Если вы решились-таки на покупку системы с процессором Pentium MMX, повремените. Может быть, стоит выбрать другой процессор. Во время подготовки этой статьи компания AMD объявила о выпуске долгожданной микросхемы следующего поколения K6-PR2-233, которая, как предполагается, составит конкуренцию кристаллу Pentium II (ранее он был известен под именем Klamath) фирмы Intel. Поставки процессора Pentium II - следующей версии микросхемы Pentium Pro - начались в мае. Как и процессор Pentium MMX, кристаллы этих двух фирм поддерживают мультимедийные инструкции и должны потеснить Pentium MMX с рынка.

Насколько хороши Pentium II и K6? И сможет ли компания AMD составить достойную конкуренцию Intel? Тестовая лаборатория журнала PC World провела тестирование первых опытных образцов ПК на базе процессоров K6 и Pentium II. Машины испытывались с помощью пакета PC WorldBench, содержащего контрольные задачи с использованием стандартных деловых приложений. Кроме того, тестировалась производительность машин с оптимизированными для MMX мультимедийными и графическими программами. Система AMD была выполнена на кристалле K6-PR2-233, а машина Intel была оснащена 266-МГц процессором Pentium II.

Каков же результат? Оба опытных образца продемонстрировали новые рекорды производительности. Система AMD K6 справилась с тестовыми заданиями быстрее, чем любая из машин, ранее протестированных в лаборатории журнала PC World, обогнав прежнего чемпиона - модель фирмы Sys Technology на базе 200-МГц процессора Pentium Pro. В тесте с пакетом PC WorldBench система на кристалле K6 пришла к финишу с результатом 251 единица.

Однако этот рекорд продержался недолго. Новым чемпионом стала система с 266-МГц процессором Pentium II, которая обошла машину на базе K6-PR2-233 на 4%, а машину фирмы Sys Technology с 200-МГц кристаллом Pentium Pro - на 10%. Компьютер с процессором Pentium II продемонстрировал приблизительно такую производительность, какую от него и можно было ожидать, учитывая тактовую частоту, объем кэш-памяти и поддержку инструкций MMX.

В гонке на скорость победил Pentium II, однако означает ли это поражение для K6? Компания Intel будет позиционировать Pentium II как процессор высшего уровня, предназначенный для мощных рабочих станций и мультимедийных машин ценой от 3500 долл. В конце концов менее обеспеченные покупатели, не имеющие возможности купить ПК на базе Pentium II, могут, по мнению Intel, приобрести машину с кристаллом Pentium MMX. Однако у производителей ПК свои планы, поэтому вполне вероятно, что цена хорошо сконфигурированных машин на Pentium II не превысит 3000 долл. Тем временем фирма AMD установила на свои процессоры K6 привлекательную цену: машины с кристаллом K6-PR2-233 можно будет купить примерно за 2500 долл. (в России, как обычно, цены будут заметно ниже. - Прим. ред. ). Все это должно очень понравиться покупателям - конкуренция вынуждает производителей снижать цены и ускорять продвижение новых ЦП.

Самые быстрые ПК

Насколько высока производительность этих новых процессоров? Опытный образец машины AMD, оснащенный 1-Мбайт кэшем второго уровня и исключительно быстрым жестким диском объемом 4,55 Гбайт с интерфейсом SCSI, прошел тесты PC WorldBench с изумительно высоким результатом - 251 единица (для сравнения: у машины фирмы Sys Technology на базе процессора Pentium Pro этот показатель равен 236). В четырех из шести приложений, используемых в пакете PC WorldBench, микросхема AMD установила рекорды быстродействия, а в двух оставшихся ее отставание было минимальным.

Но не успели еще высохнуть чернила в книге рекордов, как опытный образец системы на базе процессора Pentium II промчался по тестам PC WorldBench с показателем 260 единиц. Система продемонстрировала самые высокие показатели во всех приложениях.

Еще большее превосходство новых процессоров над другими выявилось в тестах с MMX-приложениями. Напомним, что K6 - первый процессор, выпущенный не фирмой Intel, поддерживающий инструкции MMX, благодаря чему достигается значительное ускорение работы с видео-, аудио- и другими мультимедийными задачами с учетом технологии MMX. Система на процессоре K6 опередила все машины с микросхемами Pentium-200 MMX, протестированные в лаборатории журнала PC World, но чуть отстала от ПК на базе 266-МГц кристалла Pentium II. Машина с процессором Intel продемонстрировала лучшие результаты в тестах с трехмерной графикой: на выполнение операций с перерисовкой объектов в пакете Ray Dream 3D Studio компании Fractal Design ей потребовалось всего 55 с, тогда как у ПК на процессоре K6 на то же самое ушло 68 с. Стандартные системы с 200-МГц кристаллом Pentium MMX справляются с этим заданием за 80 с.

В тестах с программами Adobe Photoshop и Macromedia Director, в которых основная часть работы приходилась на использование фильтров и анимацию, преимущество в скорости у Pentium II было менее заметно. При воспроизведении анимированных изображений в пакете Director система на Pentium II выводила 91 кадр в секунду, а система с процессором K6 - 87 кадров в секунду. В тесте с программой Photoshop при операциях с фильтрацией и цветовым преобразованием бесспорным лидером был на самом деле процессор K6: на выполнение заданий у него ушло 47 с, тогда как Pentium II справился с тем же самым за 59 с. Однако Pentium II вырвался вперед в тесте с масштабированием изображения, затратив на него менее 45 с (кристаллу K6 на это потребовалось почти 68 с), поэтому в общем зачете победителем оказался Pentium II. Оба ЦП продемонстрировали заметный прирост производительности по сравнению с Pentium MMX.

Intel (и AMD) inside

Высокое быстродействие опытного образца ПК на базе K6 отчасти объясняется быстрым жестким диском с интерфейсом SCSI и 1-Мбайт кэшем второго уровня (в машине с Pentium II его объем составлял 512 Кбайт). Тем не менее полученные результаты подтверждают предсказания AMD о том, что K6 составит конкуренцию Pentium II, и это будет еще более справедливо, когда появятся версии микросхем K6-PR2-266 и K6-PR2-300 (ожидаются уже в этом году).

Сегодня и K6, и Pentium II производятся по технологическому процессу с проектной нормой 0,35 мкм, т. е. размер транзисторных элементов составляет обычно 0,35 мкм. Микросхема K6-PR2-300, вероятно, будет первой, выпускаемой по 0,25-микронному процессу, благодаря чему снизятся потребляемая ею мощность и тепловыделение. Представители AMD воздерживаются от обсуждения возможности использования процессора K6 в блокнотных ПК, но, по словам редактора журнала Microprocessor Report Ленли Гвеннапа, "кристалл K6 готов к путешествиям".

В свою очередь, процессор Pentium II является дальнейшим развитием кристалла Pentium Pro. Процессор Pentium II обеспечивает лучшую производительность при работе с 16- и 32-разрядным кодом Windows 95, чем его предшественник, и, кроме того, имеет MMX-расширение и увеличенный с 16 до 32 Кбайт кэш первого уровня. (Напомним, что при выполнении 16-разрядных программ 200-МГц процессор Pentium Pro уступает 200-МГц процессору Pentium MMX, но при работе с 32-разрядными приложениями впереди оказывается Pentium Pro.) Чтобы поднять тактовую частоту работы ядра ЦП до 233 МГц и выше, кэш второго уровня Pentium II расположен на одном картридже SEC с процессором.

Как и K6, процессор Pentium II производится с технологической нормой 0,35 мкм, но со временем Intel планирует перейти на более совершенный 0,25-микронный процесс. Микросхема с нормой 0,25 мкм носит кодовое название Deschutes, она должна появиться к концу года. Это будет первый процессор класса P6, предназначенный для продуктивной работы в блокнотных ПК.

Цена или скорость?

