Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Принципы действия радиопереда тчика и радиоприёмника

радиопередатчик радиоприемник напряженность

Радиопереда тчик (радиопередающее устройство) - устройства для формирования радиосигналов, предназначенных для передачи информации на расстояние с помощью радиоволн. Формируют радиосигналы с заданными характеристиками, необходимыми для работы конкретных радиотехн. систем, и излучают их в пространство.

Функционально радиопередатчик состоит из следующих частей:

Любая система радиосвязи включает в себя радиопередающие устройства, функции которого включаются в преобразовании энергии постоянного тока источников питания в электромагнитные колебания и управлении этими колебаниями.

Передача энергии с помощью радиосвязи широко используется при управлении автоматическими объектами.

Основными устройствами радиосвязи являются радиопередатчик и радиоприемник. Радиопередатчик предназначен для создания высокочастотного сигнала, некоторые параметры которого (частота, амплитуда или фаза) изменяются по закону, соответствующему передаваемой информации. Частота высокочастотного сигнала называется несущей. Первые радиопередатчики искрового принципа действия на основе катушки Румкорфа были очень просты по конструкции -- излучателем радиоволн служил искровой разряд, а модулятором являлся телеграфный ключ. С помощью такого радиопередатчика информация передавалась в кодированной дискретной форме -- например азбукой Морзе или иным условным сводом сигналов. Недостатками такого радиопередатчика была относительно высокая мощность, требуемая для эффективного излучения радиоволн искровым разрядом, а также очень широкий радиочастотный диапазон излучаемых им волн. В результате одновременная работа нескольких близко расположенных искровых передатчиков была практически невозможной из-за интерференции их сигналов.

Современный радиопередатчик состоит из следующих конструктивных частей:

· задающий генератор частоты (фиксированной или перестраиваемой) несущей волны;

· модулирующее устройство, изменяющее параметры излучаемой волны (амплитуду, частоту, фазу или несколько параметров одновременно) в соответствии с сигналом, который требуется передать (часто задающий генератор и модулятор выполняют в одном блоке -- возбудитель);

· усилитель мощности, который увеличивает мощность сигнала возбудителя до требуемой за счёт внешнего источника энергии;

· устройство согласования, обеспечивающее максимально эффективную передачу мощности усилителя в антенну;

· антенна, обеспечивающая излучение сигнала.

Радиоприёмник -- устройство, соединяемое с антенной и служащее для осуществления радиоприёма .

Радиоприёмник (радиоприёмное устройство) -- устройство для приёма электромагнитных волн радиодиапазона (то есть с длиной волны от нескольких тысяч метров до долей миллиметра) с последующим преобразованием содержащейся в них информации к виду, в котором она могла бы быть использована.

Классификация радиоприёмников

Радиоприёмные устройства делятся по следующим признакам:

· по основному назначению: радиовещательные, телевизионные, связные, пеленгационные, радиолокационные, для систем радиоуправления, измерительные и др.;

· по роду работы: радиотелеграфные, радиотелефонные, фототелеграфные и т.д.;

· по виду модуляции, применяемой в канале связи: амплитудная, частотная, фазовая;

· по диапазону принимаемых волн, согласно рекомендациям МККР:

· мириаметровые волны -- 100-10 км, (3 кГц-30 кГц), СДВ

· километровые волны -- 10-1 км, (30 кГц-300 кГц), ДВ

· гектометровые волны -- 1000--100 м, (300 кГц-3 МГц), СВ

· декаметровые волны -- 100-10 м, (3 МГц-30 МГц), КВ

· метровые волны -- 10-1 м, (30 МГц-300 МГц), УКВ

· дециметровые волны -- 100-10 см, (300 МГц-3 ГГц), ДМВ

· сантиметровые волны -- 10-1 см, (3 ГГц-30 ГГц), СМВ

· миллиметровые волны -- 10-1 мм, (30 ГГц-300 ГГц), ММВ

· приёмник, включающий все широковещательные диапазоны (ДВ, СВ, КВ, УКВ) называют всеволновым .

· по принципу построения приёмного тракта: детекторные, прямого усиления, прямого преобразования,регенеративные, сверхрегенераторы, супергетеродинные с однократным, двукратным или многократным преобразованием частоты;

· по способу обработки сигнала: аналоговые и цифровые;

· по применённой элементной базе: на кристаллическом детекторе, ламповые, транзисторные, на микросхемах;

· по исполнению: автономные и встроенные (в состав др. устройства);

· по месту установки: стационарные, носимые;

· по способу питания: сетевое, автономное или универсальное.

Элемент, с помощью которого осуществляется воздействие на колебания высокой частоты, называется модулятором. Модулятор является неотъемлемой частью радиопередатчика, так как формирует сигнал информации, подлежащий передаче на расстояние. Модулированные высокочастотные колебания усиливаются усилителем мощности и излучаются в окружающее пространство с помощью антенны.

Уменьшение напряжённости поля, а следовательно, и потока энергии, переносимого радиоволной вдоль поверхности Земли (земной волной), обусловлено проводимостью поверхности в этой области. Вдоль проводящей поверхности возникает поток энергии, направленный в проводящую среду и быстро затухающий по мере распространения в ней. Глубина проникновения радиоволны в земную кору определяется толщиной слоя и, следовательно, увеличивается с увеличением длины волны. Поэтому для подземной и подводной радиосвязи используются длинные и сверхдлинные радиоволны. т.к. чем больше число столкновений, тем большая часть энергии, получаемой электроном из волн, переходит в тепло. Поэтому поглощение больше в ниж. областях ионосферы, где v больше, т.к. выше плотность газа. С увеличением частоты поглощение уменьшается. Короткие волны испытывают слабое поглощение и распространяются на большие расстояния. По этому короткие волны используются для передачи

Короткие волны (3-30 МГц)так же в результате их отражения от ионосферы возможна связь как на малых, так и на больших расстояниях при значительно меньшем уровне мощности передатчика и гораздо более простых антеннах, чем в более низкочастотных диапазонах.

Размещено на Allbest.ru

...

Подобные документы

    Системы передачи информации с помощью радиотехнических и радиоэлектронных приборов. Понятие, классификация радиоволн, особенности их распространения и диапазон. Факторы, влияющие на дальность и качество радиоволн. Рефракция и интерференция радиоволн.

    реферат , добавлен 27.03.2009

    Радиопередающие устройства, их назначение и принцип действия. Разработка структурной схемы радиопередатчика, определение его элементной базы. Электрический расчет и определение потребляемой мощности радиопередатчика. Охрана труда при работе с устройством.

    курсовая работа , добавлен 11.01.2013

    Основные понятия и классификация приборов для измерения напряженности электромагнитного поля и помех. Измерение напряженности электромагнитного поля. Метод эталонной антенны. Метод сравнения. Измерительные приемники и измерители напряженности поля.

    реферат , добавлен 23.01.2009

    Радиоволны, распространяющиеся вдоль земной поверхности от радиопередатчика, до приемника, без использования верхних слоев атмосферы. Электромагнитные волны с частотами, использующиеся в традиционной радиосвязи. Преимущества работы на коротких волнах.

    презентация , добавлен 13.03.2015

    Структурная схема радиопередатчика подвижной связи с угловой модуляцией. Расчет полосового фильтра, опорного (кварцевого) генератора, ограничителя амплитуд, интегратора. Электрический расчет фазового модулятора. Принципиальная схема радиопередатчика.

    курсовая работа , добавлен 04.05.2013

    Принципы выбора необходимого числа транзисторов и каскадов и их энергетический расчёт. Составление структурной и электрической принципиальной схем радиопередатчика. Расчёт умножителя частоты, LC-автогенератора с параметрической стабилизацией частоты.

    курсовая работа , добавлен 26.05.2014

    Назначение радиоприемников для приема и воспроизведения аналоговых и цифровых сигналов. Классификация приемных устройств по принципу действия. Построение приемников УКВ-диапазона. Схема супергетеродинного приемника. Расчет смесителя УКВ-радиоприемника.

    дипломная работа , добавлен 05.06.2012

    Структурная схема устройства. Миниатюрный микромощный радиопередатчик: классификация по назначению; выбор номенклатуры задаваемых показателей надежности; установление критериев отказов и предельных состояний. Расчет показателей ремонтопригодности.

    курсовая работа , добавлен 04.03.2011

    Классификация источников индустриальных радиопомех. Среда их распространения. Подавление индустриальных радиопомех. Проявление их в радиопередатчике. Создание линиями передач и их оборудованием наибольшей напряженности поля индустриальных радиопомех.

    реферат , добавлен 22.10.2009

    Устройство общих схем организации радиосвязи. Характеристика радиосистемы передачи информации, в которой сигналы электросвязи передаются посредством радиоволн в открытом пространстве. Особенности распространения и области применения декаметровых волн.

Многие люди, не обладая элементарными понятиями о видах энергии, их свойствах, часто рассуждают о способах беспроводной передачи энергии на расстояния. Другие, не зная, как распространяются радиоволны, изготавливают антенны к своим радиопередатчикам и радиоприемникам, пытаясь добиться максимальных характеристик передачи и приема, но у них ничего не получается. Одни читают умные книги, а другие основываются на опыте, или совете малограмотного товарища. Для того, чтобы развеять хотя бы часть заблуждений и дать представление об электромагнитных волнах и как их виде – радиоволнах посвящена эта статья.

Как обычно, я не буду расписывать формул Максвелла, Фарадея и других известных деятелей науки. Их в огромном количестве имеется в учебниках физики, читая которые, даже я – имеющий образование и опыт работы в радиоэлектронике не понимаю, почему в этих учебниках приводятся заумные формулы, а простейшая, имеющая полезное практическое значение информация отсутствует? Ведь на следующий день, или неделю после окончания школы, ученик эти формулы не вспомнит, а простых понятий, как не знал, так и знать не будет.

