ПЕРЕВОД ЧИСЕЛ ИЗ ВОСЬМЕРИЧНОЙ СИСТЕМЫ В ДЕСЯТИЧНУЮ

Восемь раз отмерь, один раз переведи.

А. Алешин

Алгоритм перевода чисел из восьмеричной в десятичную систему счисления аналогичен уже рассматривавшемуся нами в разделе Перевод чисел из двоичной системы в десятичную. Различие состоит лишь в том, что для восьмеричной системы счисления основанием является число 8 , а правило перевода в данном случае может быть сформулировано в следующем виде:

Для перевода восьмеричного числа в десятичное необходимо это число представить в виде суммы произведений степеней основания восьмеричной системы счисления на соответствующие цифры в разрядах восьмеричного числа .

Например, требуется перевести восьмеричное число 2357 в десятичное. В этом числе 4 цифры и 4 разряда (разряды считаются, начиная с нулевого, которому соответствует младший бит). В соответствии с уже известным нам правилом представим его в виде суммы степеней с основанием 8 :

2357 8 = (2·8 3)+(3·8 2)+(5·8 1)+(7·8 0) = 2·512 + 3·64 + 5·8 + 7·1 = 1263 10

К аждый О хотник Ж елает З нать, Г де С идит Ф азан.
Запишите в шестнадцатеричной системе счисления все цвета,
встречающиеся в этом мнемоническом правиле. Слабо?

А. Алешин

После изучения предыдущего раздела переформулировать алгоритм перевода чисел из шестнадцатеричной в десятичную систему счисления не составляет никакого труда. Помнить следует лишь о том, что для шестнадцатеричной системы счисления основанием является число 16 , и правило перевода в данном случае может быть сформулировано в следующем виде:

Для перевода шестнадцатеричного числа в десятичное необходимо это число представить в виде суммы произведений степеней основания шестнадцатеричной системы счисления на соответствующие цифры в разрядах шестнадцатеричного числа .

Например, требуется перевести шестнадцатеричное число F45ED23C в десятичное. В этом числе 8 цифр и 8 разрядов (помним, что разряды считаются, начиная с нулевого, которому соответствует младший бит). В соответствии с вышеуказанным правилом представим его в виде суммы степеней с основанием 16 :

F45ED23C 16 = (15·16 7)+(4·16 6)+(5·16 5)+(14·16 4)+(13·16 3)+(2·16 2)+(3·16 1)+(12·16 0) = 4099854908 10

Для вычислений "вручную" и решения примеров и контрольных заданий вам могут пригодиться таблицы степеней оснований изучаемых систем счисления (2, 8, 10, 16), приведенные вПриложении.

Для перевода чисел из десятичной системы счисления в двоичную используют так называемый "алгоритм замещения", состоящий из следующей последовательности действий:



1. Делим десятичное число А на 2 . Частное Q запоминаем для следующего шага, а остаток a записываем как младший бит двоичного числа.

2. Если частное q не равно 0 , принимаем его за новое делимое и повторяем процедуру, описанную в шаге 1. Каждый новый остаток (0 или 1 ) записывается в разряды двоичного числа в направлении от младшего бита к старшему .

3. Алгоритм продолжается до тех пор, пока в результате выполнения шагов 1 и 2 не получится частное Q = 0 и остаток a = 1 .

Например, требуется перевести десятичное число 247 в двоичное. В соответствии с приведенным алгоритмом получим:

247 10: 2 = 123 10
247 10 - 246 10 = 1, остаток 1 записываем в МБ двоичного числа.
123 10: 2 = 61 10
123 10 - 122 10 = 1, остаток 1 записываем в следующий после МБ разряд двоичного числа.
61 10: 2 = 30 10
61 10 - 60 10 = 1, остаток 1 записываем в старший разряд двоичного числа.
30 10: 2 = 15 10
30 10 - 30 10 = 0, остаток 0 записываем в старший разряд двоичного числа.
15 10: 2 = 7 10
15 10 - 14 10 = 1, остаток 1 записываем в старший разряд двоичного числа.
7 10: 2 = 3 10
7 10 - 6 10 = 1, остаток 1 записываем в старший разряд двоичного числа.
3 10: 2 = 1 10
3 10 - 2 10 = 1, остаток 1 записываем в старший разряд двоичного числа.
1 10: 2 = 0 10 , остаток 1 записываем в старший разряд двоичного числа.

