В лаборатории JSK Токийского университета уже несколько лет работают над созданием гуманоидных роботов, имитирующих особенности человеческого тела. Недавно JSK представила нового робота Kengoro, который точно копирует наш опорно-двигательный аппарат и мускулатуру. Поклонники “Терминатора” уже нарекли его предтечей T-800, но сами разработчики планируют использовать его исключительно в мирных целях. Например, такой робот может стать отличным помощником инструктора по фитнесу. Он реалистично показывает эффект от тренировок разных групп мышц и даже потеет.

Ранее в JSK Lab (Jouhou System Kougaku Laboratory) были созданы роботы Macra (похожий на младенца) и робот Kenshiro (имитирующий подростка). Макра обладает высокой тактильной чувствительностью при небольшом количестве датчиков – их всего 49. Они фиксируют не только силу нажатий, но и их векторы, поэтому получили название “3D Force”. Эти сенсоры расположены под общим гибким слоем, имитирующим мягкие ткани. Контроллер обрабатывает данные от всех датчиков одновременно и с помощью математических алгоритмов детализирует информацию о прикосновениях.

Робот Macra. Изображение: jsk.t.u-tokyo.ac.jp

Кенширо имитирует тринадцатилетнего мальчика ростом 158 см. и массой 50 кг. В нём специалисты JSK Lab начали воплощать отдельные анатомические и физиологические особенности человека. Если другие гуманоидные роботы создавались на основе теорий механики, то при проектировании Кенширо использовали методы биомимикрии. Он копирует скелетно-мышечную структуру и разветвления нервной системы, наглядно демонстрируя их взаимосвязь и поведение в различных ситуациях.

Скелетная структура Kenshiro в основном изготовлена из алюминиевого сплава A5052. Суставные поверхности и другие части сложной формы выполнены методом 3D-печати из ABS пластика и нержавеющей стали марки 420 SS. Упругие рёбра изготовлены отливкой из другого алюминиевого сплава – JIS-AC4C.

Новый Kengoro – ещё более продвинутая модель. Его скелетная структура состоит из комбинации особо прочного дюралюминия (A7075) и пластика ABS, армированного углеродным волокном. Некоторые фрагменты также выполнены методом 3D-печати. Встраиваемые в трубчатые “кости” Li-Fe аккумуляторы обеспечивают его автономную работу до 20 минут.

Кенгоро настолько реалистичен, что даже “потеет” во время тренировок. Как и люди, робот делает это, чтобы избежать перегрева. В искусственных мышцах Кенгоро циркулирует охлаждающая жидкость. Разработчики протестировали разные составы и остановились на обычной деионизированной воде. У неё рекордная теплоёмкость, низкая себестоимость и она безопасна для электроники, поскольку не проводит электрический ток.

Во время работы капли полностью обессоленной воды выдавливаются наружу через миниатюрные отверстия, изготовленные лазером во всех участках корпуса. Она быстро испаряется и понижает его температуру. Получается саморегулирующаяся система: чем интенсивнее работает искусственная мыщца, тем быстрее она охлаждается.

Постоянное испарение жидкости не так эффективно, как её циркуляция в закрытом охлаждающем контуре. Её приходится подливать примерно по одному-двум стаканам в час. Однако пористая структура и отказ от массивных радиаторов позволили сделать робота легче. Производительности “потеющей” системы охлаждения достаточно, чтобы Kengoro выполнял интенсивные нагрузки и успевал демонстрировать разные упражнения. Например, он может отжиматься в упоре лёжа 11 минут без остановки… а сколько сможете вы?

Успехи JSK Lab показывают, что сейчас в робототехнике прослеживается новое разделение. Среди гуманоидных роботов можно встретить представителей двух основных типов: с осевым управлением и с использованием искусственных сухожилий. Первая группа имеет исполнительные механизмы в каждом суставе и обладает небольшим числом степеней свободы –до 35. Наиболее известными представителями этой группы являются роботы Honda ASIMO и HPR-2 Promet .

Вторая группа представлена более современными и гибкими роботами. В них частично имитируются анатомические особенности суставов человека, но большая гибкость достигается в ущерб их мощности и прочности.

