В самом деле, программирование станков с ЧПУ не представляет особых затруднений. В то же время необходимо создавать управляющие программы (УП) для этих устройство таким образом, чтобы по максимуму использовать их в работе.
Программирование выполняется на языке, известном как ISO 7 бит, также его именуют языком G и M кодов.
Программы могут разрабатываться тремя наиболее распространёнными способами:
посредством ручного программирования;
посредством создания программ на стойке станка ЧПУ;
наконец, с помощью CAM-систем.

Все три названных способах программирования используются в определённых случаях, ни один из них не следует рассматривать как универсальный. Именно их сочетание позволит добиться наибольшего эффекта. Овладеть ручным программированием не так сложно при наличии базовых представлений о программировании. В то же время работа с CAM-системой является довольно лёгкой для понимания.

Ручное программирование

Ручное программирование означает создание программы на собственном компьютерном устройстве, где имеется текстовый редактор. На нём и создаётся управляющая программа. Программа содержит координаты, куда передвигается инструмент, производящий обработку заготовок, а также требуемые сведения в форме кодов G и M. Она представляет собой файл с расширением.txt.
После того, как программа готова, её переносят на станок с ЧПУ в виде того же.txt файла. Компьютер и станок соединяют через COM-порт компьютера. Прежде всего проводят синхронизацию их программ, отвечающих за коммуникацию. После этого происходит простое отправление и приём данных. Особый случай - если программа имеет объём, который превосходит величину памяти станка с ЧПУ. В этом случае команды станку направляются непосредственно с компьютера.Особый вариант - написание программы ручкой на листе бумаги, оно имеет смысл, лишь если в производственном помещении нет доступа к компьютеру или иному устройству.
Чрезмерной сложности для понимания ручное программирование не представляет. Эту функцию в состоянии выполнять любой технолог, который знаком с его принципами. В то же время ручное программирование - это сравнительно трудоёмкий процесс, которые требует скрупулёзной точности. Этому варианту создания программ отдают предпочтение в том случае, когда необходимо выполнить несложную обработку заготовок стандартной формы. Второй случай - отсутствие требуемых для двух других методов средств разработки.
Кроме того, до сих пор на производстве присутствует масса станков с ЧПУ, управление которыми возможно исключительно с применением ручного программирования. Значительное количество предприятий используют подобные модели. Причина этого именно в том, что на таких предприятиях выполняются в основном простые операции с заготовками, да и количество станков сравнительно невелико. В результате программист-технолог, который отлично владеет навыками ручного программирования, способен добиться весьма высокой производительности труда.
Ещё более характерный вариант – когда операции с заготовками не просто несложные, но повторяющиеся, а их количество ограничено. Тогда сотрудник пишет программы под каждую из этих операций, и довольно долгое время её менять не требуется вовсе. Необходимость написания программ возникнет лишь при появлении потребности в новых операциях станков.
В итоге ручное программирование выигрывает по эффективности у двух других вариантов. Иначе говоря, для маленького предприятия ручное программирование может быть оптимальными решением.
По эффективности оно победит куда более продвинутый вариант с CAM-системой. К тому же и на предприятиях, где использование последнего метода целесообразно при потребности а коррекции управляющих программ используют ручное программирование. Также этот вариант коррекции используют, когда новую программу, написанную другими способами необходимо оттестировать на станке.

Программирование на пульте стойки станка

Поскольку сейчас многие станки с ЧПУ оборудуются дисплеем и клавиатурой, программировать в таких случаях можно непосредственно на станке, что даёт возможность разрабатывать рабочие программы для такой модели на ней самой. Программировать можно вводят в устройство G и M коды, а также в диалоговом режиме. Также имеется опция тестирования программы, для чего на дисплее станка выполняют визуальную имитацию обработки заготовки с помощью графического приложения.

Программирование с использованием системы CAM

Это специализированная система, позволяющая добиться большей производительности, нежели при программировании ручным способом либо на самом станке.
Система CAM выполняет вычисление траектории инструменты, который производит обработку заготовки. Она действует в автоматическом режиме. Её применяют, если нужна управляющая программа для руководства операциями над деталью сложной конфигурации. Также CAM востребована, если станки на предприятии выполняют массу различных операций. В этих случаях ручной обсчёт нецелесообразен и даже невозможен.

В целом же заниматься ручным программированием станков с ЧПУ весьма несложно, никакого специального образования при этом не требуется. Эта работа вполне доступна и непрофессионалам, поскольку язык ISO 7 бит довольно прост. В остальных случаях все трудные операции возьмёт на себя система CAM.
Мало затруднений вызывает работа по написанию управляющих программ для нескольких станков, выполняющих стандартные операции с заготовками простой формы. Но проще всего программирование для единственного станка, который владелец создал своими руками. Научиться писать программы для такой модели совсем несложно.

Кому поручить программирование ЧПУ-обработки: программисту-технологу или оператору станка?

Производители инструментальной оснастки и другие субподрядчики по всему миру сталкиваются сегодня с двумя ключевыми проблемами. Первая из них - заказчики проектируют изделия все более сложной формы. Тенденции моды выдвигают на первый план эстетические критерии, а не функциональные особенности изделия. Кроме того, сложная форма все чаще бывает обусловлена эргономическими требованиями. Вторая проблема - несмотря на возрастающую сложность продукции, сроки работы от приема заказа до отгрузки готовой продукции продолжают сокращаться. Законы рынка таковы, что зачастую сроки поставки даже более важны, чем отпускная цена. Хотя, конечно, заказчик всегда стремится заплатить меньше, а продукцию получить как можно быстрее.

Когда компания - изготовитель оснастки берется за сложный заказ и одновременно пытается значительно сократить сроки производства, неизбежно начинают выявляться узкие места. Как правило, одним из них оказывается CAD/CAM-подразделение, что обусловлено рядом объективных факторов. Из-за усложнения формы изделия возрастает конструктивная сложность сборной оснастки, что, в свою очередь, уменьшает технологические допуски на ее изготовление. Повышение конструктивной сложности означает увеличение количества обрабатываемых поверхностей, на задание обработки которых требуется время. При задании сложной ЧПУ-обработки технологу также приходится использовать больше инструментов, что требует больших сроков программирования. Все это увеличивает «компьютерное» время счета, необходимое для генерирования траекторий инструмента (УП). Конечно же, рост вычислительной мощи компьютеров и оптимизация кода CAM-систем улучшили ситуацию. Но в большинстве случаев компании не остается другого выхода, как экстенсивно увеличить количество рабочих мест с CAM-системой. Однако найти опытного технолога, владеющего именно используемой вами CAM-системой, оказывается весьма непросто. Общая тенденция такова, что опытные ЧПУ-программисты уходят работать в крупные холдинги, которые могут предложить высококвалифицированному сотруднику более высокую зарплату. Поэтому увеличить штат ЧПУ-программистов довольно сложно. Как же в таком случае быть небольшим компаниям? Если компания использует надежную CAM-систему с высокой степенью автоматизации подготовки УП, то для несложных изделий можно передать функции технолога-программиста непосредственно оператору станка с ЧПУ. Таким образом, часть УП будет разрабатываться прямо в цехе.

В отчете компании CIMdata за 2005 год, посвященном обзору рынка CAM-систем, указано, что 57% проданных CAM-систем применяется программистами - технологами станков с ЧПУ на своих рабочих местах. 18% пользователей использовали CAM-систему прямо в цехе на станках с ЧПУ. Оставшиеся 25% задействуют CAM-систему от случая к случаю в зависимости от текущих обстоятельств. К сожалению, в отчете нет никаких данных по распределению предпочтений пользователей по регионам. Комментарии от представительств компании Delcam plc, работающих по всему миру, говорят о том, что идея ЧПУ-программирования в цехе зародилась в Северной Америке и именно там получила наибольшее распространение. В Европе ЧПУ-программирование в цехе тоже становится популярным. А вот в Азии наоборот: там всю ЧПУ-обработку предпочитают программировать в отдельном CAD/CAM-отделе, удаленном от цеха.

Преимущества ЧПУ-программирования в цехе

Размещение CAM-системы в цехе обеспечивает целый ряд преимуществ. Прежде всего, операторы станков больше знают об особенностях механообработки и всех установленных в цехе станков. Поэтому только они могут подобрать наилучшие режим и стратегию механообработки (с учетом имеющегося в наличии инструмента). Таким образом, ЧПУ-программирование в цехе должно повысить качество обработки.

Возможности PowerMILL 8

b

Оптимизация траекторий в PowerMILL 8 (b) позволяет сэкономить около 15% станочного времени!

В PowerMILL 8 были добавлены стратегии для черновой и чистовой обработки

Конечно же, многие технологи - программисты станков с ЧПУ начинали работать операторами в цехе и, лишь набравшись опыта, перешли из цеха в CAD/CAM-подразделение. Тем не менее такое повышение по карьерной лестнице вовсе не означает, что ЧПУ-программист хорошо осведомлен о возможностях и особенностях новых инструментов и станков, появившихся после его ухода из цеха. Например, современные режущие инструменты могут работать на скоростях резания и подачах, считавшихся недостижимыми еще пять-семь лет назад. Это лишь один из примеров, когда компания может терять выгоду от неполного использования возможностей нового оборудования. Как показывает практика, лишь работающий в цехе у станка оператор в полной мере представляет возможности и ограничения станка и инструмента.

Возможности PowerMILL 8

Основное внимание при разработке 8-й версии CAM-системы PowerMILL разработчики уделили совершенствованию специализированных стратегий обработки и развитию многоосевой обработки, а также снижению времени генерации УП за счет оптимизации кода программы и оптимизации траекторий рабочих и холостых ходов инструмента. Благодаря этому стало возможным значительное сокращение станочного времени. Означает ли это, что 7-я версия была чересчур медленной? Оказывается, совсем нет!

