Помимо того факта, что ЖК-мониторы для отображения картинки требуют цифровые данные, они отличаются от классических ЭЛТ-дисплеев ещё несколькими особенностями. К примеру, в зависимости от возможностей монитора, на ЭЛТ можно вывести практически любое разрешение, поскольку трубка не имеет чётко заданного числа пикселей.

А ЖК-мониторы из-за принципа своей работы всегда имеют фиксированное ("родное") разрешение, при котором монитор обеспечит оптимальное качество картинки. С DVI это ограничение не имеет ничего общего, так как его основная причина заключается в архитектуре ЖК-монитора.

ЖК-монитор использует массив крохотных пикселей, каждый из которых состоит из трёх диодов, по одному на основной цвет (RGB: красный, зелёный, синий). ЖК-экран, имеющий "родное" разрешение 1600x1200 (UXGA), состоит из 1,92 миллиона пикселей!

Конечно же, ЖК-мониторы способны выводить другие разрешения. Но в таких случаях картинку придётся масштабировать или интерполировать. Если, к примеру, ЖК-монитор имеет "родное" разрешение 1280x1024, то меньшее разрешение 800x600 будет растянуто до 1280x1024. Качество интерполяции зависит от модели монитора. Альтернативой является вывод уменьшенного изображения в "родном" разрешении 800x600, но при этом придётся довольствоваться чёрной рамкой.

На обоих кадрах показана картинка с экрана ЖК-монитора. Слева выведено изображение в "родном разрешении" 1280x1024 (Eizo L885). Справа находится интерполированное изображение в разрешении 800x600. В результате увеличения пикселей картинка выглядит блочной. Таких проблем на ЭЛТ-мониторах не существует.

Для отображения разрешения 1600x1200 (UXGA) с 1,92 миллиона пикселей и частотой вертикальной развёртки 60 Гц монитору требуется высокая пропускная способность. Если посчитать, то необходима частота 115 МГц. Но на частоту влияют и другие факторы, например прохождение области гашения, поэтому требуемая пропускная способность возрастает ещё больше.

Около 25% всей передаваемой информации относится ко времени гашения. Оно нужно для смены позиции электронной пушки на следующую строчку в ЭЛТ-мониторе. В то же время, ЖК-мониторам время гашения практически не требуется.

Для каждого кадра передаётся не только информация об изображении, но и учитываются границы, а также область гашения. ЭЛТ-мониторам необходимо время гашения, чтобы выключить электронную пушку по завершению вывода строчки на экране и перевести её на следующую строчку для продолжения вывода. То же самое происходит в конце картинки, то есть в нижнем правом углу - электронный луч выключается и меняет позицию на верхний левый угол экрана.

Около 25% всех пиксельных данных относятся ко времени гашения. Поскольку ЖК-мониторы электронную пушку не используют, здесь время гашения совершенно ни к чему. Но его пришлось учитывать в стандарте DVI 1.0, поскольку он позволяет подключать не только цифровые ЖК, но и цифровые ЭЛТ-мониторы (где ЦАП встроен в монитор).

Время гашения оказывается очень важным фактором при подключении ЖК-дисплея по DVI-интерфейсу, поскольку каждое разрешение требует определённой пропускной способности от передатчика (видеокарта). Чем выше требуемое разрешение, тем больше должна быть пиксельная частота TMDS-передатчика. Стандарт DVI оговаривает максимальную пиксельную частоту 165 МГц (один канал). Благодаря десятикратному умножению частоты, описанному выше, мы получаем пиковую пропускную способность данных в 1,65 Гбайт/с, которой будет достаточно для разрешения 1600x1200 на 60 Гц. Если требуется большее разрешение, то дисплей следует подключать по двухканальному DVI (Dual Link DVI), тогда два DVI-передатчика будут работать совместно, что даст удвоение пропускной способности. Подробнее этот вариант описан в следующем разделе.

Впрочем, более простым и дешёвым решением будет уменьшение данных гашения. В результате, видеокартам будет предоставлено больше пропускной способности, и даже DVI-передатчик на 165 МГц сможет справиться с более высокими разрешениями. Ещё одним вариантом можно считать уменьшение частоты горизонтального обновления экрана.

В верхней части таблицы показаны разрешения, которые поддерживает один DVI-передатчик на 165 МГц. Уменьшение данных гашения (в середине) или частоты обновления (Гц) позволяет достичь больших разрешений.


На этой иллюстрации показано, какая пиксельная частота требуется для определённого разрешения. Верхняя строчка показывает работу ЖК-монитора с уменьшенными данными гашения. Второй ряд (60Hz CRT GTF Blanking) показывает требуемую пропускную способность ЖК-монитора, если данные гашения нельзя уменьшить.

Ограничение TMDS-передатчика пиксельной частотой 165 МГц сказывается также и на максимально возможном разрешении ЖК-дисплея. Даже при уменьшении данных гашения мы всё равно упираемся в определённый предел. Да и снижение частоты горизонтального обновления может дать не очень хороший результат в некоторых приложениях.

Чтобы решить эту проблему, спецификация DVI оговаривает дополнительный режим работы, названный Dual Link. В данном случае используется сочетание двух TMDS-передатчиков, которые передают данные на один монитор через один разъём. Доступная пропускная способность удваивается до 330 МГц, чего вполне достаточно для вывода практически любого существующего разрешения. Важное замечание: видеокарта с двумя выходами DVI не является картой Dual Link, у которой два TMDS-передатчика работают через один порт DVI!

На иллюстрации показан двухканальный режим работы DVI, когда используется два TMDS-передатчика.

Впрочем, видеокарты с хорошей поддержкой DVI и уменьшенной информацией гашения будет вполне достаточно для вывода информации на один из новых 20" и 23" дисплеев Apple Cinema в "родном" разрешении 1680x1050 или 1920x1200, соответственно. В то же время, для поддержки 30" дисплея с разрешением 2560x1600 от интерфейса Dual Link уже никуда не деться.

Из-за высокого "родного" разрешения 30" дисплей Apple Cinema требует подключения по Dual Link DVI!

Хотя два разъёма DVI уже стали стандартом на high-end 3D-картах для рабочих станций, не все видеокарты потребительского уровня могут этим похвастаться. Благодаря двум разъёмам DVI мы всё же можем использовать интересную альтернативу.