Даже таким роботам ещё очень далеко до человека: за счёт гибкого позвоночника и особенностей суставных поверхностей у нас гораздо большая подвижность. Западные врачи спортивной медицины обычно называют 220 – 260 степеней, а их японские коллеги и вовсе выделяют 548 степеней свободы (или 419, если не считать голову и руки).

Манипуляторы с мелкой моторикой всегда были наиболее сложной частью. В Кенширо удалось реализовать 64 степени свободы, а в Кенгоро – 174 (из них 60 приходятся на руки). Важно и то, что при создании Кенгоро разработчики смогли обеспечить баланс между пластичностью его движений и силой искусственных мышц. Кенгоро способен висеть на одной руке, выполнять подъём на носки стоя и держать равновесие практически в любой позе.

Если большинство гуманоидных роботов лишь отдалённо напоминают очертаниями человека, то Кенширо и Кенгоро выполнены со строгим соблюдением пропорций. Их отклонение от параметров среднего японца не превышает одного процента по длине любого участка тела и шестнадцати процентов по общей массе. Фактически эти роботы больше похожи на людей, чем многие из нас.

Основные области применения новых роботов – интерактивные занятия фитнесом, разработка спортивного снаряжения, изучение биомеханики, выполнение трюков и продвинутых краш-тестов. Существующие манекены позволяют оценить только пассивную безопасность автомобилей. Они всегда остаются неподвижны до момента удара. “Миметические гуманоиды”, как их называют сами разработчики, способны имитировать поведение водителя и пассажиров в момент аварии.


Слово «робот» было придумано чешским писателем-фантастом Карелом Чапеком. Но, как и большинство его коллег по цеху, своей выдумкой он только предсказал будущее. Сейчас существование роботов уже никого не удивляет, и кажется, что до самостоятельно мыслящих и действующих машин остались считанные шаги. Из всех стран мира в этой сфере безусловно лидирует Япония . Что это - случайность или закономерность?

Из выдумки - в реальность.

Является одним из приоритетных направлений. Каждая уважающая себя японская корпорация, имеющая хоть какое-то отношение к технике, разрабатывает своих роботов . В этой сфере отметились такие гиганты, как , Honda, и Kawasaki, которые стали всемирно известными благодаря своим достижениям в совсем других областях. Ни одна из японских корпораций, проявивших себя в создании роботов, не собирается останавливаться на достигнутом - изобретатели работают, не покладая рук, и механическим машинам становятся доступны все более и более сложные человеческие функции.

Покоряют и удивляют мир. Они измеряют давление и пульс, обучают, работают на ресепшн, пекут блины и играют на музыкальных интрументах. Среди них есть собаки, тюлени и даже рыбы. Пока что это, в основом, демострационные образцы, но, глядя на них, можно предположить, что создание искусственного интеллекта не за горами. Выставки японских роботов , которые проходят ежегодно, собирают многомилионные аудитории и поражают все новыми и новыми диковинками. Создается впечатление, что японцы просто помешаны на роботах .

Однако, оценивая все это футуристическое великолепие, невольно задаешься вопросом: зачем все это? На создание многофункциональных «игрушек», практическая польза многих из которых вызывает сомнения, уходят миллиарды йен. Такое поведение представителей одной из самых прогрессивных стран на Земле кажется лишенным здравого смысла. В отличие от и , которые являются сильными сторонами японской индустрии и пользуются огромным спросом как в самой Японии, так и за ее пределами, для большей части земного шара являются скорее блажью, чем необходимой в хозяйстве вещью. Однако, смысл несомненно есть.

Без роботов нельзя.

Демографические исследования показывают: рождаемость обратно пропорциональна уровню жизни и технологий в стране. В развитой Японии средняя продолжительность человеческой жизни велика, зато детей рождается мало. Население страны неумолимо «стареет» — все выше становится процент пожилых людей. При этом основная масса японцев стремится к получению образования, высокооплачиваемой и востребованной профессии, применению интеллектуального и творческого потенциала. Эта тенденция, конечно, хороша с точки зрения общего уровня жизни и эрудиции населения, но у этой медали есть и обратная сторона. Все меньше людей хочет делать простую, не требующую знаний и квалификации работу. Благодаря тому, что стремится к самореализации, в стране становится все меньше санитаров, уборщиков, официантов и прочих представителей рабочих специальностей.