Долгое время PowerMILL 7 считалась одной из самых быстрых CAM-систем по скорости генерации УП. В 8-й версии разработчикам удалось повысить скорость расчета УП в среднем еще на 40%! Таким образом, PowerMILL был и остается рекордсменом по скорости генерации УП. Несложный математический расчет показывает, что только благодаря сокращению времени счета приобретение обновления с 7-й на 8-ю версию на одну лицензию PowerMILL окупит себя максимум через 2-3 месяца.

При обработке сложных деталей оптимизация траектории перемещения инструмента в PowerMILL 8 позволяет сэкономить порядка 15% станочного времени. Приняв во внимание среднюю стоимость станочного времени, можно подсчитать выгоду от приобретения дополнительной лицензии PowerMILL 8. Оказывается, что 15-процентная годовая экономия на станочном времени превосходит стоимость лицензионного продукта! Естественно, речь идет о пятиосевой обработке сложных деталей, так как существенная оптимизация траектории при обработке простых изделий не всегда возможна.

Особое внимание разработчики уделили совершенствованию существующих и разработке новых стратегий обработки. Появились специальные пятиосевые стратегии для черновой и чистовой обработки («Выборка», «Обработка ступицы», «Обработка лопасти»), а также опции для задания наклона фрезы («Нормали ступицы», «Обода», «Смещения»). Кроме того, был реализован полный контроль траектории на зарезы и столкновения при помощи функции автоматического наклона оси инструмента. Чтобы каждый раз при изменении параметров не пересчитывать всю УП заново, в PowerMILL 8 была добавлена возможность расчета траектории для одного участка изделия.

Еще одна интересная возможность, реализованная в PowerMILL 8, - стратегия обрезки (раскроя) листового материала дисковым инструментом большого диаметра. Особенностью данного метода обработки является расчет траектории перемещения, исходя из положения режущего края дисковой фрезы, так как расчет УП просто по центру диска неизбежно приведет к зарезам. В областях с малой кривизной и острых углах происходит автоматический отвод диска от поверхности заготовки.


Контроль траектории инструмента в PowerMILL

При непрерывной пятиосевой обработке участков с резко меняющейся кривизной поверхности (волнообразные гребешки, внутренние углы и т.п.) обычная CAM-система удерживает ось фрезы под заданным углом опережения к нормали. На практике это означает, что при обработке такого элемента рабочие органы станка (особенно поворотный стол) начинают совершать резкие перемещения с высокой амплитудой, что негативно сказывается на точности и качестве обработанной поверхности. Чтобы избежать этого явления, в PowerMILL 8 была добавлена возможность задания (редактирования) направления оси наклона фрезы на заданном участке траектории. Кроме того, новая опция «Следовать кривым поверхности» позволяет сделать траекторию фрезы более плавной.

Отдельного внимания заслуживает функция PowerMILL 8 по распределению точек траектории. Размещение точек возможно по четырем алгоритмам: по допуску, сохраняя дуги; по допуску, заменяя дуги; вписать дуги; переразместить равномерно. Опция равномерного переразмещения точек позволяет сократить время обработки на станке, хотя и увеличит время расчета траектории. Снижение станочного времени от переразмещения точек особенно заметно при высокоскоростной обработке. Этот эффект связан с тем, что современные стойки с ЧПУ анализируют УП на несколько сотен кадров вперед с целью автоматического снижения скорости подачи при резком изменении траектории инструмента. Тем самым предотвращается возникновение больших инерциальных нагрузок, снижающих ресурс станка. При некотором эмпирически подобранном шаге перераспределения точек обеспечивается наибольшая средняя скорость подачи станка.

Фотореалистическая имитация обработки во ViewMILL

Конечно же, технолог должен быть абсолютно уверен, что подготовленная им ЧПУ-программа не приведет к поломке дорогостоящего оборудования. Поэтому разработчики PowerMILL большое внимание уделяют контролю качества УП. Во-первых, в симуляторе обработки PowerMILL возможен контроль траектории инструмента в графическом виде. Во-вторых, PowerMILL позволяет контролировать перемещение подвижных рабочих органов станка. Кроме того, модуль ViewMILL во время имитации обработки позволяет вращать и масштабировать деталь, а также назначать различные режимы отображения (динамический, обычный, фотореалистичный, радужный, по направлению движения). Имеется также опция возврата в ранее сохраненное состояние имитации.

Для повышения удобства работы в PowerMILL 8 была добавлена обширная база данных инструмента в формате MS Access, обладающая совместимостью с БД инструмента CAM-системы FeatureCAM. Новая БД позволяет осуществлять быстрый поиск инструмента по различным параметрам, а также привязку инструмента к режимам резания.

Также важно, что только оператор знает текущее состояние станка, инструмента, заготовок и технологических приспособлений (зажимов). Если оператор досконально владеет ситуацией в цехе, эффективность планирования будет более высокой. ЧПУ-программист, работающий в удаленном от цеха CAD/CAM-отделе, не обладает оперативной информацией, что чревато простоем оборудования во время перепрограммирования ЧПУ-обработки под другой инструмент или станок.

Иногда у оператора возникает необходимость по каким-то причинам отредактировать уже готовую и отработанную ЧПУ-программу. Например, в случае отсутствия или поломки необходимого инструмента он может выбрать имеющийся в наличии подходящий альтернативный типоразмер инструмента и самостоятельно пересчитать УП без привлечения CAD/CAM-отдела. Естественно, оператор при этом должен обладать достаточно высокой квалификацией, однако предоставление ему определенной самостоятельности и ответственности за выполненную работу будет способствовать повышению его квалификации, заинтересованности в конечном результате и престижности труда.

Вышесказанное вовсе не означает, что надо полностью отказываться от CAD/CAM-отдела и всю его работу возложить на операторов станков. Высвобожденные у CAD/CAM-отдела ресурсы следует направить на решение очень важной задачи - быстрое и точное определение стоимости потенциального заказа. Если производитель будет придерживаться разумной (конкурентоспособной) ценовой политики и намного быстрее своих конкурентов назовет потенциальному заказчику конкретную, обоснованную цену, то у него есть все шансы получить заказ. Как правило, заказчик уже ориентировочно представляет стоимость работ, и если предложение приблизительно совпадет с его ожиданиями, то, скорее всего, он не станет терять время и ждать, пока другие конкуренты назовут ему аналогичные цены. Участие в подготовке коммерческого предложения CAD/CAM-отдела позволит проанализировать заказ и снизить вероятность того, что он станет убыточным для исполнителя вследствие недооценки его сложности.

Требования к CAM-системе

Чтобы перевести подготовку УП из CAD/CAM-подразделения в цех, необходимо, чтобы CAM-система удовлетворяла некоторым специфическим требованиям оператора станка с ЧПУ.

Во-первых, у операторов, как правило, нет столь большого опыта работы с программным обеспечением, как у программистов-технологов. Поэтому даже такие базовые операции, как «Копировать», «Вставить» и «Вырезать», должны выполняться в CAM-системе привычной для ОС Windows комбинацией клавиш - это позволит значительно сократить период начального обучения.

Вторая исключительно важная особенность - оператор должен видеть на экране визуализированную 3D-модель обработанной заготовки с обработанным припуском, которая автоматически обновляется после каждого перерасчета УП. Конечно, это очень пригодится и работающему в офисе технологу-программисту, который не видит станок. Визуализация припуска на обработку позволяет выбрать оптимальную стратегию обработки и наиболее подходящий по форме и размеру инструмент. Но еще больше визуализация обработки нужна оператору станка с ЧПУ - это позволит ему мгновенно сравнить обработанную на станке деталь с компьютерной моделью. Таким образом, визуализация обработки в CAM-системе вселит в оператора уверенность, что он получит ожидаемый результат, предсказанный CAM-системой.

В-третьих, CAM-система должна предлагать широкий диапазон стратегий обработки с возможностью ручного редактирования УП на любом участке траектории. Она должна позволять опытному оператору сделать именно так, как он хочет, не ограничивая его своими возможностями. Кроме того, CAM-система должна полностью поддерживать все существующие возможности станка с ЧПУ, особенно это касается программирования пятиосевой и высокоскоростной обработки. Во многих CAM-системах сегодня обеспечивается высокая степень автоматизации разработки УП, которая позволяет сократить сроки подготовки УП и период освоения программного продукта новым пользователем. Однако большинство траекторий, рассчитанных такими CAM-системами, являются компромиссом для некого усредненного типа станка и не позволяют в полной мере использовать возможности конкретной модели станка отдельно взятого производителя. Поэтому CAM-система должна предоставлять возможность тонкой настройки под каждый тип станка для достижения наивысшей производительности обработки.

В-четвертых, для оператора в цехе время генерации CAM-системой управляющих программ более критично, чем для технолога-программиста в удаленном от станка отделе. Ведь при расчете новой УП станок может оказаться бездействующим, а любой его простой способен подорвать репутацию оператора.

Наконец, в-пятых, CAM-система обязательно должна иметь модуль для проверки сгенерированных УП на отсутствие зарезов и столкновений. Визуализация обработки тоже поможет выявить все проблемы еще до того, как УП будет отправлена на дорогостоящий станок. Имитация работы УП особенно важна для пятиосевой обработки, так как неопытный программист может нечаянно повредить дорогостоящий станок. В случае поломки станка компания не только будет вынуждена оплатить ремонт, но и потеряет значительную выгоду от длительного простоя оборудования. Верификация УП позволяет с высокой степенью достоверности гарантировать, что во время работы станка не произойдет никаких неприятностей, связанных с правильностью сгенерированных УП. Наиболее совершенные верификаторы обработки используют точные, подробные 3D-модели станка, инструмента и заготовки и позволяют обнаружить любые нежелательные контакты между инструментом, деталью и всеми элементами станка. В случае выявления нежелательных или опасных перемещений пользователь может вручную отредактировать УП или использовать другую стратегию обработки.

