Дата последнего обновления файла 23.10.2009

Постоянные запоминающие устройства (ПЗУ)

Очень часто в различных применениях требуется хранение информации, которая не изменяется в процессе эксплуатации устройства. Это такая информация как программы в микроконтроллерах, начальные загрузчики (BIOS) в компьютерах, таблицы коэффициентов цифровых фильтров в , и , таблицы синусов и косинусов в NCO и DDS. Практически всегда эта информация не требуется одновременно, поэтому простейшие устройства для запоминания постоянной информации (ПЗУ) можно построить на мультиплексорах. Иногда в переводной литературе постоянные запоминающие устройства называются ROM (read only memory — память доступная только для чтения). Схема такого постоянного запоминающего устройства (ПЗУ) приведена на рисунке 1.


Рисунок 1. Схема постоянного запоминающего устройства (ПЗУ), построенная на мультиплексоре

В этой схеме построено постоянное запоминающее устройство на восемь одноразрядных ячеек. Запоминание конкретного бита в одноразрядную ячейку производится запайкой провода к источнику питания (запись единицы) или запайкой провода к корпусу (запись нуля). На принципиальных схемах такое устройство обозначается как показано на рисунке 2.


Рисунок 2. Обозначение постоянного запоминающего устройства на принципиальных схемах

Для того, чтобы увеличить разрядность ячейки памяти ПЗУ эти микросхемы можно соединять параллельно (выходы и записанная информация естественно остаются независимыми). Схема параллельного соединения одноразрядных ПЗУ приведена на рисунке 3.


Рисунок 3. Схема многоразрядного ПЗУ (ROM)

В реальных ПЗУ запись информации производится при помощи последней операции производства микросхемы — металлизации. Металлизация производится при помощи маски, поэтому такие ПЗУ получили название масочных ПЗУ . Еще одно отличие реальных микросхем от упрощенной модели, приведенной выше — это использование кроме мультиплексора еще и . Такое решение позволяет превратить одномерную запоминающую структуру в двухмерную и, тем самым, существенно сократить объем схемы , необходимого для работы схемы ПЗУ. Эта ситуация иллюстрируется следующим рисунком:



Рисунок 4. Схема масочного постоянного запоминающего устройства (ROM)

Масочные ПЗУ изображаются на принципиальных схемах как показано на рисунке 5. Адреса ячеек памяти в этой микросхеме подаются на выводы A0 ... A9. Микросхема выбирается сигналом CS. При помощи этого сигнала можно наращивать объем ПЗУ (пример использования сигнала CS приведён при обсуждении ). Чтение микросхемы производится сигналом RD.


Рисунок 5. масочного ПЗУ (ROM) на принципиальных схемах

Программирование масочного ПЗУ производится на заводе изготовителе, что очень неудобно для мелких и средних серий производства, не говоря уже о стадии разработки устройства. Естественно, что для крупносерийного производства масочные ПЗУ являются самым дешевым видом ПЗУ, и поэтому широко применяются в настоящее время. Для мелких и средних серий производства радиоаппаратуры были разработаны микросхемы, которые можно программировать в специальных устройствах — программаторах. В этих ПЗУ постоянное соединение проводников в запоминающей матрице заменяется плавкими перемычками, изготовленными из поликристаллического кремния. При производстве ПЗУ изготавливаются все перемычки, что эквивалентно записи во все ячейки памяти ПЗУ логических единиц. В процессе программирования ПЗУ на выводы питания и выходы микросхемы подаётся повышенное питание. При этом, если на выход ПЗУ подаётся напряжение питания (логическая единица), то через перемычку ток протекать не будет и перемычка останется неповрежденной. Если же на выход ПЗУ подать низкий уровень напряжения (присоединить к корпусу), то через перемычку запоминающей матрицы будет протекать ток, который испарит ее и при последующем считывании информации из этой ячейки ПЗУ будет считываться логический ноль.

Такие микросхемы называются программируемыми ПЗУ (ППЗУ) или PROM и изображаются на принципиальных схемах как показано на рисунке 6. В качестве примера ППЗУ можно назвать микросхемы 155РЕ3, 556РТ4, 556РТ8 и другие.


Рисунок 6. Условно-графическое обозначение программируемого постоянного запоминающего устройства (PROM) на принципиальных схемах

Программируемые ПЗУ оказались очень удобны при мелкосерийном и среднесерийном производстве. Однако при разработке радиоэлектронных устройств часто приходится менять записываемую в ПЗУ программу. ППЗУ при этом невозможно использовать повторно, поэтому раз записанное ПЗУ при ошибочной или промежуточной программе приходится выкидывать, что естественно повышает стоимость разработки аппаратуры. Для устранения этого недостатка был разработан еще один вид ПЗУ, который мог бы стираться и программироваться заново.