Японии не хватает рабочих рук, поэтому здесь разрабатывают все новых и новых роботов. Казалось бы, можно решить эту проблему проще, а главное, значительно дешевле. Достаточно привлечь к работе, не требующей квалификации, представителей других стран, как это делают в остальном цивилизованном мире. Однако, в Японии к подобным практикам относятся негативно и предпочитают потратить деньги на разработку и производство гораздо более дорогостоящих роботов. Почему так происходит?

На самом деле, все объясняется достаточно просто. Достаточно обратить внимание на историю, культуру и и все тут же становится на свои места. Япония , как и многие другие страны Востока, очень бережно относится к своим традициям. Вырастают до небес города, возникают все новые и новые , но менталитет остается неизменным. Если вспомнить , довольно длительное время, более чем 200 лет, страна была полностью изолирована от влияния внешнего мира, благодаря политике сакоку, проводимой сёгунатом Токугава. Затем запреты были постепенно сняты, японцы начали активно общаться с внешним миром, восполнять возникший за время изоляции дефицит научных знаний и, надо сказать, преуспели в этом. Однако, их культура и внутренний уклад жизни по сей день остаются очень цельными и закрытыми для внешнего влияния. Здесь предпочитают справляться с возникающими проблемами своими силами, не прибегая к помощи иммигрантов. Этнически население страны состоит из коренных японцев на 98.5% — по сравнению с другими развитыми странами это невероятно высокий показатель.

Одним из непоколебимых столпов является почтительное отношение к старшему поколению. Пожилые люди здесь окружены уважением и заботой, а одной из основных задач робототехники является сделать их жизнь наиболее комфортной. И эта проблема с успехом решается. Робот-экзоскелет от Honda позволяет тем, у кого возникли проблемы с передвижением, вновь ощутить радость пеших прогулок, робот-сиделка RIBA , похожий на игрушечного медведя, может переносить больных на руках, а робот-тюлень Paro - предназначен для одиноких людей, испытывающих дефицит любви и используется при лечении болезни Альцгеймера.

В скором времени заменят людей и в других сферах. Они будут охранять дома, готовить еду, выдавать справочную информацию в коридорах больниц, на вокзалах и станциях метро и элементарный подбор нужного персонала будет осуществляться не в агентстве, но в магазине. А будут тратить освободившееся время и силы на разработку все новых и новых роботов.

Япония уже давно заявила о своей любви к роботам. Именно в этой стране к «искусственным разумам» относятся не так холодно и настороженно, как в других культурах. Кажется, в Японии уже давно стерлась разница между одушевленным и неодушевленным. Благодаря дуэту репортера Хироко Табучи и фотографа Дэвид Гуттенфельдер мы можем познакомиться с проектом о культуре роботов в Японии , во время которого они узнали, что инженеры в этой области – настоящие философы, которые подходят к каждой мелочи с долей философского вдохновения. Проект Табучи и Гуттенфельдера называется просто – «Одинокий человек».


в качестве партнера на балу. (HIROKO TABUCHI/David Guttenfelder)


Рабочий смотрит на плакат с изображением робота, убивающего монстра. (HIROKO TABUCHI/David Guttenfelder)


PaPeRo – живой компаньон на съемках детской передачи в Токио. Этот робот может распознавать до 10 лиц. (HIROKO TABUCHI/David Guttenfelder)


Simroid пока без кожи на выставке в Токио. У него есть искусственные зубы, и он умеет «плакать» от боли, если студент, учащийся на медицинском факультете, что-то сделал не так во время «операции». (HIROKO TABUCHI/David Guttenfelder)


Новейшая версия Manoi – домашнего компаньона – дебютирует в . (HIROKO TABUCHI/David Guttenfelder)


Робот, работающий в регистратуре в больнице в Аизу Вакаматцу, приветствует пациентов, провожает людей до лифтов, проводит простые тесты и развлекает посетителей в комнате ожидания. (HIROKO TABUCHI/David Guttenfelder)