Визуализация обработки в CAM-системе способна также косвенно повысить производительность обработки. Например, во время визуализации пользователь может увидеть, что иное расположение заготовки на поворотном столе станка или применение другого фиксирующего приспособления позволит повысить производительность обработки.

Цеховая CAD-система

Если по поводу необходимости и полезности наличия в цехе CAM-системы споров не возникает, то целесообразность присутствия там CAD-системы не столь однозначна.

Очень часто переданная заказчиком 3D-модель содержит ошибки геометрии. Часть из них вызвана некорректным преобразованием данных из других CAD-систем. Например, 3D-модель может содержать дубли поверхностей или зазоры между кромками, некоторые поверхности могут быть утеряны, иногда неправильно задается нормаль поверхности. Все эти недостатки относительно просто могут быть выявлены и исправлены во многих CAD-системах. Другой, более сложный тип ошибок зачастую связан с непригодностью модели для серийного производства. Например, в 3D-модели могут отсутствовать литейные уклоны либо она может содержать слишком малые радиусы скругления, что будет препятствовать заполнению формы во время литья. Исправить такого рода ошибки можно во многих гибридных CAD-системах. Конечно же, доработка 3D-модели может быть быстро выполнена оператором прямо в цехе. Однако возникает вероятность того, что CAD-модель получит изменения, которые не являются ни принципиально необходимыми, ни конструктивно допустимыми. Чтобы избежать таких просчетов, необходимо проработать механизм быстрого утверждения изменений в CAD-модели между оператором, CAD/CAM-отделом и заказчиком. Для большинства компаний разумней будет так распределить обязанности между CAD/CAM-отделом и цехом, чтобы в цех попадали только полностью доработанные и утвержденные CAD-модели, чтобы оператор станка с ЧПУ не задумывался над правильностью геометрии детали.

Пример из практики: компания Delphi

Мировые тенденции автомобильной промышленности таковы, что большинство производителей предпочитают размещать как можно больше заказов у своих субпод рядчиков, а не самостоятельно производить все компоненты. Тем не менее компания Delphi (www.delphi.com), являющаяся мировым лидером в области производства автомобильной электроники, наоборот, стремится расширять собственное производство. Так, ее подразделение Flint (Мичиган, США) оснастило свой 29-й производственный цех CAM-системой PowerMILL и высокоскоростными станками Makino. Это позволило компании значительно сократить время от получения CAD-модели до отгрузки готовой партии.

Новая версия PowerMILL 9

Разработчики PowerMILL сумели сделать предыдущую, восьмую версию самой быстрой CAM-системой на рынке. И, как часто бывает в таких случаях, пользователям стало понятно, сколько времени уходит на второстепенные операции. Поэтому в PowerMILL 9 основное внимание разработчики уделили пользовательскому интерфейсу и 2D-обработке. Например, из моделировщика PowerSHAPE в PowerMILL 9 были добавлены ставшие уже привычными пользователям сочетания клавиш для быстрого скрытия и показа элементов модели.

Усовершенствования пользовательского интерфейса PowerMILL 9 направлены на повышение удобства работы

В 9-й версии многие диалоговые окна дополнены вспомогательными алгоритмами для удобного ввода данных. Пользователю больше не нужно иметь под рукой калькулятор. Например, в диалоговом окне назначения заготовки теперь можно ввести ее реальные размеры, а не значения габарита вдоль осей. При задании геометрии конической фрезы теперь можно использовать именно те данные, которые принято указывать в каталогах инструмента.

Усовершенствования коснулись также интерфейса объединенного окна назначения стратегий 2D-обработки. Теперь все параметры, влияющие на траекторию, представлены и задаются в одном графическом окне. Появились и новые стратегии 2D-обработки, основанные на плоских кривых и не требующие построения 2D-элементов:

  • обработка торцов (для обработки плоскостей);
  • по профилю кривой (обработка карманов, бобышек, стенок);
  • выборка по 2D-кривой (черновая обработка внутри замкнутых кривых);
  • обработка фасок.

Новая опция «Спираль» была добавлена в стратегии «Проекция поверхности» и «Обработка поверхности» и может применяться только для замкнутых в одном из направлений поверхностей (как в продольном, так и в поперечном направлении).

В PowerMILL 9 появились расширенные возможности по обработке лопаток

Для снижения динамических нагрузок на приводы станка при непрерывном пятиосевом фрезеровании и повышения плавности движений поворотного стола в PowerMILL 9 добавлена новая опция сглаживания оси наклона инструмента. Эта функция, корректирующая скорость изменения и направления движения оси инструмента, позволяет в явном виде задать максимальный угол коррекции. В результате повышается качество обрабатываемой поверхности и снижается время обработки.

Видеопрезентации 9-й версии PowerMILL можно посмотреть на сайте powermill.com .

В 29-м цехе разработка УП для станков Makino выполняется непосредственно операторами станков с ЧПУ, для чего было приобретено восемь лицензий на PowerMILL компании Delcam plc. «Мы, операторы станка, понимаем все тонкости и особенности станочного оборудования, поэтому можем производить высококачественные пресс-формы, - рассказывает Джеф Джонс (Jeff Johns), программист-оператор станка с ЧПУ, который занимается высокоскоростной обработкой элементов пресс-форм. - Сочетание нашего практического опыта, станков Makino и программного обеспечения Delcam дает нам неизменно превосходные результаты. PowerMILL позволят нам программировать обработку именно так, как нам необходимо, и мы достигли огромной экономии времени за счет сокращения перемещений инструмента по воздуху и уменьшения количества поломок инструмента».

Высокое качество обработанной поверхности и абсолютное отсутствие зарезов - отличительные признаки пресс-форм Delphi

«Кроме того, при использовании CAM-системы PowerMILL у нас никогда не было зарезов на деталях, - добавляет программист-оператор Роб Берджерон (Rob Bergeron). - Для нас это крайне важно, так как требования к нашей продукции не допускают наличия на рабочих поверхностях пресс-форм следов от ремонта сваркой в случае зарезов. Всего один зарез для нас будет означать, что деталь нужно обрабатывать на станке заново!»

«Главная выгода от ПО Delcam plc заключается в быстроте его освоения, - считает программист-оператор Билл Джордан (Bill Jordan). - Квалифицированный оператор, который уже знает команды управления контроллером станка с ЧПУ, может начать разрабатывать эффективные УП спустя всего лишь две недели. Каждый новый релиз PowerMILL оправдывает ожидания наших программистов, а последующая за апгрейдами успешная работа свидетельствует о том, что компания Delcam тщательно тестирует свое ПО, прежде чем оно попадет в цех к заказчику».

К подразделению внутри крупной компании предъявляется даже больше требований, чем к внешнему субподрядчику. Во-первых, собственное подразделение должно обеспечивать меньшую стоимость продукции, чем может предложить любой из внешних конкурентов. Во-вторых, срок поставки готовой продукции тоже должен быть меньше, чем у любого из конкурентов. Как правило, на выпуск новой партии отводится 8-12 недель. Но, несмотря на столь жесткие требования, 29-й цех успешно работает с 2002 года, а объем производимой им продукции неуклонно растет.

Конкуренция заставляет 29-й цех искать пути уменьшения себестоимости продукции. Сокращение производственных издержек реализуется за счет автоматической работы станков без присутствия операторов и существенного уменьшения объема ручной доводки. «Поверхность, обработанная инструментом с частотой вращения 30 тыс. об./мин,
выглядит невероятно гладкой, поэтому мы уже близки к стадии, когда пресс-форму можно будет сразу со станка без ручной доводки отправлять на производство», - объясняет г-н Берджерон.

Производимая 29-м цехом оснастка предназначена для серийного производства электромеханических изделий, таких как корпуса для очистителей воздуха, датчики указания уровня топлива, светодиодные кластеры и т.п. «Мы знаем, что, производя заказы внутри компании, наш цех идет вразрез с мировыми тенденциями, - комментирует ситуацию
г-н Джордан. - Тем не менее высокоскоростные станки Makino и CAM-система PowerMILL позволяют нам снизить себестоимость продукции до приемлемого уровня и превзойти ожидания нашего заказчика».

Успех компании Shinyoung Precision

Применение ПО Delcam и передача полномочий по разработке УП в цех, где используются пятиосевые станки с ЧПУ Mikron, позволило известному корейскому производителю мобильных телефонов Shinyoung Precision значительно сократить время выполнения заказов. Основанная в 1993 году компания Shinyoung Precision (www.shinyoung.co.kr) владеет тремя заводами и одним научно-исследовательским центром вблизи Сеула, столицы Южной Кореи. Сегодня в Shinyoung Precision, поставляющей продукцию для Motorola и LG, работает около 300 сотрудников.

За прошедшие пять лет, на протяжении которых при поддержке регионального представительства Hankook Delcam происходило внедрение программных продуктов семейства Power Solution, компания сумела сократить среднее время производственного цикла с 30 до 11 дней. В перспективе этот срок, вероятно, удастся уменьшить до 9 дней.

Использование CAM-систем непосредственно в производственных цехах началось в Shinyoung Precision в 2002 году и сопровождалось переходом на PowerMILL. Причина перевода ЧПУ-программирования из CAD/CAM-отдела в цех заключалась в стремлении устранить задержки вследствие несогласованности работы CAD/CAM-отдела и производственного участка. Только это позволило сократить производственный цикл с 30 до 22 дней! Как выяснилось позже, нововведение повысило качество производимой продукции, поскольку операторы-программисты, исходя из особенностей конкретных станков, назначали более рациональные стратегии обработки и инструмент. Кроме того, уменьшилось количество поломок инструмента, что также снизило себестоимость продукции.

Успехи в механообработке подвигли руководство Shinyoung Precision сделать следующий шаг - аналогичным образом перевести в цех программирование электроэрозионной обработки, для чего у Delcam был приобретен CAM-модуль для электроэрозионной обработки в PowerMILL. Это позволило сократить усредненный производственный цикл еще на два дня.

