
2,5” 146 10000 SAS 3Gbit/s 1
2,5” 146 10000 SAS 3Gbit/s 2
2,5” 120 5400 SATA 1,5Gbit/s 1
Таблица 2: Жесткие диски форм-фактора 3,5” (LFF)

Форм-фактор Объем, Gb Скорость, об/мин Интерфейс Количество портов
3,5” 72 15000 SAS 3Gbit/s 1
3,5” 72 15000 SAS 3Gbit/s 2
3,5” 146 15000 SAS 3Gbit/s 1
3,5” 146 15000 SAS 3Gbit/s 2
3,5” 300 15000 SAS 3Gbit/s 1
3,5” 300 15000 SAS 3Gbit/s 2
3,5” 450 15000 SAS 3Gbit/s 2
3,5” 750 7200 SAS 3Gbit/s 2
3,5” 1000 7200 SAS 3Gbit/s 2
3,5” 160 7200 SATA 3Gbit/s 1
3,5” 250 7200 SATA 3Gbit/s 1
3,5” 500 7200 SATA 3Gbit/s 1
3,5” 750 7200 SATA 3Gbit/s 1
3,5” 1000 7200 SATA 3Gbit/s 1
3,5” 80 7200 SATA 1,5Gbit/s 1
3,5” 160 7200 SATA 1,5Gbit/s 1
3,5” 250 7200 SATA 1,5Gbit/s 1
3,5” 500 7200 SATA 1,5Gbit/s 1
3,5” 750 7200 SATA 1,5Gbit/s 1

Таким образом, существуют следующие специфические отличия в дисках:
1. Форм фактор: 2,5” либо 3,5”
2. Скорость интерфейса: 3Gbit/sec либо 1,5Gbit/sec
3. Количество портов в контроллере диска: 1 или 2

Теперь более подробно рассмотрим эти особенности.

Форм-фактор.

Давайте разберемся, какие диски в данный момент наиболее востребованы, какое соотношение цена\объем\производительность.
Диски формата 2,5” принято называть SFF (Small Form Factor), а диски формата 3,5” принято называть LFF (Large Form Factor).

Итак, где же в данный момент, какие диски используются:
Диски LFF используются в серверах: HP Proliant DL160G5, DL165G5, DL180G5, DL185G5, DL320G5p, DL320s, ML150G5, ML310G5, ML350G5 и в системах хранения: HP StorageWorks 1200r, MSA 60, MSA 2000, а так же в линейке Storage Server.
Диски SFF используются во всех серверах серии BL, во всех серверах 3xx, 5xx, 7xx серий, в системах хранения HP StorageWorks 1200r, MSA 50, MSA 70, а так же в линейке Storage Server.
Как мы видим из списка применимости, решения на дисках SFF предполагается использовать в серверах среднего и высокого уровня, а так же в компактных системах хранения, а решения на дисках LFF подходят для серверов начального уровня и для систем хранения, где необходимо хранение больших объемов данных. Установка дисков LFF в сервера начального уровня, кончено же, оправдана из-за низкой стоимости диска.

Стоимость самых распространенных дисков SAS:
Диски 72Gb SAS SFF SP 15K предлагаются по $495, в то время как диски 72Gb SAS LFF SP 15K предлагаются по 240$. Как мы видим, одинаковые по характеристикам диски, но разные по форм-фактору, отличаются в стоимости в разы. Хочется подчеркнуть, что максимальный объем на данный момент для SFF это 146Gb, а для дисков LFF 1Tb.

Сравним энергопотребление тех же дисков:

В глаза бросается низкое энергопотребление дисков форм-фактора 2,5”. Для того чтобы понять получат ли пользователи серверов экономию электроэнергии, надо рассмотреть типичную файловую систему:

Файловая система на 1Tb с использованием Raid 5:

    8*146Gb 10K SAS SFF максимальная потребляемая мощность данной системы 8*9W=72W

    4*300Gb 15K SAS LFF максимальная потребляемая мощность данной системы 4*18,5W=74W

    15*72GB 15K SAS SFF максимальная потребляемая мощность данной системы 15*9,5W=142,5W

На самом деле, экономия электроэнергии на дисках SFF при построении больших рейдов не наблюдается, т.к. при этом увеличивается число дисков. Диски SFF в плане экономии электроэнергии выгодны при использовании в качестве системных дисков, когда не требуется большие объемы, а требуется установка 2-4 дисков в рейд. Во всех остальных случаях требуется тщательный расчет электроэнергии с учетом уменьшения электропотребления диска при простое. В среднем, диск SFF аналогичный по объему и скорости вращения диску LFF потребляет на 40% меньше электроэнергии. Из этого легко понять, что если число дисков в рейде при переходе с форм-фактора LFF на форм-фактор SFF удваивается, то такой переход увеличит энергопотребление всей файловой системы.