Сегодня более выгодным представляется выбор кристалла K6. Предполагается, что цена микросхемы K6-PR2-233 для производителей ПК составит 469 долл., что на 130-250 долл. меньше, чем цена 266-МГц процессора Pentium II. По соотношению цена/производительность кристалл K6 может соревноваться даже с Pentium MMX. Но что еще лучше - K6 устанавливается в стандартный разъем Socket 7 на обычных ныне выпускающихся системных платах для процессора Pentium, тогда как для Pentium II требуется системная плата новой конструкции, допускающая установку картриджа SEC. У компании AMD есть шансы сделать K6 массовым процессором, если только ей удастся заключить контракты с производителями систем.

По словам Гвеннапа, фирма AMD имеет опыт работы с ведущими поставщиками ПК и способна выпустить 10-15 млн. микросхем K6 в этом году и до 40 млн. - в следующем, после чего сможет перейти на производство версии кристалла с меньшей проектной нормой. Такие большие объемы выпуска могут привлечь к K6 внимание основных производителей систем. Компания AST рассматривает возможность выпуска ПК на базе K6, а фирмы Everex, Polywell и Robotec уже заявили, что будут продавать машины на этих микросхемах.

Однако в пользу Pentium II говорит более высокая тактовая частота, поскольку тесно связанный с ЦП кэш второго уровня работает значительно быстрее, чем обычный кэш, который расположен на системной плате (и используется процессором K6). Кроме того, корпорация Intel на системных платах для процессора Pentium II будет применять новую графическую шину AGP (Accelerated Graphics Port), которая, как ожидается, существенно улучшит производительность и качество работы программ трехмерной графики.

Какое место займет среди этих микросхем кристалл M2 - представитель следующего поколения процессоров фирмы Cyrix? По мнению Гвеннапа, M2 (он должен появиться в июне) не сможет сравняться по быстродействию ни с K6, ни с Pentium II.

Новая жизнь Pentium

Несмотря на высокую производительность Pentium II, жизнь процессора Pentium MMX не заканчивается. Выпущенный Intel новый набор микросхем 430TX оптимизирует продуктивность таких ключевых компонентов, как системная память и жесткий диск. В лаборатории журнала PC World побывали две настольные машины на базе 200-МГц процессоров Pentium MMX, в которых был применен набор 430TX. В тестах PC WorldBench эти машины продемонстрировали показатели 234 и 238 единиц. Самый большой прирост производительности оказался в тестах с MMX-приложениями. В контрольной задаче с редактированием изображения в пакете Photoshop один из этих ПК показал наивысшую среди всех систем (за исключением ПК с 266-МГц процессором Pentium II) производительность.

Если вы собираетесь приобрести машину с процессором Pentium MMX, выбирайте модель с набором микросхем 430TX. Домашним пользователям должны понравиться новые особенности этого набора, например функция Always On, которая, по словам представителей Intel, позволяет машине "просыпаться" из режима приостановки при возникновении таких задач, как, скажем, обработка электронной почты. Благодаря лучшему управлению потреблением энергии и поддержке быстрой синхронной динамической памяти (SDRAM) набор 430TX также должен найти широкое применение в блокнотных ПК.

Что купить?

Какой системе отдать предпочтение? Машины на базе процессора K6 имеют лучшее сочетание цена/производительность, однако вам, возможно, придется поискать поставщиков ПК, которые устанавливают в свои машины процессоры AMD. Кроме того, может пройти несколько месяцев, прежде чем AMD выпустит достаточное количество микросхем, поэтому вам придется подождать. Однако если ваш бюджет не позволяет тратить значительные суммы, система с процессором K6 - это то, что нужно.

Тем, кто хочет приобрести быструю систему среднего или высшего класса, больше подойдет Pentium II. Производственные мощности Intel позволяют выпустить значительно больше процессоров Pentium II, чем AMD сможет поставить на рынок кристаллов K6, но на "разгонку" опять-таки понадобится время. Цены на системы с Pentium II могут быть разными, но нетрудно предположить, что ценовая политика фирм будет весьма агрессивной. Хорошо сконфигурированный ПК на базе Pentium II вы сможете купить примерно за 3000 долл.

Если процессор K6 вас почему-либо не устраивает, а денег на систему с Pentium II нет, выбор очевиден: ПК с процессором Pentium MMX и набором микросхем 430TX, который позволит достичь максимальной производительности при работе с мультимедийными программами.

Новые ЦП - новые рекорды скорости

Система Процессор ОЗУ, Мбайт Кэш второго уровня, Кбайт Показатель PC WordBench
Pentium II-266 Pentium II-266 32 256 260
AMD K6-PR2-233 AMD K6-PR2-233 32 1024 251
Polywell Poly 500 TX1 Pentium MMX-200 32 512 238
MicroExperts MMXP-5000 Pentium MMX-200 32 512 234
"Средний" ПК из 10 машин Pentium MMX-200 32 512 231

Мультимедийные приложения

Система Анимация Macromedia Director
(кадров в секунду)
Pentium II-266 91
MicroExperts MMXP-5000 86
AMD K6-PR2-233 87
Polywell Poly 500 TX1 85
"Средний" ПК из 10 машин 80

Методика тестирования

Деловые приложения: все системы тестировались с помощью пакета PC WorldBench. Чем выше показатель PC WorldBench, тем выше производительность. Описание тестов PC WorldBench можно найти на Web-узле журнала PC World (http://www.pcworld. com/testing ).

Мультимедийные приложения: каждая система тестировалась с помощью серии программ, оптимизированных для MMX.

В тесте с пакетом Adobe Photoshop 4.0 измерялось время, необходимое для выполнения нескольких операций по редактированию изображений. В тесте с программой Ray Dream 3D Studio фирмы Fractal Design измерялось, сколько времени перерисовываются обсчитанные трехмерные объекты двух уровней сложности. В тесте с пакетом Macromedia Director 5.0 воспроизводился насыщенный графикой исполнимый файл.

Введение

Перед началом сезона летних отпусков оба ведущих производителя процессоров, AMD и Intel, выпустили последние модели процессоров в своих современных линейках CPU, нацеленных на использование в высокопроизводительных PC. Сначала сделала последний шаг перед предстоящим качественным скачком AMD и примерно с месяц назад представила Athlon XP 3200+ , который, как предполагается, станет самым быстрым представителем семейства Athlon XP. Дальнейшие же планы AMD в этом секторе рынка связываются уже с процессором следующего поколения с x86-64 архитектурой, Athlon 64, который должен появится в сентябре этого года. Intel же выждал небольшую паузу и представил последний из Penlium 4 на 0.13-микронном ядре Northwood только сегодня. В итоге, заключительной моделью в этом семействе стал Pentium 4 с частотой 3.2 ГГц. Пауза перед выходом следующего процессора для настольных PC, основанного на новом ядре Prescott, продлится до четвертого квартала, когда Intel вновь поднимет планку быстродействия своих процессоров для настольных компьютеров благодаря росту тактовой частоты и усовершенствованной архитектуре.

Следует отметить, что за время противостояния архитектур Athlon и Pentium 4, показала себя более масштабируемой архитектура от Intel. За период существования Pentium 4, выпускаемых по различным технологическим процессам, их частота выросла уже более чем вдвое и без проблем достигла величины 3.2 ГГц при использовании обычного 0.13-микронного технологического процесса. AMD же, задержавшаяся со своими Athlon XP на отметке 2.2 ГГц, не может похвастать на настоящий момент столь же высокими частотами своих процессоров. И хотя на одинаковых частотах Athlon XP значительно превосходит по быстродействию Pentium 4, постоянно увеличивающийся разрыв в тактовых частотах сделал свое дело: Athlon XP 3200+ с частотой 2.2 ГГц назвать полноценным конкурентом Penium 4 3.2 ГГц можно лишь со значительными оговорками.