ПЗУ с ультрафиолетовым стиранием строится на основе запоминающей матрицы построенной на ячейках памяти, внутреннее устройство которой приведено на следующем рисунке:


Рисунок 7. Запоминающая ячейка ПЗУ с ультрафиолетовым и электрическим стиранием

Ячейка представляет собой МОП транзистор, в котором затвор выполняется из поликристаллического кремния. Затем в процессе изготовления микросхемы этот затвор окисляется и в результате он будет окружен оксидом кремния — диэлектриком с прекрасными изолирующими свойствами. В описанной ячейке при полностью стертом ПЗУ, заряда в плавающем затворе нет, и поэтому транзистор ток не проводит. При программировании ПЗУ, на второй затвор, находящийся над плавающим затвором, подаётся высокое напряжение и в плавающий затвор за счет туннельного эффекта индуцируются заряды. После снятия программирующего напряжения индуцированный заряд остаётся на плавающем затворе, и, следовательно, транзистор остаётся в проводящем состоянии. Заряд на плавающем затворе подобной ячейки может храниться десятки лет.

Описанного постоянного запоминающего устройства не отличается от описанного ранее масочного ПЗУ. Единственное отличие — вместо плавкой перемычки используется описанная выше ячейка. Такой вид ПЗУ называется репрограммируемыми постоянными запоминающими устройствами (РПЗУ) или EPROM. В РПЗУ стирание ранее записанной информации осуществляется ультрафиолетовым излучением. Для того, чтобы этот свет мог беспрепятственно проходить к полупроводниковому кристаллу, в корпус микросхемы ПЗУ встраивается окошко из кварцевого стекла.



Рисунок 8. Внешний вид стираемого постоянного запоминающего устройства (EPROM)

При облучении микросхемы РПЗУ, изолирующие свойства оксида кремния теряются, накопленный заряд из плавающего затвора стекает в объем полупроводника, и транзистор запоминающей ячейки переходит в закрытое состояние. Время стирания микросхемы РПЗУ колеблется в пределах 10 ... 30 минут.

Современные компьютеры – это сложнейшие электронные устройства, выполняющие миллионы простейших операций в секунду.

Благодаря этому мы можем наслаждаться сложными игровыми мирами, смотреть фильмы в высоком качестве изображения, бродить в интернете и т.д. Мало чем уступают компьютерам и телефоны, которые тоже сегодня обязательно оснащаются всеми необходимыми атрибутами вычислительного устройства – высокопроизводительным процессором, оперативной и постоянной памятью, сокращенно – ОЗУ и ПЗУ.

Что такое ОЗУ?

Необходимость в оперативном запоминающем устройстве (сокращенно – ОЗУ или RAM) возникла уже у самых первых вычислительных машин, созданных в далекие 40-е годы. Буферная память, как ее иногда называют другими словами, используется при выполнении любого процесса.

Фактически, все операции, выполняемые процессором, используют ОЗУ для сохранения промежуточных результатов. Данные, хранимые в ОЗУ, изменяются очень быстро и никогда не сохраняются после выключения компьютера или телефона.

Объем оперативной памяти выбирается в соответствии с быстродействием процессора. От обширной оперативной памяти будет мало толку в сочетании с маломощным процессором. Соответственно, самый производительный процессор не сможет эффективно работать в комплекте с небольшим по объему памяти ОЗУ.


Впрочем, мощному процессору можно помочь, «отщипнув» кусочек памяти от . Для телефона этот способ не годится, а в стационарном компьютере опытный пользователь вполне может осуществить «разгон», увеличив скорость его процессов.

Говоря простыми словами, ОЗУ – это устройство, используемое компьютером или телефоном как черновик. Туда записываются промежуточные результаты, которые быстро стираются и заменяются новыми, тоже промежуточными. Когда компьютер выключают, «черновик» уничтожается, так как хранить данные, записанные в его памяти, совершенно не обязательно.

Что такое ПЗУ?

Намного более сложными являются постоянные запоминающие устройства (сокращенно – ПЗУ или ROM), которые обладают одним очень важным свойством – сохраняют записанную информацию даже при полном выключении электропитания. В стационарном компьютере используется несколько видов ПЗУ:

интегральная микросхема, на которой записан БИОС, размещенная на материнской плате и питающаяся от собственной батарейки-«таблетки»;

жесткий диск, или винчестер, внутреннего или внешнего размещения;

— съемные карты памяти (флеш-память, microSD карты и т.д.);


лазерные диски CD, DVD и их накопители;

— флоппи-диски (сейчас уже полностью вышли из употребления).

