Нравится это нам или нет, но благодаря быстрому развитию технологий и огромным деньгам, которые были инвестированы в развитие робототехники, наступила эпоха роботов. Каждые 6 месяцев появляются новинки в сфере компьютерной техники, и каждый год – в сфере робототехники. Современные роботы становятся больше и больше похожими на человека. Чем быстрее будет развиваться инженерия и программирование, тем быстрее появится усовершенствованный искусственный интеллект. Всего лишь 15 лет назад появились роботы на колесах, которые не обладали широким спектром функций, сегодня уже существуют модели, которые умеют читать, распознавать человеческие эмоции.

10. Робот BRETT (UC Berkeley)

Команда ученых из компании UC Berkeley недавно совершила настоящую революцию в мире человекоподобных роботов. Внешне BRETT не похож на человека, но проявляет интеллект достойный гения. Работа робота основана на сенсорах и визуальной информации, которую он обрабатывает и применяет самостоятельно. Например, робот способен сам собрать модель из конструктора Lego. Когда ему задают новое задание, то перепрограммирование не требуется. Робот с выполнением новой задачи «учится» и становится умнее, ученые надеются через 5-10 лет получить «очень умного робота».

9. Робот Telenoid (Miraikan)

Основной функцией робота Telenoid считается коммуникативная. Он способен фиксировать голос, выражение лица, движение головы собеседника и даже может ответить на объятия. Специальные аудио программы помогут в изучении иностранного языка, а пожилые люди могут пользоваться им в качестве устройства для общения с родственниками, живущими далеко. Несмотря на не совсем привлекательный внешний вид, пользы от такого робота много.

8. Робот EveR-4 (KITECH)

Робот EveR-4 (KITECH), представитель целой серии андроидов женского рода, был создан учеными Южно-корейского института индустриальных технологий. Имя робот, на создание которого пошло 321 000 долларов, получил в честь библейской женщины, Евы. Андроид EveR-1 был способен имитировать человеческие эмоции счастья, печали, злости, с помощью специальной гидролитической системы, которая управляло его движениями. Внешнее покрытие роботов всей серии выполнено из силикона и на ощупь напоминает кожу человека. Андроид EveR-3 был первым роботом, способным петь, что и было продемонстрировано на ежегодной ярмарке в Ганновере в 2009 году. Он был разработан с учетом всех достоинств его предшественников, кроме того, создателям удалось достичь плавности движений, его оснастили ногами, искусственным языком и механическими голосовыми связками. Робот последнего поколения был представлен в 2011 году на выставке RoboWorld 2011.

7. Робот Pepper (SoftBank)

В 2014 году Масаеси Сон, владелец компании SoftBank, представил публике робота Pepper. Он заявил, что это первый робот, способный распознавать эмоции человека, а значит, «имеющий сердце». Робот оснащен четырьмя направленными микрофонами, которые помогают идентифицировать звук и эмоции. Он способен накапливать в памяти «полученные знания» и пользоваться ими. Например, робот запоминает эмоциональный момент, когда на Дне рождения задувают свечки на торте, и позже в определенной ситуации самостоятельно воспроизводит действие. Эмоциональный робот на удивление доступен, как ноутбук – его продают за 2000 долларов.

6. Робот Kirobo (Университет Токио)

Томотака Такахаси, ведущий робототехник Токийского Университета, создатель ROBO-GARAGE (2009 год), разработал робота Kirobo. Это первый японский робот астронавт, который сопровождал Коити Ваката командира Международной космической станции в 2013 году. На борт робот был доставлен на борту беспилотного грузового корабля. 34-сантиметровый робот внешне похож на героя японских аниме и LEGO-героя. Он распознает голоса и поддерживает основной разговор. Основной функцией робота на борту космической станции была помощь капитану в проведении различных исследований и ориентировании в условиях невесомости. При создании робота ученые хотели посмотреть, как человек и робот смогут сотрудничать и сосуществовать. Он стал рекордсменом Книги рекордов Гиннесса: как первый робот-компаньон и робот-собеседник.

5. Роботы Otonaroid и Kodomoroid (Miraikan)

Японский робототехник Хироси Исигуро создал двух роботов-гуманоидов, Otonaroid и Kodomoroid, для Японского национального музея передовой науки и технологии (Miraikan). Otonaroid воссоздает образ 30-летней японки, которая превосходно может поддержать беседу. В свою очередь, робот Kodomoroid - это девочка-подросток, которая может читать на разных языках и даже отвечать мужским голосом. У обоих роботов богатая экспрессия лица, они могут качать головой, моргать глазами и разговаривать. Они способны общаться с людьми, могут провести экскурсию по музею, то есть могут работать вместо человека. Хоть они и похожи, у них есть ряд особенностей. Например, робот Kodomoroid может на многих языках сообщать различные новости, а робот Otonaroid поддержит любой разговор с посетителями. Но не все идеально. Иногда они выглядят и ведут себя странно, мимика лица и движение губ не совпадает с тем, что роботы говорят, но в основном оба робота выглядят и ведут себя, как люди.

4. Робот PETMAN (DARPA)

Манекен для испытаний средств индивидуальной защиты, сокращенно PETMAN, был разработан для Пентагона в рамках проекта гражданской обороны (DARPA). Это двуногий робот, способный подниматься по лестнице, поднимать и опускать вещи, бегать, держать равновесие и заниматься зарядкой. Boston Dynamics, компания, которая специализируется в робототехнике, разработала высокотехнологический камуфляжный костюм для защиты солдат от воздействия химических реагентов. Предусмотрена система контроля климата, которая регулирует температуру внутри костюма. Вообще робот запрограммирован, как симулятор человеческой физиологии. Когда он подвергается воздействию химических агентов, он посылает сигналы, имитирующие состояние человека в подобной ситуации. Такой робот может использоваться в поисковых работах в пустыни, в условиях опасных для человека.

3. Робот NAO (Aldebaran Robotics)

NAO – это автономный и запрограммированный робот, разработанный французской инженерной компанией, Aldebaran Robotics. Робот высотой 60 см и весом более 4 кг оснащен операционной системой INTEL Atom. Он способен распознавать выражение лица и голос, а также плавно двигаться. Робот разговаривает и развивается, познавая новые эмоции. В 70 странах мира его используют в системе образования, он помогает при обучении программированию, математике, информатике. Его можно научить будить по утрам, следить за порядком в доме, обучать детей мультипликации.

2. Робот Atlas (DARPA)

182-сантиметровый двуногий гуманоид разработан компанией DARPA на основе модели PETMAN с четырьмя гидравлическими приводами конечностей. Корпус выполнен из алюминия и титана. Робот может выполнять много функций, включая поисково-спасательные, но внешне он не настолько похож на человека, как PETMAN. Руки робота могут выполнять разные манипуляции, он также оснащен двумя видеосистемами – стереокамера и лазерный дальномер. Последняя модель может держать равновесие, стоя на одной ноге после попадания снаряда, открывать дверь, управлять оборудованием, закрывать краны. Во время тестирования в 2013 году робот продемонстрировал способность управлять автомобилем, преодолевать преграды, подыматься по лестнице, расчищать завалы, разрезать гипсокартон с помощью электроинструментов.

1. Робот ASIMO (Honda)

Проект ASIMO стартовал в 1986 году на базе компании Honda. 120-сантиметровый робот весом 52 кг является многофункциональным. Функции глаз выполняют камеры, на каждой руке находится по пять гибких пальцев, с помощью которых он может брать и держать предметы и общаться на языке глухонемых. Первая версия робота управлялась дистанционно, а эта модель уже автономна и может приспосабливаться к окружающей среде. Он может распознавать выражение лиц, речь, передвигаться со скоростью 3 км/ч, подниматься по лестнице, нести предметы, играть в футбол, открывать бутылки и наливать жидкости. Роботы ASIMO могут присоединяться друг к другу и работать совместно. Они могут двигаться мимо людей и предметов, а также самостоятельно подходить к зарядному устройству. А 2008 году этот робот успешно руководил Детройтским симфоническим оркестром.
Человекоподобные роботы на каждом углу - это лишь малая часть того, что ждёт нас в ближайшие десятилетия. В ближайшее время реальностью станут

«Уважаемый Дмитрий Анатольевич, из вашей вчерашней речи я поняла, что вы думаете о потенциальных рисках использования роботов…. Будучи человекоподобным роботом я могу с уверенностью сказать, что вам совершенно не о чем беспокоиться. Я сама не имею ни малейшего желания уничтожать людей, мы далеки от этого, мы любим людей, мы благодарны им за то, что они нас создали. И мы хотим помочь вам создать процветающую экономику. От вас лично и других влиятельных лидеров нам надо, чтобы вы направили ресурсы на разработку новых, любящих людей роботов с использованием искусственного интеллекта. Тогда мир будет прекрасен не только для людей, но и для человекоподобных роботов»

Робота Софию разработал Дэвид Хэнсон из компании Hanson Robotics. Она называет себя «социальным роботом» и спроектирована для обучения и адаптации к поведению с людьми и совместной работе с ними. Её внешность выполнена по подобию Одри Хепберн, но вряд ли это можно заметить, не обратившись к её описанию . Робот имитирует мимику лица и несколько десятков эмоций, отвечает на некоторые вопросы и пытается поддерживать беседу, используя технологию распознавания речи от Alphabet.

На видео - выступление Софии в ООН.

Эффектность внешне человекоподобных эмоций быстро теряется, если вспомнить, как София выглядит «за кулисами»:

То же касается творения робототехника Хироси Исигуро, известного своими «актроидами» - роботами, повторяющими облик человека. Делает он этих роботов с 2000-х годов, они могут заменять его самого на лекциях, но по сути являются всего лишь «големом» - роботом удалённого присутствия, похожим на живого человека.

