Рис. 4.1

Морфологию вирусов изучают с помощью электронной микроскопии, так как их размеры малы (18-400 нм) и сравнимы с толщиной оболочки бактерий. Форма вирионов может быть различной: палочковидной (вирус табачной мозаики), пулевидной (вирус бешенства), сферической (вирусы полиомиелита, ВИЧ), нитевидной (филовирусы), в виде сперматозоида (многие бактериофаги). Различают просто устроенные и сложно устроенные вирусы (табл. 4.1).

Просто устроенные вирусы (без оболочки)

Пример просто устроенных вирусов - вирус гепатита А и папилломавирус с икосаэдрическим типом симметрии (рис. 4.1 и 4.2). Нуклеиновая кислота вирусов связана с белковой оболочкой - капсидом, состоящим из капсомеров.

Рис. 4.2. Схема строения папилломавируса (содержит двунитевую кольцевую ДНК)

Сложно устроенные вирусы (с оболочкой)

У сложно устроенных вирусов (например, у вирусов герпеса, гриппа, флавивирусов) от липопротеиновой оболочки отходят гликопротеиновые шипы, например, гемагглютинины, участвующие в реакциях гемагглютинации и гемадсорбции. Вирус герпеса и флавивирус имеют икосаэдрический тип симметрии, а вирус гриппа - спиральный тип симметрии нуклеокапсида.

Таблица 4.1. Просто устроенные (без оболочки) и сложно устроенные (с оболочкой) вирусы

Простые, или безоболочечные, вирусы состоят из нуклеиновой кислоты и белковой оболочки, называемой капсидом (от лат. capsa - футляр). Капсид состоит из повторяющихся морфологических субъединиц - капсомеров. Нуклеиновая кислота и капсид взаимодействуют друг с другом, образуя нуклеокапсид.

Тип симметрии
Капсид или нуклеокапсид могут иметь спиральный, икосаэдрический (кубический) или сложный тип симметрии. Икосаэдрический тип симметрии обусловлен образованием изометрически полого тела из капсида,

Сложные, или оболочечные, вирусы снаружи капсида окружены липопротеиновой оболочкой (суперкапсидом, или пеплосом). Эта оболочка является производной структурой от мембран вирус-инфицированной клетки. На оболочке вируса расположены гликопротеиновые шипы, или шипики (пепломеры). Под оболочкой некоторых вирусов находится матриксный М-белок.


Рис. 4.3.


Рис. 4.4.


Рис. 4.5


Рис. 4.6.

Репродукция вирусов

Различают три типа взаимодействия вируса с клеткой:
- продуктивный тип, при котором образуются новые вирионы, по-разному выходящие из клетки: при ее лизисе, т. е. «взрывным» механизмом (безоболочечные вирусы); путем «почкования» через мембраны клетки (оболочечные вирусы), в результате экзоцитоза;
- абортивный тип, характеризующийся прерыванием инфекционного процесса в клетке, поэтому новые вирионы не образуются;
- интегративный тип, или вирогения, заключающийся в интеграции, т. е. встраивании вирусной ДНК в виде провируса в хромосому клетки и их совместном сосуществовании (совместная репликация).
Продуктивный тип взаимодействия вируса с клеткой - репродукция вируса проходит несколько стадий: 1) адсорбция вирионов на клетке; 2) проникновение вируса в клетку;
3) «раздевание» и высвобождение вирусного генома (депротеинизация вируса); 4) синтез вирусных компонентов;
5) формирование вирусов; 6) выход вирионов из клетки.

Механизм репродукции вирусов

Механизм репродукции отличается у вирусов, имеющих: 1) двунитевую ДНК; 2) однонитевую ДНК; 3) плюс-однонитевую РНК; 4) минус-однонитевую РНК; 5) двунитевую РНК;
6) идентичные плюс-нитевые РНК (ретровирусы).
Двунитевые ДНК-вирусы - вирусы, содержащие двунитевую ДНК в линейной (например, герпесвирусы, аденовирусы и поксвирусы) или в кольцевой форме (как папилломавирусы).
Репликация двунитевых вирусных ДНК проходит обычным полуконсервативным механизмом: после расплетения нитей ДНК к ним комплементарно достраиваются новые нити. У всех вирусов, кроме поксвирусов, транскрипция вирусного генома происходит в ядре.
Уникальна по механизму репродукция гепаднавирусов (вируса гепатита В).
Геном гепаднавирусов (рис. 4.7) представлен двунитевой кольцевой ДНК, одна нить которой короче (неполная плюснить) другой нити. После проникновения в клетку сердцевины вируса (1) неполная нить ДНК-генома достраивается; формируется полная двунитевая кольцевая ДНК (2) и созревающий геном (3) попадает в ядро клетки. Здесь клеточная ДНК-зависимая РНК-полимераза синтезирует разные иРНК (для синтеза вирусных белков) и РНК-прегеном (4) - матрицу для репликации генома вируса. Далее иРНК перемещаются в цитоплазму и транслируются с образованием белков вируса. Белки сердцевины вируса собираются вокруг прегенома. Под действием РНК-зависимой ДНК-полимеразы вируса на матрице прегенома синтезируется минус-нить ДНК (5), на которой образуется плюс-нить ДНК (6). Оболочка вириона формируется на HBs-содержащих мембранах эндоплазматической сети или аппарата Гольджи (7). Вирион выходит из клетки экзоцитозом.