Все эти устройства можно объединить одним названием – постоянные запоминающие устройства. Но, как правило, когда говорят о ПЗУ компьютера или телефона, имеют в виду только микросхему, в которой «прошит» базовый комплекс программного обеспечения.

Для того, чтобы изменить записанную в ней информацию, нужно специальное и очень сложное оборудование, обычный пользователь ни при каких условиях не сможет это сделать.

Информация, сохраняемая другими типами ПЗУ, делится на несколько разделов по степени важности для устройства:

— раздел для операционной системы;

— раздел для программ и приложений;

— раздел для остальной информации.

Операционную систему компьютера, как и мобильного телефона, при желании можно заменить или внести в нее исправления. Однако делать это нужно с осторожностью и только в том случае, когда вы полностью понимаете, к чему приведут эти изменения.

Если работа ОС будет нарушена, придется обращаться к специалисту для ее настройки, а может, и переустановки. Остальные разделы памяти могут без особых проблем стираться и перезаписываться, полностью или частично – на работоспособности устройства это не скажется.


Итак, постоянное запоминающее устройство компьютера – это его «память», информация в которой сохраняется, даже если питание будет выключено. ПЗУ можно назвать чистовой тетрадью компьютера, куда записываются только результаты процессов для постоянного хранения.

Персональные компьютеры имеют четыре иерархических уровня памяти:

    микропроцессорная память;

    основная память;

    регистровая кэш-память;

    внешняя память.

Микропроцессорная память рассмотрена выше. Основная память предназначена для хранения и оперативного обмена информацией с другими устройствами компьютера. Функции памяти:

    прием информации от других устройств;

    запоминание информации;

    выдача информации по запросу в другие устройства машины.

Основная память содержит два вида запоминающих устройств:

    ПЗУ - постоянное запоминающее устройство;

    ОЗУ - оперативное запоминающее устройство.

ПЗУ предназначено для хранения постоянной программной и справочной информации. Данные в ПЗУ заносятся при изготовлении. Информацию, хранящуюся в ПЗУ, можно только считывать, но не изменять.

В ПЗУ находятся:

    программа управления работой процессора;

    программа запуска и останова компьютера;

    программы тестирования устройств, проверяющие при каждом включении компьютера правильность работы его блоков;

    программы управления дисплеем, клавиатурой, принтером, внешней памятью;

    информация о том, где на диске находится операционная система.

ПЗУ является энергонезависимой памятью, при отключении питания информация в нем сохраняется.

ОЗУ предназначено для оперативной записи, хранения и считывания информации (программ и данных), непосредственно участвующей в информационно-вычислительном процессе, выполняемом компьютером в текущий период времени.

Главными достоинствами оперативной памяти являются ее высокое быстродействие и возможность обращения к каждой ячейке памяти отдельно (прямой адресный доступ к памяти). Все ячейки памяти объединены в группы по 8 бит (1 байт), каждая такая группа имеет адрес, по которому к ней можно обратиться.

ОЗУ является энергозависимой памятью, при выключении питания информация в нем стирается.

В современных компьютерах объем памяти обычно составляет 8-128 Мбайт. Объем памяти - важная характеристика компьютера, она влияет на скорость работы и работоспособность программ.

Кроме ПЗУ и ОЗУ на системной плате имеется и энергонезависимая CMOS-память, постоянно питающаяся от своего аккумулятора. В ней хранятся параметры конфигурации компьютера, которые проверяются при каждом рключении системы. Это полупостоянная память. Для изменения параметров конфигурации компьютера в BIOS содержится программа настройки конфигурации компьютера - SETUP.

Для ускорения доступа к оперативной памяти используется специальная сверхбыстродействующая кэш-память, которая располагается как бы «между» микропроцессором и оперативной памятью, в ней хранятся копии наиболее часто используемых участков оперативной памяти. Регистры кэш-памяти недоступны для пользователя.

В кэш-памяти хранятся данные, которые микропроцессор получил и будет использовать в ближайшие такты своей работы. Быстрый доступ к этим данным позволяет сократить время выполнения очередных команд программы.

Микропроцессоры, начиная от МП 80486, имеют свою встроенную кэш-память. Микропроцессоры Pentium и Реntium Pro имеют кэш-память отдельно для данных и отдельно для команд. Для всех микропроцессоров может использоваться дополнительная кэш-память, размещаемая на материнской плате вне микропроцессора, емкость которой может достигать нескольких Мбайт. Внешняя память относится к внешним устройствам компьютера и используется для долговременного хранения любой информации, которая может потребоваться для решения задач. В частности, во внешней памяти хранятся все программное обеспечение компьютера.