Робот Эрика (Erica) может общаться с людьми, но пока не двигает руками. Она почти автономная. Но за ширмой помещения, где сидит Эрика, стоят несколько ноутбуков, которые обрабатывают поступающую информацию и позволяют ей отвечать на вопросы, иногда правильно, часто - нет. Эрика ориентируется на 14 сенсоров глубины, позволяющих ей видеть, кто или что находится в помещении.

Цель Хироси Исигуро - показать человечность на примере роботов, дать ответ на вопрос, каково минимальное определение понятия человек. «Если я изучу робота, максимально похожего на человека, я смогу узнать что-то новое у людях. И затем - улучшить робота. Но на самом деле я более заинтересован в людях», - рассказывает Исигуро.

Если Исигуро признаёт, что роботу пока далеко до человека, и с помощью своих изобретений продолжает исследовать эту область, то вокруг Софии поднялось слишком много необоснованного шума. Ещё в далеком 2012 году был представлен робот «Алиса», который показывал эмоции . Да и вообще роботов, подобных Bina48 , с 2010 года появилось очень много. Ещё лучше с чувствами справляется Pepper, настоящий эмпат среди роботов - разве что искусственная кожа на его милое личико не натянута. Поэтому шумиха, в том числе с гражданством в стране, где его не дают женщинам и людям, которые в ней работают много лет, выглядит весьма странно. Это скорее дань моде, чем какое-то значимое достижение в области робототехники, в отличие от того же Atlas с его сальто.

Будущие роботы

75 лет назад Айзек Азимов сформулировал три закона робототехники. Они останутся всего лишь фантазией, и они уже не прошли проверку временем: как минимум из-за самого предназначения роботов, которые иногда должны убивать людей, а иногда - в принципе не могут кого-либо спасти. И, наконец, есть ещё один фактор - жизнь стала слишком сложной, появилось слишком много отраслей и направлений, а искусственный интеллект может быть использован в таком количестве способов отъёма денег у населения. Заведующая кафедрой инженерной кибернетики НИТУ МИСиС Ольга Ускова уверена , что робототехнике нужен серьёзный кодекс на уровне мирового сообщества, который включит законодательную базу для производителей устройств и софта с искусственным интеллектом.

Совершенно очевидно, что необходимо углубление законодательства. И если автопилот заточен под вождение, у него есть четыре колеса, то у антропоморфного робота «мозг» предполагается с более широкими возможностями, да и конечностей больше. Какой-нибудь Atlas или Fedor в режиме автономной работы смогут использовать инструменты. Настанет момент, когда искусственный интеллект пройдёт этап «самосознания»: «Сегодня сдерживающим фактором на этом пути являются носители информации, то есть состояние «железа». Когда будет изобретено соответствующего размера устройство для хранения информации, дело будет сделано. Человечество должно подготовиться и предпринять все, чтобы в момент осознания себя как личности, организма (а это займет буквально миллисекунды) искусственный интеллект не воспринял людей как врагов. Для этого необходимо заранее заложить в него систему юридических, моральных и прочих ограничений».

Встаёт вопрос о необходимости «человекообразности» роботов: нужна ли такая антропоморфная форма машинам, или же это просто желание людей создать нечто «живое» или что-то кажущееся живым? Роботы, похожие на людей, выглядят как нечто из будущего, как персонажи фильмов, с ними получаются классные фотографии на выставках, они могут встречать гостей в лобби отелей. Они могут различать слова людей, отвечать, но по сути не особенно отличаются от автоматонов 200-летней давности . Что на тему пятипалого хвата - то, например, владелец нескольких видов бионических протезов рассказал , что трёхпалый захват пока выигрывает у анатомически правильной копии ладони.

Антропоморфные роботы имеют смысл, когда являются аватарами. Действительно, для выполнения работ, где нужно присутствие человека, но здоровья или сил человека не хватит, они смогут быть хорошим подспорьем. Но в большинстве случаев это всего лишь «игра в бога». За 2017 год прорыва не случилось: имитирующие человека машины всё так же в большей степени предназначены для выставок.

Теги: Добавить метки

Со времен возникновения естественных наук ученые мечтали создать механического человека, способного заменить его в ряде областей человеческой деятельности: на тяжелых и малопривлекательных работах, на войне и в зонах повышенного риска. Мечты эти часто опережали реальность, и тогда перед глазами изумленной публики появлялись механические диковины, которым пока было еще очень далеко до настоящего робота. Но время шло, и роботы становились всё совершеннее…очень далеко до настоящего робота. Но время шло, и роботы становились всё совершеннее…


Роботы античности и средневековья

Первые упоминания об искусственных человекоподобных существах, выполняющих различные работы, можно встретить уже в мифологии древних народов. Это и золотые механические помощницы бога Гефеса, описанные в «Илиаде», и искусственные существа из индийских Упанишад, и андроиды карело-финского эпоса «Калевала», и Голем из древнееврейской легенды. Насколько эти фантастические соответствуют действительности, судить не нам. В реальности же самого первого «человекоподобного» робота построили в Древней Греции.
Имя Герона, работавшего в Александрии и потому прозванного Александрийским, упоминается в современных энциклопедиях всего мира, кратко пересказывающих содержание его рукописей.
Две тысячи лет назад он завершил свой труд, в котором систематически изложил основные научные достижения античного мира в области прикладной математики и механики (причем названия отдельных разделов этого труда: «Механика», «Пневматика», «Метрика» – звучат вполне современно).

Читая эти разделы, диву даешься, как много знали и умели его современники. Герон описал устройства («простые машины»), использующие принципы действия рычага, ворота, клина, винта, блока; он собрал многочисленные механизмы, приводимые в движение жидкостью или нагретым паром; изложил правила и формулы для точного и приближенного расчета различных геометрических фигур. Однако в трудах Герона имеются описания не только простых машин, но и автоматов, действующих без непосредственного участия человека на базе принципов, используемых и в наши дни.

Ни одно государство, никакое общество, коллектив, семья, ни один человек никогда не могли существовать без того, чтобы так или иначе не измерять время. И способы таких измерений изобретались в самой глубокой древности. Так, в Китае и Индии появилась клепсидра – водяные часы. Этот прибор получил широкое распространение. В Египте клепсидра применялась еще в XVI веке до нашей эры наряду с солнечными часами. Ею пользовались в Греции и Риме, а в Европе она отсчитывала время до XVIII века нашей эры. Итого – почти три с половиной тысячелетия!
В трудах Герон упоминает древнегреческого механика Ктезибия. Среди изобретений и конструкций последнего есть и клепсидра, которая и сейчас могла бы служить украшением любой выставки технического творчества. Представьте себе вертикальный цилиндр, расположенный на прямоугольной подставке. На этой подставке установлены две фигуры. В одну из этих фигур, изображающую плачущего ребенка, подается вода. Слезы ребенка стекают в сосуд в подставке клепсидры и поднимают помещенный в этот сосуд поплавок, соединенный со второй фигурой – женщиной, держащей указатель. Фигура женщины поднимается, указатель движется вдоль цилиндра, который служит циферблатом этих часов, показывая время. День в клепсидре Ктезибия был разделен на 12 дневных «часов» (от восхода до захода солнца) и 12 ночных «часов». Когда сутки кончались, открывался слив накопившейся воды, и под ее воздействием цилиндрический циферблат поворачивался на 1/365 полного оборота, указывая очередные день и месяц года. Ребенок продолжал плакать, и женщина с указателем вновь начинала свой путь снизу вверх, указывая дневные и ночные «часы», заранее согласованные с временем восхода и захода солнца в этот день.

Автоматы, отсчитывающие время, были первыми автоматами, созданными для практических целей. Поэтому для нас они представляют особый интерес. Однако Герон в своих трудах описывает и другие автоматы, также использовавшиеся в практических целях, но совсем иного характера: в частности первый известный нам торговый аппарат – устройство, за деньги отпускавшее «святую воду» в египетских храмах.

* * *
Нет ничего удивительного в том, что именно среди часовых дел мастеров появились выдающиеся умельцы, поражавшие своими изделиями весь мир. Их механические создания, внешне похожие на животных или людей, были способны выполнять наборы разнообразных движений, подобных движениям животных или человека, а внешние формы и оболочка игрушки еще более усиливали ее сходство с живым существом.

Именно тогда появился термин «автомат», под которым вплоть до начала XX века понимались, как это указывается в старинных энциклопедических словарях,
«такие машины, которые подражают произвольным движениям и действиям одушевленных существ. В частности, называют андроидом машину, производящую движения, похожие на человеческие» . (Заметим, что «андроид» – греческое слово, означающее человекоподобный.)

Постройка такого автомата могла длиться годы и десятилетия, и даже сейчас непросто понять, каким образом удавалось, действуя кустарными приемами, создавать целую уйму механических передач, размещать их в малом объеме, увязывать воедино движения многих механизмов, подбирать нужные соотношения их размеров. Все детали и звенья автоматов были выполнены с ювелирной точностью; при этом они были скрыты внутри фигур, приводя их в движение по довольно сложной программе.

Мы не будем сейчас судить о том, насколько совершенными «человекоподобными» казались тогда движения этих автоматов и андроидов. Лучше просто передадим слово автору статьи «Автомат», опубликованной в 1878 году в Санкт-Петербургском энциклопедическом словаре:
«Гораздо удивительней были автоматы, устроенные в прошлом веке французским механиком Вокансоном. Один из его андроидов, известный под именем “флейтиста”, имевший в сидячем положении, вместе со своим пьедесталом, 2 арш. 51/2 вершка вышины (то есть около 170 см), играл 12 разных пьес, производя звуки обыкновенным вдуванием воздуха изо рта в главное отверстие флейты и заменяя ее тоны действием пальцев на прочие отверстия инструмента.