На этом примере два одноканальных порта используются для подключения дисплея на девять мегапикселей (3840x2400). Картинка просто разделена на две части. Но этот режим должны поддерживать и монитор, и видеокарта.

На данный момент можно найти шесть различных разъёмов DVI. Среди них: DVI-D для полностью цифрового подключения в одноканальной и двухканальной версиях; DVI-I для аналогового и цифрового подключения в двух версиях; DVI-A для аналогового подключения и новый разъём VESA DMS-59. Чаще всего производители графических карт оснащают свои продукты двухканальным разъёмом DVI-I, даже если карта имеет один порт. С помощью адаптера порт DVI-I можно превратить в аналоговый выход VGA.

Обзор различных разъёмов DVI.


Раскладка разъёма DVI.

Спецификация DVI 1.0 не оговаривает новый двухканальный разъём DMS-59. Он был представлен рабочей группой VESA в 2003 году и позволяет вывести два выхода DVI на картах малого форм-фактора. Он также призван упростить расположение разъёмов на картах с поддержкой четырёх дисплеев.

Наконец, мы переходим к сути нашей статьи: качество TMDS-передатчиков разных графических карт. Хотя спецификация DVI 1.0 и оговаривает максимальную пиксельную частоту 165 МГц, не все видеокарты дают на ней приемлемый сигнал. Многие позволяют достичь 1600x1200 только на уменьшенных пиксельных частотах и со сниженным временем гашения. Если вы попытаетесь подключить к такой карте устройство HDTV с разрешением 1920x1080 (даже с уменьшенным временем гашения), ваш ждёт неприятный сюрприз.

Все графические процессоры, поставляемые сегодня ATi и nVidia, уже имеют встроенный на чип TMDS-передатчик для DVI. Производители карт на графических процессорах ATi чаще всего используют встроенный передатчик для стандартной комбинации 1xVGA и 1xDVI. Для сравнения, многие карты на графических процессорах nVidia используют внешний TMDS-модуль (к примеру, от Silicon Image), даже несмотря на наличие TMDS-передатчика на самом чипе. Чтобы обеспечить два DVI-выхода, производитель карты всегда устанавливает второй TMDS-чип независимо от того, на каком графическом процессоре базируется карта.

На следующих иллюстрациях показаны обычные дизайны.

Типичная конфигурация: один выход VGA и один DVI. TMDS-передатчик может быть как интегрирован в графический чип, так и вынесен на отдельный чип.

Возможные конфигурации DVI: 1x VGA и 1x Single Link DVI (A), 2x Single Link DVI (B), 1x Single Link и 1x Dual Link DVI, 2x Dual Link DVI (D). Примечание: если на карте установлены два выхода DVI, то это не означает, что они двухканальные! На иллюстрациях E и F показана конфигурация новых портов VESA DMS-59 с высокой плотностью, где обеспечивается четыре или два одноканальных выхода DVI.

Как покажет дальнейшее тестирование в нашей статье, качество выхода DVI на картах ATi или nVidia бывает весьма разным. Даже если отдельный TMDS-чип на карте известен своим качеством, это вовсе не означает, что каждая карта с этим чипом обеспечит высокое качество сигнала DVI. Даже его расположение на графической карте немало влияет на конечный результат.

Совместимость со стандартом DVI

Чтобы протестировать качество DVI современных графических карт на процессорах ATi и nVidia, мы выслали шесть образцов карт в тестовые лаборатории Silicon Image для проверки совместимости со стандартом DVI.

Что интересно, для получения лицензии DVI совсем не обязательно проводить тесты совместимости со стандартом. В результате, на рынок выходят продукты с заявленной поддержкой DVI, которые не соответствуют спецификациям. Одной из причин такого положения дел является сложная и, следовательно, дорогая процедура тестирования.

Отреагировав на эту проблему, компания Silicon Image в декабре 2003 года основала тестовый центр DVI Compliance Test Center (CTC) . Производители устройств с поддержкой DVI могут выслать свои продукты для тестирования на совместимость со стандартом DVI. Собственно, это мы и сделали с нашими шестью графическими картами.

Тесты разделены на три категории: передатчик (обычно видеокарта), кабель и приёмник (монитор). Для оценки совместимости DVI создаются так называемые глазковые диаграммы, представляющие сигнал DVI. Если сигнал не выходит за определённые границы, то тест считается пройденным. В противном случае устройство не совместимо со стандартом DVI.

На иллюстрации показана глазковая диаграмма TMDS-передатчика на частоте 162 МГц (UXGA) с передачей миллиардов битов данных.

Проверка глазковой диаграммы является самым важным тестом для оценки качества сигнала. На диаграмме заметны флуктуации сигнала (дрожь фазы, jitter), искажения амплитуды и эффект "звона". Эти тесты также позволяют наглядно увидеть качество DVI.

Тесты совместимости со стандартом DVI включают в себя следующие проверки.

  1. Передатчик: глазковая диаграмма с заданными границами.
  2. Кабели: создаются глазковые диаграммы до и после передачи сигнала, затем они сравниваются. И вновь, границы отклонения сигнала жёстко заданы. Но здесь уже допускаются большие расхождения с идеальным сигналом.
  3. Приёмник: вновь создаётся глазковая диаграмма, но опять же, допускаются ещё большие расхождения.

Самые большие проблемы при последовательной высокоскоростной передаче связаны с дрожью фазы сигнала. Если такого эффекта нет, то вы всегда можете чётко выделить сигнал на графике. Большинство флуктуаций сигнала создаются тактовым сигналом графического чипа, что приводит к появлению низкочастотной флуктуации частоты в диапазонах от 100 кГц до 10 МГц. На глазковой диаграмме флуктуация сигнала заметна по изменению частоты, данных, данных по отношению к частоте, амплитуды, слишком избыточному или слишком малому подъёму. Кроме того, измерения DVI различаются для разных частот, что необходимо учитывать при проверке глазковой диаграммы. Но благодаря глазковой диаграмме, можно наглядно оценить качество сигнала DVI.

Для измерений анализируется один миллион перекрывающихся участков с помощью осциллографа. Этого достаточно для оценки общей производительности соединения DVI, поскольку сигнал на протяжении длительного периода времени не будет существенно изменяться. Графическое представление данных производится с помощью специального программного обеспечения, которое Silicon Image создала в сотрудничестве с Tektronix. Сигнал, соответствующий спецификации DVI, не должен заступать на границы (синие области), которые автоматически прорисовываются программным обеспечением. Если сигнал попадёт на синюю область, то тест считается не пройденным, а устройство - не соответствующим спецификации DVI. Программа сразу же показывает результат.