Представление чисел в ЭВМ: естественная и нормальная формы (+методичка)

В ЭВМ используются следующие формы представления данных:
числа с фиксированной точкой (запятой) или естественная форма;
числа с плавающей точкой (запятой) или нормальная форма;
десятичные числа;
символьные данные.

При естественной форме, иначе называемой формой с фиксированной запятой, числа вюодвпся в виде целой и дробной частей, разделенных запятой (точкой). Положение последней строго фиксировано: запятая находится либо -перед цифрой старшего разряда, либо после цифры младшего разряда. Первый вариант относится к представлению чисел, которые по модулю (без учета знака) меньше единицы, второй вариант представления распространяется только на целые числа. Порядковые номера разрядов идут слева направо, начиная с нулевого. Его называют знаковым разрядом, и в этом разряде О сооггоетствует знаку плюс, а 1 - знаку минус.

Нормальная или полулогарифмическая форма, иначе называемая формой с плавающей запятой, предполагает ввод чисел в полулогарифмическом виде - число состоит нз двух частей: мантиссы числа, обозначаемой буквой т, и порядка числа, который обозначается буквой р, причем т<1, а р - всегда целое. Положение запятой в числе зависит от порядка р (отсюда н название формы - с плавающей запятой). Например, одно и то же десятичное числа можио П1рвдстав,ить в таких варнангах:

0,81756423-10» р = 0; 8,17564230,10-1. р=-1; 0,08175642.101 P==-fl.

Когда в мантиссе перед запятой стоит нуль, а после запятой - цифра, отличная от нуля, то такую форму называют нормализованной.

Действия над числами, представленными в нормальной форме, сложнее, чем иад числами с фиксированной запятой. Но зато форма «с плавающей запятой>-позволяет охваггить очень ширлжий диапазон чисел.

Числа с фиксированной точкой

В общем случае разрядная сетка ЭВМ для размещения чисел в форме с фиксированной точкой показана на рисунке.
На рисунке показано п разрядов для представления целой части числа и r разрядов - для дробной части числа.

A) фиксированная

При заданных п иr диапазон изменения модулей чисел, коды которых могут быть представлены в данной разрядной сетке, определяется неравенством

Использование формы с фиксированной точкой для представления смешанных (с целой и дробной частью) чисел в ЭВМ практически не встречается. Как правило, используются ЭВМ либо с дробной арифметикой (п=0), либо с целочисленной арифметикой (r=0).

Форма представления чисел с фиксированной точкой упрощает аппаратную реализацию ЭВМ, уменьшает время выполнения машинных операций, однако при решении задач на машине необходимо постоянно следить за тем, чтобы все исходные данные, промежуточные и окончательные результаты находились в допустимом диапазоне представления. Если этого не соблюдать, то возможно переполнение разрядной сетки, и результат вычислений будет неверным. От этих недостатков в значительной степени свободны ЭВМ, использующие форму представления чисел с плавающей точкой, или нормальную форму.

Числа с плавающей точкой
b) рис 14.б с плавающей точкой

В нормальной форме число представляется в виде произведения X=mq p
где т - мантисса числа;
q - основание системы счисления;
р - порядок.

Для задания числа в нормальной форме требуется задать знаки мантиссы и порядка, их модули в q-ичном коде, а также основание системы счисления. Нормальная форма представления чисел неоднозначна, ибо взаимное изменение т и р приводит к плаванию точки (запятой). Отсюда произошло название формы представления чисел.

Для однозначности представления чисел в ЭВМ используется нормальная нормализованная форма, в которой положение точки всегда задается перед значащей цифрой мантиссы, т. е. выполняется условие

В общем случае разрядную сетку ЭВМ для размещения чисел в нормальной форме можно представить в виде, изображенном на рис. Разрядная сетка содержит:

· разряд для знака мантиссы;

· r цифровых разрядов для q-ичного кода модуля мантиссы;

· разряд для кода знака порядка;

· s разрядов для q-ичного кода модуля порядка.