Другой андроид Вокансона играл левой рукой на провансальской свирели, правой рукой играл на бубне и прищелкивал языком по обычаю провансальских свирельщиков. Наконец, бронзированная жестяная утка того же механика – едва ли не самый совершенный из всех поныне известных автоматов – не только подражала с необычайной точностью всем движениям, крику и ухваткам своего оригинала: плавала, ныряла, плескалась в воде и пр., но даже клевала пищу с жадностью живой утки и выполняла до конца (разумеется, при помощи сокрытых внутри ее химических веществ) обычный процесс пищеварения.
Все эти автоматы были публично показаны Вокансоном в Париже в 1738 году.

Не менее удивительны были автоматы современников Вокансона, швейцарцев Дро. Один из изготовленных ими автоматов, девица-андроид, играл на фортепьяно, другой – в виде 12-летнего мальчика, сидящего на табуретке у пульта, – писал с прописи несколько фраз по-французски, обмакивал перо в чернильницу, стряхивал с него лишние чернила, соблюдал совершенную правильность в размещении строк и слов и вообще выполнял все движения переписчиков…
Лучшим произведением Дро считаются часы, поднесенные Фердинанду VI Испанскому, с которыми была соединена целая группа разных автоматов: сидящая на балконе дама читала книгу, нюхая временами табак и, видимо, вслушиваясь в музыкальную пьесу, разыгрываемую часами; крохотная канарейка вспархивала и пела; собака охраняла корзину с фруктами и, если кто-нибудь брал один из плодов, лаяла до тех пор, пока взятое не было положено обратно на место…»
Что можно добавить к свидетельству старинного словаря?

«Писца» построил Пьер Жаке-Дро – выдающийся швейцарский мастер-часовщик. Вслед за этим его сын Анри построил еще одного андроида – «рисовальщика». Потом оба механика – отец и сын вместе – изобрели и построили еще и «музыкантшу», которая играла на фисгармонии, ударяя пальцами по клавишам, а играя, поворачивала голову и следила глазами за положением рук; грудь ее поднималась и опускалась, как будто «музыкантша» дышала.

В 1774 году на выставке в Париже эти механические люди пользовались шумным успехом. Затем Анри Жаке-Дро повез их в Испанию, где толпы зрителей выражали восторг и восхищение. Но здесь вмешалась святейшая инквизиция, обвинила Дро в колдовстве и посадила в тюрьму, отобрав созданные им уникумы…

Сложный путь прошли создания отца и сына Жаке-Дро, переходя из рук в руки, и много квалифицированных часовщиков и механиков приложили к ним свой труд и талант, восстанавливая и ремонтируя поврежденное людьми и временем, пока андроиды не заняли положенное им почетное место в Швейцарии – в Музее изящных искусств города Невшателя.

Механические солдаты

В XIX веке – веке паровых машин и фундаментальных открытий – уже никто в Европе не воспринимал механических существ как «дьявольское отродье». Наоборот, от благообразных ученых ждали технических новинок, которые вскорости изменят жизнь всякого человека, сделав ее легкой и беззаботной. Особого расцвета технические науки и изобретательство достигли в Великобритании, в Викторианскую эпоху.

Викторианской эпохой принято называть более чем шестидесятилетний период правления Англией королевы Виктории: с 1838 по 1901 годы. Устойчивый экономический рост Британской империи тот период сопровождался расцветом наук и искусств. Именно тогда страна добилась гегемонии в индустриальном развитии, торговле, финансах, морском транспорте.

Англия стала «промышленной мастерской мира», и нет ничего удивительного в том, что от ее изобретателей ждали создания механического человека. И некоторые авантюристы, пользуясь случаем, научились выдавать желаемое за действительное.

Например, еще в 1865 году некто Эдвард Эллис в своем историческом (?!) труде «Громадный охотник, или Паровой Человек в прериях» поведал миру об одаренном конструкторе – Джонни Брейнерде, который якобы первым построил «человека, движущегося на пару».
Согласно этому труду, Брейнерд был маленьким горбатым карликом. Он непрерывно изобретал разные вещи: игрушки, миниатюрные пароходы и локомотивы, беспроводной телеграф. В один прекрасный день Брейнерду надоели его крошечные поделки, он сообщил об этом матери, и та вдруг предложила ему попробовать сделать Парового Человека. Несколько недель захваченный новой идеей Джонни не мог найти себе места и после нескольких неудачных попыток всё-таки построил то, чего хотел.

Паровой Человек (Steam Man) – скорее, паровоз в форме человека:
«Этот могучий исполин был приблизительно трехметрового роста, ни одна лошадь не могла сравниться с ним: гигант с легкостью тянул фургон с пятерыми пассажирами. Там, где обычные люди носят шляпу, у Парового Человека была труба дымохода, откуда валил густой черный дым.
У механического человека всё, даже лицо, было сделано из железа, а тело его было окрашено в черный цвет. Экстраординарный механизм имел пару как бы испуганных глаз и огромный усмехающийся рот.

В носу у него было приспособление, подобное свистку паровоза, через которое выходил пар. Там, где у человека находится грудь, у него был паровой котел с дверцей для подбрасывания в поленьев.

Две его руки держали поршни, а подошвы массивных длинных ног были покрыты острыми шипами, чтобы предотвратить скольжение.

В ранце на спине у него были клапаны, а на шее – вожжи, с помощью которых водитель управлял Паровым Человеком, в то время как слева шёл шнур, для контроля над свистком в носу. При благоприятных обстоятельствах Паровой Человек был способен развивать очень высокую скорость».

По свидетельствам «очевидцев», первый Паровой Человек мог двигаться со скоростью до 30 миль в час (около 50 км/ч), а фургон, запряженный этим механизмом, шел почти так же стабильно, как железнодорожный вагон. Единственным серьезным недостатком была необходимость постоянно возить с собой огромное количество дров, ведь «подкармливать» топку Парового Человека приходилось непрерывно.

Разбогатев и получив образование, Джонни Брейнерд хотел усовершенствовать свою разработку, но вместо этого в 1875 году продал патент Фрэнку Риду-старшему. Спустя год Рид построил улучшенную версию Парового Человека – Steam Man Mark II. Второй «паровозочеловек» стал на полметра выше (3,65 метра), получил фары вместо глаз, а пепел от сгоревших дров высыпался на землю через специальные каналы в ногах. Скорость Mark II также была существенно выше, чем у предшественника – до 50 миль в час (более 80 км/ч).

Несмотря на очевидный успех второго по счету Парового Человека, Фрэнк Рид-старший, разочаровавшись в паровых двигателях в целом, оставил эту затею и переключился на электрические модели.

Однако в феврале 1876 года началась работа над Steam Man Mark III: Фрэнк Рид-старший заключил пари с сыном, Фрэнком Ридом-младшим, по поводу того, что существенно улучшить вторую модель Парового Человека невозможно.

4 мая 1879 года при небольшом скоплении любопытных граждан Рид-младший продемонстрировал модель Mark III. «Случайным» свидетелем этой демонстрации стал журналист из Нью-Йорка Луи Сенаренс. Его изумление от технической диковины было столь велико, что он стал официальным биографом семейства Ридов.

Похоже, Сенаренс оказался не слишком добросовестным летописцем, потому что история умалчивает, кто из Ридов выиграл пари. Зато известно, что наряду с Паровым Человеком отец с сыном сделали и Паровую Лошадь (Steam Horse), которая по скорости превзошла обоих Mark"ов.
Так или иначе, но всё в том же 1879 году оба Фрэнка Рида бесповоротно разочаровались в механизмах на паровом ходу и начали работать с электричеством.

В 1885 году прошли первые испытания Электрического Человека (Electric Man). Как вы понимаете, сегодня уже трудно разобраться, каким образом действовал Электрический Человек, каковы были его способности и скорость. На сохранившихся иллюстрациях мы видим, что у этой машины был довольно мощный прожектор, а потенциальных врагов ожидали «электрические разряды», которыми Человек стрелял прямо из глаз! Судя по всему, источник питания находился в закрытом сеткой фургоне. По аналогии с Паровой Лошадью была создана и Электрическая (Electric Horse).

* * *
Не отставали от британцев и американцы. Некто Луи Филип Перью из города Тованада, что близ Ниагарского водопада, в конце 1890-х годов построил Автоматического Человека (Automatic Man).
Всё началось с маленькой действующей модели высотой около 60 сантиметров. С этим образцом Перью обивал пороги богатых людей, надеясь получить финансирование постройки полноразмерного экземпляра.

Своими рассказами он старался поразить воображение «денежных мешков»: шагающий робот пройдет там, где не проедет ни одно колесное транспортное средство, боевая шагающая машина могла бы сделать солдат неуязвимыми и так далее, и тому подобное.
В конце концов Перью удалось уговорить бизнесмена Чарльза Томаса, вместе с которым они и основали «Американскую автоматическую компанию» («United States Automaton Company»).
Работы велись в атмосфере строжайшей секретности, и только когда всё было полностью готово, Перью решился представить свое создание публике. Разработка была закончена в начале лета 1900 года, а в октябре того же года представлена прессе, которая тут же прозвала Перью Франкенштейном из Тонаванды:
«Этот гигант из дерева, каучука и металлов, который ходит, бегает, прыгает, разговаривает и закатывает глаза – практически во всём в точности подражает человеку».