Рис. 4.7.

Однонитевые ДНК-вирусы. Представителями однонитевых ДНК-вирусов являются парвовирусы (рис. 4.8).

Поглощенный вирус поставляет геном в ядро клетки. Парвовирусы используют клеточные ДНК-полимеразы для создания двунитевого вирусного генома, так называемой репликативной формы последнего. При этом на исходной вирусной ДНК (плюс-нить) комплементарно синтезируется минус-нить ДНК, служащая матрицей в синтезе плюс-нити ДНК для новых поколений вирусов. Параллельно синтезируется иРНК, происходит трансляция вирусных белков, которые возвращаются в ядро, где собираются вирионы.
Плюс-однонитевые РНК-вирусы. Это большая группа вирусов (пикорнавирусы, флавивирусы, тогавирусы и др.), у которых геномная плюс-нить РНК выполняет функцию иРНК (рис. 4.9).

Вирус (1), после эндоцитоза, освобождает в цитоплазме (2) геномную плюс-РНК, которая как иРНК связывается с рибосомами (3): транслируется полипротеин (4), который расщепляется на 4 структурных белка (NSP 1-4), включая РНК-зависимую РНК-полимеразу. Эта полимераза транскрибирует геномную плюс-РНК в минус-нить РНК (матрицу), на которой (5) синтезируются копии РНК двух размеров: полная плюс-нить 49S геномной РНК; неполная нить 26S иРНК, кодирующая С-белок капсида (6) и гликопротеины оболочки Е1-3. Гликопротеины синтезируются на рибосомах, связанных с мембранами эндоплазматического ретикулума, затем включаются в мембрану и гликозилируются. Дополнительно гликозилируясь в аппарате Гольджи (7), они встраиваются в плазмалемму. С-белок образует с геномной РНК нуклеокапсид который взаимодействует с модифицированной плазмалеммой (8). Вирусы выходят из клетки почкованием (9).
Минус-однонитевые РНК-вирусы (рабдовирусы, парамиксовирусы, ортомиксовирусы) имеют в своем составе РНК-зависимую РНК-полимеразу.
Проникшая в клетку геномная минус-нить РНК парамиксовируса (рис. 4.10) трансформируется вирусной РНК-зависимой РНК-полимеразой в неполные и полные плюс-нити РНК. Неполные копии выполняют роль иРНК для синтеза вирусных белков. Полные копии являются промежуточной матрицей для синтеза минус-нитей геномной РНК потомства.

Рис.4.8.

Рис. 4.9.


Рис. 4.10

Вирус связывается гликопротеинами оболочки с поверхностью клетки и сливается с плазмалеммой (1). С геномной минус-нити РНК вируса транскрибируются неполные плюс-нити РНК, являющиеся иРНК (2) для отдельных белков и полная минус-нить РНК - матрица для синтеза геномной минус-РНК вируса (3). Нуклеокапсид связывается с матриксным белком и гликопротеин-модифицированной плазмалеммой. Выход вирионов - почкованием (4).

Двунитевые РНК-вирусы . Механизм репродукции этих вирусов (реовирусов и ротавирусов) сходен с репродукцией минус-однонитевых РНК-вирусов.
Особенность репродукции состоит в том, что образовавшиеся в процессе транскрипции плюс-нити функционируют не только как иРНК, но и участвуют в репликации: они являются матрицами для синтеза минус нитей РНК. Последние в комплексе с плюс-нитями РНК образуют геномные двунитевые РНК вирионов. Репликация вирусных нуклеиновых кислот этих вирусов происходит в цитоплазме клеток.
Ретровирусы (плюс-нитевые диплоидные РНК-вирусы, обратнотранскрибирующиеся), например вирус иммунодефицита человека (ВИЧ).

ВИЧ связывается гликопротеином gp120 (1) с рецептором CD 4 Т-хелперов и других клеток. После слияния оболочки


Рис. 4.11.

ЦПД - видимые под микроскопом морфологические изменения клеток (вплоть до их отторжения от стекла), возникающие в результате внутриклеточной репродукции вирусов.
ВИЧ с плазмалеммой клетки в цитоплазме освобождаются геномная РНК и обратная транскриптаза вируса, которая на матрице геномной РНК синтезирует комплементарную ми- нус-нить ДНК (линейная кДНК). С последней (2) копируется плюс-нить с образованием двойной нити кольцевой кДНК (3), которая интегрирует с хромосомной ДНК клетки. С рекомбинантной ДНК-провируса (4) синтезируются геномная РНК и иРНК, которые обеспечивают синтез компонентов и сборку вирионов. Вирионы выходят их клетки почкованием (5): сердцевина вируса «одевается» в модифицированную плазмалемму клетки.

Культивирование и индикация вирусов

Вирусы культивируют в организме лабораторных животных, в развивающихся куриных эмбрионах и культурах клеток (тканей). Индикацию вирусов проводят на основе следующих феноменов: цитопатогенного действия (ЦПД) вирусов, образования внутриклеточных включений, образования бляшек, реакции гемагглютинации, гемадсорбции или «цветной» реакции.


Рис. 4.13

Включения - скопление вирионов или отдельных их компонентов в цитоплазме или ядре клеток, выявляемые под микроскопом при специальном окрашивании. Вирус натуральной оспы образует цитоплазматические включения - тельца Гварниери; вирусы герпеса и аденовирусы - внутриядерные включения.