Диапазон представления модулей чисел в нормальной нормализованной форме определяется следующим неравенством:

Пример :

133,21 = 10 2 *1.3321, 10 2 - порядок, 1.3321- мантисса.
1332.1 = 10 3 *1.3321
0.13321 = 10 -1 *1.3321

Одно и то же число может быть записано в различных формах

452,34 = 452340·10 -3 = 0,0045234·10 5 = 0,45234·10 3

Естественная форма Нормальная форма

В конкретной ЭВМ диапазон представления чисел с плавающей точкой зависит от основания системы и числа разрядов для представления порядка.
При этом у одинаковых по длине форматов чисел с плавающей точкой с увеличением основания системы счисления существенно расширяется диапазон представляемых чисел.
Точность вычислений при использовании формата с плавающей точкой определяется числом разрядов мантиссы r. Она увеличивается с увеличением числа разрядов.
При представлении информации в виде десятичных многоразрядных чисел каждая десятичная цифра заменяется двоично-десятичным кодом. Для ускорения обмена информацией, экономии памяти и удобства операций над десятичными числами предусматриваются специальные форматы их представления: зонный (распакованный) и упакованный . Зонный формат используется в операциях ввода-операций. Для этого в ЭВМ имеются специальные команды упаковки и распаковки десятичных чисел.

Перевод чисел из шестнадцатеричной системы в десятичную

Ричная

Шестнадцатеричная система счисления (шестнадцатеричные числа) - позиционная система счисления по целочисленному основанию 16. Обычно в качестве шестнадцатеричных цифр используются десятичные цифры от 0 до 9 и латинские буквы от A до F для обозначения цифр от 1010 до 1510, то есть (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F).

Для перевода шестнадцатеричного числа в десятичное необходимо это число представить в виде суммы произведений степеней основания шестнадцатеричной системы счисления на соответствующие цифры в разрядах шестнадцатеричного числа.

Например, требуется перевести шестнадцатеричное число 5A3 в десятичное. В этом числе 3 цифры. В соответствии с вышеуказанным правилом представим его в виде суммы степеней с основанием 16:

5A316 = 3·160+10·161+5·162

3·1+10·16+5·256 = 3+160+1280 = 144310

Преобразование десятичных чисел в двоичные

Допустим, нам нужно перевести число 19 в двоичное. Вы можете воспользоваться следующей процедурой:

19 /2 = 9 с остатком 1

9 /2 = 4 c остатком 1

4 /2 = 2 без остатка 0

2 /2 = 1 без остатка 0

1 /2 = 0 с остатком 1

Итак, мы делим каждое частное на 2 и записываем остаток в конец двоичной записи. Продолжаем деление до тех пор, пока в частном не будет 0. Результат записываем справа налево. Т.е. нижнее число будет самым левым и.т.д. В результате получаем число 19 в двоичной записи: 10011.

Преобразование десятичных чисел в троичные

Последовательно делите сначала число, а затем частные от деления на 3 до тех пор, пока очередное частное не станет меньше 3, и записываете остатки с право на лево. В конце приписываете почследнее частное.

38: 3 = 12 ост 2

12: 3 = 4 ост 0

4: 3 = 1 ост 1

Итого 38(10) = 1102(3)

Преобразование десятичных чисел в восьмеричные

Для перевода чисел из десятичной системы счисления в восьмеричную используют тот же "алгоритм замещения", что и при переводе из десятичной системы счисления в двоичную, только в качестве делителя используют 8, основание восьмеричной системы счисления:

Делим десятичное число А на 8. Частное Q запоминаем для следующего шага, а остаток a записываем как младший бит восьмеричного числа.

Если частное q не равно 0, принимаем его за новое делимое и повторяем процедуру, описанную в шаге 1. Каждый новый остаток записывается в разряды восьмеричного числа в направлении от младшего бита к старшему.

Алгоритм продолжается до тех пор, пока в результате выполнения шагов 1 и 2 не получится частное Q = 0 и остаток a меньше 8.

Например, требуется перевести десятичное число 3336 в восьмеричное. В соответствии с приведенным алгоритмом получим: 333610: 8 = 41710


333610 - 333610 = 0, остаток 0 записываем в МБ восьмеричного числа.