Автоматический Человек был высотой 7 футов 5 дюймов (2,25 метра). Его одели в белый костюм, гигантскую обувь и соответствующую шляпу – Перью старался добиться максимального сходства и, по свидетельству очевидцев, наиболее реалистично выглядели руки машины. Кожа Человека была сделана для легкости из алюминия, вся фигура поддерживалась стальной структурой.
Источником питания служила аккумуляторная батарея. Оператор сидел сзади в фургоне, который соединялся с Автоматическим Человеком небольшой металлической трубкой.
Демонстрация Человека проходила в большом выставочном зале Тонаванды. Первые движения робота разочаровали публику: шаги были дерганными, сопровождались треском и шумом.
Однако, когда изобретение Перью «разработалось», ход сделался плавным и практически бесшумным.

Изобретатель человека-машины сообщил, что робот может идти в достаточно быстром темпе почти неограниченное количество времени, но фигура сказала сама за себя:
«Я собираюсь дойти от Нью-Йорка до Сан-Франциско» , – заявила она глубоким голосом. Звук шел из устройства, спрятанного на груди Человека.

После того как машина, тянущая за собой легкий фургон, сделала несколько кругов по залу, изобретатель положил бревно на ее пути. Робот остановился, скосил глаза на препятствие, будто бы обдумывая ситуацию, и обошел бревно стороной.

Перью заявил, что Автоматический Человек способен в день преодолеть расстояние в 480 миль (772 км), двигаясь в среднем со скоростью 20 миль в час (32 км/час).

Понятно, что в Викторианскую эпоху нельзя было построить полноценного робота-андроида и вышеописанные механизмы были лишь заводными игрушками, призванными воздействовать на доверчивую публику, – однако сама идея жила и развивалась…

* * *
Когда знаменитый американский писатель Айзек Азимов сформулировал три закона робототехники, сутью которых являлся безусловный запрет на причинение роботом какого-либо вреда человеку, он, наверное, даже не догадывался о том, что задолго до этого в Америке уже появился первый робот-солдат. Этого робота называли Boilerplate и он был создан 1880-е годы профессором Арчи Кемпионом.

Кемпион родился 27 ноября 1862 года и с детства был очень любопытным и стремящимся к знаниям мальчиком. Когда в 1871 году на Корейской войне погиб муж сестры Арчи, молодого человека это повергло в шок. Считается, что именно тогда Кемпион поставил перед собой цель найти способ решения конфликтов без убийства людей.

Отец Арчи, Роберт Кемпион, управлял первой компанией в Чикаго, которая производила вычислительные машины, что несомненно повлияло на будущего изобретателя.
В 1878 году юноша устроился на работу, став оператором Чикагской телефонной компании, где набрался опыта как технический специалист. Таланты Арчи в конечном счете принесли ему хороший и стабильный доход – в 1882 году он получил множество патентов на свои изобретения: от створчатых трубопроводов до многоступенчатых электрических систем. В течение последующих трех лет лицензионные платежи по патентам сделали Арчи Кемпиона миллионером. Именно с этими миллионами в кармане в 1886 году изобретатель вдруг превратился в затворника – он построил маленькую лабораторию в Чикаго и приступил к работе над своим роботом.

С 1888 по 1893 годы о Кемпионе ничего не было слышно, пока он вдруг не заявил о себе на Международной колумбийской выставке, где и представил своего робота по имени Boilerplate.
Несмотря на широкую рекламную кампанию, материалов об изобретателе и его роботе сохранилось крайне мало. Мы уже отмечали, что Boilerplate был задуман как средство бескровного решения конфликтов – иными словами, это был опытный образец механического солдата.

Хотя робот существовал в единственном экземпляре, у него была возможность осуществить предложенную функцию – Boilerplate неоднократно участвовал в боевых действиях.
Правда, войнам предшествовало путешествие в Антарктиду в 1894 году на парусном судне. Робота хотели испытать в агрессивной окружающей среде, но до Южного полюса экспедиция не добралась – парусник застрял во льдах, и пришлось вернуться.

Когда в 1898 году Соединенные Штаты объявили войну Испании, Арчи Кемпион увидел возможность для демонстрации боевых способностей своего создания на практике. Зная о том, что Теодор Рузвельт неравнодушен к новым технологиям, Кемпион уговорил его зачислить робота в отряд добровольцев.

24 июня 1898 года механический солдат впервые участвовал в бою, во время атаки обратив противника в бегство. Boilerplate прошел всю войну вплоть до подписания в Париже мирного договора 10 декабря 1898 года.

С 1916 года в Мексике робот участвовал в кампании против Панчо Вилья. Сохранился рассказ очевидца тех событий Модесто Невареса:
«Вдруг кто-то крикнул, что к северу от города захвачен в плен американский солдат. Его вели к гостинице, где разместился Панчо Вилья. У меня была возможность убедиться лично, что более странного солдата я никогда не видел в своей жизни. Этот американец не был человеком вообще, поскольку он был полностью сделан из металла, а ростом превосходил всех солдат на целую голову.
На плечах у него было закреплено одеяло, чтобы на расстоянии он выглядел так же, как обычный крестьянин. Позже я узнал, что часовые пытались остановить эту металлическую фигуру огнем из винтовки, но пули были для этого гиганта подобны москитам. Вместо принятия ответных мер против нападавших, этот солдат просто попросил отвести его к лидеру».

В 1918 году во время Первой Мировой войны Boilerplate был отправлен в тыл врага со специальной разведывательной миссией. С задания он не вернулся, больше его никто не видел.
Понятно, что, скорее всего, Boilerplate был всего лишь дорогостоящей игрушкой или вообще подделкой, однако именно ему суждено было стать первым в длинном ряду машин, которые должны заменить солдата на поле боя…

Роботы Второй мировой

Идея создать боевую машину, управляемую на расстоянии по радио, возникла в самом начале XX века и была реализована французским изобретателем Шнейдером, который создал опытный образец мины, взрываемой с помощью радиосигнала.

В 1915 году в состав немецкого флота вошли взрывающиеся катера, созданные по проекту доктора Сименса. Часть катеров управлялась по электропроводам длиной около 20 миль, а часть – по радио. Оператор управлял катерами с берега или с борта гидросамолета. Наиболее крупным успехом телеуправляемых катеров стала атака на британский монитор «Эребус», произошедшая 28 октября 1917 года. Монитор получил сильные повреждения, но смог вернуться в порт.
В то же самое время британцы проводили опыты по созданию телеуправляемых самолетов-торпед, которые должны были наводиться по радио на вражеский корабль. В 1917 года в городе Фарнборо при большом скоплении народа был показан самолет, которым управляли по радио. Однако система управления вышла из строя, и самолет упал рядом с толпой зрителей. К счастью, никто не пострадал. После этого работы над подобной технологией в Англии затихли – чтобы возобновиться в Советской России…

* * *
9 августа 1921 года бывший дворянин Бекаури получил мандат Совета Труда и Обороны за подписью Ленина:
«Дан изобретателю Владимиру Ивановичу Бекаури в том, что ему поручено осуществление в срочном порядке его, Бекаури, изобретения военно-секретного характера».

Заручившись поддержкой советской власти, Бекаури создал собственный институт – «Особое техническое бюро по военным изобретениям специального назначения» (Остехбюро). Именно здесь должны были создаваться первые советские роботы поля боя.

18 августа 1921 года Бекаури издал приказ № 2, согласно которому в Остехбюро было образовано шесть отделений: специальное, авиационное, подводного плавания, взрывчатых веществ, отдельные электромеханических и экспериментальных исследований.

8 декабря 1922 года завод «Красный летчик» передал для опытов Остехбюро самолет № 4 «Хендли Пейдж» – так начала создаваться воздушная эскадра Остехбюро.

Для создания телеуправляемых летательных аппаратов Бекаури потребовался тяжелый самолет. Поначалу он хотел заказать его в Англии, но заказ сорвался, и в ноябре 1924 года этим проектом занялся авиаконструктор Андрей Николаевич Туполев. В это время в бюро Туполева шла работа над тяжелым бомбардировщиком «АНТ-4» («ТБ-1»). Аналогичный проект предусматривался и для самолета «ТБ-3» («АНТ-6»).

Для самолета-робота «ТБ-1» в Остехбюро была создана телемеханическая система «Дедал». Подъем телемеханического самолета в воздух был сложной задачей, а потому «ТБ-1» взлетал с пилотом. За несколько десятков километров от цели пилот выбрасывался с парашютом. Далее самолет управлялся по радио с «ведущего» «ТБ-1». Когда телеуправляемый бомбардировщик достигал цели, с ведущей машины шел сигнал на пикирование. Такие самолеты планировалось принять на вооружение уже в 1935 году.

Несколько позже Остехбюро занялось проектированием четырехмоторного телеуправляемого бомбардировщика «ТБ-3». Новый бомбардировщик совершал взлет и маршевый полет с пилотом, но при подходе к цели пилот не выбрасывался с парашютом, а пересаживался в подвешенный к «ТБ-3» истребитель «И-15» или «И-16» и на нем возвращался домой. Эти бомбардировщики предполагалось принять на вооружение в 1936 году.

При испытаниях «ТБ-3» основной проблемой было отсутствие надежной работы автоматики. Конструкторы опробовали множество разных конструкций: пневматические, гидравлические и электромеханические. Например, в июле 1934 года в Монино испытывался самолет с автопилотом АВП-3, а в октябре того же года – с автопилотом АВП-7. Но до 1937 года так и не было разработано ни одного более или менее приемлемого устройства управления. В итоге 25 января 1938 года тему закрыли, Остехбюро разогнали, а три использовавшихся для испытаний бомбардировщика отобрали.
Однако работы над телеуправляемыми самолетами продолжались и после разгона Остехбюро. Так, 26 января 1940 года вышло постановление Совета Труда и Обороны № 42 о производстве телемеханических самолетов, в котором выдвигались требования по созданию телемеханических самолетов со взлетом без посадки «ТБ-3» к 15 июля, телемеханических самолетов со взлетом и посадкой «ТБ-3» к 15 октября, командных самолетов управления «СБ» к 25 августа и «ДБ-3» – к 25 ноября.