Инженеры-разработчики «срывают кожу» с головы робота в Токио. (HIROKO TABUCHI/David Guttenfelder)


Робот — дорожный инспектор помогает автомобилям объехать место строительных работ в Токио. (HIROKO TABUCHI/David Guttenfelder)


Заводной робот подает чай японцам. (HIROKO TABUCHI/David Guttenfelder)


Ребенок-робот с биомиметическим телом помогает в исследовании развития ребенка в Осаке. (HIROKO TABUCHI/David Guttenfelder)


Посетитель выставки в Токио испугался, когда ребенок-робот в его руках начал плакать. (HIROKO TABUCHI/David Guttenfelder)


Хироши Ишигуро со своим роботом-двойником в лаборатории в Осаке. (HIROKO TABUCHI/David Guttenfelder)


Дизайнер объясняет, как он запрограммировал робота поворачиваться и танцевать под музыку. (HIROKO TABUCHI/David Guttenfelder)


Исследователь рассматривает кость человеческой ноги, чтобы детально изучить работу коленного сустава. (HIROKO TABUCHI/David Guttenfelder)


Анатомия игрушечного робота. (HIROKO TABUCHI/David Guttenfelder)


Для того чтобы создать черты лица робота-гуманоида , напоминающего этого человека, было произведено сканирование его головы на 360 градусов. (HIROKO TABUCHI/David Guttenfelder)

April 13th, 2015

Компания Токио Дэнрёку, являющаяся оператором аварийной атомной электростанции «Фукусима дай-ити», прекратила попытки вернуть назад робот-зонд, который остается без движения внутри одного из реакторов АЭС. Токио Дэнрёку впервые запустила этот робот с дистанционным управлением внутрь защитной оболочки реактора №1 в пятницу. Этот змееобразный робот длиной 60 сантиметров должен был провести изучение повреждений внутри защитной оболочки. Однако он остановился, продвинувшись примерно на 10 метров.

Представители компании также отложили планы проведения в понедельник аналогичного изучения внутри той же защитной оболочки с использованием другого робота. Как они объяснили, такое решение было принято из-за того, что кабель первого робота в канале защитной оболочки препятствует прохождению туда второго зонда.

Эх, и это ЯПОНИЯ! В моем воспаленном мозгу там уже «по улицам роботы должны ходить» !

Тем временем в «дикой России» …

Специальный мобильный робот СТР-1, участвовавший в ликвидации последствий аварии на Чернобыльской АЭС.

В 2009 году компания ЗАО «Диаконт» работала на Билибинской АЭС, где первый энергоблок подошел к окончанию 30-летнего проектного срока эксплуатации. Станция состоит из четырех одинаковых энергоблоков общей электрической мощностью 48 МВт с реакторами ЭГП-6 (водно-графитовый гетерогенный реактор канального типа). Там с применением робототехнических аппаратов провели диагностику кожуха реактора и металла бака биологической защиты (ББЗ) энергоблока № 1. Процесс контролировался с помощью специальной телевизионной системы. Такие комплексы выявляют дефекты сварных соединений. Изобретения, которые содержит конструкция, позволяют повысить качество диагностики и существенно сократить дозозатраты. Робот может управляться всего одним человеком. Комплекс состоит из двух роботов, первый из которых – диагностический – обследует металл и зачищает поверхность, а второй – ремонтный – наносит на дефекты герметизирующую наплавку для их устранения. Комплекс сконструирован так, что робот должен проникать в реакторное пространство через отверстие диаметром со спичечный коробок. Уникальность комплекса в том, что он способен перемещаться не только по сложным горизонтальным участкам, но и по вертикальным, и проводить контроль в автономном режиме. Также к ремонту билибинского блока подключили ООО «Пролог». Его специалисты провели осмотр газового контура реактора и бака биологической защиты первого энергоблока Билибинской АЭС. Они выполнили вырезку образцов основного металла верхней плиты реактора для дальнейшего исследования его состояния. Вся работа заняла больше полутора лет, в настоящее время этот блок находится в эксплуатации.