Начнём с того, что великий изобретатель-практик электрических машин Никола Тесла активно использовал в своих экспериментах электромагнитные колебания, про которые раньше никто не знал, и как мы знаем теперь из учебников физики средней школы — порождают вид электромагнитных волн — радиоволны. Но повторюсь, во времена Теслы о существовании электромагнитных волн никто не знал. Интуитивно, путём наблюдений, Тесла понимал, что в результате его экспериментов в окружающем пространстве появляется какой-то вид энергии. Но в те времена не существовало такой науки и оборудования позволяющего раскрыть понятие электромагнитных волн. Поэтому, это явление рассматривалось как философская категория, которую Тесла называл — эфиром .

Нынче рассуждают, что «эфир» и электромагнитные волны это разные понятия. Они совершенно не правы лишь потому, что абсолютно все изобретения Теслы основаны на использовании обыкновенного переменного электрического тока и электромагнитных полей, которые в свою очередь и порождают не «эфир», а самые обыкновенные электромагнитные волны в радиочастотном диапазоне. Именно то, что в настоящее время называется электромагнитными волнами, в те времена Никола Тесла называл эфиром. Других вариантов объяснений быть не может. Можно долго рассуждать о том, что это разные понятия. Например, кто то с пеной у рта пытается доказать что скорость распространения эфира больше скорости света, а доказательная база отсутствует. С помощью какого эксперимента Никола Тесла мог измерить скорость эфира? Нигде такой информации нет. Вывод один, он её не измерял, а лишь предполагал. Вы скажете, что эфир несёт в себе энергию? Отвечу, любая электромагнитная волна несёт в себе энергию! Мне попадались практические схемы радиоприёмников без батареек, предназначенные не для работы на наушники или динамическую головку, а для получения постоянного электрического тока «из воздуха» теми жителями мегаполисов, которые живут рядом с мощными телерадиоцентрами.

– синусоидальное электромагнитное колебание в пространстве. Общепринятое сокращение – ЭМВ . Электромагнитная волна – это свет, тепловые лучи невидимого инфракрасного диапазона, рентгеновские лучи и радиоволны. Разница лишь в мощности колебаний и длине волны. В частности Тесла имел дело с радиоволнами. Фактически он и является изобретателем радио, а не Маркони с Поповым. Последние смогли описать радиоволны, поэтому их и считают изобретателями радио. Тесла был первооткрывателем, но у него в те времена не было научных объяснений, которые намного позже появились у Попова и Маркони. Кроме того, они использовали радиоволны в практических полезных целях. Тесла, в своё время писал о переносе информационного сигнала с помощью передатчика и приемника, но увлёкшись молниями, дойти до изобретения их практических устройств просто не успел. Резонный вопрос, а что же колеблется в электромагнитных волнах? Отвечу, далеко не углубляясь в ядерную физику, это фотоны – сгустки энергии, обладающие электромагнитным полем, но не обладающие массой. Именно эти свойства позволяют фотонам быть переносчиками энергии. Учёные-ядерщики и дальше «раскладывают» фотоны на составляющие элементы. Мы не будем продолжать этот ход мыслей, пожелаем им успехов, потому что это не по теме статьи. Если Вы противник считать что «эфир», это – электромагнитные волны, тогда попытайтесь принять, что «эфир» это – фотоны, а электромагнитные волны, это по своей сути — направленный поток фотонов.

Источником радиоволны может быть любой электрический проводник, в котором движется переменный электрический ток. На практике, источником радиоволны является высокочастотный генератор, колебательная энергия которого, распространяется в пространство через радиоантенну. Первым действующим источником радиоколебаний, изобретённым человеком и используемым с очевидным и рациональным успехом, был радиопередатчик-радиоприёмник Маркони (или Попова), использующий в качестве высокочастотного генератора – высоковольтный накопитель с искровым разрядником, подключенным на антенну — обыкновенный вибратор Герца.


схема передатчика и приемника Попова — Маркони

Свойства распространения электромагнитных волн

Дальность распространения электромагнитной волны зависит от частоты колебания переменного электрического тока (электромагнитного колебания). На частотах от единиц до тысяч Герц, соответствующих звуковому диапазону волн, электромагнитная волна, созданная в пространстве с помощью индуктивности, распространяется на расстояние, не превышающее одного-двух десятков метров, поэтому полезного практического применения не имеет. На частотах от сотен килогерц и выше, что соответствует диапазонам радиоволн, электромагнитная волна способна распространяться более чем на тысячи километров.

Дальность распространения электромагнитной волны так же зависит от мощности протекающего по проводнику тока. Как было указано ранее, низкочастотная электромагнитная волна полезного практического применения не имеет, но зато имеет вредное влияние. В качестве примера вредного влияния можно привести влияние высоковольтной линии электропередач (ЛЭП) с напряжением в несколько десятков тысяч вольт на радиоприёмник проезжающего мимо автомобиля. Вокруг высоковольтных проводов формируется мощное электромагнитное поле, которое значительно превосходит по амплитуде электромагнитные колебания удалённых радиостанций и в приемнике вместо радиостанции слышен низкочастотный гул сетевого напряжения. Другой случай, когда происходит «глушение» радиоприёмника вблизи силовых линий электропередач при сетевом напряжении всего в 380 вольт, но токе свыше 100 ампер. В первом случае у нас большое напряжение, а во втором — большой ток. Из учебника физики средней школы известно, что мощность электрического тока в проводнике связана с напряжением и током через выражение Р=U*I . А чем больше мощность, тем дальше распространение электромагнитного поля и как следствие – электромагнитной волны, образуемой электромагнитным полем. Этим и объясняется влияние мощности на дальность распространения.

Почему волна, про которую здесь пишется, называется электромагнитной? Потому, что она состоит из электрического и магнитного синусоидального колебания. Эти два вида колебаний ориентированы в пространстве друг относительно друга перпендикулярно – ровно на 90 градусов.
Когда электрическая волна «горизонтальна» — сориентирована параллельно линии горизонта, а магнитная волна соответственно «вертикальна» — сориентирована перпендикулярно линии горизонта, тогда говорят, что электромагнитная волна имеет линейную горизонтальную поляризацию .

Когда электрическая волна «вертикальна» — сориентирована перпендикулярно линии горизонта, а магнитная волна соответственно «горизонтальна» — сориентирована параллельно линии горизонта, тогда говорят, что электромагнитная волна имеет линейную вертикальную поляризацию .

Если электрическая волна (соответственно и магнитная волна) имеет наклон относительно линии горизонта – угол не равный нулю или 90 градусов, тогда говорят, что электромагнитная волна имеет линейную наклонную поляризацию .

Существует так же другой вид поляризации, используемый для повышения дальности передачи (приема) и лучшей помехозащищённости радиоприёмной аппаратуры – круговая поляризация – вид поляризации электромагнитной волны, при котором за один период электромагнитного колебания радиоволна делает полный оборот на 360 градусов. Один из видов круговой поляризации – эллиптическая поляризация — «приплюснутая» в одной из плоскостей круговая поляризация.

Все указанные виды поляризации определяются устройством и ориентированием радиоантенны.

Практическая важность поляризации заключается в том, что если радиопередатчик и радиоприемник настроены на одну и ту же частоту, но имеют разную поляризацию, например у передатчика вертикальная, а у приемника – горизонтальная, то радиосвязь будет плохой, или её вообще не будет.

Примером использования поляризации света – как вида электромагнитных колебаний является 3D-кинотеатр. Принцип действия систем 3D-видеоизображения основан на следующем: Фильм снимается на кинокамеры (видеокамеры) разнесённые в пространстве, как два глаза человека. При его показе в кинотеатре, два независимых проектора закрываются поляризационными светофильтрами, точно такие же светофильтры в виде плёнок стоят в очках кинозрителей. Правый проектор и правый глаз зрителя прикрыты светофильтром с вертикальной поляризацией, а левый проектор и глаз – фильтром с горизонтальной поляризацией. Таким образом, правый глаз видит картинку от правого проектора, а левый глаз от левого. В качестве фильтров могут использоваться и другие варианты разделения световых волн, но статья не об этом, поляризация света – один из способов селекции электромагнитных волн.

Электромагнитные волны (радиоволны) распространяются в разных средах с разной скоростью. Скорость распространения радиоволн в вакууме приблизительно равна скорости света 300 000 км/сек . В воздухе радиоволны распространяются с чуть меньшей скоростью, но не на много, поэтому принимается та же цифра – 300 000 км/сек. Поскольку обыкновенная вода обладает электропроводностью, то её поверхность для радиоволн является отражателем, а часть энергии радиоволн тратится на нагрев поверхностных слоев воды. Типичным примером этому является микроволновая печь, разогревающая молекулы воды, содержащиеся в подогреваемой пище. Металлы не пропускают радиоволны, отражая всю энергию электромагнитных колебаний.

Немаловажным, являются свойства радиоволн распространяться в зависимости от их длины волны. Напомню, длина электромагнитной волны связана с частотой колебаний через скорость её распространения в вакууме (скорость света):

где: f – частота, λ – длина волны, с – скорость света, равная 300 000 км/сек.

Радиоволны подразделяются на несколько диапазонов:

Сверхдлинные «СДВ» – частотой 3 – 30 кГц, с длиной волны 100 — 10 км;

Длинные «ДВ» – частотой 30 – 300 кГц, с длиной волны 10 — 1 км;

Средние «СВ» – частотой 300 – 3000 кГц, с длиной волны 1000 — 100 метров;

Короткие «КВ» – частотой 3 – 30 МГц, с длиной волны 100 — 10 метров;

Ультракороткие «УКВ» , включающие:

— метровые «МВ» – частотой 30 – 300 МГц, с длиной волны 10 — 1 метра;

— дециметровые «ДМВ» – частотой 300 – 3000 МГц, с длиной волны 10 — 1 дм;

— сантиметровые «СМВ» – частотой 3 – 30 ГГц, с длиной волны 10 — 1 см;

— миллиметровые «ММВ» – частотой 30 – 300 ГГц, с длиной волны 10 — 1 мм;

— субмиллиметровые «СММВ» – частотой 300 – 6000 ГГц, с длиной волны 1 – 0,05 мм;

Диапазоны от дециметровых, до миллиметровых волн, из-за их очень высокой частоты называют сверхвысокими частотами «СВЧ» .