Скорость интерфейса.

На данный момент широко используется два интерфейса SAS и SATA. Интерфейс SAS имеет максимальную пропускную способность 3Gb/s, в то время контролеры SATA совсем не давно стали поддерживать эту способность. Раньше все сервера HP имели контроллеры SATA с пропускной способностью 1,5Gb/s, хотя диски уже давно использовались SATA-II с пропускной способностью 3Gb/s. HP анонсировало, что при обновлении BIOS контроллера, большинство контроллеров смогут поддерживать 3Gb/s.

Количество портов контроллера диска.

Многие из Вас уже встречались с обозначениями SP и DP. Сейчас разберемся в том, что это значит и зачем это нужно. SP это сокращение от single port (1 порт), DP это сокращение от dual port (2 порта). Зачем и главное где используются диски с поддержкой DP?
Диски с поддержкой DP имеют 2 порта для передачи данных, они являются более универсальным решением, чем диски SP. На данный момент функция DP реализуется лишь в системе хранения StorageWorks MSA 70, если в ней установлен контроллер HP StorageWorks Dual Domain I/O Module Option (AG779A) и все диски в системе хранения DP. В данном случае появится возможность использовать технологию Dual Domain, которая увеличит производительность массива данных до 30%.

Заключение:

В целом, полезность перехода на новый форм-фактор дисков сложно оценить. Т.к. у этого перехода есть ряд плюсов и минусов. В заключении перечислим основные плюсы и минусы каждого из фактора:

Форм-фактор 2,5”

Издаваемого жестким диском.

Также не обошли стороной интерфейс HDD, где было рассмотрено основные особенности и отличия интерфейса SATA и устаревшего IDE. И конечно же не забыли, пожалуй, самую главную характеристику - это объем жесткого диска .

В этом материале мы поговорим относительно оставшихся характеристик жестких дисков, которые не менее важны нежели вышеуказанные.

Форм-фактор жесткого диска

На данный момент, широко распространены два форм-фактора жестких дисков – это 2,5 и 3,5 дюйма. Форм-фактором, в большей мере, определяются габариты жестких дисков. К слову, в жесткий диск 3,5”, помещается до 5-ти пластин накопителя, а в 2,5” – до 3-х пластин. Но в современных реалиях это не является преимуществом, так как разработчики определили для себя, что устанавливать более 2-ух пластин в обычные высокопроизводительные жесткие диски – не целесообразно. Хотя, форм-фактор 3,5” совсем не намерен сдаваться и по уровню спроса уверенно перевешивает 2,5” в десктопном сегменте.


То есть для настольной системы, пока есть смысл приобретать только 3,5”, так как среди преимуществ данного форм-фактора, можно отметить более низкую стоимость за гигабайт пространства, при большем объёме. Это достигается за счет большей, по размеру пластины, которая при одинаковой плотности записи вмещает больший объем данных нежели 2,5”. Традиционно, 2,5” всегда позиционировался как форм-фактор для ноутбуков, в большей мере благодаря своим габаритам.

Существуют и другие форм-факторы. К примеру, во многих портативных устройствах используются жесткие диски форм-фактора 1,8”, но на них мы детально останавливаться не будем.

Объём кэш-памяти жесткого диска

Кэш-память – это специализированное ОЗУ, которое выступает в роли промежуточного звена (буфера), для хранения данных, которые уже считаны с жесткого диска, но еще не были переданы непосредственно на обработку. Само наличие буфера было вызвано существенной разницей в скорости работы между остальными компонентами системы и жестким диском.