На графике ниже мы решили показать, как росли частоты процессоров семейств Pentium 4 и Athlon за последние три года:

Как видим, частота 2.2 ГГц является для AMD непреодолимым барьером, покорен который будет в лучшем случае только лишь во второй половине следующего года, когда AMD переведет свои производственные мощности на использование 90-нанометровой технологии. До этих же пор даже процессоры следующего поколения Athlon 64 будут продолжать иметь столь невысокие частоты. Смогут ли они при этом составить достойную конкуренцию Prescott – сказать трудно. Однако, похоже, AMD ждут тяжелые проблемы. Prescott, обладающий увеличенным кешем первого и второго уровня, усовершенствованной технологией Hyper-Threading и растущими частотами может стать гораздо более привлекательным предложением, нежели Athlon 64.

Что касается процессоров Pentium 4, то их масштабируемости можно только позавидовать. Частоты Pentium 4 плавно увеличиваются с самого момента выхода этих процессоров. Небольшая пауза, наблюдающаяся летом-осенью этого года, объясняется необходимостью внедрения нового технологического процесса, но она не должна повлиять на расстановку сил на процессорном рынке. Включив технологию Hyper-Threading и переведя свои процессоры на использование 800-мегагерцовой шины, Intel добился ощутимого превосходства старших моделей своих CPU над процессорами конкурента и теперь может ни о чем не беспокоиться, по крайней мере, до начала массового распространения Athlon 64.

Также на графике выше мы показали и ближайшие планы компаний AMD и Intel по выпуску новых CPU. Похоже, AMD в ближайшее время не должна питать никаких иллюзий по поводу своего положения на рынке. Борьба с Intel на равных для нее заканчивается, компания возвращается в привычную для себя роль догоняющего. Впрочем, долгосрочные прогнозы строить пока рано, посмотрим, что даст для AMD выход Athlon 64. Однако, судя по сдержанной реакции разработчиков программного обеспечения на технологию AMD64, никакой революции с выходом следующего поколения процессоров от AMD не произойдет.

Intel Pentium 4 3.2 ГГц

Новый процессор Pentium 4 3.2 ГГц, который Intel анонсировал сегодня, 23 июня, с технологической точки зрения ничего особенного собой не представляет. Это все тот же Northwood, работающий на частоте шины 800 МГц и поддерживающий технологию Hyper-Threading. То есть, по сути, процессор полностью идентичен (за исключением тактовой частоты) Pentium 4 3.0 , который был анонсирован Intel в апреле.

Процессор Pentium 4 3.2 ГГц, как и предшественники, использует ядро степпинга D1

Единственный факт, который следует отметить в связи с выходом очередного процессора Pentium 4 на ядре Northwood – это вновь возросшее тепловыделение. Теперь типичное тепловыделение Pentium 4 3.2 ГГц составляет порядка 85 Вт, а максимальное - ощутимо превышает величину 100 Вт. Именно поэтому использование грамотно спроектированных корпусов является одним из необходимых требований при эксплуатации систем на базе Pentium 4 3.2 ГГц. Одного вентилятора в корпусе теперь явно недостаточно, кроме того, необходимо следить и за тем, чтобы воздух в районе размещения процессора хорошо вентилировался. Intel также говорит и о том, что температура воздуха, окружающего процессорный радиатор, не должна превышать 42 градуса.

Ну и еще раз напомним, что представленный Pentium 4 3.2 ГГц – последний CPU от Intel для высокопроизводительных настольных систем, основанный на 0.13-микронной технологии. Следующий процессор для таких систем будет использовать уже новое ядро Prescott, изготавливаемое по 90-нанометровой технологии. Соответственно, тепловыделение будущих процессоров для настольных PC будет меньше. Следовательно, Pentium 4 3.2 ГГц так и останется рекордсменом по тепловыделению.

Официальная цена на Pentium 4 3.2 ГГц составляет $637, а это значит, что данный процессор является самым дорогим CPU для настольных компьютеров на сегодняшний день. Более того, Intel рекомендует использовать новинку с недешевыми материнскими платами на базе набора логики i875P. Однако, как мы знаем, данным требованием можно пренебречь: многие более дешевые системные платы на базе i865PE обеспечивают аналогичный уровень производительности благодаря активизации производителями технологии PAT и в наборе логики i865PE.

Как мы тестировали

Целью данного тестирования являлось выяснение того уровня производительности, который может обеспечить новый Pentium 4 3.2 ГГц по сравнению с предшественниками и старшими моделями конкурирующей линейки Athlon XP. Таким образом, в тестировании помимо Pentium 4 3.2 ГГц приняли участие Petnium 4 3.0 ГГц, Athlon XP 3200+ и Athlon XP 3000+. В качестве платформы для тестов Pentium 4 мы выбрали материнскую плату на чипсете i875P (Canterwood) с двухканальной DDR400 памятью, а тесты Athlon XP проводились при использовании материнской платы на базе наиболее производительного чипсета NVIDIA nForce 400 Ultra.

Состав тестовых систем приведен ниже:

Примечания:

  • Память во всех случаях эксплуатировалась в синхронном режиме с FSB в двухканальной конфигурации. Использовались наиболее агрессивные тайминги 2-2-2-5.
  • Тестирование выполнялось в операционной системе Windows XP SP1 с установленным пакетом DirectX 9.0a.

Производительность в офисных приложениях и приложениях для создания контента

В первую очередь по сложившейся традиции мы измерили скорость процессоров в офисных приложениях и приложениях, работающих с цифровых контентом. Для этого мы воспользовались тестовыми пакетами семейства Winstone.

В Business Winstone 2002, включающем в себя типовые офисные бизнес-приложения, на высоте оказываются процессоры семейства Athlon XP, производительность которых ощутимо превосходит скорость процессоров конкурирующего семейства. Данная ситуация достаточно привычна для этого теста и обуславливается как особенностями архитектуры Athlon XP, так и большим объемом кеш-памяти у ядра Barton, суммарная емкость которой благодаря эксклюзивности L2 достигает 640 Кбайт.

В комплексном тесте Multimedia Content Creation Winstone 2003, измеряющем скорость работы тестовых платформ в приложениях для работы с цифровым контентом, картина несколько иная. Процессоры Pentium 4, имеющие NetBurst архитектуру и обладающие высокоскоростной шиной с пропускной способностью 6.4 Гбайта в секунду оставляют старшие модели Athlon XP далеко позади.

Производительность при обработке потоковых данных

Большинство приложений, работающих с потоками данных, как известно, работает быстрее на процессорах Pentium 4. Здесь раскрываются все преимущества NetBurst архитектуры. Поэтому, результат, полученный нами в WinRAR 3.2, не должен никого удивлять. Старшие Pentium 4 значительно обгоняют по скорости сжатия информации топовые Athlon XP.

Аналогичная ситуация наблюдается и при кодировании звуковых файлов в формат mp3 кодеком LAME 3.93. Кстати, данный кодек поддерживает многопоточность, поэтому высокие результаты Pentium 4 здесь можно отнести и на счет поддержки этими CPU технологии Hyper-Threading. В итоге, Pentium 4 3.2 обгоняет старший Athlon XP с рейтингом 3200+ почти на 20%.

В данное тестирование мы включили результаты, полученные при измерении скорости кодирования AVI ролика в формат MPEG-2 одним из лучших кодеров, Canopus Procoder 1.5. Как это не удивительно, Athlon XP в данном случае показывает слегка более высокую производительность. Впрочем, отнести это, скорее всего, следует на счет высокопроизводительного блока операций с плавающей точкой, присутствующего в Athlon XP. SSE2 инструкции процессоров Pentium 4 в данном случае, как мы видим, не могут являться столь же сильной альтернативой. Правда, следует отметить, что разрыв в скорости старших моделей Athlon XP и Pentium 4 совсем небольшой.

Кодирование видео в формат MPEG-4 – еще один пример задачи, где процессоры Pentium 4 с технологией Hyper-Threading и 800-мегагерцовой шиной демонстрирует свои сильные стороны. Превосходство Pentium 4 3.2 над Athlon XP 3200+ в этом тесте составляет почти 20%.