Естественно все перечисленные диапазоны радиоволн, как отечественные, так и буржуйские могут подразделяться на поддиапазоны.

Для передачи информации радиоволну необходимо модулировать сигналом содержащим информацию. Длинные, средние и короткие волны обычно имеют амплитудную модуляцию, что на английском звучит — amplitude modulation «АМ» . Ультракороткие волны обычно имеют частотную модуляцию, что на английском звучит — frequency modulation , и у буржуев обозначаются как — «FМ» (по нашему «ЧМ» ).

Кроме деления радиоволн на диапазоны необходимо добавить, что в зависимости от направления и путей распространения радиоволн, они бывают поверхностные (земные) (1) – распространяющиеся вдоль земной поверхности от радиопередатчика, до приемника, без использования верхних слоев атмосферы и пространственные (2) – распространяющиеся через верхние слои атмосферы и с отражением от ионосферы (3).

Существует понятие, чем выше длина волны (меньше частота), тем она больше способна огибать препятствия. И наоборот, чем короче длина волны (выше частота), тем прямолинейнее(лучше по прямой) радиоволна распространяется.

Длинные волны способны распространяться вдоль поверхности земли и воды, но едва достигают ионосферы. Это свойство используется для организации связи с морскими судами – связь имеется практически в любой точке моря.

Средние волны распространяются вдоль поверхности земли и воды, а также отражаются ионосферой.

Короткие волны распространяются «скачками», периодически отражаясь от ионосферы и земной поверхности.

Ультракороткие волны и более высокие частоты распространяются прямолинейно, как свет от любого источника света, они не способны изгибаться вдоль земного шара, а ионосфера для них прозрачна.

Простым примером использования длинноволнового диапазона является радиосвязь с подводными лодками. Для того, чтобы не быть замеченной противником выходя на связь с командованием флота, лодка всплывает на очень короткое время. Но если бы волны, используемые для связи с подводной лодкой распространялись бы «скачками», то не в любой точке земного шара была бы связь. А на практике, в каком бы месте земного шара лодка бы не всплыла, связь появляется сразу. Конечно в последнее время с развитием техники, подводные лодки используют различные диапазоны, в том числе космическую связь (через спутники связи) на СВЧ-диапазоне.

Примером использования радиоволн диапазонов УКВ, ДМВ и СМВ является импульсная радиолокация, где свойство прямолинейного распространения радиоволн этих диапазонов используется для точного определения пространственных координат самолётов, стай птиц и других воздушных объектов. Даже проводится разведка погоды – уровня и интенсивности облачности на больших расстояниях.

От одного и того же радиопередающего устройства радиоволны отраженные от земной поверхности могут встретиться с неотражёнными волнами, или волнами, отражёнными от другого участка земной поверхности, или верхних слоёв атмосферы. В этом случае, происходит синфазное сложение радиоволн , или противофазное вычитание . В результате, в вертикальной плоскости пространства образуется изрезанная косекансная диаграмма направленности антенны. При синфазном переотражении радиоволн от земной поверхности на этих участках образуются зоны максимального переотражения – зоны Френеля . Если радиопередатчик имеет всенаправленную антенну (например штыревую), то зоны Френеля будут представлять из себя много колец на поверхности земли различного диаметра, в центре которых находится антенна. Диаметр колец может быть от десятков метров, до нескольких километров.

Для Вашей эрудиции: До военной агрессии в Югославии, американцы придавали большое значение противорадиолокационным ракетам, как средству уничтожения радаров противника. Противорадиолокационная ракета имеет самонаводящуюся радиоголовку, которая наводит ракету на сигнал радара. Но после этой своей миротворческой операции по превращению Югославии в марионеточное государство, они стали перевооружаться на ракеты с тепловыми головками самонаведения. Оказалось, что головки самонаведения противорадиолокационных ракет наводились на зоны Френеля, которые у вращающегося радара всё время меняются, в результате чего вычислитель ракеты не правильно определял координаты радара, и в лучшем случае ракета падала в одну из зон Френеля. Так, купленный у Советского Союза ещё в 80-х годах радар метрового диапазона волн, более 50 суток войны надежно обеспечивал Югославские ПВО информацией о полётах американцев. С его помощью был сбит не один чудо-самолёт-невидимка звёздно-полосатых. А по телевизору как обычно – врали, что американцы потерь не несут.

Сильное влияние на распространение радиоволн оказывают препятствия. Как правило, препятствия обладают отражающим свойством. В качестве препятствий могут выступать различные предметы как природного, так и искусственного происхождения. Как было написано ранее, радиоволны отражаются от земной поверхности. Стоит отметить, что если грунт сильно сухой (например в пустыне), то отражение радиоволн намного хуже, чем когда земля сырая от дождя. Так, расстояние связи у одной и той же аппаратуры связи на море на 50 – 70 процентов больше, чем на суше. Отражают радиоволны деревья и облака. Перечисленные естественные препятствия являются хорошими отражателями, потому, что в их состав входит вода. К искусственным препятствиям, отражающим радиоволны относятся различные металлические конструкции, в том числе арматура зданий и сооружений.

Влияние типа используемой антенны на качество и направленность приема (излучения) радиоволн

Куда и как будет распространяться радиоволна, определяется размерами и формой антенны-излучателя радиоволн. Самой простой радиоантенной является Вибратор Герца . Это элементарный «кубик», который является основой для построения всех типов антенн.

Вибратор Герца – это два проводника, расходящиеся в противоположные стороны от «точки подключения энергии». По своей сути это «развернутый» колебательный контур. Для лучшего излучения радиосигнала, расстояние от конца одного проводника до конца другого должно быть равно половине длины волны излучаемого (или принимаемого) электромагнитного колебания. Это необходимо для того, чтобы на концах вибратора была максимальная разность потенциалов напряжения сигнала, а в центре вибратора – максимальная амплитуда тока. Правда необходимо использовать коэффициент укорочения, который учитывает скорость распространения электрического сигнала по поверхности проводников, которая намного меньше чем в вакууме. В зависимости от частоты сигнала и металла, из которого изготовлен вибратор коэффициент укорочения может быть в пределах от 0,65 до 0,85. То есть вибратор должен быть равен половине длины волны, помноженной на коэффициент укорочения.

Для уменьшения габаритов антенны иногда используется вибратор, по длине равный одной четвёртой длины волны. Могут использоваться и другие соотношения, но при этом, качество приёма (передачи) и направленные свойства антенны изменяются.

Диаграмма направленности полуволнового вибратора имеет форму тороида вращения – форму «бублика». Если вибратор расположить горизонтально относительно земли, то зоны максимального приема (передачи) будут на линии перпендикулярной вибратору, а зоны минимального приема по торцовым сторонам вибратора. Но учтите, это без учёта влияния переотражения от земли. Если учитывать влияние переотражения от земной поверхности, проекция диаграммы направленности антенны (ДНА) вибратора окажется слегка вытянутой в направлениях максимумов.
На рисунке изображены тороид вращения и проекция диаграммы направленности антенны на горизонтальную поверхность с учётом влияния земли.

– это видоизменённый вибратор Герца, у которого в качестве одного проводника используется сам штырь, а в качестве другого противовес – кусок свисающего вниз провода, человек, у которого в руках мобильная рация, или поверхность земли. Диаграмма направленности штыревой антенны, это тот же торроид, находящийся в горизонтальной площади, только за счёт отражения от земли торроид приплюснут снизу. Зона максимального приёма будет во все стороны, а минимального – над штыревым вибратором. Зону минимального приема, находящуюся над антенной называют – мёртвая зона , или мёртвая воронка .

В зависимости от соотношения длины штыревой антенны к длине волны, диаграмма направленности антенны в вертикальной плоскости так же изменяется. На рисунке схематично изображено, влияние отношения длины штыря к длине волны на формирование диаграммы направленности антенны в вертикальной плоскости.

Вспомните практическую важность поляризации ЭМВ — если радиопередатчик и радиоприемник настроены на одну и ту же частоту, но имеют разную поляризацию, например у передатчика вертикальная, а у приемника – горизонтальная, то радиосвязь будет плохой. К этому стоит добавить диаграмму направленности штыревой антенны, и тогда на примере двух радиотелефонов — переносных радиостанций (1 и 2) изображённых на рисунке ниже, можно сделать логическое заключение:

Если антенны радиопередатчика и радиоприемника ориентированы в пространстве относительно горизонта одинаково и диаграммы направленности антенн максимумами направлены друг на друга, то связь будет наилучшей. Если не выполняется одно из указанных условий, то связи либо не будет, либо она будет плохой.

На дальность радиосвязи также влияет ещё один параметр – толщина элементов вибратора, чем она больше, тем антенна широкополоснее – диапазон хорошо принимаемых частот шире, но уровень сигнала практически на всех частотах уменьшается. Это связано с тем, что дипольная антенна – это тот же колебательный контур, а при расширении полосы частот АЧХ резонанса, амплитуда резонанса уменьшается. Поэтому не удивляйтесь, что телевизионная антенна, сделанная из пивных алюминиевых банок в городе, где уровень сигнала телевизионной вышки большой, принимает телевизионный сигнал разных каналов не хуже, а зачастую лучше сложной профессиональной антенны.

Хорошие профессиональные радиоантенны обладают показателем – коэффициентом усиления антенны . Ведь обычный полуволновой вибратор не усиливает сигнал, его действие избирательно – на определённой частоте, в определённых направлениях и определённой поляризации. Чтобы в приемнике было меньше помех, увеличить дальность приема-передачи, одновременно при этом сузить диаграмму направленности антенны (общепринятое название — ДНА), простой полуволновой вибратор не годится. Антенну усложняют.