В феврале 2004 года были приобретены пятиосевые станки фирмы Mikron. Комбинация пятиосевых станков Mikron и CAM-системы PowerMILL позволила значительно повысить качество обработанных поверхностей за счет применения более короткого (а следовательно, более жесткого) инструмента.

Повышение качества отфрезерованных поверхностей позволило Shinyoung Precision значительно снизить объем электроэрозионной обработки. Ранее она выполнялась сначала черновыми электродами, а затем - чистовыми. Объем снимаемого материала был достаточно большим, что требовало существенных временны х затрат. Сейчас черновая электроэрозионная обработка заменена пятиосевым фрезерованием и используется только чистовая электроэрозионная обработка.

Дополнительная экономия времени была получена от применения чистовых электродов на пятиосевых станках за один установ. Ранее электроды обрабатывались на трехосевых станках в несколько установов, что не только занимало больше времени, но и негативно отражалось на точности.

Вместо заключения

В данной статье мы постарались показать, какие выгоды получит производитель инструментальной оснастки, если программирование станков с ЧПУ будет поручено операторам-программистам. Надеемся, что два приведенных примера из практики заставят приверженцев программирования ЧПУ-обработки в обособленных CAD/CAM-подразделениях задуматься о возможностях снижения издержек и повышения производительности труда. Но не стоит думать, что ЧПУ-программирование в цехе само по себе является решением всех проблем. В Delphi одним из ключей к успеху послужила высокоскоростная обработка, а в Shinyoung Precision - переход на пятиосевое фрезерование. Но в обоих случаях одним из основных компонентов была CAM-система, способная в полной мере реализовать возможности применяемого станочного оборудования. Только взвешенный подход, при котором в совокупности характеристик рассматривается комплекс из возможностей оборудования и CAM-системы, позволит повысить производительность труда и качество продукции.

По материалам Delcam plc
Перевод Константина Евченко

Одним из самых интересных и эффективных методов программирования обработки является параметрическое программирование. Удивительно, но большинство технологов-программистов хоть и слышали об этом методе, но совершенно не умеют его использовать. В этом разделе вы познакомитесь с теорией параметрического программирования и коснетесь основ макроязыка системы ЧПУ современного станка.

Большинство станочных систем ЧПУ имеют в своем распоряжении специальный язык для параметрического программирования (макропрограммирования). Например, в СЧПУ Fanuc этот язык называется Macro В. Если вы хоть немного знакомы с языком программирования Бейсик (Basic), то вы без труда разберетесь и с Macro В. Команды и функции именно этого языка мы рассмотрим подробно. В обычной управляющей программе вы указываете различные G-коды, а также направления и величины перемещений при помощи числовых значений. Например, G10 или Х100. Однако СЧПУ станка может делать то же самое при помощи переменных.

Символом переменной в Macro В является знак #. Например, в программе можно указать следующие выражения:


#1=100
#2=200
#3=#1+#2

Это означает, что переменной #1 присваивается значение 100, а переменной #2 – значение 200. Переменная #3 будет являться результатом суммы переменной #1 и переменной #2. С таким же успехом можно записать и G-код:


#25=1
G#25

Переменной #1 присвоено значение 1. Тогда вторая строка по своей сути будет обозначать код линейной интерполяции G1. С переменными можно производить различные арифметические и логические операции, что позволяет создавать «умные» программы обработки или различные станочные циклы.

В памяти системы ЧПУ существует область, в которой хранятся значения переменных. Вы можете заглянуть в эту область, если найдете раздел памяти СЧПУ, который обычно называется MACRO или VARIABLES. Присваивать значения переменным можно не только внутри программы, но и непосредственно – вводя значения в регистры этой памяти. Приведу несколько примеров. Можно составить такую программу:

#1=25
#2=30
#3=#2+#1

В этом случае значения присваиваются переменным внутри программы. Чтобы в будущем изменить числовые значения переменных #1 и #2, придется отредактировать программу.

Можно реализовать более удобный вариант, который позволит изменять значения переменных в любой момент, не прибегая к изменению самой программы:

Как видите, переменным #1 и #2 в программе не присвоено никаких значений. Оператор станка может войти в область переменных MACRO и ввести любое числовое значение для любой переменной.

Все переменные системы ЧПУ можно условно разделить на 4 типа:

  • нулевые;
  • локальные;
  • общие;
  • системные.

Локальные переменные могут быть использованы внутри макросов для хранения данных. При выключении электропитания локальные переменные обнуляются. У большинства станков с СЧПУ Fanuc нулевой серии локальными являются переменные с номерами от 1 до 33.

Общие переменные могут работать внутри различных параметрических программ и макросов. При выключении электропитания некоторые общие переменные обнуляются, а некоторые сохраняют свои значения. У большинства станков с СЧПУ Fanuc нулевой серии общими являются переменные с номерами от 100 до 999.

Системные переменные используются для чтения и записи различной системной информации – данных о позиции инструмента, величинах компенсации, времени и др. Номера системных переменных для Fanuc нулевой серии начинаются с 1000.

Нулевые переменные всегда равны нулю.

Для выполнения арифметических и логических операций язык Macro В предоставляет набор команд и операторов.

Таблица 10.1. Основные арифметические и логические команды

Для управления переменными и для выполнения различных логических операций служат макрокоманды. Макрокоманды языка Macro В похожи на команды Бейсика.

Команда безусловного перехода GOTO предназначена для передачи управления определенному кадру программы. Формат команды следующий:

  • GOTO N – безусловный переход к кадру N;
  • GOTO #A – безусловный переход к кадру, установленному переменной #A.

Пример:

N10 G01 X100
N20 G01 X-100
N30 GOTO 10

После выполнения кадра N30 система ЧПУ переходит к кадру N10. Затем снова работает с кадрами N20 и N30 – получается бесконечный цикл.

Команда условия IF позволяет выполнять различные действия с условием. После IF указывается некоторое выражение. Если это выражение оказывается справедливым, то выполняется команда (например, команда безусловного перехода), находящаяся в кадре с IF. Если выражение оказывается несправедливым, то команда, находящаяся в кадре с IF, не выполняется, а управление передается следующему кадру.

Формат команды следующий:

IF [#a GT #b] GOTO N

Пример:

#1=100
#2=80
N10 G01 X200
N20 IF [#1 GT #2] GOTO 40
N30 G01 X300
N40 M30

В начале программного примера переменным #1 и #2 присваиваются значения 100 и 80 соответственно. В кадре N20 происходит проверка условия. Если значение переменной #1 больше значения переменной #2, то выполняется команда перехода GOTO к кадру окончания программы N40. В нашем случае выражение считается справедливым, так как 100 больше, чем 80. В результате после выполнения кадра N10 происходит переход к кадру N40, то есть кадр N30 не выполняется.

В этой же программе можно изменить значения переменных:

#1=100
#2=120
N10 G01 Х200
N20 IF [#1 GT #2] GOTO 40
N30 G01 Х300
N40M30

Во втором случае условие в кадре N20 не будет справедливым, так как 100 не больше, чем 120. В результате после выполнения кадра N10 не происходит переход к кадру N40, то есть кадр N30 выполняется как обычно.

В выражении [#1 GT #2] используются операторы сравнения. В табл. 10.2 сведены операторы для сравнения переменных языка Macro В.

Таблица 10.2. Операторы сравнения

Команда WHILE позволяет повторять различные действия с условием. Пока указанное выражение считается справедливым, происходит выполнение части программы, ограниченной командами DO и END. Если выражение не справедливо, то управление передается кадру, следующему за END.

% О1000 #1=0 #2=1 WHILE [#2 LE 10] DO 1; #1=#1+#2 #2=#2+1 END 1 M30 %

Макропрограммой называется программа, которая находится в памяти СЧПУ и содержит различные макрокоманды. Макропрограмму можно вызывать из обычной программы с помощью G-кода, аналогично постоянным циклам. При вызове макропрограммы существует возможность прямой передачи значений для переменных макропрограммы.

Команда G65 предназначена для немодального вызова макропрограммы. Формат для этой команды следующий:

где G65 – команда вызова макропрограммы; Р_ – номер вызываемой макропрограммы; L_ – число повторений макропрограммы; А_ и В_ – адреса и значения локальных переменных.

G65 Р9010 L2 А121 В303 – макропрограмма 9010 вызывается 2 раза, соответствующим локальным переменным присваиваются значения 121 и 303.

Необходимо знать, какой локальной переменной присваивается значение с помощью того или иного адреса. Например, для СЧПУ Fanuc 0-MD будут справедливы следующие зависимости:

Таблица 10.3. Соответствие адресов локальным переменным

Адрес Переменная
A
B
C
D
E
F
H
I
J
K
M
Q
R
S
T
U
V
W
X
Y
Z
#1
#2
#3
#7
#8
#9
#11
#4
#5
#6
#13
#17
#18
#19
#20
#21
#22
#23
#24
#25
#26

Теперь можно приступить к созданию несложной, но очень полезной параметрической программы. Довольно часто возникает необходимость в обработке нескольких отверстий, находящихся на некотором радиусе и следующих через определенный угол (рис. 10.7). Чтобы освободить программиста от утомительного переделывания программы в случае изменения радиуса, угла или количества отверстий, создадим такую программу обработки, которая позволит оператору вводить значения радиуса и угла и выполнять операцию сверления по окружности с любыми размерами.

Для сверления отверстий будем использовать стандартный цикл G81. Угол, на котором находятся отверстия, отсчитывается от оси X против часовой стрелки (положительный угол).

Необходимо задать:

  • радиус окружности, на которой находятся отверстия;
  • начальный угол (угол, на котором находится первое отверстие);
  • относительный угол (угол, через который следуют остальные отверстия);
  • общее количество отверстий.

Все эти данные должны быть представлены в параметрическом виде, то есть при помощи переменных.

Пусть
#100= радиус окружности, на которой находятся отверстия;
#101= начальный угол;
#102= относительный угол;
#103= общее количество отверстий.