Рис. 4.14.

«Бляшки», или «негативные» колонии - ограниченные участки разрушенных вирусами клеток, культивируемых на питательной среде под агаровым покрытием, видимые как светлые пятна на фоне окрашенных живых клеток. Один вирион образует потомство в виде одной «бляшки». «Негативные» колонии разных вирусов отличаются по размеру, форме, поэтому метод «бляшек» используют для дифференциации вирусов, а также для определения их концентрации.

Рис. 4.12.


Рис.4.15.

Реакция гемагглютинации основана на способности некоторых вирусов вызывать агглютинацию (склеивание) эритроцитов за счет вирусных гликопротеиновых шипов - гемагглютининов.

Способность культур клеток, инфицированных вирусами, адсорбировать на своей поверхности эритроциты.


Рис. 4.16.

«Цветная» реакция оценивается по изменению цвета индикатора, находящегося в питательной среде культивирования. Если вирусы не размножаются в культуре клеток, то живые клетки в процессе метаболизма выделяют кислые продукты, что ведет к изменению pH среды и, соответственно, цвета индикатора. При продукции вирусов нормальный метаболизм клеток нарушается (клетки гибнут), и среда сохраняет свой первоначальный цвет.

Вирусная частица, также известная как вирион, представляет собой, по существу, нуклеиновую кислоту (ДНК или РНК), заключенную в оболочку белка. Вирусы чрезвычайно малы, диаметром приблизительно 20-400 нанометров. Крупнейший вирус, известный как Мимивирус, может иметь размер до 500 нанометров в диаметре. Для сравнения, человеческий эритроцит составляет около 6000-8000 нанометров в диаметре. В дополнение к малым размерам, вирусы также имеют различные формы. Подобно бактериям, некоторые вирусы имеют сферические или стержневые формы, а другие - икосаэдрические (полиэдр с 20 гранями) или спиральные формы.

Генетический материал вирусов

Вирусы могут иметь двухцепочечную ДНК, двухцепочечную РНК, одноцепочечную ДНК или одноцепочечную РНК. Тип генетического материала, обнаруженного в конкретном вирусе, зависит от его природы и функции. Генетический материал обычно не подвергается воздействию, но покрывается белковым слоем, известным как капсид. Вирусный геном может состоять из очень небольшого числа или до нескольких сотен генов в зависимости от типа вируса. Обратите внимание, что геном обычно организован как длинная молекула, которая обычно является прямой или круговой.

Репликация вирусов

Вирусы не способны самостоятельно реплицировать свои . Они должны полагаться на клетку-хозяина для воспроизведения. Чтобы произошла, вирусу необходимо сперва заразить живую клетку. Вирус вводит свой генетический материал в клетку и использует для репликации. После того, как было реплицировано достаточное количество вирусов, вновь образованные вирусы лизируют или разрывают клетку-хозяина и заражают другие клетки.

Вирусные оболочки

Белок, покрывающий вирусный генетический материал, известен как капсид. Капсид состоит из белковых субъединиц, называемых капсомерами. Капсиды могут иметь несколько форм: многогранник, стержень или комплекс. Они необходимы для защиты вирусного генетического материала от повреждений.

В дополнение к белковой оболочке у некоторых вирусов есть специализированные структуры. Например, вирус гриппа имеет мембраноподобную оболочку вокруг своего капсида. Добавки капсида также встречаются в . Например, бактериофаги могут иметь белковый «хвост», прикрепленный к капсиду, который используется для заражения бактерий-хозяев.

Вирусные заболевания

Вирусы вызывают ряд заболеваний в организмах, которые они заражают. Инфекции и заболевания человека, вызванные вирусами, включают лихорадку Эбола, ветряную оспу, корь, грипп, ВИЧ, герпес и многие другие. Вакцины эффективны для предотвращения некоторых типов вирусных инфекций, таких как оспа. Они работают, помогая организму построить ответ иммунной системы против конкретных вирусов.

Вирусные заболевания, которые воздействующие на животных, включают бешенство, ящур, птичий и свиной грипп. Заболевания растений включают мозаичное заболевание, кольцевая пятнистость, скручивание листьев и другие болезни листьев. Вирусы, известные как бактериофаги, вызывают заболевание у бактерий и археев.

Вирусы. Классификация вирусов. Типы взаимодействия клеток и вирусов

Размеры – от 15 до 2000 нм (некоторые вирусы растений). Наибольшим среди вирусов животных и человека является возбудитель естественной оспы – до 450 нм.

Простые вирусы имеют оболочку – капсид , которая состоит лишь из белковых субъединиц (капсомеров ). Капсомеры большинства вирусов имеют спиральную или кубическую симметрию. Вирионы со спиральной симметрией имеют палочкообразную форму. По спиральному типу симметрии построено большинство вирусов, поражающих растения. Большая часть вирусов, поражающих клетки человека и животных, имеют кубический тип симметрии.

Сложные

Сложные вирусы могут быть дополнительно покрыты липопротеидной поверхностной мембраной с гликопротеидами, которые являются частью плазматической мембраны клетки хозяина (например, вирусы оспы, гепатита В), то есть имеют суперкапсид . С помощью гликопротеидов происходит распознавание специфических рецепторов на поверхности оболочки клетки хозяина и прикрепление вирусной частицы к ней. Углеводные участки гликопротеидов выступают над поверхностью вируса в виде заостренных палочек. Дополнительная оболочка может сливаться с плазматической мембраной клетки хозяина и способствовать проникновению содержимого вирусной частицы вглубь клетки. Дополнительные оболочки могут включать ферменты, обеспечивающие синтез вирусных нуклеиновых кислот в клетке хозяина и некоторые другие реакции.