41710 - 41610 = 1, остаток 1 записываем в следующий после МБ разряд восьмеричного числа.

5210 - 4810 = 4, остаток 4 записываем в старший разряд восьмеричного числа.

610: 8 = 010, остаток 0, записываем 6 в самый старший разряд восьмеричного числа.

Таким образом, искомое восьмеричное число равно 64108.

Преобразование десятичных чисел в 16-ричную

Для перевода чисел из десятичной системы счисления в шестнадцатеричную используют тот же "алгоритм замещения", что и при переводе из десятичной системы счисления в двоичную и восьмеричную, только в качестве делителя используют 16, основание шестнадцатеричной системы счисления:

Делим десятичное число А на 16. Частное Q запоминаем для следующего шага, а остаток a записываем как младший бит шестнадцатеричного числа.

Если частное q не равно 0, принимаем его за новое делимое и повторяем процедуру, описанную в шаге 1. Каждый новый остаток записывается в разряды шестнадцатеричного числа в направлении от младшего бита к старшему.

Алгоритм продолжается до тех пор, пока в результате выполнения шагов 1 и 2 не получится частное Q = 0 и остаток a меньше 16.

Например, требуется перевести десятичное число 32767 в шестнадцатеричное. В соответствии с приведенным алгоритмом получим: 3276710: 16 = 204710

3276710 - 3275210 = 15, остаток 15 в виде F записываем в МБ шестнадцатеричного числа.

204710: 16 = 12710

204710 - 203210 = 15, остаток 15 в виде F записываем в следующий после МБ разряд шестнадцатеричного числа.

12710 - 11210 = 15, остаток 15 в виде F записываем в старший разряд шестнадцатеричного числа.

710: 16 = 010, остаток 7 записываем в старший разряд шестнадцатеричного числа.

Таким образом, искомое шестнадцатеричное число равно 7FFF16.

Примеры

134 = 10000110 2

Лабораторная работа №1

Тема: Система счисления. Перевод целых десятичных чисел в двоичную, восьмеричную, шестнадцатиричную систему счисления. (1 час), СРСП(1 час).

Десятичная система счисления

Название «десятичная» объясняется тем, что в основе этой системы лежит основание десять. В этой системе для записи чисел используются десять цифр - 0, 1, 2, 3, 4 , 5, 6, 7, 8, 9.

Десятичная система является позиционной, так как значение цифры в записи десятичного числа зависит от ее позиции, или местоположения, в числе.

Позицию, отводимую для цифры числа, называют разрядом.

Например, запись 526 означает, что число состоит из 5 сотен, 2 десятков и 6 единиц, Цифра 6 стоит в разряде единиц. Цифра 2 - в разряде десятков цифра 5-в разряде сотен.

Это число записать в виде суммы:

526=5*10 2 +2*10 1 +6*10 0

в этой записи число 10-основание системы счисления. Для каждой цифры числа основание 10 возводится в степень, зависящую от позиции цифры, и умножается на эту цифру. Степень основания для единиц равна нулю, для десятков - единице, для сотен – двум и т.д.

Для записи десятичных дробей используются отрицатель­ные значения степеней основания. Например, число 555,55 в развернутой форме записывается следующим образом:

555,55 10 = 5*10 2 + 5*10 1 + 5*10°+ 5*10- 1 +5*10- 2 .:

Перевод целых десятичных чисел в двоичную систему счисления.

При переводе десятичного числа в двоичное нужно это число делить на 2. Чтобы перевести целое положительное десятичное число в двоичную систему счисления, нужно это число разделить на 2. Полученное частное снова разделить на 2 и т.д. до тех пор, пока частное не окажется меньше 2. В результате записать в одну строку последнее частное и все остатки, начиная с последнего.

Пример. Число 891 перевести из десятичной системы в двоичную систему счисления.

Решение:

1:2=0, 1 (старшая цифра двоичного числа)

Записываем в одну строку последнее частное и все остатки, начиная с последнего.



Ответ: 891 10 =1101111011 2

Перевод десятичных дробей в двоичную систему счисления

Перевод десятичных дробей в двоичную систему счисления заключается в поиске целых частей при умножении на 2.

Пример. Переведем десятичную дробь 0,322 в двоичную систему счисления.