Ранее, я писал о влиянии различных препятствий — их отражательном свойстве. Если препятствие по своим размерам не соизмеримо (на порядок меньше) с длиной радиоволны, тогда это не является для радиосигнала препятствием, оно никак на него не влияет. Если препятствие находится в плоскости параллельной электрической волне и больше длины волны, тогда это препятствие отражает радиоволну. Если препятствие по протяженности кратно (равно четверти, половине или целой) длине волны, сориентировано параллельно электрической волне и перпендикулярно направлению распространения волны, тогда это препятствие действует как резонансный колебательный контур на целой длине волны или её гармониках, и имеет наибольшие отражательные свойства.

Именно эти описанные выше свойства и используются в сложных антеннах. Так, один из вариантов улучшения приемных свойств антенны является установка дополнительного рефлектора (отражателя), принцип действия которого основывается на отражении радиоволны и синфазного сложения двух сигналов – от телецентра (ТЦ) и от рефлектора. Диаграмма направленности при этом сужается и вытягивается. На рисунке изображена антенна, состоящая из петлевого полуволнового вибратора(1) и рефлектора(2). Длина вибратора (А) этой телевизионной антенны выбирается равной половине длины волны среднего телевизионного канала, помноженную на коэффициент укорочения. Длина рефлектора (Б) выбирается равной половине длины волны минимального телевизионного канала (с максимальной длиной волны). Расстояние между вибратором и рефлектором (С) выбирается таким, чтобы происходило синфазное сложение прямого и отражённого сигнала – половине длины волны.

Следующий способ дальнейшего усиления приемного сигнала путём сужения и вытягивания ДНА – добавление пассивного вибратора – директора . Принцип действия всё на том же синфазном сложении. Диаграмма направленности при этом ещё сильнее сужается и вытягивается. На рисунке изображена антенна «волновой канал» , состоящая из рефлектора (1), петлевого полуволнового вибратора (2) и одного директора (3). Дальнейшее добавление директоров ещё сильнее сужает и вытягивает диаграмму направленности. Длина директоров (В) выбирается чуть меньше длины активного вибратора. Для увеличения коэффициента усиления антенны и её широкополосности, перед активным вибратором добавляются директоры с постепенным уменьшением их длины. Обратите внимание, что длина активного вибратора равна половине средней длине волны принимаемого сигнала, длина рефлектора – больше половины длины волны, а длина директора – меньше половины длины волны. Расстояния между элементами выбирается также около половины длины волны.

В профессиональной технике часто применяется способ сужения ДНА и повышения усилительных свойств антенны – фазированная антенная решётка , в которой параллельно подключается несколько антенн (например простых диполей, или антенн типа «волновой канал»). В результате происходит сложение токов соседних каналов, и как результат – повышение мощности сигнала.

На сверхвысоких частотах в качестве вибратора антенны применяют волновод, а в качестве рефлектора применяют сплошное полотно, все точки которого равноудалены от плоскости вибратора (на одинаковом расстоянии) – параболоид вращения , или в простонародье – «тарелка». Такая антенна обладает очень узкой диаграммой направленности и высоким коэффициентом усиления антенны.

Выводы на основе распространения и сложности формирования радиоволн

Как и куда распространяются радиоволны можно рассчитать с помощью умных формул и преобразований только для идеальных условий – при отсутствии естественных препятствий. Для этого, элементы антенн, различные поверхности должны быть идеально ровные. На практике, из-за влияния многих факторов преломления и отражения, ещё ни один «учёный мозг» не смог с высокой достоверностью рассчитать распространение радиоволн в естественных природных условиях. Существуют области пространства уверенного приема и зоны радиотени – там, где прием вовсе отсутствует. Только в кино альпинисты не отвечают на вызов по радиосвязи потому, что у них заняты руки, или они сами заняты «спасением мира», на самом деле радиосвязь – дело не устойчивое и чаще альпинисты не отвечают потому, что связи просто нет – отсутствует прохождение радиоволн. Именно зависимость радиосвязи от природных явлений (дождь, низкая облачность, разряженность атмосферы и т.д.) привела к возникновению понятия «радиолюбитель» . Это сейчас понятие «радиолюбитель» – человек, который любит паять радиосхемы. Лет двадцать назад это был «связист-коротковолновик», который на изготовленном своими руками маломощном трансивере связывался с другим радиолюбителем (или по другому — радиокорреспондентом), находящимся на другой стороне Земли, за что получал «бонусы». Раньше даже проводились соревнования по радиосвязи. Нынче тоже проводятся, но с развитием техники это стало не так актуально. Среди этих радиолюбителей-связистов есть много недовольных тем, что обыкновенные «паялы», не сидящие в наушниках в поисках радиокорреспондентов для организации радиообмена, называют себя радиолюбителями.

В примере, рассматривается радиоприемник Альпинист, модель — 321 \фото № 1\. На лицевой панели расположены:

  • переключатель диапазонов для длинных и средних волн;
  • ручка включения радиоприемника с регулятором громкости

и ручка настройки.

На задней стенке приемника расположены гнезда для подключения:

    внешней антенны;

    заземления;

    наушников

и гнездо для подключения разъема с проводом от блока питания \фото №2\. Радиоприемник относится к третьему классу, выпуск — 1982 год.

Узлы и детали — приемника Альпинист

Для осмотра деталей и внутренней конструкции приемника, необходимо открутить всего лишь два болта \фото №3, фото №4\, головки болтов которых выполнены под плоскую отвертку.

На печатной плате расположены основные узлы и детали приемника Альпинист-321 \фото №5\. Сам корпус приемника изготовлен из полистирола. К узлам радиоприемников относятся электромонтажные схемы печатных плат:

    блока питания;

    блока УКВ;

    блока УНЧ;

    блока КСДВ

К деталям приемника \радиодеталям\, относятся:

    резисторы;

    конденсаторы;

      печатной платы;

      силового трансформатора

    и деталей, смонтированых на печатной плате, необходимых для стабилизации и выпрямления тока. То-есть, в дополнение к силовому трансформатору, — обычно такая схема состоит из нескольких:

    • резисторов;

      транзисторов

    и конденсатора.

    Указание деталей — на плате приемника

    На четырех фотоснимках \фото №№ 6,7,8,9\ приемника Альпинист-321, авторучкой указаны катушки входных контуров:

      для длинных волн \L3\;

      для средних волн \L1\

    и две катушки связи:

    Все катушки намотаны на ферритовом стержне магнитной антенны. Магнитная антенна, для данного приемника, необходима для принятия радиоволн двух диапазонов — длинных и средних волн.

    И чтобы это выглядело более понятливо, сопоставим фотоснимки \6,7,8,9\ с конструкцией магнитной антенны радиоприемника:

    конструкция магнитной антенны

    На фотоснимке №10 дано изображение оси ручки настройки. При помощи верньерного устройства \механики передаточного отношения\, передается сила для совершения вращения шкива КПЕ — конденсатора переменной емкости.

    Привод верньерного устройства передает свое движение указателю шкалы, где при визуальном наблюдении за шкалой мы наблюдаем установленную нами частоту принимаемого сигнала. \фото №11\.

    Переключателем диапазонов осуществляется переключение принимаемого сигнала для длинных и средних волн \фото №12\.

    Настраивание приемника на необходимую нам частоту осуществляется двухсекционным блоком КПП. Подобные блоки, по своей конструкции могут выглядеть как с воздушным так и с твердым диэлектриком. Для данного приемника диэлектрик — воздушный, емкость которого составляет от 9 до 280 пикофарад \фото №№ 13,14\.

    В целом, данная радиодеталь называется — конденсатором переменной емкости , в конструкции которого входят — подвижная и неподвижная части пластин:

      ротор — подвижная часть;

      статор — неподвижная часть

    конструкции.

    Указание деталей на схеме

    На схеме, конденсатор переменной емкости выглядит следующим образом \фото №№ 15,16\:

    То-есть, для данной схемы мы можем заметить, что два конденсатора соединены пунктирной линией и являются в общем — двухсекционным конденсатором.

    Осью регулятора громкости при его вращении, изменяется сопротивление в цепи \фото №№ 17,18\. В общих чертах, регулятор громкости выполняет функцию реостата.

    В радиосхемах \фото №№ 19,20\, регулятор громкости имеет графическое обозначение как переменный резистор , при помощи которого осуществляется плавное регулирование сопротивления в цепи. От переменного резистора \фото №19\ как можно заметить, — отходит пунктирная линия к замыкающему и размыкающему ключу \фото №20\. Из данного обозначения следует, что регулятором громкости осуществляется не только регулирование звука но и осуществляется включение и отключение приемника.

    В следующем фрагменте схемы \фото №21\ указан отсек с элементами питания на 9 В. Данный отсек, как видно по схеме, — имеет разъемное контактное соединение со схемой приемника.

    На печатной плате \фото №№ 22,23\ указаны авторучкой — подстроечные конденсаторы переменной емкости . Корпус конденсатора выполнен из керамики с твердым диэлектриком. Емкость подстроечных конденсаторов небольшая и обычно составляет от 1,5 до 20 пикофарад, настройка которых осуществляется в заводских условиях. Если посмотреть внимательно, рядом с конденсаторами указаны их названия — С1,С2. Далее, смотрим по схеме.

    Соответственно, такие подстроечные конденсаторы переменной емкости в схеме обозначены следующим образом \фото №№ 24,25\, емкость которых составляет от 5 до 20 пикофарад \как указано в схеме\. Указанные конденсаторы \С1,С2\, как видно по схеме, соединены с входными контурами магнитной антенны.

    На двух фотоснимках печатной платы \фото №№ 26,27\ указаны подстроечные резисторы с плавной регулировкой. Регулировка таких резисторов проводится также, на заводе, — при изготовлении приемника.

    Устройство и принцип работы радиоприёмника

    А. С. Попова

    Выполнила: ученица 11 «б» класса

    Овчинникова Ю.