Бактериофаги имеют довольно сложное строение. Их относят к сложным вирусам. Например, бактериофаг Т4 состоит из расширенной части – головки, отростка и хвостовых нитей. Головка состоит из капсида, в котором содержится нуклеиновая кислота. Отросток включает воротничок, полый стержень, окруженный сокращающимся чехлом и напоминающий растянутую пружину, и базальную пластинку с хвостовыми шипами и нитями.

Классификация вирусов

Классификация вирусов основана на симметрии вирусов, наличии или отсутствии внешней оболочки.

Дезоксивирусы Рибовирусы
ДНК

двухцепочечная

ДНК

одноцепочечная

РНК

двухцепочечная

РНК

одноцепочечная

Кубический тип симметрии:

– без внешних оболочек (аденовирусы);

– с внешними оболочками (герпес)

Кубический тип симметрии:

– без внешних оболочек (некоторые фаги)

Кубический тип симметрии:

– без внешних оболочек (ретровирусы, вирусы ранковых опухолей растений)

Кубический тип симметрии:

– без внешних оболочек (энтеровирусы, полиовирус)

Спиральный тип симметрии:

– без внешних оболочек (вирус табачной мозаики);

– с внешними оболочками (гриппа, бешенства, онкогенные РНК-содержащие вирусы)

Смешанный тип симметрии (Т-парные бактериофаги)
Без определенного типа симметрии (оспы)

Проявляют жизнедеятельность вирусы только в клетках живых организмов. Их нуклеиновая кислота способна вызвать синтез вирусных частиц клетки хозяина. Вне клетки вирусы не проявляют признаков жизни и называются вирионами .

Жизненный цикл вируса состоит из двух фаз: внеклеточной (вирион), в которой он не проявляет признаков жизнедеятельности, и внутриклеточной . Вирусные частицы вне организма хозяина некоторое время не теряют способности к заражению. Например, вирус полиомиелита может сохранять инфекционную активность на протяжении нескольких суток, оспы – месяцев. Вирус гепатита В сохраняет ее даже при кратковременном кипячении.

Активные процессы одних вирусов протекают в ядре, других – в цитоплазме, у некоторых – и в ядре, и в цитоплазме.

Типы взаимодействия клеток и вирусов

Взаимодействие клеток и вирусов бывает нескольких типов:

  1. Продуктивного – нуклеиновая кислота вируса индуцирует в клетке хозяина синтез собственных веществ с образованием нового поколения.
  2. Абортивного – репродукция прерывается на какой-нибудь стадии, и новое поколение не образуется.
  3. Вирогенного – нуклеиновая кислота вируса встраивается в геном клетки хозяина и не способна к репродукции.

ВОПРОСЫ И ЗАДАНИЯ ДЛЯ ПОВТОРЕНИЯ

Вопрос 1. Как устроены вирусы?

Вирусы - это неклеточная форма жизни. Они имеют очень простое строение. Каждый вирус состоит из нуклеиновой кислоты (РНК или ДНК) и белка. Нуклеиновая кислота пред­ставляет собой генетический материал вируса; она окружена защитной оболочкой - капсидом. Капсид состоит из белковых молекул и обладает высокой степенью симметрии, имея, как правило, спиральную или многогранную форму. Кроме нуклеиновой кислоты внутри капсида могут находиться собственные фер­менты вируса. Некоторые вирусы (например, вирус гриппа и ВИЧ) имеют дополнительную оболочку, образованную из клеточной мембра­ны хозяина.

Вопрос 2. Чем простые вирусы отличаются от сложных?

Простые вирусы представляют собой нуклеопротеиды, т. е. состоят из одной нуклеиновой кислоты ДНК или РНК и нескольких белков, образующих оболочку вокруг нуклеиновой кислоты. Белковая оболочка вируса называется капсидом. Примером такого вируса может служить вирус табачной мозаики. Его капсид содержит один белок с низкой молекулярной массой.

Сложноорганизованные вирусы имеют дополнительную оболочку - белковую или липопротеиновую. Иногда в наружных оболочках сложных вирусов помимо белка содержатся углеводы, например у вирусов герпеса и гриппа. Их наружная оболочка является фрагментом цитоплазматической мембраны клетки хозяина.

Вопрос 3. Каков принцип взаимодействия вируса и клетки?

Участок поверхности клеточной мембраны, к которому прикрепляется вирус, погружается а цитоплазму и превращается в вакуоль, которая может сливаться с ядерной мембраной.

Инфекционный процесс начинается, когда проникшие в клетку вирусы начинают размножаться, т. е. происходит редупликация вирусного генома и самосборка капсида. После синтеза новой молекулы нуклеиновой кислоты вируса она одевается синтезированными в цитоплазме клетки хозяина вирусными белками - образуется капсид.

Выход вирусных частиц в окружающую среду может сопровождаться разрушением клетки.

Вопрос 4. Как вирус проникает в клетку?