или еще раз по простому: корпуса реакторов за время прохудились и требовался или серьёзный ремонт корпуса или заглушение. Для ремонта требовался доступ внутрь активной зоны. Естественно это было крайне противопоказано. Однако же наши робототехники сумели сделать двух змееобразных роботов, которые провели обследование корпуса и сварочные работы. диаметр механизма был 5 см. Только через эту трубу был доступ. Первый робот с ультразвуковым сканером произвёл обследование, второй со сварочным аппаратом и механизмом замены электродов (по типу степлерных скоб было размещение) произвёл сварку на прохудившихся местах.

Робот MIS осматривает внутреннюю часть корпуса реактора в ходе планового ремонта АЭС «Бюже», Франция.

И опять про «Фукусиму»:

Удивительно и то, что для работы на аварийной «Фукусиме» потребовались роботы иностранных компаний, ведь Япония уже в 1980-е годы лидировала в разработке и производстве роботов и робототехники. К тому же толчком к разработке роботов, действующих в жесткой радиационной обстановке, стал инцидент 1999 года, произошедший именно на японском топливном заводе «Токаимура», в ходе которого трое рабочих получили переоблучение, причем двое из них умерли. В то время все согласились, что в чрезвычайных ситуациях робот незаменим. И в 2001 году были изготовлены шесть роботов, плод совместных разработок четырех компаний, в том числе Hitachi, Mitsubishi и Toshiba. Но, когда в марте 2011 года эти роботы действительно потребовались, оказалось, что устройства списаны и разобраны.

Что же произошло? Эксплуатирующие компании были так твердо уверены, что никакой аварии на АЭС произойти не может (а возражения воспринимали как сомнения в квалификации персонала и как упрек себе лично), а работники так противились присутствию роботов, что экспертная группа, в которую вошли представители TEPCO, KEPCO и государства, постановила: роботы на АЭС не нужны. И от роботов избавились. А ведь за 10 лет практической эксплуатации на АЭС можно было бы существенно улучшить их характеристики. Один из участников оперативной группы по устранению последствий аварии на АЭС «Фукусима» в раздражении бросил: «У всех роботов атомной отрасли есть одна общая черта: их нет, когда они нужны больше всего».

Все эти битвы поднимают вопрос более широкого плана. Первопроходец разработки искусственного интеллекта Марвин Мински писал о своем потрясении неспособностью атомной отрасли приготовиться к непредвиденной ситуации. Самую большую проблему он видит в том, что АЭС проектируются без учета возможности работы удаленно управляемых устройств. И это при том, что другие сферы человеческой деятельности давно стали учитывать возможности и нужды роботов. Например, в оборудовании, предназначенном для подводных работ, напротив, многие клапаны и приводы разработаны с учетом возможности использования роботизированных манипуляторов. Заводы по производству автомобилей ныне проектируются с приоритетной интеграцией робототехники, и даже существует медицинское оборудование, специально разработанное для робототехнических платформ.

Медленный прогресс роботов для АЭС объяснить непросто, существуют лишь мнения и идеи. Одно из таких мнений заключается в том, что тема роботов и атомной энергетики тесно переплетена с их восприятием обществом и политикой. Эйдзи Коянаги, заместитель директора японского научно-технического центра «Будущее робототехники», полагает, что финансирование японской робототехники ядерного реагирования иссякло после аварии 1999 года на заводе «Токаимура», потому что страна пыталась создать впечатление кропотливой работы по созданию практически абсолютно безопасной атомной энергетики. А выделение финансирования означало бы, что ситуация может оказаться настолько опасной, что вместо людей понадобятся роботы. Изменится ли такое отношение после «Фукусимы» и каким образом Япония восстановит доверие к своему важнейшему источнику энергии, нам еще предстоит узнать.

СЛАБОСТИ РОБОТОВ

Отчего выполнить восстановительные работы на станции оказалось сложнее, чем остановить утечку нефти на тысячеметровой морской глубине? С одной стороны, станция усеяна обломками, что усложняет доступ даже для спасательных команд. Разумеется, в опасные районы можно отправить роботов и не рисковать человеческими жизнями. Но застрявший робот означает не только потерю дорогостоящего устройства, но и ухудшение доступа других роботов к труднодоступным местам.