    Проверил: учитель физики

    Гаврилькова И. Ю.

    Новый Оскол 2003 г.

    ПЛАН:

    1. Первый радиоприёмник Попова.

    2. Совершенствование радио Поповым.

    3. Современные радиоприёмники.

    Первый радиоприёмник Попова.

    После того, как было открыто электричество, по проводам научились передавать электрические сигналы, переносившие телеграммы и живую речь. Но ведь телефонные и телеграфные провода не протянешь за судном или самолётом, за поездом или автомобилем.

    И тут людям помогло радио (в переводе с латинского radio означает "излучать", оно имеет общий корень и с другими латинскими словами radius – "луч"). Для передачи сообщения без проводов нужны лишь радиопередатчик и радиоприёмник, которые связаны между собой электромагнитными волнами – радиоволнами, излучаемыми передатчиком и принимаемые приёмником.

    История радио начинается с первого в мире радиоприёмника, созданного в 1895 г. русским учёным А. С. Поповым. Попов сконструировал прибор, которые, по его словам, "заменил недостающие человеку электромагнитные чувства" и реагировал на электромагнитные волны. Сначала приёмник мог "чувствовать" только атмосферные электрические разряды – молнии. А затем научился принимать и записывать на ленту телеграммы, переданные по радио. Своим изобретением Попов подвёл итог работы большого числа учёных ряда стран мира.

    Важный вклад в развитие радиотехники внесли разные учёные: Х. Эрнест, М. Фарадей, Дж. Максвелл и другие. Наиболее длинные электромагнитные волны впервые сумел получить и исследовать немецкий физик

    Г. Герц в 1888г. А. С. Попов, опираясь на результаты Герца, создал, как уже говорилось, прибор для обнаружения и регистрирования электрических колебаний – радиоприёмник.

    25 апреля (7 мая) 1895 г. на заседании физико-химического общества Попов сделал доклад "Об отношении металлических порошков к электрическим колебаниям", в котором изложил основные идеи о своём чувствительном приборе для обнаружения и регистрации электромагнитных колебаний. Этот прибор назвали грозоотметчиком. Прибор содержит все основные части радиоприёмника искровой радиотелеграфии, включая антенну и заземление.

    Грозоотметчик А. С. Попова.

    Первый радиоприёмник имел очень простое устройство: батарея, электрический звонок, электромагнитное реле и когерер (от латинского слова cogerentia – сцепление). Этот прибор представляет собой стеклянную трубку с двумя электродами. В трубке помещены мелкие металлические опилки. Действие прибора основано на влиянии электрических разрядов на металлические порошки. В обычных условиях когерер обладает большим сопротивлением, так как опилки имеют плохой контакт друг с другом. Пришедшая электромагнитная волна создает в когерере переменный ток высокой частоты. Между опилками проскакивают мельчайшие искорки, которые спекают опилки. В результате сопротивление когерера резко падает (в опытах А.С. Попова со 100000 до 1000 - 500 Ом, то есть в 100-200 раз). Снова вернуть прибору большое сопротивление можно, если встряхнуть его. Чтобы обеспечить автоматичность приема, необходимо для осуществления беспроволочной связи, А.С. Попов использовал звонковое устройство для встряхивания когерера после приема сигнала. Под действием радиоволн, принятых антенной, металлические опилки в когерере сцеплялись, и он начинал пропускать электрический ток от батареи. Срабатывало реле, включая звонок, а когерер получал “легкую встряску”, сцепление между металлическими опилками в когерере ослабевало, и к ним поступал следующий сигнал.

    Первый радиоприёмник А. С. Попова (1895г.)

    Передатчиком служил искровой разрядник, возбуждавший электромагнитные колебания в антенне, которую Попов впервые в мире использовал для беспроводной связи. Чтобы повысить чувствительность аппарата, А.С. Попов один из выводов когерера заземлил, а другой присоединил к высоко поднятому куску проволоки, создав первую приемную антенну для беспроволочной связи. Заземление превращает проводящую поверхность земли в часть открытого колебательного контура, что увеличивает дальность приема.

    Схема радиоприёмника А. С. Попова, сделанная им самим: N – контакт звонка; А, В – вызовы когерера; С – контакт реле; РQ – выводы батареи, М – контакт антенны.

    Принцип действия передатчика и приёмника Попова можно продемонстрировать с помощью установки, в которой диполь с когерером замкнут на батарею через гальванометр.

    В момент приёма электромагнитной волны сопротивление когерера уменьшается, а ток в цепи увеличивается настолько, что стрелка гальванометра отклоняется на всю шкалу. Для прекращения приёма сигнала опилки когерера следует встряхнуть, например, лёгким постукиванием карандаша. В приёмной станции Попова эту операцию выполнял автоматически молоточек электрического звонка.

    Схема демонстрации принципа действия приёмника Попова: К – когерер, Б – батарея.

    Совершенствование радио Поповым.

    Много сил и времени посвятил Попов совершенствованию своего радиоприёмника. Он ставил своей непосредственной задачей построить прибор для передачи сигналов на большие расстояния.

    Вначале радиосвязь была установлена на расстоянии 250 м. Неустанно работая над своим изобретением, Попов вскоре добился дальности связи более 600 м. Затем на маневрах Черноморского флота в 1899г. ученый установил радиосвязь на расстоянии свыше 20км, а в 1901г. дальность радиосвязи была уже 150км. Важную роль в этом сыграла новая конструкция передатчика. Искровой промежуток был размещен в колебательном контуре, индуктивно связанном с передающей антенной и настроенном с ней в резонанс.. Существенно изменились и способы регистрации сигнала. Параллельно звонку был включен телеграфный аппарат, позволивший вести автоматическую запись сигналов. В 1899г. была обнаружена возможность приема сигналов с помощью телефона.

    Через 5 лет после постройки первого приёмника начала действовать регулярная линия беспроводной связи на расстояние 40 километров. Благодаря программе, переданной по этой линии зимой 1900 г., ледокол "Ермак" снял со льдины рыбаков, которых шторм унёс в море. Радио, начавшее свою практическую историю спасением людей, стало новым прогрессивным видом связи XX века.

    Современные радиоприёмники.

    Хотя современные радиоприемники очень мало напоминают приемник Попова, основные принципы их действия те же, что и в его приборе. Современный приемник также имеет антенну, в которой приходящая волна вызывает очень слабые электромагнитные колебания. Как и в приемнике А. С. Попова, энергия этих колебаний не используется непосредственно для приема. Слабые сигналы лишь управляют источниками энергии, питающими последующие цепи. Сейчас такое управление осуществляется с помощью полупроводниковых приборов.

    Схема простейшего радиоприёмника.

    Современные радиоприёмники обнаруживают и извлекают передаваемую информацию. Достигая антенны приёмника, радиоволны пересекают её провод и возбуждают в ней очень слабые частоты. В антенне одновременно находятся высокочастотные колебания от многих радиопередатчиков. Поэтому один из важнейших элементов радиоприёмника – избирательное устройство, которое из всех принятых сигналов может отображать нужный. Таким устройством является колебательный контур. Контур воспринимает сигналы того радиопередатчика, высокочастотные колебания которого совпадают с собственной частотой колебаний контура приёмника. Назначение других элементов радиоприёмника заключается в том, чтобы усилить принятые колебания, выделить из их колебания звуковой частоты, усилить их и преобразовать в сигналы информации.

    Различают 2 типа радиоприёмников: приёмники прямого усиления, в которых высокочастотные колебания до детектора только усиливаются, и супергетеродинные, в которых принятые сигналы преобразуются в колебания некоторой промежуточной частоты, усиливаются и только после этого поступают на детектор.

    -

    Список литературы :

    1) Зубков Б. В., Чумаков С. В. "Энциклопедический словарь юного техника", Москва, "Педагогика", 1988.

    2) Орехов В. П. "Колебания и волны в курсе физики средней школы, Москва, "Просвещение", 1977.

    3) Мякишев Г. Я., Буховцев Б.Б. "Физика 11", Москва, "Просвещение", 1993.

    РАДИООБОРУДОВАНИЕ

    ВОЗДУШНОГО СУДНА

    (САМОЛЕТ Diamond DA 40 NG)

    УЧЕБНОЕ ПОСОБИЕ

    Составили: Задорожный В.И.

    Савчук Н.А.

    г.Бугуруслан

    Общие понятия о радиосвязи.

    Радиосвязь осуществляется при помощи радиостанций. В основу радиосвязи положен принцип излучения в пространство электромагнитной энергии в виде радиоволн.

    Электромагнитная энергия радиоволн есть энергия переменных токов очень высокой частоты, порядка миллионов и выше периодов в секунду. Электромагнитная энергия радиоволн вырабатывается передатчиком радиостанции и излучается в пространство передающей антенной. Излученная из пункта передачи электромагнитная энергия с громадной скоростью, равной скорости света (300 000 км/сек), распространяется в пространстве и в пункте приема принимается другой радиостанцией, состоящей из антенны и радиоприемного устройства.

    В состав любой приемно-передающей радиостанции обязательно входят приемник и радиопередатчик.

    Основным назначением передатчика является генерирование переменных токов высокой частоты, которыми должна питаться передающая антенна. Генерирование токов высокой частоты в передатчике достигается преобразованием энергии постоянного тока в колебания токов высокой частоты.

    Генератор передатчика генерирует синусоидальные и неизменные по амплитуде токи высокой частоты. Для передачи информации эти колебания подвергаются модуляции либо радиотелеграфной азбукой, либо голосом. Первый вид радиопередачи называется радиотелеграфией , а второй - радиотелефонией .


    При радиотелеграфной работе электромагнитная энергия улучается в пространство не непрерывно, а в виде серий колебаний различной продолжительности, но с одинаковой амплитудой (на несущей частоте); серии колебаний соответствуют коду радиотелеграфной азбуки (рис.1). В этом случае управление колебаниями осуществляется при помощи обыкновенного радиотелеграфного ключа.