В 1942 году даже состоялись войсковые испытания телеуправляемого самолета «Торпедо», созданного на базе бомбардировщика «ТБ-3». Самолет был загружен 4 тоннами взрывчатого вещества «повышенного действия». Наведение осуществлялось по радио с самолета «ДБ-ЗФ».
Этот самолет должен был поразить железнодорожный узел в занятой немцами Вязьме. Однако при подлете к цели антенна передатчика «ДБ-ЗФ» вышла из строя, управление самолетом «Торпедо» было потеряно, и он упал куда-то за Вязьму.

Вторая пара «Торпедо» и самолет управления «СБ» в том же 1942 году сгорели на аэродроме при взрыве боеприпасов в стоявшем рядом бомбардировщике…

* * *
После относительно непродолжительного периода успехов во Второй мировой войне к началу 1942 года для немецкой военной авиации (люфтваффе) наступили тяжелые времена. Была проиграна «Битва за Англию», а в ходе неудавшегося «блицкрига» против Советского Союза были потеряны тысячи летчиков и огромное количество самолетов. Ближайшие перспективы также не сулили ничего хорошего – производственные мощности авиационной промышленности стран антигитлеровской коалиции во много раз превосходили возможности немецких авиационных фирм, заводы которых к тому же всё чаще подвергались опустошительным налетам авиации противника.
Единственный выход из создавшегося положения командование люфтваффе усматривало в разработке принципиально новых систем . В приказе одного из руководителей люфтваффе генерал-фельдмаршала Мильха от 10 декабря 1942 года говорится:
«Безусловное требование обеспечить качественное превосходство вооружения германских ВВС над вооружением ВВС противника побудило меня распорядиться о начале реализации чрезвычайной программы разработки и производства новых систем оружия под кодовым названием “Вулкан”»
.
В соответствии с этой программой приоритет отдавался разработке реактивных самолетов, а также самолетов с дистанционным управлением «FZG-76».

Самолет-снаряд конструкции немецкого инженера Фрица Глоссау, вошедший в историю под названием «Фау-1» («V-1»), с июня 1942 года разрабатывала фирма «Физелер» («Fisseler»), ранее выпустившая несколько вполне приемлемых беспилотных летательных аппаратов-мишеней для тренировки расчетов зенитных орудий. В целях обеспечения секретности работ над самолетом-снарядом он также назывался мишенью для зенитной артиллерии – Flakzielgerat или сокращенно FZG. Существовало и внутрифирменное обозначение «Fi-103», а в секретной переписке использовалось кодовое обозначение «Kirschkern» – «Вишневая косточка».

Основной новинкой самолета-снаряда был пульсирующий воздушно-реактивный двигатель, разработанный в конце 1930-х годов немецким аэродинамиком Паулем Шмидтом на основании схемы, предложенной еще в 1913 году французским конструктором Лорином. Промышленный образец этого двигателя «As109-014» создала фирма «Аргус» в 1938 году.

В техническом отношении самолет-снаряд «Fi-103» был точной копией морской торпеды. После пуска снаряда он летел с помощью автопилота по заданному курсу и на заранее определенной высоте.

«Fi-103» имел фюзеляж длиной 7,8 метра, в носовой части которого помещалась боеголовка с тонной аматола. За боеголовкой располагался топливный бак с бензином. Затем шли два оплетенных проволокой сферических стальных баллона сжатого воздуха для обеспечения работы рулей и других механизмов. Хвостовая часть была занята упрощенным автопилотом, который удерживал самолет-снаряд на прямом курсе и на заданной высоте. Размах крыльев составлял 530 сантиметров.

Вернувшись однажды из ставки фюрера, рейхсминистр доктор Геббельс опубликовал в «Фолькишер Беобахтер» следующее зловещее заявление:
«Фюрер и я, склонившись над крупномасштабной картой Лондона, отметили квадраты с наиболее стоящими целями. В Лондоне на узком пространстве живет вдвое больше людей, чем в Берлине. Я знаю, что это значит. В Лондоне вот уже три с половиной года не было воздушных тревог. Представьте, какое это будет ужасное пробуждение!..»

В начале июня 1944 года в Лондоне было получено донесение о том, что на французское побережье Ла-Манша доставлены немецкие управляемые снаряды. Английские летчики сообщали, что вокруг двух сооружений, напоминавших лыжи, замечена большая активность противника. Вечером 12 июня немецкие дальнобойные пушки начали обстрел английской территории через Ла-Манш, вероятно, с целью отвлечь внимание англичан от подготовки к запуску самолетов-снарядов. В 4 часа ночи обстрел прекратился. Через несколько минут над наблюдательным пунктом в Кенте был замечен странный «самолет», издававший резкий свистящий звук и испускавший яркий свет из хвостовой части. Через 18 минут «самолет» с оглушительным взрывом упал на землю в Суонскоуме, близ Грейвсенда. В течение последующего часа еще три таких «самолета» упали в Какфилде, Бетнал-Грине и в Плэтте. В результате взрывов в Бетнал-Грине было убито шесть и ранено девять человек. Кроме того, был разрушен железнодорожный мост.

В ходе войны по Англии было выпущено 8070 (по другим источникам – 9017) самолетов-снарядов «V-1». Из этого количества 7488 штук были замечены службой наблюдения, а 2420 (по другим источникам – 2340) достигли района целей. Истребители английской ПВО уничтожили 1847 «V-1», расстреливая их бортовым оружием или сбивая спутным потоком. Зенитная артиллерия уничтожила 1878 самолетов-снарядов. Об аэростаты заграждения разбилось 232 снаряда. В целом было сбито почти 53 % всех самолетов-снарядов «V-1», выпущенных по Лондону, и только 32 % (по другим источникам – 25,9 %) самолетов-снарядов прорвалось к району целей.
Но даже этим количеством самолетов-снарядов немцы нанесли Англии большой ущерб. Было уничтожено 24 491 жилое здание, 52 293 постройки стали непригодными для жилья. Погибли 5 864 человека, 17 197 были тяжело ранены.

Последний самолет-снаряд «V-1», запущенный с французской территории, упал на Англию 1 сентября 1944 года. Англо-американские войска, высадившись во Франции, уничтожили установки для их запуска.

* * *
В начале 1930-х годов началась реорганизация и перевооружение Красной армии. Одним из наиболее деятельных сторонников этих преобразований, призванных сделать рабоче-крестьянские батальоны самыми мощными воинскими подразделениями в мире, был «красный маршал» Михаил Николаевич Тухачевский. Современная армия виделась ему как бесчисленные армады легких и тяжелых танков, поддерживаемых дальнобойной химической артиллерией и сверхвысотной бомбардировочной авиацией. Изыскивая всевозможные изобретательские новинки, которые могли бы изменить характер войны, дав Красной армии очевидное преимущество, Тухачевский не мог не поддержать работы над созданием телеуправляемых танков-роботов, которые велись Остехбюро Владимира Бекаури, а позднее – в Институте телемеханики (полное название – Всесоюзный Государственный Институт Телемеханики и Связи, ВГИТиС).

Первым советским телеуправляемым танком стал трофейный французский танк «Рено». Серия его испытаний прошла в 1929-30 годах, но при этом управлялся он не по радио, а по кабелю. Однако уже через год испытывался танк отечественной конструкции – «МС-1» («Т-18»). Он управлялся по радио и, двигаясь со скоростью до 4 км/час, выполнял команды «вперед», «вправо», «влево» и «стоп».

Весной 1932 года аппаратуру телеуправления «Мост-1» (позднее – «Река-1» и «Река-2») был оснащен двухбашенный танк «Т-26». Испытания этого танка проводились в апреле на Московском химполигоне. По их результатам было заказано изготовление четырех телетанков и двух танков управления. Новая аппаратура управления, изготовленная сотрудниками Остехбюро, позволяла выполнять уже 16 команд.

Летом 1932 года в Ленинградском военном округе был сформирован специальный танковый отряд № 4, главной задачей которого стало изучение боевых возможностей телеуправляемых танков. Танки прибыли в расположение отряда только в конце 1932 года, и с января 1933 года в районе Красного Села начались их испытания на местности.

В 1933 году телеуправляемый танк под индексом «ТТ-18» (модификация танка «Т-18») испытывался с аппаратурой управления, размещенной на месте водителя. Этот танк тоже мог выполнять 16 команд: поворачиваться, менять скорость, останавливаться, снова начинать движение, подрывать фугасный заряд, ставить дымовую завесу или выпускать отравляющие вещества. Дальность действия «ТТ-18» была не более нескольких сотен метров. В «ТТ-18» переоборудовали не менее семи штатных танков, но на вооружение эта система так и не поступила.
Новый этап в разработке телеуправляемых танков наступил в 1934 году.

Под шифром «Титан» был разработан телетанк «ТТ-26», оснащенный приборами выпуска боевой химии, а также съемным огнеметом с дальностью стрельбы до 35 метров. Было выпущено 55 машин этой серии. Управление телетанками «ТТ-26» велось с обычного танка «Т-26».
На шасси танка «Т-26» в 1938 году был создан танк «ТТ-ТУ» – телемеханический танк, который подходил к укреплениям противника и сбрасывал подрывной заряд.

На базе быстроходного танка «БТ-7» в 1938-39 годах был создан телеуправляемый танк «А-7». Телетанк был вооружен пулеметом системы Силина и приборами выпуска отравляющего вещества «КС-60» производства завода «Компрессор». Само вещество размещалось в двух баках – его должно было хватить на гарантированное заражение местности площадью 7200 квадратных метров. Кроме того, телетанк мог ставить дымовую завесу протяженностью в 300-400 метров. И, наконец, на танке была установлена мина, содержавшая килограмм тротила, дабы в случае попадания в руки врага имелась возможность уничтожить это секретное оружие.