Видеокарта не прошла тест совместимости с DVI.

Программное обеспечение сразу же показывает, прошла карта тест, или нет.

Для кабеля, передатчика и приёмника используются разные границы (глазки). Сигнал не должен заступать на эти области.

Чтобы понять, как определяется совместимость с DVI и что необходимо при этом учитывать, нам следует погрузиться в дополнительные детали.

Так как передача DVI полностью цифровая, то возникает вопрос, откуда появляется дрожание фазы сигнала. Здесь можно выдвинуть две причины. Первая - дрожание вызывается самим данными, то есть 24 параллельными битами данных, которые выдаёт графический чип. Однако данные автоматически корректируются в чипе TMDS при необходимости, что гарантирует отсутствие дрожания фазы в данных. Поэтому оставшейся причиной появления дрожания является тактовый сигнал.

На первый взгляд, сигнал данных свободен от помех. Это гарантируется благодаря регистру-защёлке (latch), встроенному в TMDS. Но главной проблемой всё же остаётся тактовый сигнал, который портит поток данных через 10-кратное умножение ФАПЧ.

Так как частота умножается в 10 раз с помощью ФАПЧ, влияние даже небольшого искажения увеличивается. В итоге данные попадают на приёмник уже не в своём первоначальном состоянии.

Сверху показан идеальный тактовый сигнал, ниже - сигнал, где один из фронтов начал передаваться слишком рано. Благодаря ФАПЧ, это напрямую влияет на сигнал данных. В общем, каждое возмущение тактового сигнала приводит к ошибкам при передаче данных.

Когда приёмник семплирует повреждённый сигнал данных с помощью "идеального" тактового сигнала гипотетического ФАПЧ, он получает ошибочные данные (жёлтая полоса).

Как это работает на самом деле: если приёмник будет использовать повреждённый тактовый сигнал передатчика, он всё ещё сможет считать повреждённые данные (красная полоса). Именно поэтому тактовый сигнал тоже передаётся по кабелю DVI! Приёмнику требуется тот же самый (повреждённый) тактовый сигнал.

Стандарт DVI включает в себя устранение дрожания фазы (jitter management). Если оба компонента будут использовать один и тот же повреждённый тактовый сигнал, то информация может считываться из повреждённого сигнала данных без ошибок. Таким образом, совместимые с DVI устройства могут работать даже в условиях наличия низкочастотного дрожания фазы. Ошибку в тактовом сигнале тогда можно обойти.

Как мы уже объясняли выше, DVI работает оптимально, если передатчик и приёмник используют один и тот же тактовый сигнал и их архитектура одинакова. Но так бывает не всегда. Именно поэтому использование DVI может привести к появлению проблем, несмотря на сложные меры предотвращения дрожания фазы.

На иллюстрации показан оптимальный сценарий для передачи DVI. Умножение тактового сигнала в ФАПЧ (PLL) приводит к задержке. И поток данных уже не будет целостным. Но всё выправляется с помощью учёта той же самой задержки в ФАПЧ приёмника, поэтому данные принимаются корректно.

Стандарт DVI 1.0 чётко определяет задержку ФАПЧ. Такая архитектура называется несвязанной (non-coherent). Если ФАПЧ не соответствует данным спецификациям по времени задержки, то могут появиться проблемы. В индустрии сегодня ведутся горячие дискуссии по поводу того, следует ли использовать подобную несвязанную архитектуру. Причём, ряд компаний выступает за полный пересмотр стандарта.

В этом примере используется тактовый сигнал ФАПЧ вместо сигнала графического чипа. Следовательно, сигналы данных и тактовые сигналы согласованы. Однако из-за задержки в ФАПЧ приёмника данные обрабатываются некорректно, и устранение дрожания фазы уже не работает!

Теперь вам должно быть понятно, почему использование длинных кабелей может стать проблемным, даже если не учитывать внешние помехи. Длинный кабель может вносить задержку в тактовый сигнал (напомним, что сигналы данных и тактовые сигналы имеют разные частотные диапазоны), дополнительная задержка может влиять на качество приёма сигнала.

Наименование параметра Значение
Тема статьи: Тактовая частота.
Рубрика (тематическая категория) Компьютеры

Память, к которой может адресовываться CPU.

Степень интеграции микросхемы (чипа) показывает, сколько транзисторов может в нем уместиться. Для процессора Pentium (80586) Intel - это при­бли­зительно 3 млн. транзисторов на 3,5 см 2 .

Разрядность процессора показывает, сколько бит данных он мо­жет при­нять и обработать в своих регистрах за один раз (за один такт). Современные процессоры семейства Intel Pentium являются 32-разрядными

Рабочая тактовая частота определяет скорость, с которой осуществ­ляются операции в процессоре. Сегодня рабочие частоты процессоров до­ходят до более, чем 1 млрд. тактов в секунду (1 ГГц).

CPU находится в прямом контакте с оперативной памятью PC. Данные, которые обрабатывает CPU, должны временно располагаться в RAM и для дальнейшей об­работки снова бывают востребованы из памяти. Для CPU86/88 эта область адре­сации располагается максимум до 1 МБ, процессор 80486 может обес­печить доступ уже к 4 ГБ памяти.

Real Address Mode - режим реальной адресации (или просто реальный режим - Real Mode), полностью совместим с 8086. В этом режиме воз­можна адресация до 1 Мб физической памяти (на самом делœе, как и у 80286, почти на 64 Кбайт больше).

Protected Virtual Address Mode - защищенный режим виртуальной адре­сации (или просто защищенный режим - Protected Mode). В этом режиме про­цессор позволяет адресовать до 4 Гбайт физической памяти, через ко­торые при использовании механизма страничной адресации могут ото­бражаться до 64 Тбайт виртуальной памяти каждой задачи.

Существенным дополнением является Virtual 8086 Mode - режим вирту­ального процессора 8086. Этот режим является особым состоянием задачи за­щищенного режима, в котором процессор функционирует как 8086. На одном процессоре в таком режиме могут параллельно испол­няться несколько задач с изолированными друг от друга ресурсами.

Важным отличием элементов оперативной памяти от прочих запоминающих уст­ройств является время доступа, характеризующееся интервал времени, в тече­ние которого информация записывается в память или извлекается из нее. Время доступа для внешнего носителя данных, такого как жесткий диск, вы­ражается в миллисекундах, а для элемента памяти оно измеряется наносœекундами.