Чтобы найти первую после запятой цифру двоичной дроби, нужно умножить заданное число на 2 и выделить целую часть произведения.

Решение:

0,322 10 8,83 10

0.322*2=0.644 0 8:2=4 остаток 0

0.644*2=1.288 1 4:2=2 остаток 0

0.288*2=0.576 0 2:2=1 остаток 0

0.576*2=1.152 1 1:2=0 остаток 1

0,3222 10 =0.0101 2 0.83*2=1.66 целая часть равна 1

0.66*2=1.32 целая часть равна 1

0.32*2=0.64 целая часть равна 0

0.64*2=1.28 целая часть равна 1

Ответ: 8,83=1000,1101

Перевод десятичных чисел в восьмеричную систему счисления

Для перевода числа из десятичной системы в восьмеричную применяется тот же прием, что и при переводе в двоичную систему.

Преобразуемое число делят на 8 по правилам десятичной системы с запоминанием остатка, который, конечно, не превышает 7. Если полученное частное больше 7, его тоже делят на 8, сохраняя остаток.

Решение:

(старшая цифра двоичного числа).

Ответ: 891 10 =1573 8

Перевод десятичных чисел в шестнадцатиричную систему счисления

Аналогично преобразуют десятичное число в шестнадцатеричное с той лишь разницей, что это число вместо 8 делят на 16.

Пример: Число 891 перевести из десятичной системы в шестнадцатеричную систему счисления.

Решение: остаток

Самостоятельная работа студента с преподователям:

1. Задание: Представьте виде суммы степеней основания числа:

1. 425 10 8. 3678,898 10

2. 256 10 9. 7,29083 10

3. 852 10 10. 0,0032 10

4. 1243 10 11. 2,3589 10

5. 2569 10 12. 48,965 10

6. 4568 10 13. 56,897 10

7. 12568 10 14. 48,975 10

2. Задание:Переводите десятичные числа в двоичную систему счисления:

323 10 8. 125 10

150 10 9. 229 10

283 10 10. 88 10

428 10 11. 255 10

315 10 12. 325 10

181 10 13. 259 10

176 10 14. 652 10

3. Задание:Переводите дробные десятичные числа в двоичную систему счисления:

0,322 10 8. 37,25 10

150,7006 10 9. 206,125 10

283,245 10 10. 0,386 10

0,428 10 11. 10,103 10

315,075 10 12. 8,83 10

181,369 10 13. 14,125 10

176,526 10 14. 15,75 10

4. Задание:Переводите десятичные числа в восьмеричную систему счисления:

1. 322 10 8. 7006 10

2. 524 10 9. 125 10

3. 283,245 10 10. 229 10

4. 428 10 11. 88 10

5. 315,075 10 12. 37,25 10

6. 181,369 10 13. 206,125 10

7. 176,526 10 14. 940 10

5. Задание:Переводите десятичные числа в шестнадцатиричную систему счисления:

1. 322 10 8. 369 10

2. 150,7006 10 9. 125 10

3. 283,245 10 10. 229 10

4. 428 10 11. 88 10

5. 315,075 10 12. 37,25 10

6. 181 10 13. 206,125 10

7. 176,526 10 14. 98,93 10

Контрольные вопросы:

1. Что называют системой счисления?

2. В чем отличие позиционных систем счисления от непозиционных?

3. Что называют основанием позиционной системы счисления?

4. Что такое разряд?

Лабораторная работа №2

Тема занятия: Двоичная система счисления. Перевод чисел из двоичной системы в восьмеричную, шестнадцатиричную систему счисления. Арифметические действия над двоичными числами. (1 час), СРС (2час).

В компьютерах применяется, как правило, не десятичная, а позиционная двоичная система счисления, т.е. система счисления с основанием 2. В двоичной системе любое число записывается с помощью двух цифр 0 и 1 и называется двоичным числом.

Для того чтобы отличить двоичное число от десятичного, содержащего только цифры 0 и1, к записи двоичного числа в индексе добавляется признак двоичной системы счисления, например 110101,111 2 . Каждый разряд (цифру) двоичного числа называют битом.