    При радиотелефонной работе, наоборот, антенна питается током высокой частоты непрерывно, но сам ток все время изменяется по величине (колебания, модулированные по амплитуде) в такт с частотой звуковых колебании голоса оператора (рис.2). В этом случае управление колебаниями осуществляется через микрофон (ларингофон) - прибор, преобразующий звуковые колебания (механические колебания мембраны) в электрические колебания низкой, звуковой частоты.

    Кроме передатчика, в состав любой приемно-передающей радиостанции в качестве обязательного элемента входит антенная система, состоящая из собственно антенны и противовеса . Антенная система - это устройство, которое излучает электромагнитную энергию при передаче и улавливает, принимает ее из пространства при приеме. Антенна представляет собой либо одиночный провод, либо систему проводов, приподнятых над землей или над корпусом самолета и изолированных на верхнем конце. Противовесом на самолете служит самый корпус его. На ультракоротких волнах (УКВ) антенна самолетной радиостанции чаще всего представляет собой толстый стержень ножевидной формы.

    Устройство и принцип действия радиопередатчиков.

    Устройство и принцип действия радиоприемников.

    Принцип радителефонной модуляции.

    Сведения об антеннах и излучении электромагнитной энергии.

    Антенны.

    Антенна - необходимая часть любого радиопередающего и радиоприёмного устройства. При помощи фидеров передающая антенна соединяется с радиопередатчиком, а приёмная антенна - с радиоприёмником. Между антеннами распространяются свободные электромагнитные волны. Радиоволны в пространстве рассеиваются и поглощаются окружающей средой. Для уменьшения потерь их концентрируют в определённых направлениях.

    Передающая антенна предназначена для преобразования энергии радиосигнала в свободные электромагнитные волны, излучаемые в заданных направлениях.

    Приёмная антенна предназначена для преобразования электромагнитных волн, приходящих с определённых направлений, в энергию радиосигнала, принимающего форму связанных электромагнитных волн.

    Таким образом, в приёмной и передающей антеннах происходят обратимые процессы. Иногда для приёма и передачи применяется одна антенна, что имеет большое значение в практике.

    Колебания излучает открытый колебательный контур, который можно образовать из замкнутого, раздвигая пластины конденсатора и одновременно увеличивая их размеры для сохранения постоянства собственной частоты.

    На практике широко применяются несимметричные вибраторы, у которых земля заменяет второй провод симметричного вибратора. Это возможно благодаря хорошей проводимости земли.

    Если антенна направленная, то плотность потока мощности излучения такой антенны в разных направлениях различна. О направленных свойствах антенны судят по её диаграмме направленности - зависимости напряжённости поля излучения от направления при измерении этого поля на одинаковом расстоянии от антенны, т.е. она показывает форму радиополя данной антенны.

    К антеннам предъявляются следующие эксплуатационные требования: безопасность эксплуатации, высокая механическая прочность и надёжность, минимальные габариты; и вес, небольшая стоимость и т.д.

    Условия эксплуатации самолётных антенн специфичны. Выступающие части их создают аэродинамическое сопротивление. Если антенна слабо направлена, то она облучает фюзеляж самолёта, вследствие чего искажается диаграмма н

    Типы самолетных антенн.

    Современные самолеты оборудуются жесткими антенными устройствами . Для приема и передачи используется одна и та же антенна. В момент работы самолетной радиостанции на передачу антенна посредством специального антенного реле подключается к передатчику, а в момент работы станции на прием - к приемнику.

    На рис.7 изображена жесткая Г-образная коротковолновая антенна цельнометаллического самолета для радиостанций дальней связи . Она изготовляется из медного провода.


    Рис.8. Общий вид самолетной ультракоротковолновой антенны

    Штыревая антенна типа АШС-I удобообтекаемой формы наклонена к поверхности фюзеляжа для уменьшения аэродинамического сопротивления. Такую антенну используют в командных радиостанциях на метровых и дециметровых волнах и в автоматическом радиокомпасе , работающем на средневолновом диапазоне.

    Работу автоматического радиокомпаса обеспечивает штыревая и рамочная антенны. В простейшем случае рамочная антенна представляет собой плоский виток провода прямоугольной формы. Ось вращения 00" совпадает с осью симметрии рамки.


    Рис.9. Рамочная антенна и диаграмма направленности

    Рамка в горизонтальной плоскости обладает направленными свойствами: её диаграмма направленности имеет форму восьмёрки (рис.9).

    В направлении перпендикулярном плоскости рамки, отсутствует разность хода волн к её противоположным вертикальным проводам, поэтому приёма не будет. Наибольшие разность хода вода и амплитуда результирующей э.д.с. будут при у =0° и у =180°.

    Действующая высота рамки значительно меньше геометрической. Поэтому рамка имеет малое сопротивление излучения и к.п.д., применяется она только в качестве приёмной антенны. Вращая рамку до получения в ней наибольшей э.д.с. устанавливают направление на радиостанцию.

    Минимум диаграммы острее максимума, поэтому рамочной антенной чаще пеленгуют по минимальному приёму.

    Магнитные антенны - разновидность рамочных антенн. У таких антенн сердечник с высокой магнитной проницаемостью (феррит).

    В радиовысотомере применяют однотипные антенны полуволнового вибратора: одна из них - передающая, а другая - приёмная. Собственно вибратор состоит из двух металлических трубок, изолированных друг от друга кольцом из радио-фарфора. Антенны крепятся под фюзеляжем самолёта на расстоянии достаточном для ослабления взаимного влияния антенн.

    Заземление и противовес.

    Заземлять одну половину антенны имеет смысл в том случае, если почва служит хорошим проводником. Достаточно хорошей проводимостью обладают морская вода и сырая почва. Сухая почва и песок имеют плохую проводимость, вследствие чего получаются большие потери энергии при работе радиостанции. В этом случае нужно устраивать заземление, зарывая в землю проводник или несколько проводников. Заземление в радиостанциях служит как бы одной из обкладок «конденсатора» антенна-земля. Кроме того, в землю отводятся электрические заряды, возникающие в антенне из-за электризации сухим снегом, пылью, или во время грозы.

    При твёрдом грунте, на передвижных радиостанциях и на самолётах применяют противовесы. Противовес представляет собой несколько проводов, которые подвешиваются под антенной невысоко над землей. На противовес, изолированный от земли, замыкаются силовые линии электрического поля антенны.

    Идеальный противовес должен представлять собой большую металлическую площадь над поверхностью земли. В этом случае противовес должен представлять сплошной экран для электромагнитного поля и тем самим сводить к минимуму потери энергии в земле. Однако выполнение такого противовеса практически затруднительно. Иногда в качестве противовеса используют металлический корпус радиостанции. Противовесом для самолётных радиостанций служит металлический фюзеляж. Но распределение токов в фюзеляже отличается от распределения их в противовесе. В связи с этим изменяются пространственное распределение электромагнитного поля и направленное распространение радиоволн.

    Металлизация.

    Под металлизацией понимают надёжное электрическое соединение всех металлических частей самолёта и деталей его оборудования между собой и корпусом самолёта. Наличие металлизации обеспечивает:

    1. Создание сплошного минусового провода, поскольку минус бортсети «заземлён» на корпус самолёта.

    2. Выравнивание потенциала статического электричества, возникающего на частях самолёта и деталях в полёте.

    3. Создание эффективного противовеса для передающих устройств радиостанций.

    4. Уменьшение помех радиоприёму и увеличение пожарной безопасности самолёта.

    На самолёте металлизированы органы управления самолётом, авиадвигатель и его рама, масляная и топливная системы, приборные панели, электрооборудование, агрегаты и экранированные кабели радиоаппаратуры.

    Металлизация съёмных и подвижных узлов и агрегатов выполнена гибкими перемычками из медной луженой плетенки, концы которой заделаны в наконечники.

    Ионосфера и ее свойства.

    Под влиянием лучей Солнца, космических лучей и других факторов воздух ионизируется, т.е. часть атомов газов, входящих в состав воздуха, распадается на свободные электроны и положительные ионы. Ионизированный воздух оказывает сильное влияние на распространение радиоволн.

    Для различных газов максимум ионизации получается на разной высоте. Ионизированный слой атмосферы - ионосфера - состоит из нескольких слоев.

    На высоте 60...80 км находится слой D, существующий только днем. Следующий слой Е располагается на высоте 90... 130 км. Еще выше находится слой F, имеющий ночью высоту 250...350 км, а днем разделяющийся на два слоя: F 1 - на высоте 180...220 км и F 2 - на высоте 220...500 км.

    Высота, толщина и проводимость ионизированных слоев различны в разное время суток и года вследствие изменения ионизирующего действия солнечных лучей. Чем больше ионизирующее действие солнечных лучей, тем больше проводимость и толщина ионизированных слоев и тем ниже они располагаются. Днем проводимость и толщина их больше, а высота над землей меньше, чем ночью. Летом проводимость и толщина ионосферных слоев больше, а высота меньше, чем зимой. Через каждые 11 лет на Солнце повторяется максимум солнечных пятен, являющихся мощными источниками ионизирующих излучений. В это время проводимость и толщина ионизированных слоев достигают максимума, и они располагаются ниже.

    Системы внутренней и внешней связи.