Аналогичная ситуация наблюдается и при кодировании видео при помощи Windows Media Encoder 9: это приложение имеет оптимизацию под набор команд SSE2 и отлично приспособлено для NetBurst архитектуры. Поэтому, совершенно неудивительно, что вновь верхнюю часть диаграммы оккупировали процессоры от Intel.

Производительность в игровых приложениях

После выхода пропатченной версии 3Dmark03 результаты Pentium 4 относительно Athlon XP в этом тесте стали несколько выше. Однако расклад сил это не изменило: Pentium 4 лидировали в этом бенчмарке и ранее.

Pentium 4 подтверждает свое лидерство и в общем зачете в 3Dmark03. Правда, отрыв здесь небольшой: сказывается тот факт, что 3Dmark03 в первую очередь – это тест видеоподсистемы.

После перехода Pentium 4 на использование 800-мегагерцовой шины, Pentium 4 стали обгонять Athlon XP и в более старой версии 3Dmark2001. Причем, отрыв Pentium 4 3.2 ГГц от Athlon XP 3200+ уже достаточно существенен и составляет 6%.

В Quake3 Pentium 4 традиционно обгоняет Athlon XP, поэтому результат удивления не вызывает.

Аналогичная картина наблюдается и в игре Return to Castle Wolfenstein. Это совершенно логично, поскольку данная игра использует тот же движок Quake3.

Одно из немногих приложений, где старшей модели Athlon XP удается удержать лидерство, это – Unreal Tournament 2003. Хочется отметить, что все современные игры не имеют поддержки технологии Hyper-Threading, поэтому в играх потенциал новых Pentium 4 пока раскрывается не полностью.

А вот в Serious Sam 2 Athlon XP 3200+ больше лидером не является. С выходом нового процессора от Intel пальма первенства в этой игре переходит именно к Pentium 4 3.2 ГГц.

Новая игра Splinter Cell, хотя и основана на том же движке, что и Unreal Tournament 2003, быстрее работает на процессорах от Intel.

В целом, остается признать, что быстрейшим процессором для современных 3D игр на данный момент является Pentium 4 3.2 ГГц, обходящий Athlon XP 3200+ в большинстве игровых тестов. Ситуация меняется стремительно. Еще совсем недавно старшие Athlon XP в игровых тестах нисколько не уступали процессорам от Intel.

Производительность при 3D-рендеринге

Поскольку 3ds max 5.1, который мы использовали в данном тестировании, хорошо оптимизирован под многопоточность, Pentium 4, умеющий исполнять два потока одновременно благодаря технологии Hyper-Threading, с большим отрывом оказывается лидером. Даже старший Athlon XP 3200+ не может составить ему никакой конкуренции.

Абсолютно тоже самое можно сказать и про скорость рендеринга в Lightwave 7.5. Впрочем, в некоторых сценах, например при рендеринге Sunset, старшие модели Athlon XP смотрятся не так уж и плохо, однако такие случаи единичны.

Спорить с Pentium 4, выполняющем два потока одновременно, в задачах рендеринга для Athlon XP сложновато. К сожалению, AMD не имеет планов по внедрению технологий, подобных Hyper-Threading даже в будущих процессорах семейства Athlon 64.

Абсолютно аналогичная ситуация наблюдается и в POV-Ray 3.5.

Производительность при научных расчетах

Для тестирования скорости новых CPU от AMD при научных расчетах был использован пакет ScienceMark 2.0. Подробности об этом тесте можно получить на сайте http://www.sciencemark.org . Этот бенчмарк поддерживает многопоточность, а также все наборы SIMD-инструкций, включая MMX, 3DNow!, SSE и SSE2.

То, что в задачах математического моделирования или криптографии процессоры семейства Athlon XP показывают себя с наилучшей стороны, известно давно. Здесь мы видим еще одно подтверждение этого факта. Хотя, надо сказать, свое былое преимущество Athlon XP начинает терять. Например, в тесте Molecular Dinamics на первое место выходит уже новый Pentium 4 3.2 ГГц.

Кроме теста ScienceMark в этом разделе мы решили протестировать и скорость работы новых процессоров в клиенте российского проекта распределенных вычислений MD@home, посвященному расчету динамических свойств олигопептидов (фрагментов белков). Расчет свойств олигопептидов, возможно, сможет помочь изучению фундаментальных свойств белков, тем самым, внеся вклад в развитие науки.

Как видим, задачи молекулярной динамики новые Pentium 4 решают быстрее Athlon XP. Столь высокого результата Pentium 4 достигают благодаря своей технологии Hyper-Threading. Сам клиент MD@home, к сожалению, многопоточность не поддерживает, однако запуск двух клиентских программ в параллели на системах с процессорами с технологией Hyper-Threading позволяет ускорить процесс расчета более чем на 40%.

Выводы

Проведенное тестирование явно показывает, что на очередном этапе конкурентной борьбы Intel удалось одержать победу над AMD. Последний процессор на ядре Northwood обгоняет по своей производительности старшую и последнюю модель Athlon XP в большинстве тестов. За последнее время Intel смог значительно увеличить частоты своих CPU, увеличить частоту их шины, а также внедрить хитрую технологию Hyper-Threading, дающую дополнительный прирост скорости в ряде задач. AMD же, не имея возможности наращивать тактовые частоты своих процессоров ввиду технологических и архитектурных сложностей, не смогла адекватно усилить свои CPU. Не поправило положение даже появление нового ядра Barton: последние модели Pentium 4 оказываются явно сильнее старших Athlon XP. В результате, Pentium 4 3.2 ГГц вполне можно считать наиболее производительным CPU для настольных систем в настоящее время. Такая ситуация продлится по меньшей мере до сентября, когда AMD, наконец, должна будет анонсировать свои новые процессоры семейства Athlon 64.

Необходимо отметить и тот факт, что рейтинговая система, используемая в настоящее время AMD для маркировки своих процессоров, не может больше являться критерием, по которому Athlon XP можно сопоставлять с Pentium 4. Улучшения, которые произошли с Pentium 4, в числе которых следует отметить перевод этих CPU на 800-мегагерцовую шину и внедрение технологии Hyper-Threading, привели к тому, что Pentium 4 с частотой, равной рейтингу соответствующего Athlon XP, оказывается явно быстрее.

В общем, мы с интересом будем ожидать осени, когда и AMD и Intel представят свои новые разработки, Prescott и Athlon 64, которые, возможно, смогут обострить конкурентную борьбу между давними соперниками на процессорном рынке. Сейчас же AMD оказывается оттеснена Intel в сектор недорогих процессоров где, впрочем, эта компания чувствует себя превосходно: Celeron по сравнению с Athlon XP – откровенно слабый соперник.

Основные принципы разгона процессоров Pentium II/III

К сожалению, разгон процессоров Intel Pentium II и Intel Pentium III невозможно выполнить с помощью изменения множителя, связывающего внешнюю и внутреннюю частоты. Фирма Intel разработала ряд методов борьбы с разгоном своих процессоров. В результате множитель зафиксирован. Таким образом фирма защищает свои процессоры от подделки. Кроме того, фиксацией множителя фирма Intel оберегает рынок своих изделий, не позволяя более дешевым, разогнанным процессорам создавать конкуренцию более дорогим вариантам с высокими внутренними частотами.

Процессоры, начиная уже с Pentium MMX-166, как правило, не позволяют увеличивать внутреннюю частоту путем изменения множителя. Хотя, надо признать, что существуют немногочисленные процессоры некоторых серий, допускающие такую возможность. Однако это крайне редко встречающиеся исключения.

Для процессоров Intel Pentium II и Intel Pentium III актуален другой метод разгона, не связанный с изменением множителей. Заключается он в повышении тактовой частоты host-шины. Так, например, процессор Pentium II-266 (4 х 66 МГц) можно разогнать до 300 МГц (4 х 75 МГц) или даже до 333 МГц (4 х 83 МГц), процессор Pentium III-500 (5 х 100 МГц) - до 560 МГц (5 х 112 МГц). При этом, как правило, без увеличения напряжения питания процессоров.