У малого робота ограничена производительность, а большой – неповоротлив. К примеру, на «Фукусиме» слабосильному роботу PackBot (компания iRobot) никак не удавалось открыть дверь, снабженную круглой ручкой. А когда iRobot прислала робота побольше, оказалось, что у него трудности с прохождением лестничных клеток. Один из японских роботов Quince стоимостью в $ 6 млн застрял в ограниченном пространстве станции и спустя 2,5 года после аварии все еще остается в плену.

Помимо трудностей с ловкостью передвижения и управления устройством, роботы на АЭС из-за интенсивного облучения сталкиваются с проблемами надежности беспроводной связи. Ионизирующее излучение может повредить электронику физически, нарушив структуру полупроводниковых кристаллов порождением лавины электронов и смещая порог открывания полевых транзисторов. В любом случае меняются рабочие характеристики отдельных электронных компонентов, что приводит к отказу. Устройства, защищенные от радиоактивного излучения, тестируются путем измерения получаемой ими полной дозы (чаще в зивертах) до наступления неисправности. Но радиоактивные повреждения носят статистический характер, поэтому «выживание» устройства никогда не гарантируется. Передаваемые роботами изображения здания АЭС «Фукусима» искажались по мере приближения устройства к радиационно «горячим» точкам.

Могут возникать и проблемы со связью. После «Фукусимы» в NEDO разработали гибридную сотовую сеть для удаленного управления роботами, в которую входили как проводные, так и беспроводные ячейки. Реакторные здания были относительно невелики и полностью покрывались гибридной сетью. Тем не менее, их толстые бетонные стены, блокирующие гамма-лучи, делали вероятным трудности с беспроводной связью или ее невозможность.

Другой проблемой стал японский закон о радио. Из-за плотной населенности страны этот закон очень строг в отношении напряженности электрического поля и допускает мощность передатчика максимум в 10 мВт. В этом случае расстояние беспроводной связи внутри помещения составляет максимум 50 метров. Поэтому для использования более мощных радиоволн с целью управления роботами на аварийной «Фукусиме» потребовалось получить специальное разрешение от Министерства внутренних дел и коммуникаций. Выбрали устройства 2.4 GHz Contec (для робота – FX-DS540-STDM с дипольной антенной, а для операторского центра FX-DS540-LNKM-S с антенной Yagi), а также одноваттные усилители.

ПЕРСПЕКТИВНЫЕ НАРАБОТКИ

Что же дальше? Недавно Mitsubishi представила устойчивых к радиации роботов MEISTeR (Maintenance Equipment Integrated System of Telecontrol Robot), которые смогут более производительно работать на очистке АЭС «Фукусима». Эти роботы могут сгибаться, как человеческая рука, благодаря семи степеням подвижности, каждый из них способен поднимать до 15 кг груза. Наконечник манипулятора разработан таким образом, чтобы на него можно было быстро и легко закрепить различные инструменты, например, пилу, перфоратор или дрель. Компания утверждает, что разработала специальный инструмент, который может взять пробы поверхности стен и бетонных полов в загрязненных районах с глубины до 70 мм (около 2,5 дюйма). MEISTeR весит 440 кг, имеет размеры 130 см в высоту, 70 см в ширину и 125 см в длину. Он может двигаться со скоростью до 2 км / ч, причем как по ровной горизонтальной поверхности, так и по пересеченной местности. Робот даже может подниматься и спускаться по лестнице с высотой лестничных ступеней до 22 см, благодаря четырем независимо движущимся танковым трекам. Действия робота дистанционно управляемы, ожидаемая продолжительность времени работы в автономном режиме составляет два часа. Он оборудован электроникой, которая будет надежно работать в условиях радиации. Важно, что эти устройства снабжены логическими схемами, которые в случае, скажем, утечки в гидравлике смогут послать сигнал тревоги прежде, чем наступит отказ. А это означает, что их можно быстро и дешево отремонтировать.

Помимо роботов-аварийщиков, существуют интересные разработки, позволяющие проводить инспекции, так сказать, «в мирное время» – без останова реактора и без риска для операторов. Так, корпорация AREVA в 2007 году создала группу NETEC (Non-Destructive Examinations Solutions Technical Center) – технический центр по решениям недеструктивных инспекций, – в котором трудятся более 50 ученых и инженеров. Здесь разрабатывают новые технологии осмотров и новые датчики. Из разработок АREVA на сегодня испытаны и протестированы, к примеру, системы инспекции корпуса реактора MIS7 и TWS, существенно уменьшившие время остановки реактора.