Дисководы (Floppy Disk Drive, FDD) являются старейшими периферийными устройствами PC. В качестве носителя информации в них приме­няются дискеты {Floppy) диаметрами 3,5" и размерами 5,25".

Для записи и чтения информации крайне важно разбиение дискеты на определœенные участки - создать логическую структуру. Это выполняется путем форматирования с помощью специальной команды, к примеру, для DOS - команда Format. Дискета разбивается на дорожки (Tracks) и сектора (Sectors) , на рис. показано это разбиение.

Основным критерием для оценки винчестера является его ёмкость, то есть максимальный объём данных который должна быть записан на носитель

При обращении к большим массивам данных магнитные головки должны пози­ционироваться на диске гораздо чаще, чем при обращении к небольшим массивам и данным, которые последовательно расположены на диске. Так что скорость чтения и записи определяется средним време­нем доступа (Average Seek Time) к различным объектам на диске. Для лучших IDE и SCSI HDD это время меньше 10 мс.

Скорость передачи данных предлагается в качестве второго па­раметра для оценки производительности винчестера. Важно заметить, что для современных моделœей она составляет 10 МБ/с.

Монитор является устройством для визуального отображения информации. Сигналы, которые получает монитор (числа, символы, графическую информацию и сигналы синхронизации), формируются видеокартой. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, монитор и видеокарта представляют из себясвоеобразный тандем, который для оптимальной работы должен быть настроен соответствующим образом.

Видеокарта.

Для большинства применений разрешение стандарта VGA вполне достаточ­но. При этом программы, ориентированные на графику, работают значительно лучше и быстрее (бывают случаи, когда они даже не инсталлируются, еслг ус­тановленное разрешение или видеокарта не соответствуют их возможно­стям), в случае если информационная плотность экрана выше. Для этого крайне важно повы­шать разрешение. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, стандартVGA развился в так назы­ваемый стандарт Super VGA (SVGA). Стандартное разрешение этого режиме состав­ляет 800х600 пикселов.

Отметим закономерность: при объёме видеопамяти 256 Кб и SVGA-раз­реше­нии можно обеспечить только 16 цветов; 512 Кб видеопамяти дают возмож­ность отобразить уже 256 цветовых оттенков при том же разреше­нии. Карты, имеющие 1 Мб памяти, а это сейчас уже стало обычным явле­нием, позволяют при этом же разрешении достичь отображения 32768, 65536 (HiColor) или даже 16,7 млн. (TrueColor) цветовых оттенков.

По современным ме­дико-психологическим оценкам глаз человека не воспринимает мерцания эк­рана, связанные с обновлением изображения, только при частоте вертикаль­ной развертки не менее 70 Гц. При увеличенном разрешении изображение на экране монитора начинает мерцать, что сильно повышает утомляемость и от­рицательно сказывается на зрении.

Основными потребительскими параметрами мониторов являют­ся размер экрана, шаг маски экрана, максимальная частота регенера­ции изображения и класс защиты.

Наиболее удобны и универсальны мониторы с размером экрана по диаго­нали 15 и 17 дюймов. Для работы с графикой используются, мониторы и с большими размерами экрана (19-21 дюйм).

Шаг маски экрана определяет четкость изображения (разреша­ющую спо­собность). Сегодня используется шаг 0,25-0,27 мм. Все мониторы с зерном более 0,28 мм относятся к категории "дешевых" и "грубых". Лучшие мониторы имеют зерно 0,26 мм, а у самого качественного известного нам монитора (и, естественно, самого дорогого) эта величина равна 0,21 мм.

Частота регенерации изображения также определяет четкость и устойчи­вость изображения и должна быть не ниже 75 Гц.

Класс защиты определяет соответствие монитора требованиям техники безопасности. Выполнение наиболее жестких требований к безопасности ра­боты обеспечивает стандарт ТСО-99.

Свойства изображения зависят не только от монитора, но и err свойств и настроек платы, размещенной в системном блоке (видео­адаптера). Монитор и видеоадаптер должны соответствовать друг другу (к примеру, современный видеоадаптер должен иметь память не менее 4 Мбайт).

Скажем несколько слов о торговых обозначениях. В каталогах и объявле­ниях на продажу компьютеров получили распространение особые обозначе­ния его характеристик. Метод обозначения типа ком­пьютера, принятый в большинстве объявлений, рассмотрим на конк­ретном примере:

PIII-600-Intel BX/64/6,4Gb/SVGA 8Mb/CD/SB16/ATX

Здесь PHI - тип процессора - Pentium III;

600 - тактовая частота процессора в МГц;

ВХ - тип материнской платы;

64 - объём оперативной памяти в Мбайт;

6,4Gb - объём жесткого диска - 6,4 Гбайт;

SVGA - тип видеокарты;

8Mb - объём видеопамяти в Мбайт;

CD - обозначает наличие дисковода компакт-дисков;

SB16 - тип звуковой карты (Sound Blaster);

Тактовая частота. - понятие и виды. Классификация и особенности категории "Тактовая частота." 2017, 2018.

При исследованиях ЖК матриц практически на всех образцах нами были найдены сигналы в низкочастотной области, реагирующие на тест, запущенный на дисплее. Первые гармоники были найдены на частотах порядка десятков кГц. Сигналы были различимы на фоне помех, как правило, до 1-2 МГц. Была четко различима «информативная» составляющая, например, при запущенном на мониторе тесте с полосами (чередование черных полос и полос с заполнением «точка-через-точку»). Проанализировав документацию и получив осциллограммы с шины RSDS, мы пришли к выводу, что это сигналы от всего «строчного пакета), т.е. от всех пикселей строки, выводимых одновременно. Что и подтверждается приведенными выше осциллограммами. На осциллограмме рис. 19 можно наблюдать сигналы от одной строки. Время сигналов от строки 2.5 х 10 -6 х 6 делений = 1.5 х 10 -5 с → частота F= (1.5 х 10 -5)-1 = 67 кГц.

Как уже указывалось ранее, так же, как для интерфейса LVDS, тактовые частоты сигналов ПЭМИН следует ожидать в районе 45, 65 или 85 МГц. Обнаруживается, почти исключительно, только «Е» компонента. Размещение антенны 0 напротив нижней части экрана монитора (или под ним). Ориентация диполей - параллельно фронтальной поверхности монитора, вертикально (перпендикулярно размещению линий проводников интерфейса на плате). Тем не менее, горизонтальную ориентацию диполей проверять неукоснительно!