Устройства внешней памяти - внешние запоминающие устройства - весьма разнообразны. Их можно классифицировать по виду носителя, по типу конструкции, по принципу записи и считывания информации, по методу доступа и т. д.

Наиболее распространенными внешними запоминающими устройствами являются:

Реже в качестве устройств внешней памяти персонального компьютера используются запоминающие устройства на кассетной магнитной ленте - стримеры.

Накопители на дисках - это устройства для чтения и записи с магнитных или оптических носителей. Назначение этих накопителей - хранение больших объемов информации, запись и выдача хранимой информации по запросу в оперативное запоминающее устройство.

НЖМД и НГМД различаются лишь конструктивно, объемами хранимой информации и временем поиска, записи и считывания информации.

В качестве запоминающей среды у магнитных дисков используются магнитные материалы со специальными свойствами, позволяющими фиксировать два магнитных состояния - два направления намагниченности. Каждому из этих состояний ставятся в соответствие двоичные цифры 0 и 1. Информация на магнитные диски записывается и считывается магнитными головками вдоль концентрических окружностей - дорожек (треков). Количество дорожек на диске и их информационная емкость зависят от типа диска, конструкции накопителя, качества магнитных головок и магнитного покрытия. Каждая дорожка разбита на секторы. В одном секторе обычно размещается 512 байт данных. Обмен данными между накопителем на магнитном диске и оперативной памятью осуществляется последовательно целым числом секторов. Для жесткого магнитного диска используется также понятие цилиндра - совокупности дорожек, находящихся на одинаковом расстоянии от центра диска.

Диски относятся к машинным носителям информации с прямым доступом. Это означает, что компьютер может обратиться к дорожке, на которой начинается участок с искомой информацией или куда нужно записать новую информацию, непосредственно, где бы ни, находилась головка записи и чтения накопителя.

Все диски - и магнитные, и оптические - характеризуются своим диаметром (форм-фактором). Из гибких магнитных дисков наибольшее распространение получили диски диаметром 3,5(89 мм). Емкость этих дисков составляет 1,2 и 1,44 Мбайт.

Накопители на жестких магнитных дисках получили название «винчестер». Этот термин возник из жаргонного названия первой модели жесткого диска, имевшего 30 дорожек по 30 секторов каждая, что случайно совпало с калибром охотничьего ружья «винчестер». Емкость накопителя на жестком магнитном диске измеряется в Мбайтах и Гбайтах.

В последнее время появились новые накопители на магнитных дисках - ZIP-диске - переносные устройства емкостью 230-280 Мбайт.

В последние годы самое широкое распространение получили накопители на оптических дисках (CD-ROM). Благодаря маленьким размерам, большой емкости и надежности эти накопители становятся все более популярными. Емкость накопителей на оптических дисках - от 640 Мбайт и выше.

Оптические диски делятся на неперезаписываемые лазерно-оптические диски, перезаписываемые лазерно-оптические диски и перезаписываемые магнитооптические диски. Неперезаписываемые диски поставляются фирмами-изготовителями с уже записанной на них информацией. Запись информации на них возможна только в лабораторных условиях, вне компьютера.

Кроме основной своей характеристики - информационной емкости, дисковые накопители характеризуются и двумя временными показателями:

    временем доступа;

    скоростью считывания подряд расположенных байтов.

Компьютеры и любая электроника - сложные устройства, принципы работы которых не всегда понятны большинству обывателей. Что такое ПЗУ и зачем устройство необходимо? Большинство людей не смогут дать ответ на этот вопрос. Попробуем исправить это недоразумение. Что такое ПЗУ?