Вирус связывается с поверхностью клетки-хозяина, а затем проникает внутрь целиком (эндоцитоз) или вводит в клетку свою нуклеиновую кислоту с помощью специальных механизмов. Например, бактериофаги «садятся» на клеточную мембрану бактерии-хозяина, а затем «выворачиваются наизнанку», высвобождая нуклеиновую кислоту внутрь бактерии. Некоторые вирусы содержат внутри капсида ферменты, растворяющие защитные оболочки клетки-хозяина.

Вопрос 5. Укажите особенности взаимодействия бактериофага с бактериальной клеткой.

Проникновение бактериофагов в бактериальную клетку имеет некоторые особенности, так как бактериальные клетки имеют толстую клеточную стенку, вирус не может проникнуть в цитоплазму путем впячивания мембраны. Поэтому бактериофаг вводит полый стержень в клетку и через него выталкивает нуклеиновую кислоту в цитоплазму. Геном бактериофага попадает в клетку.

Вопрос 6. В чём проявляется действие вирусов на клетку?

ВОПРОСЫ И ЗАДАНИЯ ДЛЯ ОБСУЖДЕНИЯ

Вопрос 1. Чем горизонтальный путь передачи вирусной инфекции отличается от вертикального? Приведите примеры.

Различают механизм передачи возбудителя инфекции горизонтальный и вертикальный. Горизонтальный– это механизм передачи, связанный с выходом возбудителя во внешнюю среду. Он свойственен большинству инфекционных болезней. Горизонтальный путь передачи инфекций может быть осуществлен во время хирургической операции, проведении противоэпизоотических мероприятий через инструменты и предметы, контаминированные микробами (так называемые ятрогенные инфекции).

Вертикальный – это механизм передачи возбудителя от родителей потомству через плаценту, с молоком, через яйцеклетку. Этот механизм свойственен чаще вирусным инфекциям, например, лейкоз, инфекционный ринит свиней, встречается и при бактериозах – сальмонеллезе, пуллорозе, колибактериозе, микоплазмозе.

Вопрос 2. Как происходит синтез вирусных белков и упаковка новых вирусных частиц?

Процессы синтеза компонентов РНК-вирусов происходят после проникновения нуклеопротеидов (вирионов) в клетку, где образуются вирусные полисомы путем комплексирования вирусной РНК с рибосомами. Затем синтезируются ранние белки: репрессоры клеточного метаболизма и РНК-полимеразы, транслируемые с родительской молекулой вирусной РНК. В цитоплазме мелких вирусов или в ядре (вирусы гриппа) образуется двунитчатая вирусная РНК путем комплексирования родительской «плюс»-цепочки с вновь синтезированной и комплементарной ей «минус»-цепочкой. Соединение этих нитей нуклеиновой кислоты обусловливает образование однонитчатой структуры РНК, называемой репликативной формой (РФ), которая устойчива к РНК-азе и необходима для репродукции всех РНК-вирусов. Синтез вирусной РНК осуществляется реплекативным комплексом, в котором участвуют фермент РНК-полимеразы, полисомы, репликативная форма РНК. Существуют два типа РНК-полимераз: РНК-полимераза I катализирует образование репликативной формы на матрице «плюс»-цепочки; РНК-полимераза II участвует в синтезе вирусной однонитчатой РНК на матрице репликативной формы. Синтез нуклеиновой кислоты у мелких вирусов осуществляется в цитоплазме. У вируса гриппа в ядре синтезируются РНК и внутренний белок. РНК выходит из ядра и поступает в цитоплазму, где с рибосомами синтезирует вирусный белок, и образующийся рибонуклеопротеид входит в химический состав вириона.

Содержание статьи

ВИРУСЫ, мельчайшие возбудители инфекционных болезней. В переводе с латинского virus означает «яд, ядовитое начало». До конца 19 в. термин «вирус» использовался в медицине для обозначения любого инфекционного агента, вызывающего заболевание. Современное значение это слово приобрело после 1892, когда русский ботаник Д.И.Ивановский установил «фильтруемость» возбудителя мозаичной болезни табака (табачной мозаики). Он показал, что клеточный сок из зараженных этой болезнью растений, пропущенный через специальные фильтры, задерживающие бактерии, сохраняет способность вызывать то же заболевание у здоровых растений. Пять лет спустя другой фильтрующийся агент – возбудитель ящура крупного рогатого скота – был обнаружен немецким бактериологом Ф.Лёффлером. В 1898 голландский ботаник М.Бейеринк повторил в расширенном варианте эти опыты и подтвердил выводы Ивановского. Он назвал «фильтрующееся ядовитое начало», вызывающее табачную мозаику, «фильтрующимся вирусом». Этот термин использовался на протяжении многих лет и постепенно сократился до одного слова – «вирус».

В 1901 американский военный хирург У.Рид и его коллеги установили, что возбудитель желтой лихорадки также является фильтрующимся вирусом. Желтая лихорадка была первым заболеванием человека, опознанным как вирусное, однако потребовалось еще 26 лет, чтобы ее вирусное происхождение было окончательно доказано.

Свойства и происхождение вирусов.

Принято считать, что вирусы произошли в результате обособления (автономизации) отдельных генетических элементов клетки, получивших, кроме того, способность передаваться от организма к организму. В нормальной клетке происходят перемещения нескольких типов генетических структур, например матричной, или информационной, РНК (мРНК), транспозонов, интронов, плазмид. Такие мобильные элементы, возможно, были предшественниками, или прародителями, вирусов.