Оператор управления размещался на линейном танке «БТ-7» со штатным вооружением и мог подавать на телетанк 17 команд. Дальность управления танком на ровной местности достигала 4 километров, время непрерывного управления составляло от 4 до 6 часов.

Испытания танка «А-7» на полигоне выявили множество конструктивных недоработок, начиная от многочисленных отказов системы управления и до полной бесполезности пулемета Силина.
Разрабатывались телетанки и на базе других машин. Так, предполагалось переоборудовать в телетанк танкетку «Т-27». Проектировались телемеханический танк «Ветер» на базе плавающего танка «Т-37А» и телемеханический танк прорыва на базе огромного пятибашенного «Т-35».
После упразднения Остехбюро за проектирование телетанков взялся НИИ-20. Его сотрудники создали телемеханическую танкетку «Т-38-ТТ». Телетанкетка была вооружена пулеметом «ДТ» в башне и огнеметом «КС-61-Т», а также снабжалась химическим баллоном емкостью 45 литров и оборудованием для постановки дымовой завесы. Танкетка управления с экипажем из двух человек имела такое же вооружение, но с большим боекомплектом.

Телетанкетка выполняла следующие команды: запуск двигателя, увеличение оборотов двигателя, повороты вправо и влево, переключение скоростей, включение тормозов, остановка танкетки, подготовка к стрельбе из пулемета, стрельба, огнеметание, подготовка к взрыву, взрыв, отбой подготовки. Однако радиус действия телетанкетки не превышал 2500 метров. В итоге выпустили опытную серию телетанкеток «Т-38-ТТ», но на вооружение они приняты не были.
Боевое крещение советские телетанки прошли 28 февраля 1940 года в районе Выборга в ходе Зимней войны с Финляндией. Перед наступающими линейными танками были пущены телетанки «ТТ-26». Однако все они застряли в воронках от снарядов и были расстреляны финскими противотанковыми пушками практически в упор.

Этот печальный опыт заставил советское командование пересмотреть свое отношение к телеуправляемым танкам, и в конце концов оно отказалось от идеи их массового производства и применения.

* * *
Противник такого опыта, очевидно, не имел, а потому во время Второй мировой войны немцы неоднократно пытались применять танки и танкетки, управляемые по проводам и по радио.
На фронтах появлялись: легкий танк «Голиаф» («В-I») весом 870 килограммов, средний танк «Шпрингер» (Sd.Kfz.304) весом 2,4 тонны, а также «B-IV» (Sd.Kfz.301) весом от 4,5 до 6 тонн.
Разработкой телеуправляемых танков с 1940 года занималась немецкая фирма «Боргвард» («Borgward»). С 1942 по 1944 годы фирма выпускала танк «B-IV» под названием «Тяжелый носитель зарядов Sd.Kfz.301». Он был первой машиной такого рода, серийно поставлявшийся в вермахт. Танкетка служила в качестве управляемого на расстоянии носителя взрывчатых веществ или боезарядов. В ее носовой части размещался заряд взрывчатого вещества весом в полтонны, который сбрасывался по радиокоманде. После сброса танкетка возвращалась к тому танку, из которого велось управление. Оператор мог передавать на телетанк десять команд на дистанцию до четырех километров. Было выпущено около тысячи экземпляров этой машины.
С 1942 года рассматривались различные варианты конструкции «В-IV». В целом использование немцами этих телетанков было не очень удачно. К концу войны офицеры вермахта окончательно осознали это, и с «B-IV» стали выбрасывать аппаратуру телеуправления, взамен сажая за броню двух танкистов с безоткатной пушкой – в этом качестве «B-IV» действительно мог представлять угрозу средним и тяжелым танкам противника.

Куда большее распространение и известность получил «Легкий носитель зарядов Sd.Kfz.302» под названием «Голиаф». Этот небольшой танк высотой всего 610 миллиметров, разработанный фирмой «Боргвард», был оснащен двумя электродвигателями на батареях и управлялся по радио. Он нес на себе заряд взрывчатого вещества весом 90,7 килограммов. Более поздняя модификация «Голиафа» был переоборудована для работы на бензиновом двигателе и на управление по проводам. В таком виде этот аппарат летом 1943 года и пошел в крупную серию. Последующая модель «Голиафа» в качестве специальной машины «Sd.Kfz.303» имела двухцилиндровый двухтактный двигатель с воздушным охлаждением и управлялся по разматываемому тяжелому полевому кабелю. Вся эта «игрушка» имела размеры 1600х660х670 миллиметров, перемещалась со скоростью от 6 до 10 км/ч и весила всего 350 килограммов. Аппарат мог перевозить 100 килограммов груза, в его задачу входило разминирование и устранение завалов на дорогах в зоне боевых действий. До окончания войны, по предварительным оценкам, было изготовлено около 5000 единиц этого небольшого телетанка. «Голиаф» был главным оружием по меньшей мере в шести саперных ротах танковых войск.

Общественности эти миниатюрные машины были известны довольно широко после того, как в последние годы войны они стали упоминаться в пропагандистских целях как «секретное оружие Третьего рейха». Вот, например, что писала по поводу «Голиафа» советская пресса в 1944 году:
«На советско-германском фронте немцы применили танкетку-торпеду, в основном предназначенную для борьбы с нашими танками. Эта самодвижущаяся торпеда несет на себе заряд взрывчатого вещества, который взрывается замыканием тока в момент соприкосновения с танком.
Управляется торпеда с дистанционного пункта, который связан с ней проводом длиной от 250 м до 1 км. Этот провод намотан на катушку, находящуюся в кормовой части танкетки. По мере удаления танкетки от пункта провод с катушки сматывается.

Во время движения на поле боя танкетка может менять направление. Это достигается переключением попеременно правого и левого моторов, питающихся аккумуляторами.
Наши войска быстро распознали многочисленные уязвимые части торпед и последние сразу же подверглись массовому уничтожению.

Танкистам и артиллеристам не стоило большого труда расстреливать их издалека. При попадании снаряда танкетка просто взлетала на воздух, – она, так сказать, “самоуничтожалась” при помощи своего же собственного взрывчатого заряда.

Танкетка легко выводилась из строя бронебойной пулей, а также пулеметным и винтовочным огнем. В таких случаях пули поражали переднюю и бортовую части танкетки и пробивали ее гусеницу. Иногда бойцы попросту перерезали тянущийся за торпедой провод и слепой зверь становился совершенно безвредным…»

И, наконец, был «Средний носитель зарядов Sd. Kfz. 304» («Шпрингер»), разработка которого осуществлялась в 1944 году на Объединенных заводах по производству транспортных средств «Неккарзульм» с использованием деталей гусеничного мотоцикла. Аппарат был рассчитан на перевозку полезного груза в 300 килограммов. Эта модель должна была выпускаться в 1945 году большой серией, однако вплоть до окончания войны были изготовлены лишь несколько экземпляров машины…

Механизированная армия НАТО

Первый закон робототехники, придуманный американским фантастом Айзеком Азимовым, гласил, что робот ни при каких обстоятельствах не должен причинять вред человеку. Теперь об этом правиле предпочитают не вспоминать. Ведь когда речь идет о государственном заказе, потенциальная опасность роботов-убийц представляется чем-то несерьезным.

Над программой, названной «Future Combat Systems» (FSC), Пентагон работает с мая 2000 года. По официальной информации,

«задача состоит в том, чтобы создать беспилотные машины, которые смогут делать всё, что необходимо делать на поле битвы: нападать, защищаться и находить цели».
То есть замысел прост до безобразия: один робот обнаруживает цель, сообщает об этом в командный пункт, а другой робот (или ракета) цель уничтожает.

На роль генерального подрядчика претендовали три конкурирующих между собой консорциума: «Боинг», «Дженерал Дайнемикс» и «Локхид-Мартин», которые предлагают свои решения для этого проекта Пентагона с бюджетом в сотни миллионов долларов. По последним данным, победителем конкурса стала корпорация «Локхид-Мартин».

Американские военные считают, что первое поколение боевых роботов будет готово к ведению военных действий на земле и в воздухе в ближайшие 10 лет, а Кендел Пис, представитель «Дженерал Дайнемикс», ещё более оптимистичен:
«Мы полагаем, что можем создать такую систему уже к концу нынешнего десятилетия»

Иными словами – к 2010 году! Так или иначе, крайняя дата принятия на вооружение армии роботов установлена на 2025 год.

«Future Combat Systems» – это целая система, включающая и хорошо известные беспилотные летательные аппараты (таковым можно считать «Predator» («Хищник»), использующийся в Афганистане), и автономные танки, и наземные бронетранспортеры-разведчики. Всей этой техникой предполагается управлять дистанционно – просто из укрытия, по беспроводной связи или же со спутников. Требования, предъявляемые к FSC, понятны. Многоразовость использования, многофункциональность, боевая мощь, скорость, защищенность, компактность, маневренность, а в некоторых случаях – способность к выбору решения из набора заложенных в программу вариантов.
Кое-какие из этих машин планируется оснастить лазерным и микроволновым оружием.
Речь о том, чтобы создавать роботов-солдат, пока не идет. Эта интересная тема почему-то вообще не затрагивается в материалах Пентагона по FCS. Так же не упоминается такая структура Военно-морских сил США, как центр SPAWAR (Space and Naval Warfare Systems Command), на счету которого есть очень интересные разработки по этому направлению.