Примеры разгона процессоров Pentium II

Примеры разгона процессоров Pentium III

Следует отметить, что с целью уменьшения энергопотребления и соответственно тепловыделения фирмы - производители процессоров по мере совершенствования технологии их производства уменьшают уровни питающих напряжений. Не редки случаи, когда процессоры одного типа с равными внутренними и внешними частотами, но выпущенные в разное время и имеющие несовпадающие серийные номера, имеют разные напряжения питания. BIOS современных материнских плат обычно легко и правильно определяет необходимые уровни питающих напряжений процессоров. Однако для обеспечения устойчивой работы на высоких частотах иногда приходится несколько увеличивать напряжения питания. Но для разных процессоров эти уровни и их увеличение, конечно, должны быть разными. Именно поэтому для некоторых материнских плат и процессоров оптимальными могут оказаться разные наборы параметров разгона процессоров, например, могут отличаться от рекомендованных значений величины напряжения питания. Для других материнских плат - разгон вообще невозможен как метод повышения производительности компьютера. Такие материнские платы автоматически определяют все необходимые для процессора режимы, а средств их изменения в своем составе не имеют. Но в любом варианте перед экспериментами следует обеспечить эффективное дополнительное охлаждение как процессора, так и остальных частей компьютера.

Перемаркировка процессора Intel Pentium II - препятствие для разгона

Изменением маркировки процессоров, т. е. их перемаркировкой, некоторые фирмы ряда, как правило, азиатских стран начали заниматься, конечно, нелегально, с появлением первых процессоров. Впервые в широком масштабе такие действия стали практиковать с процессорами 486 и Pentium. По сути, процедура подделки маркировки достаточно проста. С помощью специального станка или пилы снимался тонкий слой с корпуса микросхемы. Затем после шлифовки поверхности на нее наносилась новая маркировка с завышенной рабочей частотой. Нередко на процессорах подделывались данные о производителях. Отличить настоящий процессор от перемаркированного - задача не очень простая. Процессоры одного поколения изготавливались по сходным технологиям и чаще всего использовались одинаковые полупроводниковые пластины. Процессоры с подделанной маркировкой часто работали не хуже, чем настоящие. Впоследствии многие компании, занимающиеся производством процессоров, например Intel, разработали большое количество степеней защиты процессоров. Это касалось и защиты от разгона процессоров.

В сравнительно новом и современном процессоре Intel Pentium II реализована дополнительная защита. Она заключается в использовании специальных схем, блокирующих все коэффициенты умножения, не соответствующие значению, установленному производителем. К сожалению, эта защита часто с легкостью обходится людьми, которые профессионально занимаются перемаркировкой процессоров, - вскрыв картридж, они просто удаляют нежелательные схемы защиты.

Утверждается, что существуют программы, которые способны отличить настоящие процессоры Intel Pentium II с частотой 300 МГц от перемаркированных. Реализуется это с помощью анализа кэш-памяти в картридже процессора. Дело в том, что процессоры Intel Pentium II с частотой 266 МГц используют кэш-память второго уровня без коррекции ошибок - ЕСС, в то время как процессоры Intel Pentium II с частотой 300 МГц поставляются с памятью, которая использует ЕСС. Однако имеется информация о том, что Intel выпускала процессоры Pentium II с частотами 233"и 266 МГц, которые также использовали ЕСС. Они были в основном ориентированы на использование в серверах. Выходит, что проверки на ЕСС не совсем корректны и дают не всегда правильный результат.

Наиболее совершенные и производительные процессоры ряда Intel Pentium II с частотами 350, 400 и 450 МГц также имеют защиты от разгона. В основном - это фиксация множителя. Дополнительная защита связана с использованием определенных микросхем кэш-памяти L2. Данная кэшпамять отлично работает при установленной частоте, однако устойчиво дает сбои при значительном ее повышении. Данная защита еще не отработана окончательно и поэтому не внедрена повсеместно. Однако при ее отработке она может сильно огорчить профессионалов и любителей разгона.

Следует отметить, что реже всего встречаются перемаркированные процессоры среди тех, которые поставляются в коробке - in box. Процессоры в такой поставке значительно труднее подделать, чем, например, варианты OEM.

Существуют и другие способы защиты, которые пока находятся только в перспективных планах фирмы Intel, а также других фирм - производителей процессоров. Планируется ввести разнообразные схемы идентификации в архитектуру процессоров, подобные тем, что используются в процессорах Intel Pentium III. Кроме того, высказываются идеи о полной фиксации всех частотных параметров. К счастью для энтузиастов разгона, все это пока является только перспективными планами фирм - производителей процессоров.

Увеличение частоты шины процессора

С появлением чипсета 1440ВХ фирмы Intel на рынке появилось множество материнских плат, которые построены на базе этого чипсета и впервые стали стандартно поддерживать частоту host-шины - шины процессора 100 МГц. С помощью шины 100 МГц появилась возможность значительного увеличения частоты процессора, а следовательно, и производительности всего компьютера. Некоторые фирмы-производители расширили диапазон возможных частот, введя более высокие значения. В перечне частот появились такие значения, как 133 МГц и даже 150 МГц. Несомненно, это новый шаг сторонников повышения производительности компьютера за счет использования разгона.

Многие материнские платы были выпущены с учетом строгого соответствия спецификациям фирмы Intel (например, платы производства самой фирмы Intel). К сожалению, для таких плат значение 100 МГц для шины процессора может быть выставлено только для процессоров Intel Pentium II, начиная с частоты 350 МГц. Это связано с тем, что процессоры Intel Pentium II и процессоры Intel Celeron сами задают частоту шины. То есть в зависимости от того, какой процессор используется, host-шина будет работать на частоте 66 МГц или 100 МГц.

Но, как и многие другие варианты защиты такого рода, автоматическую установку частоты можно сравнительно легко убрать.

На плате процессора существует специальный контакт, отвечающий за функцию автоматической установки значения частоты шины процессора. Известен его номер. Это контакт В21.

Все что нужно сделать - это отключить контакт В21, что позволит перейти на частоту 100 МГц для процессора с внешней частотой 66 МГц, реализовав разгон процессора и других подсистем компьютера через увеличение частоты host-шины. Выполнить отключение контакта достаточно просто, но работа требует определенной аккуратности. Существует несколько способов.

Во-первых, можно просто перерезать данный контакт. Однако этот способ нельзя назвать лучшим.

Во-вторых, можно заклеить контакт, например, липкой лентой - скотчем. Это не самый лучший вариант, т. к. клей скотча будет постепенно окислять контакт, а также может сползти с контакта на разъем материнской платы.

В-третьих, можно попробовать замазать контакт В21 любым изолирующим лаком. Это может быть, например, специальный цветной или бесцветный нитролак, лак для ногтей или даже паркетный лак. Использование лака является наиболее эффективным способом. Однако если температура окажется слишком высокой, то структура лака может измениться. В результате изолирующие свойства могут быть нарушены или, что не менее плохо, полимерная пленка превратится в клей. Отличные свойства у специального лака на эпоксидной основе. Можно использовать вместо лака эпоксидную смолу.

Добившись высокой частоты шины процессора, необходимо вспомнить и о том, что такие элементы, как процессор, видеоадаптер и т. д. требуют эффективного охлаждения. Как правило, это достигается за счет использования дополнительных средств.

В случае нестабильной работы процессора и невозможности решения данной проблемы необходимо восстановить нарушенный контакт В21.

Для более точного анализа температурного режима компьютера и оценки необходимых средств охлаждения ниже приведены данные о рассеиваемой мощности процессорами Pentium II и Pentium III.

Pentium II

Pentium III (SECC)

Pentium III (SECC2)

Частота, МГц

Кэш-память L2, Кбайт

Максимальная мощность, рассеиваемая платой, Вт

" Телефоны: 239-9141, 234-2867

В настоящий момент на рынке представлено такое разнообразие процессоров, сокетов, чипсетов и прочих легко произносимых, но трудно понимаемых сокращений, что голова идет кругом… Вопрос, что день грядущий нам готовит, практически не поддается решению, сколько не смотри на звездное небо или в roadmap (предначертания) основных игроков. Главным и наиболее деятельным участником Большой игры остается Intel. Не вдаваясь глубоко в историю, сразу оговоримся, что в настоящей публикации речь пойдет лишь об ныне актуальном - шестом поколении процессоров.