Рис. 10.7. Создадим параметрическую программу для обработки детали с неизвестными размерами

Для того чтобы создать параметрическую программу, необходимо придумать алгоритм, позволяющий изменять поведение программы обработки в зависимости от значений указанных переменных. В нашем случае основой УП является стандартный цикл сверления G81. Остается найти закон, по которому описываются координаты центров отверстий при любых первоначальных значениях радиуса, углов и произвольном количестве отверстий.

%
О2000
N10 G21 G90 G80 G54 G40 G49 G00
N20 G17

Первые кадры программы будут стандартными. Это номер программы, строка безопасности и код G17 выбора плоскости XY.

Так как координаты центров отверстий задаются с помощью радиуса и угла, то есть в полярной системе координат, то в кадре N30 укажем код G16.

N40 Т1 М6
N45 G43 HI Z100
N50 S1000 M03
#120=0

В кадр N60 поставим цикл сверления G81 и координаты центра первого отверстия. Как вы помните, в случае работы с полярными координатами X обозначает радиус, a Y определяет угол. Значения радиуса и начального угла известны, они устанавливаются переменными #100 (радиус) и #101 (начальный угол). Вводится некоторая переменная #120 с нулевым значением. Эта переменная представляет собой счетчик. Чуть позже вы поймете назначение данной переменной.

N60 G98 G81 Х#100 Y#101 Z-5 R0.5 F50

Переменная #103 отвечает за общее количество отверстий. Так как первое отверстие мы уже просверлили, то уменьшим #103 на 1. Таким образом, кадр N70 обеспечивает подсчет оставшихся отверстий. А кадр N75 увеличивает значение переменной #120 на 1.

N70 #103=#103-1
N75 #120=#120+1

Если количество отверстий, которые осталось просверлить, равно нулю, то следует отменить цикл сверления, выключить обороты шпинделя и завершить программу.

N80 IF [#103 EQ 0] GOTO 120

В кадре N80 происходит сравнение значения переменной #103 с нулем. Если переменная #103 равна нулю, то управление передается кадру N120 в конце программы. Если же переменная #103 не равна нулю, то выполняется следующий кадр.

N90 #130=#102*#120
N95#110=#101+#130

Кадр N90 предназначен для определения углового приращения. Новая переменная #110 является суммой #101 (начального угла) и #130 (углового приращения). Кадр N95 обеспечивает расчет угла последующего отверстия.

Затем указывается новый угол для сверления, и управление передается кадру N70.

N100 Y#110
N110 GOTO 70

При помощи кадра N70 образуется замкнутый цикл, который обеспечивает расчет координат центров отверстий и сверление до тех пор, пока значение переменной #103 не будет равно нулю. Если значение #103 станет равным нулю, то управление будет передано кадру N120.

N120 G80
N125 М05
N130 G15
N140 М30
%

Заключительные кадры программы предназначены для отмены постоянного цикла (G80), выключения оборотов шпинделя (М05), выключения режима полярных координат (G15) и завершения программы (М30).

% О2000 N10 G21 G90 G80 G54 G40 G49 G00 N20 G17 N30 G16 N40 T1 M6 N45 G43 H1 Z100 N50 S1000 M03 #120=0 N60 G98 G81 X#100 Y#101 Z-5 R0.5 F50 N70 #103=#103-1 N75 #120=#120+1 N80 IF [#103 EQ 0] GOTO 120 N90 #130=#102*#120 N95 #110=#101+#130 N100 Y#110 N110 GOTO 70 N120 G80 N125 M05 N130 G15 N140 M30 %

Любая параметрическая программа должна быть тщательно проверена, прежде чем она попадет на станок. Скорее всего, у вас не получится проверить такую программу при помощи редактора УП и бэкплота, так как в ней присутствуют переменные. Самая надежная проверка в данном случае – это подстановка значений для входных переменных и «раскручивание» алгоритма уже с конкретными числами.

Предположим, что оператор станка получил чертеж детали (рис. 10.8) для обработки отверстий. Он должен установить нулевую точку G54 в центр детали, замерить длину сверла и установить его в шпиндель. Затем следует войти в область переменных MACRO и ввести следующие числовые значения:

№ переменной Значение

100
101
102
103
104
105

12.5
45
20
4
0
0

Рис. 10.8. Вместо переменных на чертеже стоят конкретные размеры и известно количество отверстий

Для проверки созданной параметрической программы достаточно подставить конкретные значения переменных и, «прокручивая» алгоритм, получить обычную программу.

Эту же программу можно записать и в привычном виде:

% О2000 N10 G21 G90 G80 G54 G40 G49 G00 N20 G17 N30 G16 N40 T1 M6 N45 G43 H1 Z100 N50 S1000 M03 N60 G98 G81 X12.5 Y45 Z-5 R0.5 F50 N100 Y65 N100 Y85 N100 Y105 N120 G80 N125 M05 N130 G15 N140 M30 %

Теперь попробуем создать макропрограмму, которая будет функционировать аналогично постоянному циклу. Для обработки детали, показанной на рис. 10.8, оператор станка должен ввести и отработать следующую команду:

G65 P9010 I12.5 A45 B20 H4

При этом наша параметрическая программа (с новым номером О9010) уже должна находиться в памяти СЧПУ. Как правило, макропрограммы имеют номера с 9000 и выше, недоступны для свободного редактирования. Команда G65 предназначена для немодального вызова макропрограммы. При этом адреса I, А, В, Н в кадре с G65 передают свои числовые значения определенным локальным переменным. Для нахождения соответствия адресов локальным переменным можно воспользоваться табл. 10.3.

Можно подстроить переменные в нашей программе, вставив следующие строки в программу:

#100=#4
#101=#1
#102=#2
#103=#11

В результате получаем макропрограмму:

% О9010 #100=#4 #101=#1 #102=#2 #103=#11 N10 G21 G90 G80 G54 G40 G49 G00 N20 G17 N30 G16 N40 T1 M6 N45 G43 H1 Z100 N50 S1000 M03 #120=0 N60 G98 G81 X#100 Y#101 Z-5 R0.5 F50 N70 #103=#103-1 N75 #120=#120+1 N80 IF [#103 EQ 0] GOTO 120 N90 #130=#102*#120 N95 #110=#101+#130 N100 Y#110 N110 GOTO 70 N120 G80 N125 M05 N130 G15 N140 M30 %

Хотя созданная нами параметрическая программа и не является оптимальной, однако она наглядно демонстрирует широкие возможности этого метода по созданию эффективных УП и различных станочных циклов.

2.1 Структура и содержание программы ЧПУ

Указание

Руководством по разработке программы обработки деталей является DIN 66025.

Программа (ЧПУ/обработки деталей) состоит из последовательности кадров ЧПУ (см. следующую таблицу). Каждый кадр представляет собой один шаг обработки. В кадре записываются операторы в форме слов. Последний кадр в последовательности выполнения содержит специальное слово для конца программы: M2, M17 или M30.

;комментарий

;1-ый кадр

;2-ой кадр

;конец программы (последний кадр)

Имена программ

Каждая программы имеет собственное имя, которое свободно выбирается при создании программы с соблюдением следующих условий (кроме формата перфоленты):

первыми двумя символами должны быть буквы (также и буква с символом подчеркивания)

прочие буквы, цифры

MPF100 или WELLE или

На ЧПУ показываются только первые 24 знака идентификатора программы.

Формат перфоленты

Имена файлов:

Имена файлов могут включать знаки

0...9, A...Z, a...z или _ и иметь максимальную длину в 24 знака.

Имена файлов должны иметь 3-х буквенное расширение (_xxx).

Данные в формате перфоленты могут создаваться отдельно или обрабатываться в редакторе. Имя файла, сохраненного в памяти ЧПУ, начинается с "_N_ ".

Файл в формате перфоленты вводится % <имя>, "% " должен стоять в первой графе первой строки.

%_N_WELLE123_MPF = программа обработки детали WELLE123 или

%Flansch3_MPF = программа обработки детали Flansch3

Прочую информацию по передаче, созданию и сохранению программ обработки деталей можно найти в:

/BAD/, /BEM/ Руководство по эксплуатации HMI Advanced, HMI Embedded глава "Область управления Программа"/"Область управления Службы"

2.2 Языковые элементы языка программирования

Языковые элементы языка программирования определяются

набором символов с прописными/строчными буквами и цифрами

словами с адресом и последовательностью цифр

кадрами и структурой кадров

длиной кадра с макс. возможным количеством знаков

последовательностью слов в кадре с таблицей адресов и их значением

главными и вспомогательными кадрами

номером кадра

адресами с таблицей для важных адресов и объяснениями

адресами, действующими модально или в кадре

адресами с осевым расширением с таблицей расширенного написания адреса

фиксированными адресами с таблицей и данными по значению для стандартной установки

фиксированными адресами с осевым расширением с таблицей и указанием значения для стандартной установки

устанавливаемыми адресами с указанием устанавливаемых букв адреса

предопределенными вычислительными функциями, а также арифметическими, логическими операторами и операторами сравнения с соответствующим присваиванием значений

идентификаторами, к примеру, переменными, подпрограммами, кодовыми словами, адресами DIN и метками перехода

Руководство по программированию, выпуск 10.2004, 6FC5 298-7AB00-0PP1

Основы программирования ЧПУ 2.2 Языковые элементы языка программирования

Набор символов

Для создания программ ЧПУ имеются следующие символы:

Прописные буквы

A, B, C, D, E, F, G, H, I, J, K, L, M, N,(O),P, Q, R, S, T, U, V, W, X, Y, Z

При этом учитывать:

Не путать букву "O" с числом "0".

Строчные буквы

a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z

Указание Прописные и строчные буквы не различаются.