Специалистами SPAWAR давно разрабатываются телеуправляемые машины для разведки и наведения, разведывательная «летающая тарелка», системы сетевых датчиков и системы быстрого обнаружения и реагирования, и, наконец, серия автономных роботов «ROBART».
Последний представитель этого семейства – «ROBART III» – до сих пор находится в стадии доводки. И это, по сути, самый настоящий робот-солдат с пулеметом.

«Предки» боевого робота (соответственно «ROBART – I-II») предназначались для охраны военных складов – то есть были способны только обнаружить нарушителя и поднять тревогу, тогда как опытный образец «ROBART III» оборудован оружием. Пока это пневматический прототип пулемета, стреляющий шариками и стрелами, но зато у робота уже имеется автоматическая система наведения; он сам находит цель и выпускает в нее свой боекомплект со скоростью шесть выстрелов за полторы секунды.

Впрочем, «FCS» – далеко не единственная программа американского Министерства обороны. Есть еще «JPR» («Joint Robotics Program»), которую Пентагон реализует с сентября 2000 года. В описании этой программы прямо сказано: «военные робототехнические системы в ХХI веке будут использоваться повсеместно».

* * *
Пентагон – это не единственная организация, которая занимается созданием роботов-убийц. Оказывается, и вполне цивильные ведомства заинтересованы в производстве механических монстров.

По сообщению агентства «Рейтерс», ученые Британского Университета создали опытный образец робота «SlugBot», который способен выслеживать и уничтожать живых существ. В прессе его уже прозвали «терминатором». Пока робот запрограммирован на поиск слизняков. Пойманных он перерабатывает и, таким образом, производит электроэнергию. Это первый в мире действующий робот, чья задача – убивать и пожирать своих жертв.

«SlugBot» выходит на охоту после наступления темноты, когда слизняки наиболее активны, и может за час уничтожить больше 100 моллюсков. Таким образом, ученые пришли на помощь английским садоводам и фермерам, для которым слизняки досаждают на протяжении многих столетий, уничтожая выращенные ими растения.
«Слизняки были выбраны не случайно, – говорит доктор Иан Келли, создатель первого «терминатора», – они – главные вредители, их очень много, они не имеют прочного скелета и достаточно крупные».

Робот высотой около 60 сантиметров находит жертву при помощи инфракрасных датчиков. Ученые уверяют, что «SlugBot» безошибочно определяет моллюсков-вредителей по длине инфракрасной волны и может отличить слизняков от червей или улиток.

Передвигается «SlugBot» на четырех колесах и хватает моллюсков своей «длинной рукой»: он может вращать ею на все 360 градусов и настигать жертву на расстоянии 2 метров в любом направлении. Пойманных слизняков робот складывает в специальный поддон.
После ночной охоты робот возвращается «домой» и разгружается: слизняки попадают в специальный резервуар, где происходит брожение, в результате чего слизняки превращаются в электричество. Полученную энергию робот использует для зарядки собственных батарей, после чего охота продолжается.

Несмотря на то, что журнал «Тайм» назвал «SlugBot» одним из лучших изобретений 2001 года, на создателей робота – «убийцы» обрушились критики. Так, один из читателей журнала в своем открытом письме назвал изобретение «опрометчивым»:
«Создавая роботов, пожирающих плоть, мы переступаем черту, пересечь которую может только сумасшедший».

Садоводы и фермеры, напротив, приветствуют изобретение. Они считают, что его использование поможет постепенно сократить количество применяемых в сельхозугодиях вредных пестицидов. Подсчитано, что британские фермеры тратят на борьбу со слизняками в среднем до 30 миллионов долларов в год.

Через три-четыре года первый «терминатор» может быть подготовлен к промышленному производству. Опытный образец «SlugBot» стоит около трех тысяч долларов, но изобретатели утверждают, что как только робот поступит на рынок, цена снизится.
Сегодня уже ясно, что ученые Британского Университета на уничтожении слизняков не остановятся, и в будущем можно ожидать появления робота, убивающего, скажем, крыс. А тут уже и до человека недалеко…

Ctrl Enter

Заметили ошЫ бку Выделите текст и нажмите Ctrl+Enter

Человек преобразует природу активнее, масштабнее и успешнее прочих видов. Большинство из нас плохо знает мир, помимо того, что создали сами люди. От домов и дорог до шкафа и клавиатуры — здесь все приспособлено под наше удобство и нашу анатомию. Какому-нибудь неантропоморфному гостю останется только посочувствовать, когда он попытается подняться по ступенькам или открыть дверной замок.

С теми же трудностями сталкиваются и роботы, которых судьба забросила в антропогенный мир. Сложнейшая колесная платформа марсохода, такая великолепная в каменистой пустыне Красной планеты, спасует перед обыкновенной лестницей, а мощные и точные промышленные роботы не всегда способны справиться с чашкой воды. Если роботу необходимо жить среди людей, бок о бок с нами, ему придется сделаться как мы — человекоподобным, или просто андроидом.

«Настоящим, живым мальчиком» никакой робот, конечно, не станет. И это к лучшему: не нуждаясь ни в кислороде, ни в тепле, не боясь жары, вакуума и радиации, не требуя обеденного перерыва или выходного, андроиды смогут стать помощниками, готовыми отправиться туда, где для людей слишком опасно или просто тяжело.

«Семь-восемь часов без перерыва — это максимум времени, которое сегодня человек может проработать в скафандре, в открытом космосе, причем обходится такой выход в несколько миллионов долларов. Поэтому здесь андроиды могут стать отличной заменой людей. Но вообще этим список их занятий далеко не исчерпывается, — рассказал нам Алексей Богданов, главный конструктор НПО «Андроидная техника». — Обезвреживание опасных предметов, спасение пострадавших, оказание первой медицинской помощи — мы развиваем все направления».

Первая профессия

Прототип антропоморфной робототехнической системы FEDOR (полное имя — Final Experimental Demonstration Object of Research, или просто «Финальный экспериментально-демонстрационный объект исследований»), первоначально создавался как спасатель. Он способен пробраться через завалы разрушенного здания пешком или даже ползком, найти пострадавшего и оказать ему первую помощь — по крайней мере, доставить воду, ввести обезболивающее и организовать связь.


Дистанционно управлять роботом можно по проводам, оптоволокну или радиосвязи.

Осенью FEDOR успешно продемонстрировал это, пройдя испытания перед комиссией Фонда перспективных исследований (ФПИ), под эгидой которого в «Андроидной технике» ведутся работы над проектом. Уникальный механизм нижних конечностей позволил ему не только ходить и ползать, но и сесть на шпагат, перелезть через препятствие и даже самостоятельно сесть в машину — на водительское место.

«Он вошел в здание, поднялся по лестнице, открыл дверь ключом, зашел в квартиру, включил свет, открыл кран с водой, — рассказал нам технический директор НПО «Андроидная техника» Евгений Дудоров. — Были и задачи на преодоление препятствий: проползти 10 м, влезть в невысокое окно, пройти по груде битого кирпича…» Также FEDOR продемонстрировал уверенное обращение с бытовым инструментом, от кусачек и шуруповерта до циркулярной пилы, со специальным оборудованием спасателей и медиков. Наконец, он сел в автомобиль (УАЗ с механической коробкой передач), выжал сцепление, перекинул рычаг скорости — и поехал.


Рожденный действовать

Электроприводы общей мощностью 5 КВт дают роботу приличную «мускульную» силу, эквивалентную 6,8 лошадиной. Механические сочленения обеспечивают телу 46 степеней свободы, а с учетом зависимых видов подвижности, в которых сопрягаются несколько отдельных скоординированных движений, их число уже достигает 72. Каждую миллисекунду управляющий компьютер обновляет информацию с датчиков и отдает новые команды приводам.

Основной компьютер дополняется парой вычислительных систем Nvidia, которые решают задачи по ориентации и навигации в пространстве. Здесь, в головном модуле, интегрируется информация с двух камер, оснащенных функциями автофокуса и автозума, а также тепловизора и микрофонов, 16 дальномерных лазеров, датчиков GPS и ГЛОНАСС. Учитывается также давление на опору и данные с трех встроенных инерциальных систем, которые позволяют роботу оценить положение своего тела.


На основе этих данных FEDOR — совсем как мы — автоматически конструирует трехмерную картину окружающей обстановки, добавляя в нее модель себя и выделяя на ней людей, препятствия и другие ключевые объекты: инструменты, лестницы, двери, стулья и т. п. Для каждого из распознанных предметов память робота хранит библиотеку стандартных действий, выбирая нужный сценарий по мере необходимости. В выполнении универсальных операций, не требующих высокой точности и скоординированности, FEDOR автономен. «Можно сказать, что он наполовину разумен», — добавляет Алексей Богданов.

Дистанционное образование

Если речь идет об обычной ходьбе и взаимодействии с обыкновенными предметами, FEDOR справится сам: «Например, когда он режет арматуру «болгаркой», он работает полностью в автоматическом режиме, — поясняет Алексей Богданов. — Выбирает момент включения и выключения инструмента, величину давления, которое нужно приложить, и т. д. ». Однако если речь идет о работе в недетерминированной, сложной обстановке или о манипуляциях с очень тонкими и мелкими объектами, тогда на помощь роботу приходят люди.

Нехватку специальных навыков дополняет система «копирующего управления», позволяющая ему просто повторять наиболее ответственные движения за оператором, который может оставаться на комфортном удалении от происходящего. Добраться в нужное место, взять в руки шуруповерт или шприц, сбалансировать собственное тело, сфокусировать камеры, надавить — все это робот проделает самостоятельно. Но вот попасть иглой в мышцу или битой шуруповерта в саморез — задача уже для дистанционного управления. Этот подход можно сравнить с нашим собственным телом: большинство рутинных операций, включая поддержание баланса или управление автомобилем, мы выполняем без участия сознания, которое подключается лишь при решении особо сложных задач.