Если бы тактовые частоты внутреннего интерфейса монитора были постоянны, то и спектр ПЭМИ этих составляющих был бы «линейчатым» и они фиксировались бы на вполне определённых частотах. Значения их (по напряжённости поля) были бы весьма высоки. Производители ЖК матриц и схем их управления вынуждены «укладываться» в довольно жёсткие международные нормы по ПЭМИ с точки зрения электромагнитной совместимости и вреда для здоровья людей.

Приборы (индикаторы), которыми измеряют напряжённости поля ПЭМИ для контроля стандартов ISO, DIN и др. имеют фиксированную полосу пропускания 120 кГц.

Используя особенность методики оценки (применение довольно узкой полосы в средствах измерения) в соответствии со стандартами ISO, производители TFT матриц, в целях «заметания мусора под ковер»? модулируют тактовую частоту интерфейса.

Такой технический прием, как модуляция тактового сигнала SSM был внедрен в электронику для достижения нескольких целей, основные – это снижения пиковых значений спектра электромагнитного излучения и снижение интерференции высокочастотных сигналов от других устройств (помехоустойчивость). SSM расшифровывается как Spread Spectrum Modulation - спектральная модуляция тактовых импульсов, или по-другому SSC - Spread Spectrum Clock - тактовые сигналы с «размытым» спектром. SSM в ЖК мониторах применяется как в RSDS так и в LVDS интерфейсах.

Если основная рабочая частота модулируется, расширяя полосу, спектр электромагнитного излучения (собственно ПЭМИН) принципиально изменяется. Вместо острых, сосредоточенных по частое, пиков (обычная форма проявления электромагнитного излучения EMI и ПЭМИ в частности) появляются, так называемые "гауссовы колокола" (форма сигнала, сверху ограниченная кривой, описываемой гауссовым распределением), в результате чего результирующая амплитуда сигнала становится значительно меньше (1/3-1/4 от размера оригинального пика EMI на «нулевой» гармонике и пропорционально номеру гармоники на последующих).

Однако, несмотря на это, энергетика ПЭМИН, по сути, остается постоянной. Поскольку ширина спектра становится больше, а закон сохранения энергии должен выполняться, то амплитуда этого сигнала будет меньше. По сути дела SSM является угловой модуляцией тактовой частоты (как правило, по закону некой функции), что соответственно ведет к «размытию» спектров всех сигналов шины данных, привязанных к данной тактовой частоте.Некоторые производители вместо аналоговой модуляции использует методику цифровой модуляции, иногда в большей мере снижающую EMI. Например, фирма Fujitsu предлагает дискретные генераторы тактового сигнала с «размытым» спектром (spread - spectrum clock generators - SSC G), благодаря которым возможно уменьшить уровень электромагнитного излучения примерно на 20 ДБ, при коэффициенте модуляции основной частоты 3%.

Внутренние интерфейсы ЖК-мониторов меняют тактовую частоту обработки информации по закону, показанному на рисунке 24. Эта функция носит название «Hersey kiss» (дословно «поцелуй Херши», не путать с наименованием известной марки шоколада и шоколадных конфет, возникших в 1907 году!). В результате такой модуляции, получается псевдосплошной спектр (рисунки 26-31), неоднородный по краям (с «гауссовыми колокольчиками», что хорошо видно при более узкой полосе пропускания приемника.


Далее приведены формы спектра широкополосных сигналов интерфейса RSDS, снятых системой «Сигурд» на базе приёмника ESPI3 с антенной АИ5-0. Размещение антенны приведено на рисунке 25. Остальные настройки системы свободно читаются на скринах графического интерфейса пользователя системы «Сигурд-Интерфейс».


Примечание: Тактовая частота (и, естественно, частота «нулевой» гармоники) 22,93 МГц (а не около 45 МГц) обусловлена исследованием на образце TFT монитора ранней модели, ещё с не стандартизованными тактовыми частотами внутренних интерфейсов.



При рассмотрении спектров необходимо обратить внимание не только на расширение спектра, но и на пропорционально (примерно, естественно!) падение амплитуды. Всё в точном соответствии с теорией! Именно эти признаки спектров сигналов и являются самыми основными и характерными при поиске именно этих сигналов ПЭМИН.

Учитывая, что в сегодняшних моделях, чаще всего, применяется именно дискретная, цифровая частотная модуляция тактовой частоты интерфейса, была предпринята попытка выявить её на спектре ПЭМИН. Для этого предпринята была попытка построения спектра при значительно большем времени анализа и с весьма узкой полосой. Результат приведён на рисунке 31. Три последовательных скрина с экрана ««Сигурд»-Интерфейс» показывают, что при разрешении порядка 1 кГц чётко выявляется огромное количество компонент ПЭМИН, составляющих общий, псевдосплошной (при анализе с худшим частотным разрешением) спектр. Компоненты отстоят друг от друга на, приблизительно, 40 кГц (40354 Гц по прибору), что соответствует частоте формирования строк изображения. Таким образом (подтверждается анализом документации на монитор и статей в сети интернет по теме) в пределах времени формирования (передачи данных драйверам столбцов) одной строки тактовая частота постоянна, а для следующей строки она меняется скачкообразно.

Присмотревшись к скринам, можно заметить «гауссовскую» огибающую амплитуд частотных составляющих. Практика результатов исследований строго соответствует теории.Предположим, сигналы выявлены и стоит вопрос их измерения для дальнейшего расчёта параметров защищённости технического средства. Вообще, приходится констатировать что в автоматическом режиме отыскать эти сигналы и корректно их измерить может только «Сигурд» версии не ниже 5.0, причём уже с отдельным блоком цифровой обработки.


Но вручную это сделать тоже несложно. Суть, смысл измерения состоит в том, чтобы «размазанную» изготовителями «железа» энергию ПЭМИН собрать. Собрать так же, как это сделает широкополосный приёмник при перехвате. Выполнить это можно так:

Сразу отметим, что установленные методикой фиксированные полосы пропускания приёмника (для простоты будем так именовать любое селективное средства измерения) для измерений таких сигналов неприменимы вообще. Да, произношу и буду произносить «ересь» - это «требование» есть несусветная глупость!