Являются ли вирусы живыми организмами?

РЕПЛИКАЦИЯ ВИРУСОВ

Генетическую информацию, закодированную в отдельном гене, в общем можно рассматривать как инструкцию по производству определенного белка в клетке. Такая инструкция воспринимается клеткой только в том случае, если она послана в виде мРНК. Поэтому клетки, у которых генетический материал представлен ДНК, должны «переписать» (транскрибировать) эту информацию в комплементарную копию мРНК . ДНК-содержащие вирусы по способу репликации отличаются от РНК-содержащих вирусов.

ДНК обычно существует в виде двухцепочечных структур: две полинуклеотидные цепочки соединены водородными связями и закручены таким образом, что образуется двойная спираль. РНК, напротив, обычно существует в виде одноцепочечных структур. Однако геном отдельных вирусов представляет собой одноцепочечную ДНК или двухцепочечную РНК. Нити (цепочки) вирусной нуклеиновой кислоты, двойные или одинарные, могут иметь линейную форму или замыкаться в кольцо.

Первый этап репликации вирусов связан с проникновением вирусной нуклеиновой кислоты в клетку организма-хозяина. Этому процессу могут способствовать специальные ферменты, входящие в состав капсида или внешней оболочки вириона, причем оболочка остается снаружи клетки или вирион теряет ее сразу после проникновения внутрь клетки. Вирус находит подходящую для его размножения клетку, контактируя отдельными участками своего капсида (или внешней оболочки) со специфическими рецепторами на поверхности клетки по типу «ключ – замок». Если специфические («узнающие») рецепторы на поверхности клетки отсутствуют, то клетка не чувствительна к вирусной инфекции: вирус в нее не проникает.

Для того чтобы реализовать свою генетическую информацию, проникшая в клетку вирусная ДНК транскрибируется специальными ферментами в мРНК. Образовавшаяся мРНК перемещается к клеточным «фабрикам» синтеза белка – рибосомам, где она заменяет клеточные «послания» собственными «инструкциями» и транслируется (прочитывается), в результате чего синтезируются вирусные белки. Сама же вирусная ДНК многократно удваивается (дуплицируется) при участии другого набора ферментов, как вирусных, так и принадлежащих клетке.

Синтезированный белок, который используется для строительства капсида, и размноженная во многих копиях вирусная ДНК объединяются и формируют новые, «дочерние» вирионы. Сформированное вирусное потомство покидает использованную клетку и заражает новые: цикл репродукции вируса повторяется. Некоторые вирусы во время отпочковывания от поверхности клетки захватывают часть клеточной мембраны, в которую «заблаговременно» встроились вирусные белки, и таким образом приобретают оболочку. Что касается клетки-хозяина, то она в итоге оказывается поврежденной или даже полностью разрушенной.

У некоторых ДНК-содержащих вирусов сам цикл репродукции в клетке не связан с немедленной репликацией вирусной ДНК; вместо этого вирусная ДНК встраивается (интегрируется) в ДНК клетки-хозяина. На этой стадии вирус как единое структурное образование исчезает: его геном становится частью генетического аппарата клетки и даже реплицируется в составе клеточной ДНК во время деления клетки. Однако впоследствии, иногда через много лет, вирус может появиться вновь – запускается механизм синтеза вирусных белков, которые, объединяясь с вирусной ДНК, формируют новые вирионы.

У некоторых РНК-содержащих вирусов геном (РНК) может непосредственно выполнять роль мРНК. Однако эта особенность характерна только для вирусов с «+» нитью РНК (т.е. с РНК, имеющей положительную полярность). У вирусов с «-» нитью РНК последняя должна сначала «переписаться» в «+» нить; только после этого начинается синтез вирусных белков и происходит репликация вируса.

Так называемые ретровирусы содержат в качестве генома РНК и имеют необычный способ транскрипции генетического материала: вместо транскрипции ДНК в РНК, как это происходит в клетке и характерно для ДНК-содержащих вирусов, их РНК транскрибируется в ДНК. Двухцепочечная ДНК вируса затем встраивается в хромосомную ДНК клетки. На матрице такой вирусной ДНК синтезируется новая вирусная РНК, которая, как и другие, определяет синтез вирусных белков.

КЛАССИФИКАЦИЯ ВИРУСОВ

Если вирусы действительно являются мобильными генетическими элементами, получившими «автономию» (независимость) от генетического аппарата их хозяев (разных типов клеток), то разные группы вирусов (с разным геномом, строением и репликацией) должны были возникнуть независимо друг от друга. Поэтому построить для всех вирусов единую родословную, связывающую их на основе эволюционных взаимоотношений, невозможно. Принципы «естественной» классификации, используемые в систематике животных, не подходят для вирусов.

Тем не менее система классификации вирусов необходима в практической работе, и попытки ее создания предпринимались неоднократно. Наиболее продуктивным оказался подход, основанный на структурно-функциональной характеристике вирусов: чтобы отличить разные группы вирусов друг от друга, описывают тип их нуклеиновой кислоты (ДНК или РНК, каждая из которых может быть одноцепочечной или двухцепочечной), ее размеры (число нуклеотидов в цепочке нуклеиновой кислоты), число молекул нуклеиновой кислоты в одном вирионе, геометрию вириона и особенности строения капсида и наружной оболочки вириона, тип хозяина (растения, бактерии, насекомые, млекопитающие и т.д.), особенности вызываемой вирусами патологии (симптомы и характер заболевания), антигенные свойства вирусных белков и особенности реакции иммунной системы организма на внедрение вируса.