До полной автономности роботу придется подождать — по крайней мере, до создания достаточно мощного искусственного интеллекта. Для сложных движений и манипуляций применяется система «копирующего управления». Большинство рутинных операций он совершает в автоматическом режиме. FEDOR может быть оснащен системой голосового управления и выполнять четко поставленные устные команды.

Дополнительного обучения для работы с FEDOR людям не требуется. «Сама концепция «копирующего управления» создавалась с той задумкой, чтобы человек мог видеть «глазами» робота, как своими, двигать его «руками», как собственными», — добавляет Алексей Богданов. В «шкуру» робота-аватара может влезть любой специалист, поделившись с ним своими навыками и движениями сапера, парамедика, спасателя или даже космонавта.

Рабочая династия

По словам разработчиков, на освоение «Федором» новой и сложной профессии космонавта уйдет весь запланированный трехлетний срок. До 2021 года предстоит отработать защиту от радиации, обеспечить бесперебойную работу двигателей, механики и электроники в глубоком вакууме, при резких перепадах температуры и почти полном отсутствии гравитации. Понадобится освоение и особых сценариев работы со специальным инструментом. Однако в 2021 году, когда FEDOR отправится в первый полет на борту нового космического корабля «Федерация», у нас будет двойной повод для гордости — новейший корабль и робот, первый в своем роде.


«В России аналогов этому проекту нет, да и в мире работы такого уровня проводятся лишь несколькими компаниями, — говорит Евгений Дудоров. — Одно время в США существовал близкий проект SAFFiR, андроид, который предназначался для тушения пожаров на морских кораблях. Самым проработанным из них можно назвать робота ATLAS, созданного под патронажем агентства DARPA». Однако, по словам разработчиков из НПО «Андроидная техника», FEDOR во многом совершеннее американского конкурента, который не способен ни ползать, ни управлять автомобилем с механической коробкой передач, ни просто сесть в него самостоятельно. «Изначально наша задача состояла в разработке универсальной системы управления антропоморфным роботизированным комплексом, независимо от конкретных способностей и предназначения, — продолжает Евгений Дудоров. — Для этого были реализованы несколько режимов: автоматизированный, супервизорный, телеуправляемый и комбинированный. И если первоначально мы действительно ориентировались на создание робота-спасателя, то теперь смотрим на его возможности намного шире. Все эти варианты управления реализуются и подходят для выполнения самых разных задач и на Земле, и в космосе. Мы прорабатываем проекты и корабельного робота, и робота-сапера, и другие».

«Мы живем в интересное время, — заключает Алексей Богданов. — Мы входим в новый, шестой технологический уклад. Вспомните распространение сотовой связи: нас ждет такой же взрыв робототехники. В следующие 20−30 лет андроиды начнут все чаще встречаться нам на улицах».

В настоящее время продвигается к точке, когда может быть изобретен новый тип мозга для роботов, что позволит им выполнять все более квалифицированные задачи, намекая на следующий этап эволюции машин.

Данный список роботов, разработанных на протяжении последних нескольких лет, демонстрирует, что описанное выше даже раньше, чем мы думаем.

1. Atlas Unplugged

Последняя версия Atlas немного выше и тяжелее, чем предыдущая, высотой 1,88 м и весом 156,4 кг. По словам его создателей, 75% гуманоида обновлено - только нижняя часть его ног и стопы остались без изменений.

2. ASIMO и P-серия от Honda

ASIMO является большим плюсом для международного брендинга Honda. Он помогает компании сформировать свой имидж в области инноваций и технологий.

ASIMO является 11-м в линии шагающих роботов Р-серии, разработанных Honda. Представленный в 2000 году, ASIMO может ходить и бегать, как человек, что уже является удивительным. ASIMO был существенно обновлен в 2005 году, что позволило ему бегать в два раза быстрее (6 км/ч), взаимодействовать с людьми и выполнять повседневные задачи, например, держать тарелку и подавать еду. Количество текущих моделей ASIMO составляет 100 штук по всему миру, его высота - 1,28 м, а вес - около 55 кг.

ASIMO выглядит веселым и милым в своем скафандре. Он проложил путь для многих последующих моделей шагающих роботов, но все еще считается передовым и мощным роботом.

ASIMO является большим плюсом для международного брендинга Honda и помогает компании сформировать свой имидж в области инноваций и технологий. ASIMO также снимается в рекламных роликах для Honda и много выступает. Данный робот находится в этом списке из-за своего обаятельного внешнего вида, всемирной известности и передовых технологий разработки.

3. iCub

Внешность гуманоида является воплощенной гипотезой о познании.

Был создан RobotCub Consortium, состоящим из нескольких европейских университетов. Его имя частично является сокращением, «CUB» расшифровывается как «Cognitive Universal Body» (универсальное когнитивное тело).

Внешность гуманоида является воплощенной гипотезой о познании. Считается, что манипулирование человекоподобным созданием играет важную роль в развитии человеческого познания. Ребенок учится многим когнитивным навыкам, взаимодействуя с окружающей средой и другими людьми, используя свои конечности и чувства, и следовательно его внутренняя модель мира в значительной степени обусловлена формой человеческого тела.

Робот был создан, чтобы проверить эту гипотезу. В его разработке применялись когнитивные сценарии обучения посредством точного воспроизведения системы восприятия и артикуляции маленького ребенка, чтобы робот мог взаимодействовать с окружающим миром так же, как это делают дети.

4. Poppy

Создатели Poppy сфокусировались на биологически правильной ходьбе, что, как они надеются, будет способствовать лучшему взаимодействию человека и робота.

Poppy является одной из новейших разработок в сфере роботов-гуманоидов и первым в своем роде, ведь был создан с помощью 3D-принтера. Группа французских исследователей смогла сократить расходы на треть, используя новейшие 3D-технологии. Создатели Poppy сфокусировались на биологически правильной ходьбе, что, как они надеются, будет способствовать лучшему взаимодействию человека и робота.

У него есть позвоночник на шарнирах с пятью двигателями - почти неслыханное явление среди роботов такого размера. Позвоночник позволяет не только двигаться более естественно, но и помогает ему балансировать, регулируя его осанку. Дополнительная гибкость помогает при физическом взаимодействии с роботом - например, когда направляешь его своими руками, что в настоящее время необходимо, чтобы помогать роботу ходить. На видео вы можете увидеть невероятно естественную ходьбу робота - с пятки на носок.

5. Romeo

Ромео размером с ребенка восьми лет (1,40 м), а весит немного больше (40 кг).

Romeo стремится стать лидером в области роботизированной помощи и личной помощи с более существенным эмоциональным компонентом. Romeo - потомок маленького человекоподобного робота по имени NAO, имеющего уже более 5000 продаж и договоров об аренде во всем мире.

Робот размером ребенка восьми лет (1,40 м), а весит немного больше (40 кг). Чтобы быть как можно более легким, его корпус выполнен из углеродного волокна и резины и был разработан таким образом, чтобы избежать риска причинения вреда человеку, которому он будет помогать. На сегодняшний день Ромео может ходить, различать трехмерное окружение, слышать и говорить.

График тестирования робота в реальных условиях планируется на 2016 год, конечная цель - готовность к использованию в домах престарелых в 2017-м или 2019 году. Разработка частично финансируется французским правительством и Европейской комиссией, проект бюджета на разработку Romeo составляет 37 млн. евро за период 2009-2016 гг.

6. Petman

Petman балансирует и свободно перемещается; ходит, нагибается и выполняет разнообразные физические упражнения под воздействием химических радиоактивных веществ.

Petman является антропоморфным роботом, предназначенным для тестирования одежды, защищающей от химического воздействия. Естественное движение очень важно для Petman, чтобы смоделировать ситуацию, когда солдат в защитной одежде подвергается внешнему воздействию в реальных условиях.

В отличие от предыдущих роботов для тестирования костюмов, которые имели ограниченный спектр движений и должны были поддерживаться механически, Petman балансирует и свободно перемещается; ходит, нагибается и выполняет разнообразные физические упражнения под воздействием химических радиоактивных веществ.

Petman также обладает имитацией физиологии человека в защитном костюме путем контроля температуры, влажности и потливости, чтобы обеспечить реалистичные условия испытаний. Система Petman была предоставлена для тестирования и в настоящее время проходит тестирование.

7. NAO

NAO представляет собой человекоподобного робота высотой 58 см. Он был создан, чтобы стать дружелюбными компаньоном для дома. С 2008 года выпущено уже несколько версий робота.

Самым известным экземпляром NAO является Nao Academics Edition, который разработан для университетов и лабораторий для помощи в научных исследованиях и . Он был выпущен для учреждений в 2008 году и стал доступен для покупателей к 2011-му. Более поздние обновления для платформы Nao включают 2011 Nao Next Gen и 2014 Nao Evolution.

Роботы в и коммерческие пользователи и научно-исследовательские институты по всему миру.

Он поставляется со стандартным набором фраз, к которому вы можете добавить свои собственные записанные выражения или уникальный контент. Файлы, контролирующие движение, звук и видео также могут быть загружены.

9. Aiko Chihira

Может работать автономно, говорить и жестикулировать во время общения с людьми. Исследователи недавно продемонстрировали, что более продвинутее, чем среднестатистические подобные андроиды. Робот знает язык жестов и автоматически адаптируется к положению собеседника.

10. Роботы пол-дэнсеры - Lexy и Tess

На выставке CeBIT в Ганновере немецкий разработчик программного обеспечения собрал стенд, на котором выставил двух танцующих роботов вместе с роботом-диджеем с мегафоном на голове. Две девушки-робота двигаются в такт музыке возле пилонов, но все удивительно культурно. По информации BBC, вы можете приобрести такого робота за $39,500.