Как таковой характеристикой кэш-памяти HDD, является объем. На данный момент наиболее популярны жесткие диски с буфером 32 и 64 МБ. На самом деле, покупка жесткого диска с большим объемом кэш-памяти, не даст двухкратного увеличения производительности, как это может показаться исходя из классической арифметики. Более того, тестирования показали, что преимущество у жестких дисков с кэшем 64 Мб, проявляется довольно редко и только при выполнении специфических задач. Поэтому, по-возможности стоит приобрести жесткий диск с более объемной кэш-памятью, но если это будет идти в значительный ущерб ценнику, то это не тот параметр, на который следует ориентироваться в первую очередь.

Время произвольного доступа

Показатель времени произвольного доступа жесткого диска характеризует время, за которое винчестер гарантированно проведет операцию чтения в любом месте жесткого диска. То есть за какой промежуток времени, головка чтения сможет добраться до самого отдаленного сектора жесткого диска. Это, в большей мере, зависит от ранее рассмотренной характеристики скорости вращения шпинделя жесткого диска. Ведь, чем больше скорость вращения, тем быстрее головка может добраться до нужной дорожки. В современных жестких дисках этот показатель составляет от 2 до 16 мс.

Остальные характеристики HDD

Теперь тезисно и вкратце перечислим оставшиеся характеристики жестких дисков:

  • Потребление энергии – потребляют жестки диски совсем немного. При чем, зачастую указывается максимальная потребляемая мощность, которая имеет место быть, только на промежуточных этапах работы во время пиковой загрузки. В среднем – это 1,5-4,5 Вт;
  • Надежность (MTBF) – так называемое время наработки на отказ;
  • Скорость передачи данных – с внешней зоны диска: от 60 до 114 Мб/c, а с внутренней – от 44,2 до 75 Мб/с;
  • Количество операций ввода-вывода в секунду (IOPS) – у современных жестких дисков этот показатель составляет около 50/100 оп./c, при произвольном и последовательном доступе.


Вот мы и рассмотрели все характеристики жестких дисков с помощью небольшой серии статей. Естественно, что многие параметры пересекаются и, в некоторой мере, влияют друг на друга. Но, зато на основе информации относительно всех этих параметров, можно смоделировать для себя будущее устройство, и при выборе, четко понимать, какой из моделей следует отдать преимущество в вашем частном случае.


А вот такие игрушки могут получиться из старых жестких дисков, вернее из составляющих жесткого диска. К примеру, колеса сделаны из шпиндельного двигателя винчестера, который приводит в движение ось с головкой считывания.

Мы немало внимания уделяем жестким дискам. Это одна из тех составляющих системы, от которой во многом зависит комфорт работы с ПК. И если ранее мы рассматривали в основном возможности 3,5-дюймовых накопителей, то теперь не меньший интерес представляют винчестеры с диаметром пластин 2,5″ – такие HDD используются не только в мобильных устройствах, но и в моноблоках, неттопах и других компактных экономичных ПК. Имея одинаковый принцип работы, диски этих двух формфакторов заметно отличаются техническими характеристиками. Как именно? Давайте разбираться.

Физические размеры

Первое, на что обращаешь внимание при взгляде на накопители двух формфакторов, – разница в их габаритах. 2,5-дюймовые диски гараздо меньше своих собратьев с магнитными пластинами диаметром 3,5″.

Объем пространства, занимаемого стандартным HDD, почти в шесть раз больше, чем в случае с мобильным винчестером толщиной 9,5 мм. При этом если подсчитать емкость хранимой информации на единицу объема, взяв за основу 750-гигабайтовый портативный диск и десктопный накопитель на 2 ТБ, то разница будет более чем двукратной, причем не в пользу последнего (11,3 ГБ/cм3 и 5,1 ГБ/cм3).

Плотность записи

Диаметр магнитных дисков накопителей обоих типов отличается на 40%, при этом пластины 3,5-дюймовых винчестеров имеют в 1,8 раза большую рабочую площадь. Такое же соотношение сохраняется, если рассматривать максимальную емкость дисков, используемых в HDD, – для портативных накопителей это 375 ГБ, для десктопных – 667 ГБ. С технологической точки зрения поверхностная плотность записи на магнитных пластинах для обоих формфакторов оказывается примерно одинаковой. Если учитывать только форматируемую область, доступную для записи пользовательских данных, то для наиболее емких пластин это порядка 330 Гб на кв. дюйм.