Чем они являются и где используются? Постоянные запоминающие устройства (ПЗУ) представляют собой энергонезависимую память. Технологически они реализованы как микросхема. Одновременно мы узнали, какова аббревиатуры ПЗУ расшифровка. Предназначены устройства для хранения информации, введённой пользователем, и установленных программ. В постоянном запоминающем устройстве можно найти документы, мелодии, картинки – т.е. всё, что должно храниться на протяжении месяцев или даже лет. Объемы памяти, в зависимости от используемого устройства, могут меняться от нескольких килобайт (на простейших устройствах, имеющих один кристалл кремния, примером которых являются микроконтроллеры) до терабайтов. Чем больше объем ПЗУ – тем больше объектов может быть сохранено. Объем прямо пропорционален количеству данных. Если уплотнить ответ на вопрос, что такое ПЗУ, следует ответить: это хранилище данных, которое не зависит от постоянного напряжения. Жесткие диски как основные постоянные запоминающие устройства На вопрос, что такое ПЗУ, уже дан ответ. Теперь следует поговорить о том, какие они бывают. Основным постоянным запоминающим устройством являются жесткие диски. Они есть в каждом современном компьютере. Используются они благодаря своим широким возможностям накопления информации. Но при этом существует ряд ПЗУ, которые используют мультиплексоры (это микроконтроллеры, начальные загрузчики и прочие подобные электронные механизмы). При детальном изучении будет нужно не только понимать значение ПЗУ. Расшифровка других терминов тоже необходима, для того, чтобы вникнуть в тему. Расширение и дополнение возможностей ПЗУ благодаря флеш-технологиям

Если стандартного объема памяти пользователю не хватает, то можно воспользоваться дополнительным расширением возможностей предоставленного ПЗУ в сфере хранения данных. Осуществляется это посредством современных технологий, реализованных в картах памяти и USB-флеш-накопителях. В их основе лежит принцип многоразового использования. Другими словами, данные на них можно стирать и записывать десятки и сотни тысяч раз. Из чего состоит постоянное запоминающее устройство

В составе ПЗУ находится две части, которые обозначаются как ПЗУ-А (для хранения программ) и ПЗУ-Э (для выдачи программ). Постоянное запоминающее устройство типа А является диодно-трансформаторной матрицей, которая прошивается с помощью адресных проводов. Этот раздел ПЗУ выполняет главную функцию. Начинка зависит от материала, из которого сделаны ПЗУ (могут применяться перфорационные и магнитные ленты, перфокарты, магнитные диски, барабаны, ферритовые наконечники, диэлектрики и их свойство накопления электростатических зарядов). Схематическое строение ПЗУ

Этот объект электроники изображается в виде устройства, которое по внешнему виду напоминает соединение определённого числа одноразрядных ячеек. Микросхема ПЗУ, несмотря на потенциальную сложность и, казалось бы значительные возможности, по размеру мала. При запоминании определённого бита производится запайка к корпусу (когда записывается нуль) или к источнику питания (когда записывается единица). Для увеличения разрядности ячеек памяти в постоянных запоминающих устройствах микросхемы могут параллельно соединяться. Так и делают производители, чтобы получить современный продукт, ведь микросхема ПЗУ с высокими характеристиками позволяет им быть конкурентными на рынке. Объемы памяти при использовании в различных единицах техники

Объемы памяти разнятся в зависимости от типа и предназначения ПЗУ. Так в простой бытовой технике вроде стиральных машинок или холодильников можно хватает установленных микроконтроллеров (с их запасов в несколько десятков килобайт), и в редких случаях устанавливается что-то более сложное. Использовать большой объем ПЗУ здесь не имеет смысла, ведь количество электроники невелико, и от техники не требуется сложных вычислений. Для современных телевизоров требуется уже что-то более совершенное. И вершиной сложности является вычислительная техника вроде компьютеров и серверов, ПЗУ для которых, как минимум, вмещают от нескольких гигабайт (для выпущенных лет 15 назад) до десятков и сотен терабайт информации. Масочное ПЗУ

В случаях, когда запись ведётся при помощи процесса металлизации и используется маска, такое постоянное запоминающее устройство называется масочным. Адреса ячеек памяти в них подаются на 10 выводов, а конкретная микросхема выбирается с помощью специального сигнала CS. Программирование этого вида ПЗУ осуществляется на заводах, вследствие этого изготовление в мелких и средних объемах невыгодно и довольно неудобно. Но при крупносерийном производстве они являются самым дешевым среди всех постоянных запоминающих устройств, что и обеспечило им популярность. Схематически от общей массы отличаются тем, что в запоминающей матрице соединения проводников заменены плавкими перемычками, изготовленные из поликристаллического кремния. На стадии производства создаются все перемычки, и компьютер считает, что везде записаны логические единицы. Но во время подготовительного программирования подаётся повышенное напряжение, с помощью которого оставляют логические единицы. При подаче низких напряжений перемычки испаряются, и компьютер считывает, что там логический нуль. По такому принципу действуют программируемые постоянные запоминающие устройства. Программируемые постоянные запоминающие устройства ППЗУ оказались достаточно удобными в процессе технологического изготовления, чтобы к ним можно было прибегать при средне- и мелкосерийном производстве. Но такие устройства имеют и свои ограничения – так, записать программу можно только раз (из-за того, что перемычки испаряются раз и навсегда). Из-за такой невозможности использовать постоянное запоминающее устройство повторно, при ошибочном записывании его приходится выбрасывать. В результате повышается стоимость всей произведённой аппаратуры. Ввиду несовершенства производственного цикла эта проблема довольно сильно занимала умы разработчиков устройств памяти. Выходом из этой ситуации стала разработка ПЗУ, которое можно программировать заново многократно. ПЗУ с ультрафиолетовым или электрическим стиранием