Подводный робот SUSI может плавать в теплоносителе первичного контура реактора, что с помощью ультразвукового и визуального тестирования позволяет осмотреть внутриреакторные конструкции с целью подтверждения безопасности этих компонентов для дальнейшей эксплуатации. Этот робот недавно уже был применен для осмотра одной из АЭС США, название которой не раскрывается.

JASPER позволяет осуществить безопасную инспекцию стержневой сборки системы управления и защиты ядерного реактора. Новый RANGER для осмотра трубопроводов парогенераторов легко вводится на место, подлежащее осмотру.

Однако большинство подобных перспективных разработок, хоть и протестировано, но пока не прошло испытание в боевых условиях аварий или неисправности работы реактора.

источники

http://atomicexpert.com/content/%D1%81%D0%BB%D1%83%D0%B6%D0%B8%D1%82%D1%8C-%D0%B8-%D0%B7%D0%B0%D1%89%D0%B8%D1%89%D0%B0%D1%82%D1%8C

http://www3.nhk.or.jp/nhkworld/russian/top/news09.html

И еще что мы уже обсуждали про Фукусиму: вот и еще . А вот кстати, когда то была и был вот такой . Вспомним, Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Японцы очень любят роботов и все, что с ними связано. Выражается это не только в их культуре (вспомнить хотя бы многочисленные аниме-сериалы вроде Gundam), но и в повседневности. Многие японцы приобретают себе роботов для разных бытовых целей, а для детей - игрушки в форме роботов.

В этом плане жители Страны восходящего солнца далеко опередили жителей США или Германии, хотя там робототехника не менее развита. Разгадка - в самих японцах. Их древняя культура восприняла роботов совершенно органично.

Миф о роботах как угрозе для духовности

Традиционная религия в Японии - синто ("путь богов") - обожествляет природные силы и явления. Испокон веков японцы считают, что духовная сущность - ками - есть даже у неодушевленных вещей. Синто видит ками в камне, в предмете быта, в механическом устройстве. Как же было не увидеть ками в роботе?

На взгляд японца, утверждать, что роботы - это угроза для духовности, может только духовно пустой человек. Угрозу для духовности создают не вещи, а люди.

Трейлер аниме-сериала Gundam

Это отношение проявляется сызмальства. На Западе дети иногда плачут и кричат от ужаса при виде роботов, что неудивительно после просмотра многочисленных фильмов о бешеных машинах-убийцах. Но для японских детей роботы - это родственные души, игривые и всегда готовые помочь.

Маленькие японцы не только играют с роботами, а и сами создают их. Из чего? Из всего, что под руку попадется, от одноразовых вилок до овощей и плюшевых игрушек. Эта забава не чужда и взрослым, судя по чемпионату Hebocon (heboi можно перевести как "плохой" или "убогий"). Первый конкурс был проведен в июле 2014 г., последний - в августе 2016-го. Следующее большое соревнование намечено на середину 2017-го, а в 2020-м планируется масштабный ивент, который будет проходить параллельно с Олимпийскими играми в Токио.

"Чтобы сделать heboi-робота, вам потребуется купить только самые простые материалы или использовать то, что вы сможете найти валяющимся на улице возле своего дома. Вам не нужно думать о сложности движений и функциях, вам даже не требуется сложное конструирование. Просто сделайте так, чтобы ваш робот мог двигаться, а как - это уже неважно. И даже если ваш робот не может начать двигаться самостоятельно, подтолкните его, в этом нет ничего зазорного", - рассказывает организатор чемпионата Дайджу Ишикава. А чтобы получился "лучший худший робот в мире", советует Ишикава, "оставьте изготовление самой важной части пятилетнему ребенку".

Быть может, не столь ребячески настроены хотя бы жители сельской местности? Все-таки их должна волновать судьба живой природы, полей, садов. Но в Японии именно на роботов возлагают надежды сберечь сельское хозяйство.