Кто есть кто

Родоначальник этой серии процессоров - Pentium Pro, выпущенный в 1995 году. К этому же поколению относятся Pentium II (1997 г.), Celeron, Xeon (1998.) и, наконец, Pentium III (1999 г.). От своих предков эти процессоры отличает архитектура двойной независимой шины и применение “динамического исполнения” (изменения порядка исполнения инструкций). Здесь вторичному кэшу, введенному в процессор (но не во все модели, - например, в Celeron он отсуствует), выделяется отдельная высокоскоростная магистраль. К системе команд Pentium Pro, расширенной относительно Pentium с целью сокращения условных переходов, было добавлено расширение MMX. Так появился Pentium II. Дальнейшее развитие идеи MMX - одновременное исполнение одной инструкции над группой операндов - распространили и на инструкции с плавающей точкой: SSE (Streaming SIMD Extensions) - и это стало основным козырем Pentium III.
На этом закончим краткий исторический экскурс и перейдем непосредственно к форматам и цифрам. Рассмотрим процессоры Intel.

Теперь о том, что эти буквы и цифры означают…

Тип корпуса

SEPP

PPGA

SECC

SECC2

Разъем/гнездо

SIotI

Socket 370

Slot 1 / Slot 2

Slotl

Процессор

Celeron

Celeron

PII, PIIXeon, PIII Xeon

PII, PIII

L2-кэш

Есть (на кристалле)

Есть (на кристалле)

Есть

Есть

Крепление

Есть

N/A

Есть

Есть

Крышка

Отсут-ствует

N/A

С двух сторон

С одной стороны

SEPP - Single Edge Processor Package

PPGA - Plastic Pin Grid Array

SECC - Single Edge Contact Cartridge

SECC2 - вкл. два типа: PLGA SECC2 и OLGA SECC2

PLGA - Plastic Land Grid Array

OLGA - Organic Land Grid Array

Подробнее про то, что есть что - ниже.

Знатоки справедливо попеняют на то, что не указан слот 8, но он использовался исключительно для процессоров Pentium Pro, что в настоящий момент не вполне актуально.

Официальное название

Celeron

Pentium II

Pentium III

Pentium II Хеоn

Pentium III Хеоn

Кодовое название

Mendocino

Deschute

Katmai

Хeon

Tanner

Интерфейс

Slot 1 / Socket 370

Slot 1

Slot 1

Stot 2

Slot 2

Объем L2-кэша

128 Kb

256 Kb.
512 Kb

512 Kb

512 Kb,
1 Mb. 2 Mb

512Kb.
1 Mb. 2 Mb

Быстродействие L2-кэша

На частоте процессора

На половине частоты процессора

На частоте процессора

На частоте процессора

Частота системной шины

65/100 МГц

66/100 МГц

100/133 МГц

100МГц

100 МГц

Быстродействие процессора

300-500 МГц

233-450 МГц

450/500/550 МГц

400/450 MГц

450/500 МГц

Набор команд КNI

Нет

Нет

Есть

Нет

Есть

Процессоры Pentium II сочетают архитектуру Pentium Pro с технологией MMX. По сравнению с Pentium Pro, удвоен размер первичного кэша (16+16 Kb), размер вторичного кэша варьируется от 0 до 2 Mb. В процессоре используется новая технология корпусов - картридж с печатным краевым разъемом, на который выведена системная шина (Single Edge Contact Cartridge - SECC). На картридже размером 14 x 6,2 x 1,6 см установлена микросхема ядра процессора (CPU Core), несколько микросхем, реализующих вторичный кэш, и вспомогательные дискретные элементы (резисторы и конденсаторы). Снятие вторичного кэша с микросхемы процессора позволяет использовать для кэш–памяти и памяти тегов микросхемы сторонних производителей, специализирующихся на выпуске сверхбыстродействующей памяти. Объем вторичного кэша определяется емкостью и числом установленных микросхем памяти. В то же время, сохраняется независимость шины вторичной кэш–памяти, которая тесно связана с ядром процессора собственной локальной шиной.
Первые процессоры Pentium II (до выпуска они имели кодовое название Klamath), появившиеся весной 1997 года, насчитывали около 7,5 млн. транзисторов только в процессорном ядре и выполнялись по технологии 0,35 мкм. Они имели тактовые частоты ядра 233, 266 и 300 МГц при частоте системной шины 66,6 МГц. При этом, вторичный кэш работал на половинной частоте ядра и кэшировал только первые 512 Mb пространства памяти. Для этих процессоров был разработан слот 1, по составу сигналов сильно напоминающий сокет 8 для Pentium Pro. Однако слот 1 позволяет объединять лишь пару процессоров для реализации симметричной мультипроцессорной системы либо системы с избыточным контролем функциональности (FRC). Так что этот процессор представляет собой более быстрый Pentium Pro с поддержкой MMX, но с урезанный поддержкой мультипроцессирования (2 процессора вместо восьми возможных у iP Pro).
Следующее поколение Pentium II, имевшее кодовое название Deshutes, появилось в 1998 году и выполнялось уже по технологии 0,25 мкм. Это позволило поднять тактовую частоту (чем мельче элементы, тем меньше они рассеивают мощность, что особенно критично на высоких частотах). Процессор на 333 МГц имеет частоту шины 66,6 МГц, а процессоры на 350 и выше уже имеют частоту системной шины 100 МГц. Для работы на такой частоте эффективна оперативная память на микросхемах SDRAM (синхронная динамическая память), у которой в середине пакетного цикла данные передаются в каждом такте. Эти процессоры также устанавливаются в слот 1 (опять–таки не более двух в системе). Начиная с процессоров 350 МГц объем памяти, кэшируемой на L2, увеличили до 4 Gb.
Для “самых простых” компьютеров по той же 0,25 мкм–технологии выпустили облегченный вариант процессора, названный Celeron. Первые процессоры Celeron имели частоты ядра 266 и 300 МГц (частота шины - 66 МГц). Вторичный кэш исключен, что заметно отразилось на производительности (системные платы для слота 1 вторичного кэша, естественно, не имеют). При падении цен на системные платы и дешевизне самого Celeron машина начального уровня оказывается действительно очень недорогой. Современные процессоры Celeron, начиная с модели Celeron 300A (с частотой 300 МГц), имеют небольшой (128 Kb) вторичный кэш, установленный на кристалле ядра и работающий уже на полной частоте ядра. Эти процессоры известны также под названием Mendocino. Кроме широко известных особенностей вторичного кэша (либо его нет, либо 128 К), процессор Celeron имеет следующие отличия от Pentium II:
Разрядность шины адреса сокращена с 36 до 32 бит (адресуемая память - 4 Gb).
Контроль паритета шины адреса и шины запроса, ECC–контроль шины данных и контроль неисправимых ошибок шины, а также сигнал инициализации шины отсутствует.
Процессоры предназначены только для одиночных конфигураций: для функционально–избыточного контроля не хватает сигнала FRCERR#, а из сигналов запроса шины остался только BR0#, что не позволяет использовать симметричные двухпроцессорные конфигурации. Правда, умельцы нашли сигнал BR1# и на кристалле ядра в упаковке SEPP, и в корпусе PPGA (здесь его достать совсем просто), что позволяет использовать Celeron в двухпроцессорных системах. Коэффициенты умножения частоты, по крайней мере, официально, фиксированы - сигналы LINT#, A20M# и IGNNE# в качестве задающих коэффициент умножения частоты во время действия RESET# в информационном листке не фигурируют.
Для мощных компьютеров предназначено семейство Xeon. Для них ввели новый слот 2, который (вместе с интерфейсом нового процессора) позволяет строить как избыточные системы с FRC, так и симметричные 1–, 2–, 4– и даже 8–процессорные системы. Частота шины - 100 МГц, частота ядра - 400 МГц и выше, вторичный кэш, как и в Pentium Pro, работает на частоте ядра. Объем вторичного кэша - 512 Kb, 1 или 2 Mb при кэшировании до 64 Gb (все адресное пространство при 36–битной адресации). Процессоры Xeon отличаются не только большей мощностью, но и большими размерами - 15,2 x 12,7 x 1,9 см. Процессоры Xeon имеют новые средства хранения системной информации. Постоянная (только для чтения) память процессорной информации PIROM (Processor Information ROM) хранит такие данные, как электрические спецификации ядра процессора и кэш–памяти (диапазоны частот и питающих напряжений), S–спецификацию и серийный 64–битный номер процессора. По инструкции идентификации CPUID такая информация недоступна. Энергонезависимая память Scratch EEPROM предназначена для занесения системной информации поставщиком процессора (или компьютера с этим процессором) и может быть защищена от последующей записи. Процессор оборудован термодатчиком (термодиод на кристалле ядра) с программируемым устройством контроля температуры. Это устройство имеет аналого–цифровой преобразователь, калибруемый по термодиоду конкретного процессора на этапе тестирования картриджа. Константа настройки термометра заносится в PIROM. Устройство термоконтроля программируется - задается частота преобразований и пороги температуры, по достижении которых вырабатывается сигнал прерывания. Для взаимодействия с PIROM, Scratch EEPROM и устройством термоконтроля процессор имеет дополнительную последовательную шину SMBus (System Management Bus), основанную на интерфейсе I2C.
Новинка 1999 года - процессоры Pentium III - являются дальнейшим развитием Pentium II. Их главным отличием является расширение набора SIMD–инструкций - SSE (Streaming SIMD Extensions), основанное на новом блоке 128–разрядных регистров. Кроме того, у них расширена инструкция CPUID, по которой теперь можно получить и уникальный 64–битный идентификатор процессора (тот, что у Xeon можно было прочесть по SMBus). “Простые” Pentium III устанавливаются в слот 1, Pentium III Xeon - в слот 2. По характеристикам вторичного кэша и возможностям мультипроцессорных конфигураций эти процессоры аналогичны своим предшественникам Pentium II и Pentium II Xeon. Частота системной шины - 100 МГц.