Габариты

Компактные размеры – одно из основных преимуществ 2,5-дюймовых накопителей. Несмотря на то что диаметр их пластин меньше всего в 1,4 раза, они занимают намного меньше места в корпусе системы. При стандартизированных длине и ширине диски отличаются толщиной: ультратонкие – 7 мм, наиболее по­пулярные модели с двумя пластинами – 9,5 мм, емкие трехдисковые – 12,5 мм, винчестеры для серверных решений – 15 мм.

Габариты

Здесь 3,5-дюймовым накопителям крыть нечем: размеры их корпуса значительно больше, чем у портативных моделей. Впрочем, для домашних настольных ПК это не столь принципиально, в корпусах десктопов всегда есть корзина для нескольких винчестеров такого типа. Ну а для компактных систем выбор формфактора жесткого диска очевиден.

Объем

Текущая максимальная емкость – 1 ТБ. К тому же подобные HDD состоят из трех магнитных пластин и имеют толщину 12,5 мм вместо характерных для большинства современных моделей 9,5 мм. Двухпластинные диски пока ограничены объемом в 750 ГБ. Если не говорить о массиве из нескольких накопителей, то для создания емкого хранилища данных они не очень подходят.

Объем

Сравнительно большие габариты накопителя позволяют производителям при необходимости устанавливать четыре и даже пять магнитных пластин. Учитывая, что каждая из них уже способна хранить до 670 ГБ, суммарный объем диска 3,5″ может превышать 3 ТБ. На текущий момент популярные модели HDD оснащаются 333–500-гигабайтовыми пластинами общей емкостью 1,5–2 ТБ.

Производительность

Вопрос быстродействия не столь однозначен, как может показаться на первый взгляд. С одной стороны, мобильные накопители несколько медленнее НDD для настольных систем. С другой, самые производительные жесткие диски для ПК – WD VelociRaprot – используют именно 2,5-дюймовые магнитные пластины. Поэтому здесь важны нюансы. Если все же говорить о привычных винчестерах с толщиной корпуса 9,5 мм, двумя пластинами по 320 ГБ и скоростью вращения шпинделя 5400 об/мин, то фактически они уже не уступают по скоростным характеристикам экономичным моделям 3,5-дюймовых HDD. Средняя линейная скорость чтения/записи – 65–70 МБ/c с пиком в начале диска ~90 МБ/c.

Производительность

Типичные модели со скоростью вращения шпинделя 7200 об/мин без проблем переигрывают массовые устройства 2,5″ как по линейным трансферам, так и по скорости доступа. Однако разница в производительности уже не столь велика. При равной плотности записи на пластины и скорости их вращения компактные накопители практически не уступают большим HDD.

Энергопотребление

2,5-дюймовые НDD достаточно экономичны. Типичный уровень энергопотребления для двухдисковых моделей – 2–4 Вт в режиме чтения/записи данных. Да, именно по этой причине после замены в ноутбуке жесткого диска на SSD не удается получить заметного прироста автономности – данные винчестеры потребляют не намного больше твердотельных накопителей.

Энергопотребление

Диски с 7200 об/мин во время активной работы в среднем расходуют порядка 8–12 Вт, тихоходные модели – 6–8 Вт. То есть заметно больше, чем винчестеры с диаметром пластин 2,5″. Для настольных ПК, в которых используются 3,5-дюймовые HDD, накопители на жестких магнитных дисках – далеко не основные потребители электроэнергии, потому 3–5 Вт здесь не играют важной роли. Но если вы хотите создать действительно экономичную систему, стоит внимательнее присмотреться к портативным моделям.

Шум и нагрев

Как правило, шумят 2,5-дюймовые накопители меньше – звук от шпинделя заметно приглушен, да и стрекот перемещающихся головок во время активного поиска также едва слышен. Что касается нагрева, то здесь многое зависит от условий работы и системы охлаждения, но в целом закон сохранения энергии никто не отменял: меньше энергопотребление – меньше нагрев.

Шум и нагрев

Шум жесткого диска – актуальный вопрос для владельцев настольных систем. Звук работы двигателя винчестера 3,5″ слышен лишь на открытом стенде, а вот похрустывание при перемещении головок может быть достаточно ощутимым, хотя здесь многое зависит от жесткости конструкции шасси корпуса и наличия демпфирующих прокладок. На уровень нагрева HDD влияет температура окружающей среды, количество магнитных пластин и скорость вращения шпинделя. Рабочий режим – 40–50 ˚С.