1, 2, 3, 4, 5, 6, 7, 8, 9

Специальные символы

% Символ начала программы (только для создания программы на внешнем PC)

< меньше

> больше

: Главный кадр, конец метки, связывающий оператор

= Присвоение, часть равенства

/ Деление, пропуск кадра

* Умножение

Сложение

- Вычитание, отрицательный знак

" Кавычки, идентификация для цепочки символов

" Апостроф, идентификация для специальных числовых данных: шестнадцатеричные, двоичные

? Зарезервировано

! Зарезервировано

Основы программирования ЧПУ 2.2 Языковые элементы языка программирования

Указание Скрытые специальные символы обрабатываются как символы пробела.

Программы ЧПУ состоят из кадров; кадры в свою очередь состоят из слов.

Слово "Языка ЧПУ" состоит из символа адреса и цифры или последовательности цифр, представляющей арифметическое значение.

Символом адреса слова является буква. Последовательность цифр может включать знак и десятичную точку, при этом знак всегда стоит между буквами адреса и последовательностью цифр. Положительный знак (+) не записывается.

Кадры и структура кадров

Программа ЧПУ состоит из отдельных кадров, кадр – из (нескольких) слов.

Кадр должен включать в себя все данные для выполнения рабочей операции, и заканчивается символом "LF " (LINE FEED = новая строка).

Руководство по программированию, выпуск 10.2004, 6FC5 298-7AB00-0PP1

Основы программирования ЧПУ 2.2 Языковые элементы языка программирования

Указание

Символ "LF " не записывается; он создается автоматически при переключении строк.

Длина кадра

Кадр может состоять макс. из 512 символов (включая комментарий и символ конца кадра

"LF ").

Указание Обычно в актуальной индикации кадра на дисплее показываются три кадра с макс.

66 символов каждый. Комментарии также показываются. Сообщения показываются в отдельном окне сообщений.

Последовательность слов в кадре

Для наглядности структуры кадра, слова кадра должны располагаться следующим образом:

N10 G… X… Y… Z… F… S… T… D… M… H…

Значение

Адрес номера кадра

Номер кадра

Функция перемещения

Путевая информация

Число оборотов

Инструмент

Номер коррекции инструмента

Дополнительная функция

Вспомогательная функция

Указание Некоторые адреса могут использоваться многократно в одном кадре (к примеру, G…, M…, H…)

Руководство по программированию, выпуск 10.2004, 6FC5 298-7AB00-0PP1

Основы программирования ЧПУ 2.2 Языковые элементы языка программирования

Главный/вспомогательный кадр

Различаются два вида кадров:

главные кадры и

вспомогательные кадры

В главном кадре должны быть указаны все слова, необходимые для запуска технологического цикла с раздела программы, начинающегося с главного кадра.

Указание Главные кадры могут находиться как в главной, так и в подпрограммах. СЧПУ не

проверяет, содержит ли главный кадр всю необходимую информацию.

Номер кадра

Главные кадры обозначаются номером главного кадра. Номер главного кадра состоит из символа ":" и положительного целого числа (номер кадра). Номер кадра всегда стоит в начале кадра.

Указание Номера главных кадров внутри программы должны быть уникальными, чтобы получить

однозначный результат при поиске.

:10 D2 F200 S900 M3

Вспомогательные кадры обозначаются номером вспомогательного кадра. Номер вспомогательного кадра состоит из символа "N" и положительного целого числа (номер кадра). Номер кадра всегда стоит в начале кадра.

Указание Номера вспомогательных кадров внутри программы должны быть уникальными, чтобы

получить однозначный результат при поиске.

Последовательность номеров кадров может быть любой, но рекомендуется растущая последовательность номеров кадров. Можно программировать кадры ЧПУ и без номеров кадров.

Основы Руководство по программированию, выпуск 10.2004, 6FC5 298-7AB00-0PP1

Основы программирования ЧПУ 2.2 Языковые элементы языка программирования

Адреса это фиксированные или устанавливаемые идентификаторы для осей (X, Y, ...) числа оборотов шпинделя (S), подачи (F), радиуса окружности (CR) и т.д.

Пример: N10 X100

Важные адреса

Примечание

Круговая ось

ливаемый

Интервал перешлифовки для траекторных функций

фиксированный

Круговая ось

ливаемый

Круговая ось

ливаемый

Снятие фасок угла контура

фиксированный

Номер режущей кромки

фиксированный

фиксированный

FA[ось ]=... или

Осевая подача

фиксирован-

FA[шпиндель ]=... или

(только если номер шпинделя задается через переменную)

Функция перемещения

фиксированный

Вспомогательная функция

фиксирован-

Вспом. функция без остановки чтения

Параметр интерполяции

устанавливаемый

Параметр интерполяции

устанавливаемый

Параметр интерполяции

устанавливаемый

Вызов подпрограммы

фиксированный

Доп. функция

фиксирован-

Доп. функция без остановки чтения

Вспомогательный кадр

фиксированный

Процентовка траектории

фиксированный

Кол-во прогонов программы

фиксированный

Позиционирующая ось

фиксированный

POSА[ось]=…

фиксированный

Позиция шпинделя

фиксирован-

Позиция шпинделя за границу кадра

фиксирован-

устанавливаемый

R0=... до Rn=...

R-параметр, n может устанавливаться через MD

фиксирован-

(стандарт 0 - 99)

устанавливаемый

Руководство по программированию, выпуск 10.2004, 6FC5 298-7AB00-0PP1

Основы программирования ЧПУ 2.2 Языковые элементы языка программирования

Закругление угла контура

фиксированный

Закругление угла контура (модально)

фиксированный

Число оборотов шпинделя

фиксированный

Номер инструмента

фиксированный

устанавливаемый

устанавливаемый

устанавливаемый

устанавливаемый

" абсолютный

" инкрементальный

устанавливаемый

устанавливаемый

Апертурный угол

устанавливаемый

Полярный угол

устанавливаемый

Радиус окружности

устанавливаемый

Полярный радиус

фиксированный

Главный кадр

устанавливаемый

"фиксированный"

Этот идентификатор адреса доступен для определенной функции. Изготовитель станка

"устанавливаемый"

Этим адресам изготовитель станка через машинные данные может присвоить другое имя.

Адреса, действующие модально/покадрово

Модально действующие адреса сохраняют свою значимость с запрограммированным значением до тех пор (во всех последующих кадрах), пока по тому же адресу не будет запрограммировано новое значение. Действующие покадрово адреса сохраняют свою значимость только в том кадре, в котором они были запрограммированы. Пример:

Основы программирования ЧПУ 2.2 Языковые элементы языка программирования

Расширенные адреса

Расширенное написание адресов позволяет систематизировать большее количество осей и шпинделей. Расширенный адрес состоит из цифрового расширения или из записанного в квадратных скобках идентификатора переменных и присвоенного с помощью символа "=" арифметического выражения.

Расширенное написание адреса допускается только для следующих простых адресов:

Значение

Адреса осей

Параметры интерполяции

Число оборотов шпинделя

Позиция шпинделя

Дополнительные функции

Вспомогательные функции

Номер инструмента

Число (индекс) при расширенном написании адреса для адресов M, H, S, а также для SPOS и SPOSA может заменяться переменной. При этом идентификатор переменных стоит в квадратных скобках.

Руководство по программированию, выпуск 10.2004, 6FC5 298-7AB00-0PP1

Основы программирования ЧПУ 2.2 Языковые элементы языка программирования

Фиксированные адреса

Следующие адреса установлены фиксировано:

Значение (стандартная установка)

Номер режущей кромки

Функция перемещения

Вспомогательная функция

Вызов подпрограммы

Дополнительная функция

Вспомогательный кадр

Число прогонов программы

R-параметр

Число оборотов шпинделя

Номер инструмента

: Главный кадр

Пример для программирования: N10 G54 T9 D2

Фиксированные адреса с осевым расширением

Значение (стандартная установка)

Осевое значение (переменное программирование оси)

Осевое ускорение

Осевая подача

Осевая подача для наложения маховичка

Осевое ограничение подачи

Параметры интерполяции (переменное программирование оси)

Осевая процентовка

Полиномиальный коэффициент

Позиционирующая ось

Позиционирующая ось через границу кадра

Объяснение:

При программировании с осевым расширением перемещаемая ось стоит в квадратных скобках.

Полный список всех фиксировано установленных адресов можно найти в приложении.

Руководство по программированию, выпуск 10.2004, 6FC5 298-7AB00-0PP1

Основы программирования ЧПУ 2.2 Языковые элементы языка программирования

Устанавливаемые адреса

Адреса могут определяться либо как буква оси (при необходимости с цифровым расширением), либо как свободный идентификатор.

Указание Устанавливаемые адреса должны быть однозначными внутри СЧПУ, т.е. один и тот

же идентификатор адреса не может использоваться для различных типов адресов.

В качестве типов адресов при этом различаются:

осевые значения и конечные точки

параметры интерполяции

подачи

критерии перешлифовки

измерение

поведение осей и шпинделей

Устанавливаемыми буквами адреса являются: A, B, C, E, I, J, K, Q, U, V, W, X, Y, Z

Указание Имена устанавливаемых адресов могут изменяться пользователем через машинные данные.

X1, Y30, U2, I25, E25, E1=90, …

Цифровое расширение имеет одну или две позиции и всегда является положительным. Идентификатор адреса:

Написание адреса может дополняться добавлением других букв. Пример:

Сложение

Вычитание

Умножение

Внимание: (тип INT )/ (типINT )= (типREAL ); к примеру, 3/4 = 0.75

Деление, для типа переменных INT и REAL

Внимание: (тип INT )DIV (типINT )= (типINT ); к примеру, 3 DIV 4 = 0

Выделение дробной части (только для типа INT) дает остаток деления

INT, к примеру, 3 MOD 4=3

: Связывающий оператор (у фрейм-переменных)

Арксинус

Арккосинус

Арктангенс2

Квадратный корень

Значение

2-ая степень (квадрат)

Целочисленная часть

Округление до целого

Натуральный логарифм

Показательная функция

Операторы сравнения и логические операторы

Операторы сравнения и

Значение

логические операторы

больше или равно

меньше или равно

отрицание

исключающее "ИЛИ"

Руководство по программированию, выпуск 10.2004, 6FC5 298-7AB00-0PP1

Основы программирования ЧПУ 2.2 Языковые элементы языка программирования

В арифметических выражениях с помощью круглых скобок можно устанавливать последовательность обработки всех операторов, отклоняясь тем самым от обычных правил очередности.