Миф о роботах как антиподе природы

В прошлом году министерство сельского хозяйства Японии разработало новую социально-экономическую программу, основной идеей которой является замена уходящих на пенсию фермеров роботами. Как отмечает министр Хироси Морияма, средний возраст японских фермеров сегодня составляет 67 лет. По мере выхода фермеров на пенсию остается все меньше трудоспособных людей, занятых в сельском хозяйстве. Это угрожает продовольственным кризисом.

Нелишне напомнить, что во многих европейских странах проблему нехватки рабочих рук на фермах решают, привлекая сезонных трудовых мигрантов. В Японии иммиграцию, мягко говоря, не поощряют. Вместо иностранной рабочей силы там решили разводить роботов.

Согласно программе должны быть разработаны 20 новых типов роботов, например, машина, которая будет заниматься сортировкой зрелых и перезрелых персиков непосредственно во время сбора урожая. Каждый уходящий на пенсию фермер будет заменяться несколькими типами роботов, включая и беспилотные трактора. Разработкой таких машин занимается корпорация Kubota . Уже создан прототип беспилотного трактора, который определяет границы рабочего поля по GPS, может самостоятельно анализировать состояние почвы, а также вспахивать поле и удобрять его. Компании Iseki и Yanmar создают различного типа комбайны, а Hitachi занимается разработкой систем для аграрных роботов.

Но японцы вовсе не собираются вытеснять фермеров роботами. Для тех, кто хочет работать в сельском хозяйстве, робототехника создает новые возможности. Та же Kubota объявила о разработке специального легкого экзоскелета , который облегчит фермерам сборку урожая и переноску контейнеров с фруктами и овощами.

Миф о роботах как конкурентах людей

Тем не менее проблема вытеснения людей роботами существует. Воочию убедиться в роботизации Японии в скором времени смогут пассажиры международного аэропорта Нарита в восточной части Большого Токио, когда им начнут помогать роботы-ассистенты Hospi(R) от Panasonic. В прошлом месяце тех уже протестировали на территории аэропорта и в прилегающем к нему отеле ANA Crowne Plaza.


Японское агентство аэрокосмических исследований является активным участником программ на Международной космической станции. Но, если раньше оно отправляло туда живых астронавтов , то в скором будущем на МКС появится первый в истории освоения космоса человекообразный робот Kirobo .




Японцы уже давно и прочно освоились на ниве создания роботов для различных функций. В качестве примеров подобных достижений Страны Восходящего Солнца можно упомянуть , рекламирующих токийский ресторан Robot Restaurant, или .



Новым же достижением японских инженеров стал робот, который вскоре отравится в качестве полноценного члена экипажа на Международную космическую станцию.

Речь идет об Kirobo – миниатюрном роботе высотой всего в 34 сантиметра и весом в 1 килограмм. Создан он на основе технологий компании Toyota и работает под управлением операционной системы Android.



Kirobo обладает сложнейшими программами, позволяющими ему выполнять в автоматическом режиме огромное количество действий, как общего характера, так и узкоспециализированного. Этот робот оснащен возможностью получения, обработки и интерпретации широкого спектра информации, в том числе, и коммуникативного плана. Он легко поддержит беседу на нескольких языках, различая при этом мимику на лице и тона в голосе партнера по диалогу.



Kirobo может распознавать лица и предметы, а также искать и находить разнообразные вещи. Он умеет записывать аудио и видео, а также общаться с миром посредством глобальной сети Интернет.

В 2009 году японский астронавт, находясь на борту Международной космической станции, общался с людьми через Twitter, выполняя различные упражнения и действия, сделать которые ему посоветовали другие пользователи этого ресурса.



Сейчас же Японское агентство аэрокосмических исследований планирует совершить сеанс подобной связи и с Kirobo. Он так же, как и его живой предшественник, попробует совершить ряд физических действий, приказ на выполнение которых робот получит от пользователей Twitter.

Возможно, пройдет еще пару десятилетий, и фильм «Космическая Одиссея 2001» станет пророчеством. Ведь в нем был показан межпланетный полет, участники которого даже и не подозревали, что один из них – человекоподобный робот.