Цена

По стоимости хранения информации портативные модели все еще уступают 3,5-дюймовым, однако за последние пару лет разница существенно сократилась. Например, компактный диск популярной емкости 500 ГБ стоит всего на $15–20 дороже HDD аналогичного объема с пластинами 3,5″.

Цена

В последние несколько лет наряду с увеличением объемов стоимость хранения данных на 3,5-дюймовых жестких дисках регулярно снижается. Так, $0,065 за 1 ГБ – рекордный показатель, благодаря которому эти винчестеры еще долго будут оставаться актуальным типом устройств для хранения данных.

Поводом для написания данной публикации стало обновление конфигурации моего основного ПК. В частности, спустя 6-7 лет эксплуатации, не мешало бы, заменить дисковые накопители.

Собственно при смене корпуса я задался вопросом, а почему бы не сменить старые 3.5-дюймовые диски на более компактные 2.5-дюймовые? Основная цель – экономия места, низкий уровень шума, хорошая производительность и низкий нагрев. Так можно ли использовать 2.5” для дестопного ПК?

На эти вопросы мы и попробуем ответить.

Устоявшееся мнение

Так уж сложилось исторически, что диски форм-фактора 3.5” принято считать дестопными, т.е. ориентированными на настольные ПК. Собственно диски этого типоразмера используются и в серверах.

Диски форм-фактора 2.5” изначально проектировались для использования в ноутбуках (лэптопах). Основным фактором при создании этих дисков изначально была компактность.

С течением времени диски на 2.5 дюйма стали повсеместно использовать в HTPC, игровых консолях, моноблоках и компактных ПК. К примеру в моём резервном Dell Optiplex 780 USFF используется именно такой диск.

Со временем к «маленьким» дискам стали предъявляться повышенные требования, зачастую, сопоставимые с требованиями, предъявляемыми к дискам 3.5”.


Как для 2.5”, так и для 3.5” в настоящее время используется интерфейс SATA, старый IDE окончательно ушел на покой. Остальные серверные решения рассматривать не будем. Блоки питания современных компьютеров оснащены специальным разъемом питания SATA, а на материнках, даже относительно стареньких присутствуют SATA-порты, так что проблем с подключением не будет.


Главное выбирать диски и материнскую плату с поддержкой актуального SATA-III.

Что ж, приступим к сравнению?

Физические размеры (габариты)

Как несложно догадаться, диски 2.5” заметно компактнее, тоньше и легче дисков 3.5”. Большие размеры десктопных дисков связаны с уровнем развития технологий на момент их создания, а именно с плотностью записи. Ранее существовали диски с 5-ю рабочими пластинами, в то время как сейчас зачастую применяется всего 2 пластины.


Большая площадь для первых дисков была залогом увеличения объема хранимой информации в расчете на квадратный сантиметр площади. При современном уровне развития технологий, размеры 3.5-дюймовых дисков явно избыточны.

Большой диск занимает больше места и увеличивает общий вес. Впрочем, компьютер вы ж не носите с собой, ведь так?

Другое дело, если вы будете собирать систему на базе системной платы mini-ITX или Micro-ATX. Большинство компактных корпусов хоть и рассчитаны на установку больших дисков, в то же время могут возникнуть вопросы с полноценным охлаждением таких дисков.

Большие габариты также не лучшим образом сказываются на прохождении воздушных потоков. В компактном корпусе каждый сантиметр имеет значение и в этом плане, компактные диски 2.5” смотрятся куда более интересно.

Есть также нюанс, связанный с толщиной диска. Для форм-фактора 2.5” доступны сразу 3 «типоразмера»: ультратонкие 7 мм, стандартные 9.5 мм и 12.5 мм.

Диски толщиной 7 мм рассчитаны на установку в ультратонких ноутбуках и нетбуках, где физически нет возможности уместить диск 9.5 мм. Казалось бы, 2,5 мм – разница не большая, но на практике вы просто не сможете закрыть крышку ноутбука, если установите стандартный диск в тонкий ноутбук. В дисках, толщиной 9.5 мм применяется 2 пластины, при этом считывание происходит только с трех плоскостей. Для дисков 12.5 мм могут использоваться как 2, так и 3 диска.

При выборе диска для десктопного ПК, на типоразмер можно практически всегда закрывать глаза при выборе диска, в 99.5% случаев конструкция корпуса позволит установить диск любой толщины.