Присвоения значений Адресам могут присваиваться значения. Присвоение значений осуществляется

различными способами в зависимости от вида идентификатора адреса.

Символ "=" должен быть записан между идентификатором адреса и значением, если

идентификатор адреса состоит более чем из одной буквы,

значение состоит более чем из одной постоянной.

Символ "=" не нужен, если идентификатором адреса является одна единственная буква и значение состоит только из одной постоянной. Знаки разрешаются, допускается символ разделения после букв адреса.

Пример присвоения значений

;присвоение значения (10)

адресу X, "=" не требуется

;присвоение значения (10)

адресу (X) с;цифровым

расширением (1), "=" требуется

;имена осей из параметров передачи

;имя оси как индекс при обращении к данным осей

;косвенное программирование осей

X=10*(5+SIN(37.5))

;присвоение значения через цифровое выражение, "=" требуется

Указание За цифровым расширением всегда должен следовать специальный символ "=", "(", "[", ")",

"]", "," или оператор, чтобы отличать идентификатор адреса с цифровым расширением от букв адреса со значением.

Идентификатор Слова (по DIN 66025) дополняются идентификаторами (именами). Эти расширения имеют внутри кадра ЧПУ то же значение, что и слова. Идентификаторы должны быть однозначными. Один и тот же идентификатор не может использоваться для различных объектов.

Идентификаторы могут записываться для:

переменной

системной переменной

переменной пользователя

подпрограммы

Руководство по программированию, выпуск 10.2004, 6FC5 298-7AB00-0PP1

Основы программирования ЧПУ

кодовых слов

адресов DIN с несколькими буквами

меток перехода

Структура

Идентификатор состоит максимум из 32 символов. В качестве символов могут использоваться:

буквы

символов подчеркивания

цифры

Первыми двумя символами должны быть буквы или символы подчеркивания, между отдельными символами не должны находится символы разделения (см. следующие страницы).

Пример: CMIRROR, CDON

Указание Зарезервированные кодовые слова не могут использоваться в качестве

идентификаторов. Разделительные символы между отдельными символами запрещены.

Указание Количество символов для отдельных идентификаторов

имена программ: 24 символа

идентификатор оси: 8 символов

идентификатор переменных: 31 символ

Правила присвоения имен идентификаторов

Во избежание совпадения имен используются следующие правила:

Все идентификаторы, начинающиеся с "CYCLE” или "_”, зарезервированы для циклов

Все идентификаторы, начинающиеся с "CCS”, зарезервированы для циклов, компилируемых SIEMENS.

Пользовательские компилируемые циклы начинаются с "CC”.

Другие резервирования

Идентификатор "RL" зарезервирован для обычных токарных станков.

Руководство по программированию, выпуск 10.2004, 6FC5 298-7AB00-0PP1

Основы программирования ЧПУ

2.2 Языковые элементы языка программирования

Идентификаторы, начинающиеся с "E_ ", зарезервированы для программирования

Идентификаторы переменных

У переменных, используемых системой, первая буква заменяется символом "$". Этот символ не может использоваться для переменных, определяемых пользователем.

Примеры (см. "Список системных переменных"): $P_IFRAME, $P_F

У переменных с цифровым расширением вводные нули не имеют значения (R01 соответствует R1). Перед цифровым расширением разрешаются разделительные символы.

Идентификаторы массива

Для идентификаторов массива действуют те же правила, что и для элементарных переменных. Адресация R-переменных в качестве массива возможна.

Пример: R=…

Типы данных

За переменной может быть скрыто числовое значение (или несколько) или символ (или несколько), к примеру, буква адреса.

Какой тип данных допускается для соответствующей переменной, устанавливается при определении переменных. Для системных переменных и заранее определенных переменных тип установлен. Элементарными типами переменных/типами данных являются:

Значение

Диапазон значений

Целочисленные (целые)

величины со знаком

Действительные числа (дробные

±(10-300 … 10+300)

числа с десятичной точкой, LONG

Значения истинности: TRUE (1)

Символ ASCII, в соответствии с кодом 0 … 255

Цепочка символов, число символов

Последовательность значений

в […], макс. 200 символов

только имена осей (адреса осе)

все имеющиеся в канале

идентификаторы осей

Геометрические данные для

смещения, вращения,

масштабирования, отражения

Эти же элементарные типы могут составляться в массивы. Как максимум возможны двухмерные массивы.

Руководство по программированию, выпуск 10.2004, 6FC5 298-7AB00-0PP1

Основы программирования ЧПУ 2.2 Языковые элементы языка программирования

Постоянные

Целые постоянные (Integer)

Целочисленная величина с или без знака, к примеру, как присвоение значения адресу Примеры:

; присвоение значения +10.25 адресу X

; присвоение значения -10.25 адресу X

; присвоение значения +0.25

; присвоение значения +0.25

адресу X, без вводного "0"

; присвоение значения –0.1*10-3 адресу X

Указание Если для адреса с допустимым вводом десятичной точки после десятичной точки

записано больше мест, чем предусмотрено для этого адреса, то он округляется до предусмотренного числа мест.

X0 не может заменяться на X.

G01 X0 не может заменяться на G01 X! Шестнадцатеричные постоянные

Возможны и постоянные, имеющие шестнадцатеричную интерпретацию. При этом буквы "A" до "F" служат шестнадцатеричными цифрами от 10 до 15.

Шестнадцатеричные постоянные заключаются между двумя апострофами и начинаются с буквы "H" с последующим шестнадцатеричным значением. Разрешаются разделительные символы между буквами и цифрами.

$MC_TOOL_MANAGEMENT_MASK="H3C7F" ;присвоение шестнадцатеричных чисел

машинным данным

Максимальное количество символов ограничивается диапазоном значений целочисленного типа данных.

Двоичные постоянные Возможны и постоянные, которые интерпретируются двоично. При этом используются только цифры "0" и "1".

Двоичные постоянные заключаются между апострофами и начинаются с буквы "B" с последующим двоичным значением. Разделительные символы между цифрами разрешаются.

Руководство по программированию, выпуск 10.2004, 6FC5 298-7AB00-0PP1

Основы программирования ЧПУ 2.2 Языковые элементы языка программирования

Пример машинных данных (см. также “Расширенное программирование ”):

Сегмент программы

Сегмент программы состоит из одного главного кадра и нескольких вспомогательных кадров.

:10 D2 F200 S900 M3 N20 G1 X14 Y35

Пропуск кадров

Кадры, которые исполняются не при каждом выполнении программы (к примеру, отладка программы), могут быть пропущены.

Кадры, которые должны быть пропущены, обозначаются символом "/" (косая черта) перед номером кадра. Могут пропускаться и несколько последовательных кадров. Операторы в пропущенных кадрах не исполняются, программа продолжается на соответствующем следующем, не пропущенном кадре.

Руководство по программированию, выпуск 10.2004, 6FC5 298-7AB00-0PP1

Основы программирования ЧПУ 2.2 Языковые элементы языка программирования

Пример пропуска кадров

;выполняется

;пропущен

;выполняется

;пропущен

;выполняется

Может быть запрограммировано до 10 уровней пропуска. На один кадр программы

обработки деталей может быть указан только 1 уровень пропуска:

;кадр пропускается (1-ый уровень пропуска)

;кадр пропускается (2-ой уровень пропуска)

;кадр пропускается (3-ий уровень пропуска)

;кадр пропускается (8-ой уровень пропуска)

;кадр пропускается (9-ый уровень пропуска)

;кадр пропускается (10-ый уровень пропуска)

Изготовитель станка Количество уровней пропуска, которые могут использоваться, зависит от машинных

данных индикации. Пропуск кадров уровней пропуска /0 до /9 активируется через панель оператора в области управления "Станок" (см. /BAD, BEM/ Руководство по эксплуатации HMI Advanced/Embedded), в меню "Управление программой" или "Адаптивное управление".

Указание Изменяемые выполнения программы могут создаваться и посредством использования

системных и пользовательских переменных для обусловленных переходов.

Цели перехода (метки)

Посредством определения целей перехода (меток) можно запрограммировать ответвления внутри программы.

Имена меток задаются минимум с 2-мя и максимум с 32 знаками (буквы, цифры, символ подчеркивания). Первыми двумя знаками должны быть буквы или символы подчеркивания. После имени метки следует двоеточие (":").

Прочую информацию см.

Литература: /PGА/, Руководство по программированию "Расширенное программирование"

Руководство по программированию, выпуск 10.2004, 6FC5 298-7AB00-0PP1

Основы программирования ЧПУ 2.2 Языковые элементы языка программирования

Указание Метки должны быть уникальными в пределах программы.

Метки всегда стоят в начале кадра. Если имеется номер программы, то метка стоит непосредственно после номера кадра.

Появившись в середине минувшего столетия, станки с ЧПУ стали надежными помощниками людей в производстве. Они обрабатывают быстро, точно и качественно, при низкой себестоимости. Отдельные единицы оборудования объединяются в производственные роботизированные комплексы.

За непосредственную работу каждого станка отвечает два специалиста – и . Но, прежде чем они приступят к своим функциональным обязанностям, надлежит много потрудиться программисту.

В ведении инженера-программиста станков с ЧПУ – решение многих задач. Они занимаются:

  • разработкой техдокументации, внедряют и настраивают УП, их сохраняют и систематизируют;
  • закупкой и отладкой оборудования, введением в действие новых программируемых станков, контролируют их исправность;
  • обучением кадров (операторов), обслуживающих станки с ЧПУ, техническими консультациями.