Корпуса, сокеты и слоты

Шестое поколение процессоров отличается большим разнообразием конструктивов - одних только коннекторов имеется 4 типа: сокет 8, слот 1, слот 2 и сокет–370. Корпусов (упаковок) тоже много - SPGA, SECC, SECC 2, SEPP, PPGA (это, не считая мобильных процессоров). Попробуем все это многообразие “разложить по полочкам”.
Проблемы с изготовлением и размещением вторичного кэша Pentium Pro в одной микросхеме с ядром были решены с переходом на новый конструктив - картридж с краевым печатным разъемом SECC (Single Ended Edge Connector). Картридж представляет собой печатную плату (субстрат), на которую с двух сторон устанавливаются компоненты поверхностного монтажа - кристалл ядра и стандартные микросхемы вторичного кэша (собственно кэш–памяти и тегов). Вариации с быстродействием процессора и размером кэша выливаются лишь в изменение комплектации картриджа (сколько и каких микросхем установлено). Для процессоров Pentium II был разработан слот 1 - щелевой разъем с 242 контактами, впоследствии переименованный в SC242. В этот же слот устанавливаются и процессоры Celeron, и Pentium III. Слот позволяет работать с частотой системной шины 66 или 100 МГц. В системах с SMP возможно использовать не более двух процессоров. Для слота 1 (SC242) предназначены процессоры с разными названиями “упаковки”:

SECC - картридж процессоров Pentium II и Pentium III. Представляет собой печатную плату с установленными компонентами. К микросхемам ядра и кэша прилегает термопластина (thermal plate), распределяющая тепло, к которой снаружи крепится вентилятор (или иное охлаждающее устройство). Спереди картридж закрыт крышкой. Допустимая температура пластины 70…75 °С (в зависимости от частоты процессора).

SECC 2 - картридж для тех же процессоров, появился, начиная с частоты 350 МГц (но для тех же частот выпускаются и модели в SECC). От предыдущего отличается тем, что не имеет термопластины - внешние “холодильники” прижимаются прямо к корпусам микросхем ядра и кэша, что снижает тепловое сопротивление и повышает эффективность охлаждения. Сами процессоры, устанавливаемые на SECC 2, могут быть как в корпусах PLGA (Plastic Land Grid Array), так и в OLGA (Organic Land Grid Array). Последние применяются для процессоров с частотой 400 МГц и выше и отличаются более высокой допустимой температурой - 90 °С против 80 °С, допустимых для PLGA. Заметим, что допустимая температура микросхем кэша - 105 °С.

SEPP (Single Edge Processor Package) - картридж процессоров Celeron, не имеющий ни термопластины, ни крышки. Внешний радиатор прижимается прямо к корпусу ядра, а микросхем вторичного кэша у Celeron’ов нет. В процессорах Celeron идея упаковки в картридж себя изжила - одну микросхему ядра легко упаковать и в обычный корпус со штырьковыми выводами. Это получается примерно на $10 дешевле, чем в полупустой SEPP. Так появился Celeron в корпусе PPGA (Plastic Pin Grid Array), напоминающий по виду добрый старый Pentium, и сокет–370 (по числу выводов). От сокета 7 с той же шахматной матрицей 37x37 он механически отличается большим количеством контактов - 6 полных рядов (против 5, и то неполных) и двойным ключом (кроме вывода A1 отсутствует и AN37). Электрически он отличается радикально - ни о какой совместимости с сокетом 7 и речи быть не может. Процессоры в PPGA от своих SEPP–братьев отличаются нюансами интерфейса питания, которые учтены в распространенных переходниках сокет–370 - слот 1. Эти переходники позволяют использовать дешевые процессоры в PPGA в платах со слотом 1, а при простой доработке переходника - даже в двухпроцессорных конфигурациях.
Процессоры Pentium II Xeon и Pentium III Xeon тоже выпускаются в картриджах SECC, но гораздо большего размера. Для этих процессоров предназначен слот 2 с числом контактов 330, известный и как SC330.

Чипсеты

Но все эти шедевры инженерной мысли не являются самодостаточными изделиями. Как короля играет свита, так и по настоящему мощному процессору нужно соответствующее окружение - чипсет.
Итак, современные системные платы выпускаются на следующих наборах микросхем (от Intel): Intel 440BX, Intel 440ZX, Intel 440LX, Intel 440EX, Intel 440GX, Intel 440NX.

Чипсет

440GХ

440ВХ

440ZX

440LX

440ЕХ

450NX

Целевой процессор

PII Xeon /

PIII Xeon

PII / PIII

Сеlеron

Celeron

Celeron

PII Xeon /

РIII Хeon

Другие поддерж. процессоры

PII

Celeron

PII

PII

PII

PII

Макс. кол-во

процессоров

2

2

l

2

1

1

Частота системной шины

100 МГц

66/100

МГц

66/100 МГц

66 МГц

66МГц

100 МГц

Количество слотов памяти

4

4

2

4

2

8

Максимальный объем памяти

2 Gb

1 Gb

256

Mb

1 Gb

256 Mb

8 Gb

Тип памяти

SDRAM

SDRAM

SDRAМ

EDO / SDRAM

EDO/ SDRAM

EDO

Поддержка ЕСС

Есть

Есть

Нет

Есть

Heт

Есть

Шина PСI

(разрядность/ частота, МГц)

32 / 33

32 / 33

32 / 33

32 / 33

32 / 33

32 / 33 64 / 33

Количество bus master PCI-устройств

5

5

4

4

3

6

Поддержка AGР

N/A

Поддержка ide-контроллера

АТАЗЗ

АТAЗЗ

ATA33

АТАЗЗ

ATA33

АТАЗЗ

В интеловских наименованиях запутаться немудрено. Вкратце: i440LX - базовый чипсет, применявшийся для Pentium II плат еще в то время, когда о системной шине в 100 МГц никто и не помышлял.