Емкость, объем хранимых данных

Раньше одним из ключевых факторов в пользу 3.5-дюймовых дисков была большая емкость хранимых данных.

С развитием технологий жестких дисков ситуация существенно изменилась, рост плотности записи позволил уместить на компактных дисках до 750 Гбайт или даже 1 Тбайт данных.

В свою очередь, диски 3.5 дюйма по-прежнему занимают пальму первенства с доступными устройствами хранения на 2 или даже 4 Тбайт. Поэтому если вы собираете домашний NAS или вам требуется хранить очень большие объемы данных, ваш выбор, скорее всего, будет очевиден, и явно не в пользу компактных дисков.

В то же время, как показывает практика, среднестатистическому пользователю достаточно диска на 500 Гбайт, при условии, что под ОС он использует отдельный SSD.

Производительность: скорость чтения, записи, случайный доступ

По части производительности не всё так просто и однозначно, как может показаться на первый взгляд.

Как правило, «малые» диски работают на скорости 5400 об/мин, «большие» – на скорости 7200 об/мин. Казалось бы, диск на 7200 будет работать быстрее? Однако это утверждение не совсем корректное. У 2.5-дюймовых дисков большой емкости (500-750 Гб) используются пластины высокой плотности, что на практике обеспечивает им уровень производительности, сопоставимый с десктопными решениями.

Зачастую, для емкости до 500 Гб (особенно 120-320 Гб) диск 3.5” будет быстрее обычного «ноутбучного» диска и при этом будет стоить дешевле.

Ниже результат теста с двух 2.5-дюймовых дисков:

Seagate Momentus 5400.5 на 320 ГБ (арт. ST9320320AS, 5400 RPM, 2 диска / 4 поверхности, буфер 8 МБ, SATA-II).

Seagate Momentus 5400 (SpinPoint M8) на 750 ГБ (арт. ST750LM022 HN-M750MBB, 5400 RPM, 2 диска / 3 поверхности, буфер 8 МБ, SATA-II).




Если же вы делаете свой выбор в пользу 2.5 дюймов, дабы не прогадать, лучше выбирать диски на 750 Гб – 1 Тб, по возможности и на 7200 об.

Уровень энергопотребления

Часто при сравнении двух форм-факторов многие пользователи считают различие в уровне энергопотребления не существенным. К примеру, среднестатистический компактный диск потребляет порядка 2-4 Вт в режиме чтения/записи. В то время как десктопные решения могут потреблять от 6 до 12 Вт в активном режиме. Причем 6 Вт будут потреблять «зеленые» диски со скоростью 5400.

На фоне видеокарт и процессоров, способных выдавать 65-150 Вт TDP это кажется не столь существенной экономией. Но не следует забывать про нагрев, ведь меньшее энергопотребление это практически всегда меньший нагрев и тепловыделение.

Нагрев диска и уровень шума в процессе работы

Лично для меня уровень нагрева и издаваемого шума очень важен. Во-первых, повышенная температура всегда приводит к сокращению времени эксплуатации, всегда. Чем больше температура – тем быстрее происходит физический износ электроники и механических элементов. Берем несколько горячих дисков и компактный корпус ­– на выходе получаем повышенные требования к системе охлаждения, как следствие повышение шума от СО.

Говоря о шуме, издаваемом от самих HDD. Вы можете собрать конфигурацию на самом топовом железе, с ультратихой системой охлаждения, но ваши HDD чаще всего будут выделяться на общем фоне что бы вы не делали. Проблема в том, что шум низкочастотный и убрать его не так просто как может показаться, из-за необходимости обеспечения должного охлаждения самого диска.

Во многом шум от HDD зависит от качества корпуса, если быть точнее, от его жесткости, толщины применяемого металла и наличия демпфирующих прокладок.

Как правило, компактные 2.5-дюймовые диски более тихие и холодные, хотя встречаются модели со «стрекочущими» головками, которые отчетливо прослушиваются при установке в пластиковые корпуса ноутбуков. Шум этот носит более высокочастотный характер, нежели гул от работающего двигателя. Собственно многие жесткие диски 3.5” грешат повышенным уровнем шума, издаваемого мощным двигателем, который вращает большие пластины на высокой скорости.