И получили такие устройства название «постоянное запоминающее устройство с ультрафиолетовым или электрическим стиранием». Создаются они на основе запоминающей матрицы, в которой ячейки памяти имеют особую структуру. Так, каждая ячейка является МОП-транзистором, в котором затвор сделан из поликристаллического кремния. Похоже на предыдущий вариант, верно? Но особенность этих ПЗУ в том, что кремний дополнительно окружен диэлектриком, обладающим чудесными изолирующими свойствами, – диоксидом кремния. Принцип действия здесь базируется на содержании индукционного заряда, который может храниться десятки лет. Тут есть особенности по стиранию. Так, для ультрафиолетового ПЗУ-устройства необходимо попадание ультрафиолетовых лучей, идущих извне (ультрафиолетовой лампы и т.д.). Очевидно, что с точки зрения простоты эксплуатация постоянных запоминающих устройств с электрическим стиранием является оптимальным, так как для их активации необходимо просто подать напряжение. Принцип электрического стирания был с успехом реализован в таких ПЗУ, как флеш-накопители, которые можно увидеть у многих. Но такая ПЗУ-схема, за исключением построения ячейки, структурно не отличается от обычного масочного постоянного запоминающего устройства. Иногда такие устройства называют ещё репрограммируемыми. Но при всех преимуществах имеются и определённые границы скорости стирания информации: для этого действия обычно необходимо около 10-30 минут. Несмотря на возможность перезаписи, репрограммируемые устройства имеют ограничения по использованию. Так, электроника с ультрафиолетовым стиранием может пережить от 10 до 100 циклов перезаписи. Затем разрушающее влияние излучения становится настолько ощутимым, что они перестают функционировать. Увидеть использование подобных элементов можно в качестве хранилищ для программ BIOS, в видео- и звуковых картах, для дополнительных портов. Но оптимальным относительно перезаписи является принцип электрического стирания. Так, число перезаписей в рядовых устройствах составляет от 100 000 до 500 000! Существуют отдельные ПЗУ-устройства, которые могут работать и больше, но большинству пользователей они ни к чему.

Очень часто в различных применениях требуется хранение информации, которая не изменяется в процессе эксплуатации устройства. Это такая информация как программы в микроконтроллерах, начальные загрузчики (BIOS) в компьютерах, таблицы коэффициентов цифровых фильтров в сигнальных процессорах, DDC и DUC, таблицы синусов и косинусов в NCO и DDS. Практически всегда эта информация не требуется одновременно, поэтому простейшие устройства для запоминания постоянной информации (ПЗУ) можно построить на мультиплексорах. Иногда в переводной литературе постоянные запоминающие устройства называются ROM (read only memory – память доступная только для чтения). Схема такого постоянного запоминающего устройства (ПЗУ) приведена на рисунке 3.1.

Рисунок 3.1. Схема постоянного запоминающего устройства (ПЗУ), построенная на мультиплексоре.

В этой схеме построено постоянное запоминающее устройство на восемь одноразрядных ячеек. Запоминание конкретного бита в одноразрядную ячейку производится запайкой провода к источнику питания (запись единицы) или запайкой провода к корпусу (запись нуля). На принципиальных схемах такое устройство обозначается как показано на рисунке 3.2.

Рисунок 3.2. Обозначение постоянного запоминающего устройства на принципиальных схемах.

Для того, чтобы увеличить разрядность ячейки памяти ПЗУ эти микросхемы можно соединять параллельно (выходы и записанная информация естественно остаются независимыми). Схема параллельного соединения одноразрядных ПЗУ приведена на рисунке 3.3.

Рисунок 3.3 Схема многоразрядного ПЗУ (ROM).

В реальных ПЗУ запись информации производится при помощи последней операции производства микросхемы - металлизации. Металлизация производится при помощи маски, поэтому такие ПЗУ получили название масочных ПЗУ. Еще одно отличие реальных микросхем от упрощенной модели, приведенной выше - это использование кроме мультиплексора еще и демультиплексора. Такое решение позволяет превратить одномерную запоминающую структуру в двухмерную и, тем самым, существенно сократить объем схемы дешифратора, необходимого для работы схемы ПЗУ. Эта ситуация иллюстрируется следующим рисунком:



Рисунок 3.4. Схема масочного постоянного запоминающего устройства (ROM).