Как и десятичное число, любое двоичное число можно записать в виде суммы, явно отражающей различие весов цифр, входящих в двоичное число 2. Например, для двоичного числа 1010101,101 сумма примет вид

1010101,101 2 =1*2 6 +0*2 5 +1*2 4 +0*2 3 +1*2 2 +0*2 1 +1*2 0 +1*2 -1 +0*2 -2 +1*2 -3

Эта сумма записывается по тем же правилам, что и сумма для десятичного числа. В данном примере двоичное числа имеет семизначную целую и трехзначную дробную части. Поэтому старшая цифра целой части, т.е. единица, умножается на 2 7-1 =2 6 , следующая цифра целой части, равная нулю, умножается на 2 5 и т.д. по убывающим степеням двойки до младшей, третьей, цифры дробной части, которая будет умножена на 2 -3 . Выполняя в этой сумме арифметические операции по правилам десятичной системы, получим десятичное число 85,625. Таким образом, двоичное число 1010101,101 совпадает с десятичным числом 85,625 или 1010101,101=85,625 10

1. 11100011 2 =1×2 7 +1×2 6 +1×2 5 +0×2 4 +0×2 3 +0×2 2 +1×2 1 +1×2 0 = 128+64+32+2+1=227 10

2. 0,10100011 2 =1×2 -1 +0×2 -2 +1×2 -3 +0×2 -4 +0×2 -5 +0×2 -6 +1×2 -7 +1×2 -8 =0,5+0,125+0,0078+0,0039 =0,6367 10

Результат уже получен!

Системы счисления

Существуют позиционные и не позиционные системы счисления. Арабская система счисления, которым мы пользуемся в повседневной жизни, является позиционной, а римская − нет. В позиционных системах счисления позиция числа однозначно определяет величину числа. Рассмотрим это на примере числа 6372 в десятичном системе счисления. Пронумеруем это число справа налево начиная с нуля:

Тогда число 6372 можно представить в следующем виде:

6372=6000+300+70+2 =6·10 3 +3·10 2 +7·10 1 +2·10 0 .

Число 10 определяет систему счисления (в данном случае это 10). В качестве степеней взяты значения позиции данного числа.

Рассмотрим вещественное десятичное число 1287.923. Пронумеруем его начиная с нуля позиции числа от десятичной точки влево и вправо:

Тогда число 1287.923 можно представить в виде:

1287.923 =1000+200+80 +7+0.9+0.02+0.003 = 1·10 3 +2·10 2 +8·10 1 +7·10 0 +9·10 -1 +2·10 -2 +3·10 -3 .

В общем случае формулу можно представить в следующем виде:

Ц n ·s n +Ц n-1 ·s n-1 +...+Ц 1 ·s 1 +Ц 0 ·s 0 +Д -1 ·s -1 +Д -2 ·s -2 +...+Д -k ·s -k

где Ц n -целое число в позиции n , Д -k - дробное число в позиции (-k), s - система счисления.

Несколько слов о системах счисления.Число в десятичной системе счисления состоит из множества цифр {0,1,2,3,4,5,6,7,8,9}, в восьмеричной системе счисления - из множества цифр {0,1,2,3,4,5,6,7}, в двоичной системе счисления - из множества цифр {0,1}, в шестнадцатеричной системе счисления - из множества цифр {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, где A,B,C,D,E,F соответствуют числам 10,11,12,13,14,15.В таблице Таб.1 представлены числа в разных системах счисления.

Таблица 1
Система счисления
10 2 8 16
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Перевод чисел из одной системы счисления в другую

Для перевода чисел с одной системы счисления в другую, проще всего сначала перевести число в десятичную систему счисления, а затем, из десятичной системы счисления перевести в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

С помощью формулы (1) можно перевести числа из любой системы счисления в десятичную систему счисления.

Пример 1. Переводить число 1011101.001 из двоичной системы счисления (СС) в десятичную СС. Решение:

1 ·2 6 +0 ·2 5 +1 ·2 4 +1 ·2 3 +1 ·2 2 +0 ·2 1 +1 ·2 0 +0 ·2 -1 +0 ·2 -2 +1 ·2 -3 =64+16+8+4+1+1/8=93.125

Пример 2. Переводить число 1011101.001 из восьмеричной системы счисления (СС) в десятичную СС. Решение:

Пример 3 . Переводить число AB572.CDF из шестнадцатеричной системы счисления в десятичную СС. Решение:

Здесь A -заменен на 10, B - на 11, C - на 12, F - на 15.