В систему классификации вирусов не вполне укладывается группа микроскопических возбудителей болезней, называемая вироидами (т.е. вирусоподобными частицами). Вироиды вызывают многие распространенные среди растений болезни. Это мельчайшие инфекционные агенты, лишенные даже простейшего белкового чехла (имеющегося у всех вирусов); они состоят только из замкнутой в кольцо одноцепочечной РНК.

ВИРУСНЫЕ ЗАБОЛЕВАНИЯ

Эволюция вирусов и вирусных инфекций.

Природным резервуаром для вирусов лошадиных энцефалитов, особо опасных для лошадей и в несколько меньшей степени для человека, являются птицы. Эти вирусы переносятся кровососущими комарами, в которых вирус размножается без существенного вреда для комара. Иногда вирусы могут передаваться насекомыми пассивно (без размножения в них), однако чаще всего они репродуцируются в переносчиках.

Для многих вирусов, например кори, герпеса и отчасти гриппа, основным природным резервуаром является человек. Передача этих вирусов происходит воздушно-капельным или контактным путем.

Распространение некоторых вирусных заболеваний, как и других инфекций, полно неожиданностей. Например, в группах людей, проживающих в антисанитарных условиях, практически все дети в раннем возрасте переносят полиомиелит, обычно протекающий в легкой форме, и приобретают иммунитет. Если же условия жизни в этих группах улучшаются, дети младшего возраста обычно полиомиелитом не болеют, но заболевание может возникнуть в более старшем возрасте, и тогда оно часто протекает в тяжелой форме.

Многие вирусы не могут долго сохраняться в природе при низкой плотности расселения вида-хозяина. Малочисленность популяций первобытных охотников и сборщиков растений создавала неблагоприятные условия для существования некоторых вирусов; поэтому весьма вероятно, что какие-то вирусы человека возникли позже, с появлением городских и сельских поселений. Предполагается, что вирус кори первоначально существовал среди собак (как возбудитель лихорадки), а натуральная оспа человека могла появиться в результате эволюции оспы коров или мышей. К наиболее «свежим» примерам эволюции вирусов можно отнести синдром приобретенного иммунодефицита человека (СПИД). Существуют данные о генетическом сходстве вирусов иммунодефицита человека и африканских зеленых мартышек.

«Новые» инфекции обычно протекают в тяжелой форме, нередко со смертельным исходом, но в процессе эволюции возбудителя они могут стать более легкими. Хороший пример – история вируса миксоматоза. В 1950 этот вирус, эндемичный для Южной Америки и довольно безобидный для местных кроликов, вместе с европейскими породами этих животных был завезен в Австралию. Заболевание австралийских кроликов, ранее не встречавшихся с данным вирусом, было смертельным в 99,5% случаев. Несколько лет спустя смертность от этого заболевания значительно снизилась, в некоторых районах до 50%, что объясняется не только «аттенуирующими» (ослабляющими) мутациями в вирусном геноме, но и возросшей генетической устойчивостью кроликов к заболеванию, причем в обоих случаях эффективная природная селекция произошла под мощным давлением естественного отбора.

Репродукция вирусов в природе поддерживается разными типами организмов: бактериями, грибами, простейшими, растениями, животными. Например, насекомые часто страдают от вирусов, которые накапливаются в их клетках в виде крупных кристаллов. Растения нередко поражаются мелкими и просто устроенными РНК-содержащими вирусами. Эти вирусы даже не имеют специальных механизмов для проникновения в клетку. Они переносятся насекомыми (которые питаются клеточным соком), круглыми червями и контактным способом, заражая растение при его механическом повреждении. Вирусы бактерий (бактериофаги) имеют наиболее сложный механизм доставки своего генетического материала в чувствительную бактериальную клетку. Сначала «хвост» фага, имеющий вид тонкой трубочки, прикрепляется к стенке бактерии. Затем специальные ферменты «хвоста» растворяют участок бактериальной стенки и в образовавшееся отверстие через «хвост», как через иглу шприца, впрыскивается генетический материал фага (обычно ДНК).

Более десяти основных групп вирусов патогенны для человека. Среди ДНК-содержащих вирусов это семейство поксвирусов (вызывающих натуральную оспу, коровью оспу и другие оспенные инфекции), вирусы группы герпеса (герпетические высыпания на губах, ветряная оспа), аденовирусы (заболевания дыхательных путей и глаз), семейство паповавирусов (бородавки и другие разрастания кожи), гепаднавирусы (вирус гепатита B). РНК-содержащих вирусов, болезнетворных для человека, значительно больше. Пикорнавирусы (от лат. pico – очень мелкий, англ. RNA – РНК) – самые мелкие вирусы млекопитающих, похожие на некоторые вирусы растений; они вызывают полиомиелит, гепатит А, острые простудные заболевания. Миксовирусы и парамиксовирусы – причина разных форм гриппа, кори и эпидемического паротита (свинки). Арбовирусы (от англ. ar thropod bo rne – «переносимые членистоногими») – самая большая группа вирусов (более 300) – переносятся насекомыми и являются возбудителями клещевого и японского энцефалитов, желтой лихорадки, менингоэнцефалитов лошадей, колорадской клещевой лихорадки, шотландского энцефалита овец и других опасных болезней. Реовирусы – довольно редкие возбудители респираторных и кишечных заболеваний человека – стали предметом особого научного интереса в силу того, что их генетический материал представлен двухцепочечной фрагментированной РНК.