Масочные ПЗУ изображаются на принципиальных схемах как показано на рисунке 3.5. Адреса ячеек памяти в этой микросхеме подаются на выводы A0 ... A9. Микросхема выбирается сигналом CS. При помощи этого сигнала можно наращивать объем ПЗУ (пример использования сигнала CS приведён при обсуждении ОЗУ). Чтение микросхемы производится сигналом RD.

Рисунок 3.5. Условно-графическое обозначение масочного ПЗУ (ROM) на принципиальных схемах.

Программирование масочного ПЗУ производится на заводе изготовителе, что очень неудобно для мелких и средних серий производства, не говоря уже о стадии разработки устройства. Естественно, что для крупносерийного производства масочные ПЗУ являются самым дешевым видом ПЗУ, и поэтому широко применяются в настоящее время. Для мелких и средних серий производства радиоаппаратуры были разработаны микросхемы, которые можно программировать в специальных устройствах - программаторах. В этих ПЗУ постоянное соединение проводников в запоминающей матрице заменяется плавкими перемычками, изготовленными из поликристаллического кремния. При производстве ПЗУ изготавливаются все перемычки, что эквивалентно записи во все ячейки памяти ПЗУ логических единиц. В процессе программирования ПЗУ на выводы питания и выходы микросхемы подаётся повышенное питание. При этом, если на выход ПЗУ подаётся напряжение питания (логическая единица), то через перемычку ток протекать не будет и перемычка останется неповрежденной. Если же на выход ПЗУ подать низкий уровень напряжения (присоединить к корпусу), то через перемычку запоминающей матрицы будет протекать ток, который испарит ее и при последующем считывании информации из этой ячейки ПЗУ будет считываться логический ноль.

Такие микросхемы называются программируемыми ПЗУ (ППЗУ) или PROM и изображаются на принципиальных схемах как показано на рисунке3.6. В качестве примера ППЗУ можно назвать микросхемы 155РЕ3, 556РТ4, 556РТ8 и другие.

Рисунок 3.6. Условно-графическое обозначение программируемого постоянного запоминающего устройства (PROM) на принципиальных схемах.

Программируемые ПЗУ оказались очень удобны при мелкосерийном и среднесерийном производстве. Однако при разработке радиоэлектронных устройств часто приходится менять записываемую в ПЗУ программу. ППЗУ при этом невозможно использовать повторно, поэтому раз записанное ПЗУ при ошибочной или промежуточной программе приходится выкидывать, что естественно повышает стоимость разработки аппаратуры. Для устранения этого недостатка был разработан еще один вид ПЗУ, который мог бы стираться и программироваться заново.

ПЗУ с ультрафиолетовым стиранием строится на основе запоминающей матрицы построенной на ячейках памяти, внутреннее устройство которой приведено на следующем рисунке:

Рисунок 3.7. Запоминающая ячейка ПЗУ с ультрафиолетовым и электрическим стиранием.

Ячейка представляет собой МОП транзистор, в котором затвор выполняется из поликристаллического кремния. Затем в процессе изготовления микросхемы этот затвор окисляется и в результате он будет окружен оксидом кремния - диэлектриком с прекрасными изолирующими свойствами. В описанной ячейке при полностью стертом ПЗУ, заряда в плавающем затворе нет, и поэтому транзистор ток не проводит. При программировании ПЗУ, на второй затвор, находящийся над плавающим затвором, подаётся высокое напряжение и в плавающий затвор за счет туннельного эффекта индуцируются заряды. После снятия программирующего напряжения индуцированный заряд остаётся на плавающем затворе, и, следовательно, транзистор остаётся в проводящем состоянии. Заряд на плавающем затворе подобной ячейки может храниться десятки лет.

Структурная схема описанного постоянного запоминающего устройства не отличается от описанного ранее масочного ПЗУ. Единственное отличие – вместо плавкой перемычки используется описанная выше ячейка. Такой вид ПЗУ называется репрограммируемыми постоянными запоминающими устройствами (РПЗУ) или EPROM. В РПЗУ стирание ранее записанной информации осуществляется ультрафиолетовым излучением. Для того, чтобы этот свет мог беспрепятственно проходить к полупроводниковому кристаллу, в корпус микросхемы ПЗУ встраивается окошко из кварцевого стекла.