Итоговая стоимость

За размер приходится платить, в данном случае, за миниатюрность 2.5-дюймовых дисков приходится доплачивать небольшую сумму. Впрочем, вообще за всё требуется доплачивать – за объем хранимых данных, за объем кеш-памяти, за скорость доступа. Так что плата за компактность всецело оправдана.

Как выбрать HDD для ПК? 2.5 или 3.5 дюйма?

Я сейчас не буду рассматривать ситуацию с ноутбуками, там все чуть сложней в силу конструктивных особенностей (место под 1 диск). Вместо этого поговорим про использование в десктопных конфигурациях.

Во-первых, на дворе 2017-й год и я заранее предполагаю, что под системный раздел вы используете SSD (Solid State Drive), благо доступных дисков на 60-120 Гбайт сейчас предостаточно. Даже самый простенький SSD обеспечит существенный прирост производительности на фоне любого, даже самого производительного жесткого диска (HDD). И, если при работе с большими файлами, разница не столь ощутима, то при работе с маленькими файлами у HDD попросту нет ни единого шанса.

Конечно, есть и обратная сторона медали. Когда «умирает» HDD, данные с него можно восстановить, если же вы случайно удалили файл – данные можно восстановить. В случае с SSD вышедший из строя диск проще выбросить.


При выборе жесткого диска для десктопного ПК в первую очередь следует ориентироваться на сферу применения и возлагаемые задачи. Для очень сложных задач как то рендеринг, монтаж, обработка фото, хранение очень больших объемов данных – использование стандартных 3.5-дюймовых HDD оправдано и по сей день.

Для всех остальных задач существенных различий между 2.5” и 3.5” не будет. Лично для себя я сделал однозначный выбор в пользу компактного диска, он меньше греется, не столь шумный, отнимает меньше места, а уровень производительности примерно на том же уровне.

Многие незаслуженно пинают компактные диски за низкую надежность, забывая при этом, что диски эти зачастую применяются в ноутбуках, т.е. переносятся в процессе работы, что прямо влияет на срок службы. Внешние и переносимые диски всегда служат меньше. Полагаю, наработка на отказ будет примерно той же при прочих равных.

Из-за особенностей использования «ноутбучных» HDD, в них применяется система парковки головок, которая при выключении убирает головки с поверхности диска. В дорогих решениях для большей защиты также применяется гиросенсор, который убирает головки в случае падения или удара. Встречается такая система и у десктопных дисков, но далеко не во всех.

Минусом системы парковки можно считать особенности её работы под некоторыми операционными системами. Лично у меня после последней переустановки, Windows 7 решил парковать головки и останавливать шпиндель, после двух недель такой «оптимизации» на диске WD Green появились плохие сектора. Совпадение? Почитав тематические форумы, я пришел к выводу, что не я один такой счастливчик. Так что, как по мне, парковку однозначно отключать.


По поводу выбора фирмы, на любителя: Western Digital (WD), Seagate, Toshiba и HGST (Hitachi). Диски Samsung, исходя из субъективного личного опыта, а также отзывов на Яндекс Маркете и других интернет-магазинах, чаще других уходят на покой.

Основную долю потребительского рынка формируют Seagate и Western Digital. Toshiba и Hitachi делают хорошие диски, ничем не уступающие WD и Seagate. Вообще при выборе необходимо прямо сравнивать конкретные модели, поскольку у каждой фирмы есть десятки самых разнообразных моделей с сильно отличающимися характеристиками.

По поводу надежности. В некоторых сервис-центрах чаще поступают Seagate, в некоторых чаще WD. Распределение это сильно субъективное из-за присутствия на рынке «неудачных» серий, в которых заранее были косяки. Лучше всего смотреть отзывы по конкретной модели.

Отдельно стоит отметить Hitachi (HGST), диски этой компании отличаются повышенной надежностью на фоне WD и Seagate. К слову, не так давно WD выкупили Hitachi, сохранив при этом автономность подразделения. По этой причине диски WD и HGST – разные устройства.

Лично для себя я выбираю между HGST Travelstar 7K1000 и Seagate FireCuda SSHD 1TB 5400rpm 128MB.

Выбирая диск, обращайте внимание на скорость вращение, объем буфера и интерфейс подключения. Объем буфера влияет на производительность не так явно, как это может показаться на первый взгляд, но в целом, больший объем обеспечивает более высокую производительность.