Предположим, что ширина спектра некого сигнала ПЭМИН значительно шире, чем полоса приёмника, установленная НМД. Можно поступить двумя способами:

Игнорировать предписание методики, памятуя, что основной задачей является корректное измерение, а не буквальное следование документу, и установить полосу пропускания приёмника равную или больше, чем ширина спектра сигнала;

Выполнить измерения установленной полосой, но с учётом реальной ширины спектра сигнала.

В первом варианте всё достаточно просто, однако у этого способа есть и несколько «минусов». Не так уж редок случай, когда в пределах достаточно широкополосного спектра присутствует более мощная, но узкополосная помеха (рисунок 31«Б»). В этом случае измерение сигнала будет выполнено с ошибкой, что недопустимо. При отсутствии сосредоточенных по спектру помеха возможна ошибка только при весьма малых уровнях сигналов (низких отношений сигнал/шум) и, одновременно, заметным превышением ширины полосы пропускания приёмника и полосы, занимаемой сигналом.


При этом энергия помех, «прихватываемых» приёмником в полосах частот, обозначенный на рисунке «серой заливкой», суммируется с энергией сигнала, вызывая появление ошибки измерения. Ошибка тем больше, чем хуже отношение сигнал/шум.

Измерения полосою приемника более узкой, чем ширина спектра сигнала (а для сигналов RSDS/LVDS это происходит в большей части диапазона!) может быть лишено погрешностей, показанных ранее. Но оно может быть выполнено только «вручную», под управлением оператора и при его непосредственном участии в процессе измерения или ввода корректирующего коэффициента в результат измерения. Рассмотрим такой вариант, проиллюстрированный рисунком 35.


В приведённом варианте может иметь место два подварианта (рисунок 35 «А» и «Б»). Как правило, значительно чаще встречаются сигналы с «плоской» амплитудно-частотной характеристикой (см. спектрограммы, приведённые ранее). Измерения таких сигналов выполнять проще, достаточно измерить амплитуду сигнала в любой части его спектра и, далее, рассчитать полное значение энергии сигнала по нижеприведённой формуле.

Учитывая, что сигналы в каждом из индивидуальных измерений (от «1» до «n») не коррелируют между собой, то их суммирование должно производиться как энергий:

Если АЧХ «плоская, то есть все значение Еi равны друг другу, то формула упрощается:

Фактически величина «n» - это число, показывающее сколько раз полоса пропускания приёмника «укладывается» в полосу сигнала. Разумеется, значения сигнала в вышеприведённых формулах должны иметь размерность мкВ.

Если же АЧХ неравномерна (рисуноки 34 «б» и 35), то придётся выполнить несколько измерений, чтобы иметь возможность рассчитать истинное значение сигнала. Если в пределах ширины спектра сигнала присутствует относительно узкополосная помеха (рисунок 34 «б»), то этот участок спектра не измеряется, а его значение (с учётом полосы, занимаемой помехой) принимается равным соседним участкам спектра. Особенно просто это в случае «плоской» АЧХ.

Надо отметить, что функциональные возможности, заложенные в систему «Сигурд», оказались крайне полезны для исследовании структуры спектров внутренних интерфейсов мониторов и не только для них. В свою очередь, выполненные исследовательские работы принесли заметную пользу в деле модификации и совершенствовании системы «Сигурд».

Ну, а, в конце концов, измеренная и суммированная в полосе 1/τ энергия сигнала в виде одного единственного значения (одного, как бы узкополосного сигнала) подставляется в «Сигурд-Дельта» (или вручную) со значениями Fтак, τ, значением помех (шумов) и всё считается тривиально.

Кроме этого, всё чаще и чаще специалистам приходится встречаться с внешним интерфейсом DVI, то есть цифровым интерфейсом подключения монитора. У этого интерфейса есть ряд особенностей, которые необходимо учитывать.

В протоколе TMDS, на котором основан DVI, на каждый цветовой канал отводится по восемь битов, что позволяет получить 256 уровней яркости каждого базового цвета. Если перемножить 256 уровней у трёх цветов, то мы получим 16,7 миллиона оттенков.

Графический чип создаёт информацию о цвете для каждого пикселя в 24-битном потоке (8 битов на цвет). Поток параллельных данных поступает на передатчик протокола TMDS, который преобразует его в три последовательных потока, передающихся по трём физическим симметричным парам одновременно. Когда сигнал поступает на приёмник (в мониторе), то его последовательный код вновь преобразуется в параллельный. Преобразование в последовательный сигнал для передачи по кабелю необходимо, поскольку последовательная передача менее подвержена помехам, чем параллельная, особенно на больших расстояниях. Таким образом, данный цифровой поток, являясь «трёхразрядным», в силу полной синхронности фронтов в каждом цветовом канале (формируется в одном кристалле, от одного тактового генератора), рассматривается как последовательный одноразрядный.

TMDS-передатчик (Transition Minimized Differential Signaling) отсылает последовательный сигнал по четырём разным каналам кабеля: один для тактового сигнала, а три - для цветовой информации. Восемь битов информации для каждого цвета передаются в последовательном 10-битном сигнале: восемь битов для цветовых данных, а также два служебных. Данные передаются в 10 раз быстрее тактового генератора из-за использования ФАПЧ-чипа (ФАПЧ – фазовая автоподстройка частоты), работающего как умножитель частоты. Таким образом, скорость 1,65 Гбайт/с достигается при номинальной частоте 165 МГц.


Протокол TMDS построен на минимизации числа переходов от «0» к «1» (и наоборот), что позволяет надёжнее передавать информацию по медному кабелю. Минимизация числа переходов делает тракт менее чувствительным к внешним помехам и снижает уровень ПЭМИН.


Такое построение (кодирование) информации в линии передачи (кабеле к монитору) усложняет задачу создания тест-режима с постоянной тактовой частотой переходов от «0» к «1» в кабеле. Для теста, априори, исходя из структуры интерфейса, необходимо либо кодировать цвет в каждом пикселе последовательностью «10101010», либо применять иные методы. В противном случае нельзя будет применять установленный метод расчёта результатов.

При использовании типовой программы «Сигурд-Тест» возможен один такой вариант, не требующий изменения этой тест-программы. Учитывая, что в стандартном тесте чередуются белые и чёрные пиксели, а белый пиксель это код 255;255;255 (FF;FF;FF), то в цифровом потоке передаётся три байта единиц без переходов тока. У TDMS интерфейса такой случай рассматривается особо.