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа.

Целую часть числа переводится из десятичной СС в другую систему счисления - последовательным делением целой части числа на основание системы счисления (для двоичной СС - на 2, для 8-ичной СС - на 8, для 16-ичной - на 16 и т.д.) до получения целого остатка, меньше, чем основание СС.

Пример 4 . Переведем число 159 из десятичной СС в двоичную СС:

159 2
158 79 2
1 78 39 2
1 38 19 2
1 18 9 2
1 8 4 2
1 4 2 2
0 2 1
0

Как видно из Рис. 1, число 159 при делении на 2 дает частное 79 и остаток 1. Далее число 79 при делении на 2 дает частное 39 и остаток 1 и т.д. В результате построив число из остатков деления (справа налево) получим число в двоичной СС: 10011111 . Следовательно можно записать:

159 10 =10011111 2 .

Пример 5 . Переведем число 615 из десятичной СС в восьмеричную СС.

615 8
608 76 8
7 72 9 8
4 8 1
1

При приведении числа из десятичной СС в восьмеричную СС, нужно последовательно делить число на 8, пока не получится целый остаток меньшее, чем 8. В результате построив число из остатков деления (справа налево) получим число в восьмеричной СС: 1147 (см. Рис. 2). Следовательно можно записать:

615 10 =1147 8 .

Пример 6 . Переведем число 19673 из десятичной системы счисления в шестнадцатеричную СС.

19673 16
19664 1229 16
9 1216 76 16
13 64 4
12

Как видно из рисунка Рис.3, последовательным делением числа 19673 на 16 получили остатки 4, 12, 13, 9. В шестнадцатеричной системе счисления числе 12 соответствует С, числе 13 - D. Следовательно наше шестнадцатеричное число - это 4CD9.

Для перевода правильных десятичных дробей (вещественное число с нулевой целой частью) в систему счисления с основанием s необходимо данное число последовательно умножить на s до тех пор, пока в дробной части не получится чистый нуль, или же не получим требуемое количество разрядов. Если при умножении получится число с целой частью, отличное от нуля, то эту целую часть не учитывать (они последовательно зачисливаются в результат).

Рассмотрим вышеизложенное на примерах.

Пример 7 . Переведем число 0.214 из десятичной системы счисления в двоичную СС.

0.214
x 2
0 0.428
x 2
0 0.856
x 2
1 0.712
x 2
1 0.424
x 2
0 0.848
x 2
1 0.696
x 2
1 0.392

Как видно из Рис.4, число 0.214 последовательно умножается на 2. Если в результате умножения получится число с целой частью, отличное от нуля, то целая часть записывается отдельно (слева от числа), а число записывается с нулевой целой частью. Если же при умножении получиться число с нулевой целой частью, то слева от нее записывается нуль. Процесс умножения продолжается до тех пор, пока в дробной части не получится чистый нуль или же не получим требуемое количество разрядов. Записывая жирные числа (Рис.4) сверху вниз получим требуемое число в двоичной системе счисления: 0.0011011 .

Следовательно можно записать:

0.214 10 =0.0011011 2 .

Пример 8 . Переведем число 0.125 из десятичной системы счисления в двоичную СС.

0.125
x 2
0 0.25
x 2
0 0.5
x 2
1 0.0

Для приведения числа 0.125 из десятичной СС в двоичную, данное число последовательно умножается на 2. В третьем этапе получилось 0. Следовательно, получился следующий результат:

0.125 10 =0.001 2 .

Пример 9 . Переведем число 0.214 из десятичной системы счисления в шестнадцатеричную СС.

0.214
x 16
3 0.424
x 16
6 0.784
x 16
12 0.544
x 16
8 0.704
x 16
11 0.264
x 16
4 0.224

Следуя примерам 4 и 5 получаем числа 3, 6, 12, 8, 11, 4. Но в шестнадцатеричной СС числам 12 и 11 соответствуют числа C и B. Следовательно имеем:

0.214 10 =0.36C8B4 16 .