    На приборной доске пилотов между индикаторами PFD и MFD установлена цифровая аудиопанель Garmin GMA 1347. Она является неотъемлемой частью ком­плекса Garmin G 1000, связана с интегрированными блоками бортового радиоэлектронного оборудования GIA 63 по протоколу обмена цифровыми данными RS-232 и предназначен для:

    Внутренней связи (Intercom) членов экипажа и пассажиров через авиагарнитуры с автоматической коммутацией «приём/передача», ручной регулировкой громкости и шумо­подавления;

    Внешней симплексной, беспоисковой и бесподстроечной радиосвязи через две ОВЧ-радиостанции СОМ 1 и/или СОМ 2 и авиагарнитуры пилотов;

    Повторного воспроизведения записываемой звуковой информации с выходов радио­станций СОМ 1или СОМ 2;

    Для прослушивания опознавательных сигналов одного из наземных радиомаяков VOR, DME, NDB (приводных радиостанций) или курсового радиомаяка LOC системы по­садки ILS по выбору пилотов;

    Прослушивания сигналов маркерных радиомаяков систем посадки или маршрутных маркерных радиомаяков (практически не используются) без выбора пилотов. Для большинства российских аэродромов пролёт дальнего маяка сопровождается звучанием прерывистого тона частотой 3000 Гц в виде серии двух тире в секунду, а пролёт ближнего - в виде серии шести точек в секунду;

    Трансляции звуковых сигналов выбранных средств через кабинный громкоговори­тель с его приглушением на время включения микрофонов при ведении радиообмена;

    Ручного включения режима совмещённой индикации пилотажной и другой важной информации на исправном дисплее в случае отказа одного из индикаторов PFD или MFD.

    Кабинный громкоговоритель, а также микрофоны и головные телефоны авиагарнитур пилотов и двух пассажиров подключаются к аудиопанели. Громкоговоритель расположен на потолке кабины над пассажирскими креслами. Гнезда для подключения разъёмов четырёх авиагарнитур расположены на задней части центрального пульта между креслами пилотов.

    Для подключения микрофонов авиагарнитур обоих пилотов к передатчикам радиостан­ций при ведении радиообмена, а также при оповещении пассажиров на ручках управления пилотов расположены кнопки РТТ (Push-To-Talk - аналог кнопки «Радио»).

    На лицевой части аудиопанели расположены следующие органы управления:

    - СОМ 1 MIC - клавиша для выбора радиостанции СОМ 1, через которую можно вести приём и передачу речевой информации от микрофона авиагарнитуры при нажатии кнопки РТТ на ручке управления одного из пилотов;

    - СОМ 2 MIC - клавиша для выбора радиостанции СОМ 2, через которую можно вести приём и передачу речевой информации от микрофона авиагарнитуры при нажатии кнопки РТТ на ручке управления одного из пилотов;

    - СОМ 3 MIC - клавиша не задействована;

    - СОМ 1 - клавиша для выбора радиостанции СОМ 1 только для прослушивания принимаемых через неё сообщений;

    COM 2 - клавиша для выбора радиостанции СОМ 2 только для прослушивания при­нимаемых через неё сообщений;

    - СОМ 3 - клавиша не задействована;

    - СОМ 1/2 - клавиша, после нажатия которой 1-й и 2-й пило­ты могут одновременно и независимо вести радиообмен, причём 1 - й пилот через радиостанцию СОМ 1, а 2-й - через СОМ 2. Кроме того, 1 -й пилот может прослушивать также опознавательные сигна­лы выбранных радиомаяков, тогда как 2-й пилот - только речевые сообщения, принятые радиостанцией СОМ 2;

    TEL - клавиша не задействована;

    РА - клавиша для обращения к пассажирам при нажатии кнопки РТТ на ручке управления одного из пилотов. Если при этом нажата клавиша СОМ 1/2, то только 2-й пилот может обра­щаться к пассажирам через кабинный громкоговоритель;

    SPKR - клавиша для подключения кабинного громкого­ворителя. Через него транслируются сигналы выбранных радио­средств, а также сигналы, которые выдаются независимо от выбо­ра экипажа. При включении микрофонов на передачу кнопкой РТТ звук громкоговорителя приглушается;

    MKR/MUTE - клавиша, позволяющая временно отключить прослушивание сигналов пролетаемого маркерного маяка в тех случаях, когда, например, они мешают приёму информации от авиадиспетчера. При этом пилоты наблюдают сигнал маркерного маяка на дисплее PFD. Кроме того, клавиша позволяет прерывать прослушивание записанных речевых сигналов диспетчера;

    HI SENS - клавиша, которая при нажатии позволяет повы­сить чувствительность маркерного приёмника с 1000 мкВ до 200 мкВ, что необходимо для приёма сигналов маршрутных мая­ков на больших высотах полёта;

    AUX - клавиша не задействована. Она может быть ис­пользована при установке на самолёте дополнительных (Auxiliary) навигационных средств;

    DME, NAV 1, NAV 2, ADF - клавиши, которые при нажатии позволяют выбирать соответствующие радиомаяки для прослу­шивания с целью их опознавания или приёма сообщений, транслируемых через них, (напри­мер, аварийных передач от диспетчера через дальний приводной радиомаяк);

    MAN SQ - клавиша, которая при её нажатии переключает ручки PILOT-0-PASS из режима регулировки громкости прослушивания в режим ручной (Manually) регулировки по­давителя шума (Squelch);

    - PLAY - клавиша для повторного воспроизведения записанных в цифровой форме звуковых сообщений, например, авиадиспетчера в тех случаях, когда они не были восприняты экипажем с первого раза;

    - PILOT и COPLT - клавиши, используемые для коммутации внутрисамолётной связи. В зависимости от сочетания включения этих клавиш возможны четыре режима внутрисамолётной связи:

    Включена только клавиша PILOT - 1-й пилот изолирован и может прослушивать только выбранные радиосредства, 2-й пилот и пассажиры могут общаться между собой.

    Включена только клавиша COPLT - 2-й пилот изолирован, 1-й пилот и пассажиры могут прослушивать выбранные радиосредства и общаться между собой.

    Обе клавиши PILOT и COPLT включены - 1-й и 2-й пилоты изолированы от пасса, жиров, могут общаться между собой и прослушивать выбранные радиосредства. Пассажиры могут общаться только между собой.

    Обе клавиши PILOT и COPLT выключены - и пассажиры, и пилоты могут общаться и прослушивать выбранные радиосредства;

    - PILOT-0-PASS - сдвоенные ручки для регулировки громкости прослушивания 1-м пи­лотом (внутренняя) и 2-м пилотом и пассажирами (наружная). При этом слева и снизу от ручек подсвечивается надпись VOL. При включенной клавише MAN SQ - эти ручки соответственно позволяют регулировать также уровень подавителя шума. При этом справа и снизу от ручек подсвечивается надпись SQ. Переключение между режимами VOL и SQ в этом случае произ­водится последовательным нажатием внутренней малой ручки-кнопки;

    DISPLAY BACKUP - кнопка для переключения индикации дисплеев PFD и MFD в со­вмещённый режим при отказе одного из них. Кнопка должна быть нажата и при автоматиче­ском переходе в режим совмещённой индикации при мигании неисправного индикатора.

    При нажатии клавиш аудиопанели и включении соответствующего режима начинает светиться сигнализатор в виде белого треугольника над клавишей (см. рис. 2.15).

    Аудиопанель получает электропитание постоянным током напряжением 28 В от ши­ны AVIONIC BUS бортового радиоэлектронного оборудования (авионики) с защитой через автомат защиты AUDIO номиналом 5 А.

    При включении аудиопанели, а также в процессе работы производится её самотестиро­вание. При обнаружении отказов появляется соответствующее сообщение в окне уведом­ляющих сообщений «ALERTS » на дисплее PFD. Перечень сообщений, касающихся аудиопа­нели и связанного с ней оборудования, приведён в табл.1. При появлении таких сообще­ний требуется техническое обслуживание оборудования.

    Таблица1.

    Вылет с отказавшей аудиопанелью запрещён. Под приборной доской слева располо­жен разъём для подключения дополнительного микрофона. Вместе с громкоговорителем он может быть использован левым пилотом вместо авиагарнитуры. Радиостанции СОМ 1 и СОМ 2 являются неотъемлемой частью интегрированного ком­плекса Garmin G 1000, встроены в блоки БРЭО G1A 63 и предназначены для:

    Симплексной бесподстроечной командной радиосвязи в ОВЧ-диапазоне радиоволн. Двухсторонняя авиационная воздушная связь ведётся с авиадиспетчерами, с экипажами дру­гих ВС или диспетчерами производственных служб авиапредприятий;

    Прослушивания сообщений вспомогательных аэродромных служб, например ATIS, служб метеообеспечения VOLMET, SIGMET и т. п.;

    Радиосвязи на международной аварийной частоте 121,500 МГц, например, при про­ведении поисково-спасательных работ.

    В состав обеих радиостанций кроме приёмопередающей аппаратуры, интегрированной в блоки GIA 63, входят переключатели «приём-передача» - кнопки РТТ, установленные на ручках управления пилотов и штыревые антенны (антенна радиостанции СОМ 2 имеет L- образную форму). Размещение антенн радиостанций и их внешний вид показано на рис. 1.

    Рис. 1. Внешний вид антенн ОВЧ радиостанций:

    а - антенна радиостанции СОМ 1; б - антенна радиостанции СОМ 2

    Радиостанции СОМ 1 и СОМ 2 идентичны и характеризуются следующими основными эксплуатационно-техническими показателями:

    Диапазон рабочих частот, МГц 118,000-136,975

    Шаг сетки частот, кГц 25 или 8,33 (по выбору экипажа)

    Вид модуляции амплитудная (AM)

    Средняя мощность передатчика, Вт 16

    Напряжение электропитания, В 28 постоянного тока

    Дальность действия, км 120 -130 при высоте полёта 1000 м

    Чувствительность приёмника, мкВ 2,5

    Выбор шага сетки частот (CHANNEL SPACING) осуществляется экипажем на четв£ той странице «AUX-SYSTEM SETUP» группы «AUX» на дисплее MFD в разделе «СОM CONFIG» с помощью ручек FMS .

    Радиостанция СОМ1 получает электропитание постоянным током напряжением 28 В от левой основной шины LH MAIN BUS с защитой через автомат защиты СОМ 1 номиналом 5А, а радиостанция СОМ 2 - от шины БРЭО AVIONIC BUS через автомат защиты СОМ г номиналом также 5 А.