Если к проводу долгое время подводится ток (относительно долго, поскольку скорости передачи очень высоки), то перед его спадом должно пройти определённое время. В таких случаях могут возникнуть проблемы передачи, к примеру, если длительное время будут передаваться одни единицы (состояние "1" = есть ток), а затем поток данных прервётся одним нулём (состояние "0" = нет тока). В зависимости от качества медного кабеля, этот нуль можно потерять. В результате один из пикселей будет отображён неверно. Специально вводимый для такого случая бит DC-Balancing указывает на обычную инверсию значений восьми битов, чтобы предотвратить длительную передачу одинаковых данных по кабелю.


Таким образом, мы получаем для такой информации (сплошные единицы) передачу «пакетов» нулей и единиц с одним переходом от «0» к «1» или наоборот на границе пакета (то есть инверсию каждого второго пакета). Следовательно, получается постоянная тактовая частота сигнала в кабеле интерфейса, близкая к значению 130÷165 МГц (то есть к максимальной частоте передачи пикселей-пакетов). Следует отметить, что за счёт некоторых особенностей протокола частоты режима «пиксель через пиксель» и просто «белый экран» отличаются приблизительно на 4-6%, оставаясь постоянными.

Расчёт результатов СИ от DVI интерфейса при таком тест-режиме уже не вызывает никаких трудностей (подробное рассмотрение расчёта и значений всех параметров расчётного соотношения выходит за рамки данного издания). Уровень ПЭМИН от образца к образцу довольно сильно разнится, что связано, по всей видимости, с качеством и симметрией пар в интерфейсном кабеле.

Разрешение монитора во время проведения СИ рекомендуется устанавливать не выше 1600*1280 (при 60Гц кадровой частоты), чтобы не включался второй канал интерфейса. Процедура СИ в режиме параллельной работы двух каналов дополнительно усложняет интерпретацию результатов СИ.

Нестабильное изображение утомляет глаза и вызывает усталость. CRT обновляет кадр на экране много раз в секунду, и чем быстрее это происходит, тем стабильнее изображение.

Изображение на экране монитора формируется лучом электронов, которые, проходя через отверстия теневой маски, засвечивают точки люминофора. Луч перемещается по строке слева направо, затем переходит на следующую строку и т. д. до нижнего края экрана. Скорость перемещения луча (частота строк), а также формирования полного изображения определяется частотными характеристиками монитора.

Для пользователя наиболее важной из них является частота регенерации или кадровая частота - количество полных "пробегов", совершаемых лучом из верхнего угла экрана в нижний за одну секунду; выражается в герцах. Если пару лет назад рекомендуемая кадровая частота составляла 75 Гц, то теперь следует выбирать такой монитор, который поддерживает значение не ниже 85 Гц. Высокая частота регенерации гарантирует, что изображение будет выводится на экран без заметного глазу мерцания, а вредное воздействие длительной работы за монитором на зрение будет сведено к минимуму.

Полоса пропускания видеосигнала монитора является "интегрированным" показателем, приблизительное значение которого можно рассчитать по формуле: W=HxVxF, где H - максимальное разрешение по вертикали, V - максимальное разрешение по горизонтали, F - максимальная кадровая частота, на которой монитор может работать при максимальном разрешении.

Необходимо помнить, что максимальная кадровая частота при повышении разрешения экрана понижается, поэтому следует обращать внимание прежде всего на значения в используемых вами режимах. Это происходит со всеми мониторами, оснащенными CRT, поскольку каждую секунду они могут показывать на экране только ограниченное число пикселей. Кроме того, высокие частотные характеристики монитора могут быть сведены на нет тем, что их не поддерживает установленная в компьютере видеоплата.

Видеоадаптеры

Прежде, чем стать изображением на мониторе, двоичные цифровые данные обрабатываются центральным процессором, затем через шину данных направляются в видеоадаптер, где они обрабатываются и преобразуются в аналоговые данные и уже после этого направляются в монитор и формируют изображение. Сначала данные в цифровом виде из шины попадают в видеопроцессор, где они начинают обрабатываться. После этого обработанные цифровые данные направляются в видеопамять, где создается образ изображения, которое должно быть выведено на дисплее. Затем, все еще в цифровом формате, данные, образующие образ, передаются в RAMDAC, где они конвертируются в аналоговый вид, после чего передаются в монитор, на котором выводится требуемое изображение.

Таким образом, почти на всем пути следования цифровых данных над ними производятся различные операции преобразования, сжатия и хранения. Оптимизируя эти операции, можно добиться повышения производительности всей видеоподсистемы. Лишь последний отрезок пути, от RAMDAC до монитора, когда данные имеют аналоговый вид, нельзя оптимизировать.

Рассмотрим подробнее этапы следования данных от центрального процессора системы до монитора.

1. Скорость обмен данными между CPU и графическим процессором напрямую зависит от частоты, на которой работает шина, через которую передаются данные. Рабочая частота шины зависит от чипсета материнской платы. Для видеоадаптеров оптимальными по скорости являются шина PCI и AGP. При существующих версиях чипсетов шина PCI может иметь рабочие частоты от 25Mhz до 66MHz, иногда до 83Mhz (обычно 33MHz) , а шина AGP работает на частотах 66MHz и 133MHz.

Чем выше рабочая частота шины, тем быстрее данные от центрального процессора системы дойдут до графического процессора видеоадаптера.

2. Ключевой момент, влияющий на производительность видеоподсистемы, вне зависимости от специфических функций различных графических процессоров, это передача цифровых данных, обработанных графическим процессором, в видеопамять, а оттуда в RAMDAC. Самое узкое место любой видеокарты - это видеопамять, которая непрерывно обслуживает два главных устройства видеоадаптера, графический процессор и RAMDAC, которые вечно перегружены работой. В любой момент, когда на экране монитора происходят изменения (иногда они происходят в непрерывном режиме, например движение указателя мыши, мигание курсора в редакторе и т.д.) , графический процессор обращается к видеопамяти. В то же время, RAMDAC должен непрерывно считывать данные из видеопамяти, чтобы изображение не пропадало с экрана монитора. Поэтому, чтобы увеличить производительность видеопамяти, производители применяют различные технические решения. Например, используют различные типы памяти, с улучшенными свойствами и продвинутыми возможностями, например VRAM, WRAM, MDRAM, SGRAM, или увеличивают ширину шины данных, по которой графический процессор или RAMDAC обмениваются информацией с видеопамять, используя 32 разрядную, 64 разрядную или 128 разрядную видеошину.