Лечение и профилактика.

Репродукция вирусов тесно переплетается с механизмами синтеза белка и нуклеиновых кислот клетки в зараженном организме. Поэтому создать лекарства, избирательно подавляющие вирус, но не наносящие вреда организму, – задача чрезвычайно трудная. Все же оказалось, что у наиболее крупных вирусов герпеса и оспы геномные ДНК кодируют большое число ферментов, отличающихся по свойствам от сходных клеточных ферментов, и это послужило основой для разработки противовирусных препаратов. Действительно, создано несколько препаратов, механизм действия которых основан на подавлении синтеза вирусных ДНК. Некоторые соединения, слишком токсичные для общего применения (внутривенно или через рот), годятся для местного использования, например при поражении глаз вирусом герпеса.

Известно, что в организме человека вырабатываются особые белки – интерфероны. Они подавляют трансляцию вирусных нуклеиновых кислот и таким образом угнетают размножение вируса. Благодаря генной инженерии стали доступны и проходят проверку в медицинской практике интерфероны, производимые бактериями см. ГЕННАЯ ИНЖЕНЕРИЯ) .

К самым действенным элементам естественной защиты организма относятся специфические антитела (специальные белки, вырабатываемые иммунной системой), которые взаимодействуют с соответствующим вирусом и тем самым эффективно препятствуют развитию болезни; однако они не могут нейтрализовать вирус, уже проникший в клетку. Примером может служить герпетическая инфекция: вирус герпеса сохраняется в клетках нервных узлов (ганглиев), где антитела не могут его достичь. Время от времени вирус активируется и вызывает рецидивы заболевания.

Обычно специфические антитела образуются в организме в результате проникновения в него возбудителя инфекции. Организму можно помочь, усиливая выработку антител искусственно, в том числе создавая иммунитет заранее, с помощью вакцинации. Именно таким способом, путем массовой вакцинации, заболевание натуральной оспой было практически ликвидировано во всем мире.

Современные методы вакцинации и иммунизации разделяются на три основных группы. Во-первых, это использование ослабленного штамма вируса, который стимулирует в организме продуцирование антител, эффективно действующих против более патогенного штамма. Во-вторых, введение убитого вируса (например, инактивированного формалином), который тоже индуцирует образование антител. Третий вариант – т.н. «пассивная» иммунизация, т.е. введение уже готовых «чужих» антител. Животное, например лошадь, иммунизируют, затем из ее крови выделяют антитела, очищают их и используют для введения пациенту, чтобы создать немедленный, но непродолжительный иммунитет. Иногда используют антитела из крови человека, перенесшего данное заболевание (например, корь, клещевой энцефалит).

Накопление вирусов.

Для приготовления вакцинных препаратов необходимо накопить вирус. С этой целью часто используют развивающиеся куриные эмбрионы, которых заражают данным вирусом. После инкубирования зараженных эмбрионов в течение определенного времени накопившийся в них вследствие размножения вирус собирают, очищают (центрифугированием или другим способом) и, если нужно, инактивируют. Очень важно удалить из препаратов вируса все балластные примеси, которые могут вызывать серьезные осложнения при вакцинации. Конечно, не менее важно убедиться, что в препаратах не осталось неинактивированного патогенного вируса. В последние годы для накопления вирусов широко используют различные типы клеточных культур.

МЕТОДЫ ИЗУЧЕНИЯ ВИРУСОВ

Вирусы бактерий первыми стали объектом детальных исследований как наиболее удобная модель, обладающая рядом преимуществ по сравнению с другими вирусами. Полный цикл репликации фагов, т.е. время от заражения бактериальной клетки до выхода из нее размножившихся вирусных частиц, происходит в течение одного часа. Другие вирусы обычно накапливаются в течение нескольких суток или даже более продолжительного времени. Незадолго до Второй мировой войны и вскоре после ее окончания были разработаны методы изучения отдельных вирусных частиц. Чашки с питательным агаром, на котором выращен монослой (сплошной слой) бактериальных клеток, заражают частицами фага, используя для этого его последовательные разведения. Размножаясь, вирус убивает «приютившую» его клетку и проникает в соседние, которые тоже гибнут после накопления фагового потомства. Участок погибших клеток виден невооруженным глазом как светлое пятно. Такие пятна называют «негативными колониями», или бляшками. Разработанный метод позволил изучать потомство отдельных вирусных частиц, обнаружить генетическую рекомбинацию вирусов и определить генетическую структуру и способы репликации фагов в деталях, казавшихся ранее невероятными.

Работы с бактериофагами способствовали расширению методического арсенала в изучении вирусов животных. До этого исследования вирусов позвоночных выполнялись в основном на лабораторных животных; такие опыты были очень трудоемки, дороги и не очень информативны. Впоследствие появились новые методы, основанные на применении тканевых культур; бактериальные клетки, использовавшиеся в экспериментах с фагами, были заменены на клетки позвоночных. Однако для изучения механизмов развития вирусных заболеваний эксперименты на лабораторных животных очень важны и продолжают проводиться в настоящее время.