Кого примут в штат

Занимать вакансию инженера-программиста станков с ЧПУ (правда, по низкой категории) сможет и выпускник колледжа без стажа по специальности. Он должен иметь отличную подготовку: теоретические знания о технологических процессах на данном оборудовании; владеть азами составления программ и настройки УП, опытом работы в AutoCAD. Конечно, стартовые зарплаты не столь высокие, но впереди – профессиональный рост.

Немного выше зарплатный диапазон ожидает соискателей, имеющих опыт инженера-программиста свыше одного года. Ещё одно требование: знание технических терминов английского и умение работать в САМ/CAD.

Солидный оклад будет предложен работодателем кандидату на вакансию, имеющему высшее образование по специальности и стаж, превышающий 2 года.

На максимально высокую зарплату могут рассчитывать инженеры-программисты станков с ЧПУ (со стажем свыше 3-х лет), способные решать сложные задачи на производстве. Большинство претендентов – мужчины, женщин на уровне 2-3 %, но они с задачами по программированию справляются не хуже мужчин. Что касается знания английского, то языком в совершенстве владеет каждый десятый среди инженеров-программистов.

Круг умений специалиста

Каждый работодатель желает принять в штат готового специалиста, который многое знает и умеет. Поэтому, от инженера-программиста станков с ЧПУ ожидают выполнения типичного функционала:

  • разработки и внедрения УП для станков;
  • создания 3D моделей по чертежам для их производства;
  • обеспечения работоспособности оборудования с ЧПУ;
  • плодотворного обучения на программируемых станках;
  • систематизации техдокументации и архивизации;
  • умения подбирать оборудование.

Приходится слышать такие фразы, формирующие уровень притязания: «Есть такая специальность ЧПУ (CNC – в английской аббревиатуре), где совсем ничего не надо делать – станок работает сам! Вот бы пройти обучение!» С одной стороны, ни за что никто платить не будет. А с другой, – в этом есть и доля правды. Когда инженер ЧПУ написал правильную программу, грамотно настроил станок, то его присутствие у станка – необязательно. Он действительно четко работает самостоятельно, но добиться такого положения дел сможет специалист, имеющий комплекс знаний и умений. Именно поэтому программист-наладчик с опытом востребован во всех странах.

Специализация – технолог-программист

Суть технологической подготовки производства (ТПП) состоит в том, чтобы выполнить в совокупности все мероприятия, способствующие готовности к выпуску определенного вида продукции. В порядке призвана быть вся документация, оснащение оборудованием, инструментом, заготовками, УП, необходимыми для производства нужного объема продукции на уровне заданных показателей.

К инженеру технологу-программисту ЧПУ круг требований – не меньше. Более того, на многих предприятиях грамотный инженер с высшим образованием совмещает функции технолога и программиста, обладая необходимыми профессиональными навыками.

Хотя для начинающих и не имеющих рабочего опыта, порой планку занижают, принимая на должность и со средним специальным техническим образованием, убедившись, что претендента можно отнести к уверенным пользователям AutoCAD, знающим специфику оборудования и технологии.

Технолог программист станков с ЧПУ со стажем уже обязан владеть английским на уровне, который достаточен для чтения техдокументации. Вопрос внедрения изделий новой номенклатуры в производство также решается технологом-программистом, который разработает технологические карты, а на их основе и УП.

Проектируется технологический процесс

Для этого используются различные специальные знания, без которых не составишь УП. Это повышает требования к уровню квалификации технолога, который должен в процессе расчета данных, которые станут основой программы, грамотно применять технические средства. Он призван быть не только программистом, но и математиком, и электронщиком, и хорошим организатором производства.

Технолог-программист станков ЧПУ прорабатывает рабочие чертежи на предмет их технологичности, выбирает инструмент и оснастку, разрабатывает требования к качеству заготовки.

Таким образом, выделяются все операции обработки в виде отдельных программ. Затем, учитывая конфигурацию поверхностей деталей, которые обрабатываются, уточняется траектория движений инструмента, его скорость в различных режимах. Установленную последовательность процесса обработки кодируют и записывают на программоноситель.

Что получается в итоге? УП – совокупность указаний в адрес каждого рабочего органа станка, где предписывается выполнять действия строгой последовательности.

Путь становления программиста

Инженеры, прошедшие обучение с профилем металлообработка, способны на основе своей квалификации и техзаданий заказчика, приготовить базу для создания УП. Но если у них есть задатки и навыки программирования, это будет универсальный специалист – технолог-программист ЧПУ. Таковые – на вес золота.

Именно поэтому многие инженеры-программисты имеют желание пройти обучение и по профессии технолога, чтобы расширить свою квалификацию. Или, наоборот, технолог осваивает азы новой профессии, в стремлении стать программистом.

И хорошо, когда в приобретении специалистом второй смежной профессии весьма заинтересована администрация предприятия и готова содействовать этому. Например, оплатить все затраты на его обучение.

Но, увы, желание получить дополнительную квалификацию не всегда находит отклик у руководства. Зачем им обучать, тратя на это средства, если можно принять на работу уже готового специалиста. Поэтому многие россияне принимают решение: научиться программированию самостоятельно.

Вновь учиться, но уже на практике

С чего же начать обучение? Иногда хорошей школой становится практика, когда человек осваивает новое, преодолевая трудности, шаг за шагом поднимается на вершину профессии. Иногда приобретение практического опыта длится не один год, но при наличии мудрых наставников, в совершенстве владеющих программированием, реально и самому стать хорошим специалистом.

Одному из операторов станка удалось овладеть профессией программист ЧПУ со второй специальностью – наладчик станков – посредством интернет-версии курса «PRACTICA». Там взвешенные порции теоретического материала (в сжатом виде) и серия практических видеоуроков, некоторые справочные материалы. Кстати, на первом видеоуроке знакомят с устройством и .

Понятно, что сразу после изучения курса никто не предоставит должность высококвалифицированного программиста. Нужно, продолжая работать оператором, осваивать программирование на практике. И уже через полгода продемонстрировать руководству свои знания и умения, предложив услуги работника в новом качестве.

С ЧПУ сегодня работают токарные, фрезерные, сверлильные и гибочные станки, и если «станут в позу» на родном предприятии, новоиспеченного специалиста с практическим опытом оценят на других, предложив хорошие условия оплаты труда.

Разнообразие форм обучения

Чтобы стать программистом, можно пойти и другим путем – обучению готовы послужить создатели «LAUFER CNC» – дистанционных курсов. Для этого нужен планшетный компьютер, нетбук, смартфон или телефон (мобильный интернет от 1 мб/сек), при помощи которого будет возможность участвовать в занятиях группы, проводимых преподавателем в режиме онлайн.

За полгода обучения, прослушавшие на вебинарах программу по полному курсу, изучат 8 предметов, будут выполнять домашние задания и интерактивные упражнения, напишут ряд контрольных работ по созданию УП. Их также научат строить чертежи в САПР. Предстоит им пройти тест в спецсервисе.

Тот, кто выберет форму самостоятельного обучения (тренинг), сможет стартовать в любой момент, не ожидания формирования группы. Возможен и вариант индивидуальных занятий с преподавателем (дистанционно) во время, устраивающее обоих. Темы занятий и их длительность обсуждаются предварительно.

«Высший пилотаж» для специалиста

Иногда перед инженером технологом-программистом стоят очень сложные задачи: выполнять работы высокой квалификации, уметь разбираться в чертежах, знать в совершенстве токарно-фрезерную, фрезерную обработку на станках с ЧПУ. Имея высшее образование (специальность – обработка материалов, а ведущий профиль – машиностроение).

Специалист такого уровня обязан досконально знать cad/cam; систему, которая предназначена для того, чтобы автоматизировать процесс проектирования (САПР); а также ей подобную версию NX (Unigraphics). Эта система, которая построена на лучших технологиях, в России широко применяется в различных промышленных сферах. Она предназначена для обработки заготовок станками любого уровня сложности.

Еще одно требование к специалисту такой квалификации – иметь опыт работы (свыше 3 лет) на пятикоординатных обрабатывающих центрах. Благодаря им можно выполнять обработку одновременно в пяти координатах. Именно поэтому станки приобретают многие предприятия машиностроительной отрасли, аэрокосмическая – не исключение.

Высокая точность и скорость резания обеспечивается за счет системы двойного привода по оси Y. Большим плюсом является наличие наклонно-поворотного стола и 60-ти инструментальных позиций.

Системы ЧПУ для станков

По мере совершенствования электронных и вычислительных устройств, в новом поколении станков появились управляющие модули на микропроцессорной основе с микроконтроллерами, способные гибко управлять процессами обработки материалов.

Системы управления классифицируются по нескольким признакам:

  1. Способами управления (позиционные, контурные, универсальные).
  2. Подходами к позиционированию (абсолютный и относительный отсчет).
  3. Типом обратной связи (открытая и закрытая, самонастраивающаяся).
  4. Техническим уровнем, различаются системы 1-го, 2-го и 3-го поколений.
  5. Числом осей координат (от 2 до 5).
  6. Способом подготовки и ввода УП.

Эксплуатируя оборудование с ЧПУ, используют системные (служебные) и управляющие (внешние) программы. Было время, когда компании применяли специально разработанные ними команды при программировании станков. Для того, чтобы была обеспечена совместимость оборудования разных брендов, был создан G-код – унифицированный язык программ. Среди признанных в мире систем ЧПУ – SINUMERIK, FANUC и FAGOR.

Заключение

Программируемый станок – предельно точный и, работая в различных режимах, может выполнять много всевозможных технологических операций. Главное, – наличие качественных заготовок, грамотных УП, исправного и хорошо наточенного инструмента. Одна из главных фигур в работе на этом оборудовании – программист, без участия которого станки ЧПУ просто не смогут работать.