Чем более высокое разрешение экрана используется и чем больше глубина представления цвета, тем больше данных требуется передать из графического процессора в видеопамять и тем быстрее данные должны считываться RAMDAC для передачи аналогового сигнала в монитор. Нетрудно заметить, что для нормальной работы видеопамять должна быть постоянно доступна для графического процессора и RAMDAC, которые должны постоянно осуществлять чтение и запись.

В нормальных условиях доступ RAMDAC к видеопамяти на максимальной частоте возможен лишь после того, как графический процессор завершит обращение к памяти (операцию чтения или записи) , т.е. RAMDAC вынужден дожидаться, когда наступит его очередь обратиться с запросом к видеопамяти для чтения и наоборот.

Частоты синхронизации

При формировании одного кадра изображения каждый из трех электронных пучков проходит от одного края экрана до другого (рисует строку), подсвечивая нужные точки с требуемой интенсивностью, и делает это столько раз, каков режим разрешения по вертикали (количество строк). Процессом развертки луча управляют сигналы синхронизации, вырабатываемые видеоадаптером. Для получения устойчивого изображения, хорошо воспринимаемого глазом, необходимо, чтобы кадр обновлялся достаточно часто -- в несколько раз чаще, чем в кинематографе. Это связано с тем, что расстояние между монитором и пользователем меньше, чем между экраном и зрителем в кинотеатре. Электронная система монитора обеспечивает строчную (движение по строкам, или горизонтальную) и кадровую (смена кадра, или вертикальную) развертки, которые характеризуются соответствующими частотами, называемыми Scanning Frequency, Synchronization, Deflection Frequency, с обязательным указанием направления (Horizontal или Vertical).

Частота вертикальной синхронизации иногда обозначается как Refresh Rate. Частота горизонтальной развертки может быть приближенно оценена как произведение числа строк на частоту обновления кадров. Реально она немного (на 3 - 10 %, в зависимости от режима) выше такой оценки, что связано с переходными процессами при обратном ходе пучка в верхнюю часть экрана во время смены кадра.

Автоматический выбор частот

В самых первых моделях мониторов, предназначенных для работы в одной видеомоде, применялась единственная комбинация частот вертикальной и горизонтальной синхронизаций, причем частота обновления кадров была невелика -- не более 60 Гц. Такие мониторы назывались одночастотными. Ввиду несовершенства системы развертки на этих устройствах была даже предусмотрена подстройка частоты горизонтальной синхронизации.

Увеличение графических приложений потребовало увеличения кадровой частоты, кроме того, новые приложения начали использовать более высокие разрешения. Поэтому, чтобы можно было работать с новыми пакетами, не отказываясь от привычных старых, потребовались мониторы, способные поддерживать несколько фиксированных частот синхронизации. Так появились многочастотные мониторы.

Для псевдоувеличения частоты кадровой развертки был внедрен режим Interlaced -- чересстрочной развертки, формирующий кадр за два прохода. При первом проходе воспроизводятся только нечетные строки кадра, при втором -- только четные. При этом говорилось о повышении частоты кадровой синхронизации, которая обычно равнялась 87 Гц. Однако реальная частота была вдвое ниже, что было явно неудовлетворительно для работы и утомительно для глаз, поэтому сразу же после появления мониторов с режимом Interlaced посыпались отрицательные отзывы о качестве их изображения, а наряду с Interlaced-мониторами выпускались аппараты, которые обеспечивали высокую частоту смены кадров без применения способов чередования. Чтобы отличить более качественные мониторы, их назвали Non-Interlaced. Развертка Non-interlaced называется также “прогрессивной”.

Дальнейшее развитие программных продуктов и прогресс в области радиоэлектроники позволили отказаться от фиксированных частот синхронизации. В современных мониторах частота и горизонтальной, и вертикальной разверток может быть выбрана любой из диапазона частот, поддерживаемых монитором, что дает широкий простор для создания различных приложений. Эта особенность современных мониторов обозначается в документации термином “автоматическое сканирование” или “мультисканирование” (Autoscan, Multiscan, Multifrecuensy, или MultiSync), а также отражается в их названии (серии мониторов MultiSync фирмы NEC, Multiscan фирмы Sony, SyncMaster от Samsung).

Полоса частот видеоусилителя и тактовая частота видеосигнала

Есть еще одна частотная характеристика, называемая полосой частот, хотя правильнее было бы назвать ее верхней границей частотной характеристики видеотракта, поскольку для полосы надо определять и нижнюю границу.

Эта характеристика обозначается как Bandwidth. Она определяет верхнюю границу полосы пропускания видеоусилителя. Обычно ее измеряют в мегагерцах по спаду характеристики на -- 3 децибела от максимального значения.

На монитор от видеоадаптера, кроме синхроимпульсов кадровой и строчной разверток, подаются также сигналы интенсивности каждого из составляющих цветов для каждого пикселя изображения, которые представляют собой последовательность видеоимпульсов различной амплитуды. Она и определяет интенсивность электронного пучка (а значит, и интенсивность свечения люминофора) в данной точке. Нетрудно посчитать, что интенсивность луча должна меняться с частотой, равной (в первом приближении) произведению числа строк на число вертикальных полос выбранного разрешения и на частоту обновления кадров.

Так, для режима XGA при частоте кадровой развертки 1024 х 769 х 75Гц”59 Мгц. Тактовая частота видеосигнала (видеоимпульсов) -- Dot Rate, Pixel Rate, Pixel Clock -- в 1,33 -- 1,40 раза выше этой оценки, что связано с переходными процессами и обратным ходом луча.

Видеоадаптер вырабатывает низковольтные видеосигналы, их максимальная амплитуда не превышает 0,7 -- 1 В. Этот сигнал затем усиливается видеоусилителем и подается на модулирующие электроды кинескопа. Для того чтобы видеосигнал проходил без искажения, необходимо, чтобы граница полосы пропускания видеотракта превышала тактовую частоту сигнала. Максимальное значение частоты видеоимпульсов, при котором еще и возможно получение качественного изображения, соответствует значению верхней границы полосы видеотракта. Если реализуется режим, требующий частоты видеоимпульсов, превышающий Bandwidth (это возможно, если требуемые частоты синхронизации поддерживаются монитором), то изображение на экране будет расплывчатым.