Пример 10 . Переведем число 0.512 из десятичной системы счисления в восьмеричную СС.

0.512
x 8
4 0.096
x 8
0 0.768
x 8
6 0.144
x 8
1 0.152
x 8
1 0.216
x 8
1 0.728

Получили:

0.512 10 =0.406111 8 .

Пример 11 . Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:

159.125 10 =10011111.001 2 .

Пример 12 . Переведем число 19673.214 из десятичной системы счисления в шестнадцатеричную СС. Для этого переведем отдельно целую часть числа (Пример 6) и дробную часть числа (Пример 9). Далее объединяя эти результаты получим.

Возникла в древнем Вавилоне. В Индии система работает в виде позиционной десятичной нумерации с использованием нуля, у индусов данную систему чисел позаимствовала арабская нация, у них, в свою очередь, взяли европейцы. В Европе эту систему стали называть арабской.

Позиционная система счисления — значение всех цифр зависит от позиции (разряда) данной цифры в числе.

Примеры , стандартная десятичная система счисления - это позиционная система. Допустим, дано число 453 . Цифра 4 обозначает сотни и соответствует числу 400, 5 — кол-во десятков и соответствует значению 50 , а 3 — единицы и значению 3 . Легко заметить, что с увеличением разряда увеличивается значение. Таким образом, заданное число запишем в виде суммы 400+50+3=453.

Шестнадцатеричная система счисления.

Шестнадцатеричная система счисления (шестнадцатеричные числа) — позиционная система счисления. Основанием шестнадцатеричной системы счисления является число 16.

Записывая числа в восьмеричной системе счисления мы получаем довольно компактные выражения, однако в шестнадцатеричной системе мы получаем выражения более компактными.

Первыми десятью цифрами из шестнадцати шестнадцатеричных цифрах является стандартный интервал 0 - 9 , последующие шесть цифр выражают при помощи первых букв латинского алфавита: A , B , C , D , E , F . Перевод из шестнадцатеричной системы в двоичную систему и в обратную сторону делают аналогично процессу для восьмеричной системы.

Применение шестнадцатеричной системы счисления.

Шестнадцатеричную систему счисления довольно хорошо используют в современных компьютерах, например с ее помощью указывают цвет: #FFFFFF — белый цвет.

Перевод чисел из одной системы счисления в другую.

Перевод чисел из шестнадцатеричной системы в десятичную.

Что бы перевести шестнадцатеричное число в десятичное , нужно заданное число привести к виду суммы произведений степеней основания шестнадцатеричной системы счисления на соответствующие цифры в разрядах шестнадцатеричного числа.

Например , переведем шестнадцатеричное число 5A3 в десятичное. Здесь 3 цифры. Исходя их выше сказанного правила, приведем его к виду суммы степеней с основанием 16:

5A3 16 = 3·16 0 +10·16 1 +5·16 2 = 3·1+10·16+5·256 = 3+160+1280 = 1443 10

Перевод чисел из двоичной системы в шестнадцатеричную и наоборот.

Для перевода многозначного двоичного числа в шестнадцатеричную систему необходимо разделить его на тетрады справа налево и поменять все тетрады соответствующей шестнадцатеричной цифрой. Для перевода числа из шестнадцатеричной системы в двоичную необходимо поменять каждую все цифры на соответствующие тетрады из таблицы перевода, которую вы найдете ниже.

Например :

010110100011 2 = 0101 1010 0011 = 5A3 16

Таблица перевода чисел.

Алгоритм перевода чисел из одной системы счисления в другую.

1. Из десятичной системы счисления:

  • делим число на основание переводимой системы счисления;
  • находим остаток от деления целой части числа;
  • записываем все остатки от деления в обратном порядке;

2. Из двоичной системы счисления:

  • для перевода в десятичную систему счисления находим сумму произведений основания 2 на соответствующую степень разряда;
  • для перевода числа в восьмеричную разбиваем число на триады.

Например, 1000110 = 1 000 110 = 1068

  • для перевода числа из двоичной системы счисления в шестнадцатеричную разбиваем число на группы по 4 разряда.

Например, 1000110 = 100 0110 = 4616.

Таблицы для перевода:

Двоичная СС

Шестнадцатеричная СС

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Двоичная СС