    Радиостанции не имеют собственных пультов управления. Все органы управления ра­диостанциями и индикаторы настройки сосредоточены в правой верхней части каждого из дисплеев - PFD и MFD (рис. 2.). Действие данных органов управления и индикаторов на­стройки одинаково, независимо от того, на каком дисплее они используются экипажем.

    Рис. 2 Правая верхняя часть дисплеев PFD и MFD

    Настройка радиостанций может производиться либо вручную, либо из аэронавигаци­онной базы данных. Информация о частотах наземных радиостанций для УВД, действующих в тех или иных зонах воздушного пространства, берётся из обновляемой базы аэронавигаци­онных данных. Например, на дисплее MFD с помощью ручек FMS в группе страниц «WPT» выбирается первая страница «WPT-AIRPORT INFORMATION». Затем в разделе «FRE­QUENCIES» выбирается частота нужного сектора УВД. Выбор подтверждается нажатием клавиши ENT. После этого значение частоты появляется в окне подготовленных частот на­страиваемой радиостанции. Аналогично ускоренная настройка радиостанций в аварийных ситуациях возможна из базы данных ближайших аэродромов (NEAREST AIRPORTS).

    Ручная настройка радиостанций осуществляется сдвоенными ручками СОМ, причём малой внутренней ручкой устанавливаются значения частоты в кГц, а большой наружной ручкой - в МГц. На то, какая радиостанция настраивается, указывает голубая рамка, цвет цифр и символ « » между активной и подготавливаемой частотами. Переключение между радиостанциями СОМ 1 и СОМ 2 для их настройки и управления производится нажатием малой внутренней ручки-кнопки СОМ (обратно - повторным нажатием). Радиостанции, вы­бранные нажатием клавиш COM MIC и/или СОМ на аудиопанели для ведения радиосвязи и/или прослушивания, представлены значением их рабочих частот в зелёном цвете (СОМ 1 на рис. 2.17). Переключение между рабочей частотой и подготовленной частотой, обозна­ченной голубым цветом и рамкой, производится нажатием клавиши « » (Transfer). Длитель­ное (около 2 с) нажатие на эту клавишу переводит рабочую частоту в область, обозначенную голубой рамкой, т. е. в подготовленную, а радиостанция перестраивается на международную аварийную частоту 121,500 МГц.

    Уровень принимаемого сигнала (громкость) устанавливается ручкой VOL для той ра­диостанции, которая выбрана малой внутренней ручкой-кнопкой СОМ для настройки и управления. При вращении ручки VOL уровень сигнала изменяется от 0 до 100%. Изме­няемое значение уровня в процентах со словом «VOLUME» индицируется вместо значений подготовленной частоты без рамки. Индикация продолжается в течение трёх секунд после завершения вращения ручки VOL. Эта ручка является также кнопкой, нажатием на которую включается автоматическое подавление шума (Squelch) в приёмнике выбранной для на­стройки радиостанции. Выключение подавителя шума производится повторным нажатием.

    Во время приёма сообщений на рабочей частоте выбранной радиостанции рядом с ото­бражаемым значением частоты появляются буквы RX, а во время передачи - буквы ТХ.

    Контроль работоспособности радиостанций осуществляется экипажем путём самопрослушивания в телефонах авиагарнитуры при выходе на внешнюю радиосвязь. Отказ ра­диостанций обнаруживается также отсутствием прослушивания сообщений при работе на приём.

    Кроме того, при включении и в процессе работы радиостанций производится их само­тестирование. При обнаружении отказов вместо цифровых значений частот отказавшей ра­диостанции появляется перекрестие красного цвета. Кроме того, появляется соответствую­щее сообщение в окне уведомляющих сообщений «ALERTS» на дисплее PFD.

    Перечень сообщений, касающихся радиостанций СОМ 1, СОМ 2 и связанного с ними оборудования, приведён в табл.2. При появлении таких сообщений требуется техническое обслуживание оборудования. Таблица 2.

    При отказе аудиопанели или блоков цифровой обработки звуковых сигналов радистанция СОМ 1 работает без цифровой обработки сигналов и подключается непосредственной к авиагарнитуре 1-го пилота.

    Перед полётом, при осмотре самолёта необходимо проверить целостность антенн, от. сутствие на них льда и загрязнений. Вылет с отказавшей радиостанцией запрещён. Отказ обеих радиостанций в полёте соответствует аварийной ситуации «Отказ радиосвязи». В этом случае необходимо установить код ответчика УВД (Squawk) равным 7600 для информирова­ния авиадиспетчера об отказе радиосвязи.

    Автоматический радиокомпас.

    Назначение: 1) Определяет КУР ;

    2) Автоматический радиокомпас KR 87 предназначен для решения

    следующих навигационных задач:

    Полет на радиостанцию и от нее с визуальной индикацией

    курсового угла;

    Заход на посадку совместно с другими приборами по системе обеспечения

    слепой посадки;

    Автоматическое и непрерывное определение и визуальная

    индикация курсового угла радиостанции (КУР ) в пределах от до 360° ;

    Слуховой прием позывных сигналов радиостанций, работающих в диапазоне частот радиокомпаса.

    О.Т.Д.: 1) U пит = 28В ; 2) f р = 200-1799 кГц ; 3) ΔКУР = ±3º; 4) Д = 160-180 км;

    Состав и 1) Приемник;

    размещение: 2) Антенна радиокомпаса– снизу фюзеляжа;

    3) Индикатор;

    Особенности

    распространения СВ:

    СВ распространяются около поверхности земли в зависимости от времени суток следующим образом: а) Ночью - двумя лучами поверхностным (1) и пространственным (2) , отраженным от верхних слоев ионосферы Е, F ;

    б) Днём - только поверхностным (1) , т.к. пространственный луч поглощается нижним слоем ионосферы Д .

    Поэтому дальность действия АРК зависит от времени суток и от мощности ПРС .

    Режимы работы

    и принцип действия: АРК имеет 2 режима работы:

    1) «ANT» (антенна) - в этом режиме прием ведется только на одну штыревую антенну, которая имеет круговую диаграмму направленности, поэтому он используется для настройки приемника АРК на частоту ПРС или может быть использован как связной радиоприемник СВ .

    Органы управления

    и контроля:

    Указатель KI 227.

    Лицевая панель прибора КI 227

    Автоматический радиокомпас KR 87 имеет два рабочих режима;

    Режим ANT (антенна),

    Режим ADF (компас),

    В режиме ANT радиопеленгатор выключен, рамочная антенна блокирована, прибор работает как приемник, позволяющий вести прием звуковых сигналов радиомаяка через громкоговоритель или наушники.

    Этот режим обеспечивает более чистый прием звуковых сигналов и используется для опознавания радиостанции.

    В разных регионах мира некоторые станции, работающие на низких средних частотах, используют телеграфную систему передач в опознавательных целях. Эти станции легко опознаются с помощью кнопки BFO . При нажатии кнопки BFO сигнал в 1000Гц становится слышимым, как только появляется высокочастотный радиосигнал на выбранной частоте. Сообщение BFO высвечивается в центре дисплея.

    Переход к режиму ADF осуществляется нажатием на кнопку ADF , при этом на дисплее слева высветится надпись ADF . На приборе KI 227 стрелка КУР будет показывать курсовой угол радиостанции.

    На индикаторе слева высвечивается рабочая (активная) частота, справа - дежурная (резервная) частота или время.

    Если радиокомпас высвечивает время, то для индикации дежурной частоты нужно нажать кнопку FRQ .

    Настройка АРК

    На PFD нажать программную кнопку «ADF/DME», откроется окно «ADF/DME TUNING»;

    Нажать FMS, высветится подготовительная частота в окне ADF;

    Используя большую и маленькие ручки FMS набрать частоту привода;

    2 раза нажать ENT для перевода набранной частоты в рабочую;

    Нажать PFD программную кнопку, откроется дополнительные кнопки «BRG-1», «BRG-2»;

    Нажать «BRG-1», «BRG-2» до отображения в окошке режима работы ADF и высвечивания частоты привода.

    В зависимости от нажатия «BRG-1» или «BRG-2» одинарная или двойная сини стрелки будут показывать на выбранную приводную.

    Эксплуатация. 1) Прослушивание АРК KR-87 осуществляется нажатием кнопки ADF на GМА-340 .

    2) Режим «антенна» - только для прослушивания. КУР на

    KI 227 в этом режиме показывает 90° , слева на панели

    KR-87 высвечивается надпись ANT .

    3) Режим «компас» - для прослушивания позывных станций

    и для индикации КУР на приборе KI 227 . В этом режиме

    слева на панели KR-87 высвечивается надпись ADF .

    4) Перевод из режима ANT в режим ADF осуществляется нажатием

    кнопки ADF на панели KR-87 .

    5) Режим BFO – для пеленгования при работе радиостанции в

    режиме телеграф. Включается нажатием соответствующей кнопки на KR-87 .

    Методические Исходя из особенностей распространения СВ АРК может иметь:

    ошибки АРК: 1) Радиодевиация (∆Р) - это отклонение рамочной антенны от истинного направления наПРС , которое происходит за счет того, что вторичное излучение искажает основное радиополе ПРС вблизи самолета. ∆Р зависит в основном от взаимного положения самолета и ПРС , т.е. от КУРа , поэтому радиодевиацию автоматически компенсируют в блоке рамочной антенны специальным механическим (лекальным) устройством.



    2) Ошибки, возникающие вследствие влияния: а) ночного, б) горного, в) берегового эффектов при распространении радиоволн (рис.2а,б,в). Могут достигать величины 30º-40º . Учитываются пилотом при полетах в соответствующих условиях.

    День Ночь Ночной эффект проявляется в период

    утренней и вечерней зари, когда появля -

    F ется или исчезает пространственный луч,

    Е что приводит к колебаниям стрелки АРК .

    Земля

    ПРС 1 Горный эффект проявляется при

    полетах вблизи гор, когда возможно