При облучении микросхемы РПЗУ, изолирующие свойства оксида кремния теряются, накопленный заряд из плавающего затвора стекает в объем полупроводника, и транзистор запоминающей ячейки переходит в закрытое состояние. Время стирания микросхемы РПЗУ колеблется в пределах 10 - 30 минут.

Количество циклов записи – стирания микросхем EPROM находится в диапазоне от 10 до 100 раз, после чего микросхема РПЗУ выходит из строя. Это связано с разрушающим воздействием ультрафиолетового излучения на оксид кремния. В качестве примера микросхем EPROM можно назвать микросхемы 573 серии российского производства, микросхемы серий 27сXXX зарубежного производства. В РПЗУ чаще всего хранятся программы BIOS универсальных компьютеров. РПЗУ изображаются на принципиальных схемах как показано на рисунке 3.8.

Рисунок 3.8. Условно-графическое обозначение РПЗУ (EPROM) на принципиальных схемах.

Так как корпуса с кварцевым окошком очень дороги, а также малое количество циклов записи - стирания привели к поиску способов стирания информации из РПЗУ электрическим способом. На этом пути встретилось много трудностей, которые к настоящему времени практически решены. Сейчас достаточно широко распространены микросхемы с электрическим стиранием информации. В качестве запоминающей ячейки в них используются такие же ячейки как и в РПЗУ, но они стираются электрическим потенциалом, поэтому количество циклов записи - стирания для этих микросхем достигает 1000000 раз. Время стирания ячейки памяти в таких ПЗУ уменьшается до 10 мс. Схема управления для электрически стираемых программируемых ПЗУ получилась сложная, поэтому наметилось два направления развития этих микросхем:

1. ЕСППЗУ (EEPROM) - электрически стираемое программируемое постоянное запоминающее устройство

Электрически стираемые ППЗУ (EEPROM) дороже и меньше по объему, но зато позволяют перезаписывать каждую ячейку памяти отдельно. В результате эти микросхемы обладают максимальным количеством циклов записи - стирания. Область применения электрически стираемых ПЗУ - хранение данных, которые не должны стираться при выключении питания. К таким микросхемам относятся отечественные микросхемы 573РР3, 558РР3 и зарубежные микросхемы EEPROM серии 28cXX. Электрически стираемые ПЗУ обозначаются на принципиальных схемах как показано на рисунке 3.9.

Рисунок 9. Условно-графическое обозначение электрически стираемого постоянного запоминающего устройства (EEPROM) на принципиальных схемах.

В последнее время наметилась тенденция уменьшения габаритов ЭСППЗУ за счет уменьшения количества внешних выводов микросхем. Для этого адрес и данные передаются в микросхему и из микросхемы через последовательный порт. При этом используются два вида последовательных портов - SPI порт и I2C порт (микросхемы 93сXX и 24cXX серий соответственно). Зарубежной серии 24cXX соответствует отечественная серия микросхем 558РРX.

FLASH - ПЗУ отличаются от ЭСППЗУ тем, что стирание производится не каждой ячейки отдельно, а всей микросхемы в целом или блока запоминающей матрицы этой микросхемы, как это делалось в РПЗУ.

Рисунок 3.10. Условно-графическое обозначение FLASH памяти на принципиальных схемах.

При обращении к постоянному запоминающему устройству сначала необходимо выставить адрес ячейки памяти на шине адреса, а затем произвести операцию чтения из микросхемы. Эта временная диаграмма приведена на рисунке 3.11.


Рисунок 3.11. Временные диаграммы сигналов чтения информации из ПЗУ.

На рисунке 3.11 стрелочками показана последовательность, в которой должны формироваться управляющие сигналы. На этом рисунке RD - это сигнал чтения, A - сигналы выбора адреса ячейки (так как отдельные биты в шине адреса могут принимать разные значения, то показаны пути перехода как в единичное, так и в нулевое состояние), D - выходная информация, считанная из выбранной ячейки ПЗУ.

4. Выполните операцию сложения в дополнительном коде, представив приведенные слагаемые в двоичном виде:

1) + 45 2) - 45

- 20 + 20

Решение:

1) х 1 = 45 = 0,101101 пр

х 2 = - 20 = 1,010100 пр = 1,101011 обр = 1,101100 доп

+ 1,101100

Ответ: 0,011001 пр = 25 10

2) х 1 = - 45 =1,101101 пр

х 2 = 20 = 0,010100 пр

+ 0,010100

Ответ: 1,100111 доп = 1,011000 обр = 1,011001 пр = - 25 10

Вопрос № 5.

Выполните следующие задания:

1) запишите логическую функцию в СНДФ;

2) минимизируйте логическую функцию с помощью карт Карно;