  • i440EX - его облегченная версия, выпущенная как раз для работы с Celeron.
  • i440BX - текущий базовый чипсет, используемый в Pentium II/III системный платах и сегодня, а i440ZX - его облегченная версия.

В чем же заключаются эти “облегчения” и как они соотносятся между собой можно понять из вышеприведенной таблицы.
Как нетрудно заметить, все чипсеты имеют близкие характеристики, однако различия все–таки есть. Первое, что надо отметить, это то, что чипсеты i440LX и его упрощенная версия, i440EX, являются уже морально устаревшими и не поддерживают системную шину 100МГц. Это значит, что платы на этих наборах микросхем не смогут функционировать со 100–мегагерцовыми процессорами, то есть имеют меньшие возможности по последующему апгрейду. Упрощенность i440ZX по сравнению с i440BX, также как и i440EX (по сравнению с i440LX), состоит, как нетрудно заметить, в меньшем количестве поддерживаемых банков памяти, меньшем ее максимальном объеме и сокращенном числе Bus Master устройств. Это означает, что платы на lite–версиях чипсетов будут иметь меньше гнезд для установки модулей DIMM (только 2 у i440ZX и i440EX) и меньшее количество слотов PCI (обычно - не более четырех у ZX и не более трех у EX).
Наборы микросхем на базе i440GX и i440NX являются специализированными для процессоров Xeon и, хотя имеют совместимость с более дешевыми моделями процессоров, вряд ли могут рассматриваться в качестве базы для бюджетных систем.
Чем же в таком случае обусловлено применение производителями системных плат более старых и простых версий чипсетов, вместо установки i440BX с максимальными возможностями. Ответ здесь прост - дело в стоимости наборов микросхем. i440BX имеет самую высокую цену, и, естественно, платы на нем будут стоить несколько дороже. Хотя, если плата приобретается с расчетом на длительное использование, лишними $10 за дополнительные возможности расширения и апгрейда пожертвовать не жалко. Тем не менее, материнские платы и на i440LX, и даже на i440EX найдут свое применение в нетребовательных офисных системах.

Non Intel Процессоры

Но не Intel–ом единым жив этот рынок. Представляем остальных участников.

Rise

Самый молодой из участников. Объявил о создании и выпуске целой гаммы процессоров под слот 7. В настоящее время доступен Rise mP6 266 - x86–совместимый Socket 7 процессор, рассчитанный на рынок дешевых компьютеров и ноутбуков (ну очень дешевых).

Его спецификация:

1. Электрически совместим сo спецификацией Socket 7.

4. Чип, производимый по технологии 0.25 мкм.
5. В маркировке используется Pentium Rating (PR рейтинг), основанный на сравнении производительности с Intel Pentium MMX.
6. Выпускаются или планируются модели с PR 366, 333, 266, 233 и 166 МГц.
7. Системная шина 83, 95 и 100 МГц (также поддерживается и 60, 66 и 75 МГц).
8. Коэффициенты умножения 2x, 2.5x, 3x, 3.5x.
9. Напряжение питания ядра - 2.8 В.
10. L1–кэш объемом 16 Kbа - по 8 Kb на код и данные.
11. Два конвейерных блока FPU.
12. Суперскалярный модуль MMX.
13. Три суперконвейерных целочисленных блока.
14. Корпус 296 Pin BPGA (Socket 7) или 387 Ball BGA.
15. Дополнительные возможности по энергосбережению.

Выпускается в двух различных корпусах: для Socket 7 и специально разработанном для мобильных систем Ball BGA. В планах компании значится выпуск mP6 II (новой версии mP6) в варианте под Socket370 со встроенной поддержкой SSE инструкций.

IDT

Еще одна самобытная компания. Вошла на рынок с процессором С6 (Winchip), для socket 7, который являлся по сути усовершенствованной 486 моделью. Среди несравненных плюсов - низкая цена и обратная совместимость по питанию, т.е. для реализации ММХ инструкций ему не требовалось раздельное и пониженное питание. Позволял продлить жизнь офисным системам. Ныне IDT предлагает Winchip 2.

Вот спецификация этого процессора, ориентированного на самый нижний сегмент рынка:

1. Устанавливается в разъем Socket7, с которым совместим электрически и физически.
2. Программно совместим с семейством Intel Pentium и всеми x86 приложениями.
3. Совместим с технологией MMX.
4. L1–кэш 64 Kb - по 32 Kb на код и данные.
5. Два суперскалярных блока MMX.
6. Системная шина 66 и 100 МГц.
7. Небольшой размер ядра - 58 кв.мм при технологии 0.25 мкм. Выпускаются также версии чипа и по 0.35 мкм технологии.
8. Блок 3DNow!. Имеется 2 конвейера, оперирующие с парами вещественных чисел одинарной точности 3DNow! поддерживается в DirectX 6.0 и выше.
9. Выпускаются следующие модели - 225 МГц (75–мегагерцовая шина), 233 МГц (100–мегагерцовая шина), 240 МГц (60–мегагерцовая шина), 250 МГц (83 и 100–мегагерцовая шина), 266 МГц (66 и 100–мегагерцовая шина), 300 МГц (75 и 100–мегагерцовая шина).
10. Напряжение ядра - 3.3 или 3.5В в зависимости от партии.

Cyrix

Он же National Semiconductor, прекратил работу и объявил о выходе с рынка микропроцессоров. Однако, им выпущено изрядное количество изделий, и не упомянуть о нем в этом обзоре было бы несправедливо.

Краткая характеристика 6x86MX и M II:

1. Возможные коэффициенты умножения внешней частоты - 2x, 2.5x, 3x, 3.5x
2. Кэш L1 - 64 KB общий для команд и данных
3. Шина - 64–разрядная внешняя шина данных, 32–разрядная конвейерная шина данных
4. Разъем - Socket 7 (P55C - Intel Pentium MMX)
5. Совместимость - Протестирован на совместимость с Windows 95/98, Windows NT, UNIX, OS/2
6. сопроцессор - 80–битный с 64–битным интерфейсом и поддержкой параллельного исполнения команд.
7. Набор команд - х87; IEEE–754 совместимый
8. Напряжение питания - 2.9 V ядро; 3.3 V ввод/вывод

Процессор M II представляется достаточно выгодным приобретением для офиса. Слабое место - маломощный сопроцессор, но при работе со стандартными офисными приложениями - замедление практически отсутствует.

Cyrix Media GX, стоящий особняком вне ходовых архитектур и представляющий собой практически компьютер на чипе (точнее говоря, на двух). По сути, это процессор, расположившийся в одной упаковке с двухуровневой кэш–памятью, контроллером основной памяти, эмулятором видео, дополняемый внешним контроллером периферии и звука на чипе–компаньоне. Media GX заслуживает упоминания хотя бы потому, что именно с его помощью (в составе модели Compaq Presario 2100) в свое время был взломан одиозный барьер $1000 для настольных систем. Сегодня нишей Cyrix Media GX являются в основном недорогие мини–ноутбуки.

AMD

Не упомянуть об этом заслуженном производителе, о неутомимом борце с Intel, просто невозможно. Да кто и не знает этого бодрого старика Крупского?

Итак. Есть из чего выбирать: AMD K6–2, AMD K6–2 3D Now!, K6 3D+ (K6–3)с интегрированным в процессор кэшем второго уровня 256 Kb, работающем на частоте процессора, и, наконец, долгожданный К7. За исключением К7, устанавливаемого в специальный slot А, геометрически, но не электрически совместимый со slot1 от Intel, остальные модели предназначены для работы в socket 7 (super).

Ценовая война AMD и Intel пагубно сказывается на небольших компаниях, которые, теоретически, могли бы привнести свежее дыхание на этот технологически застоявшийся рынок.

Чипсеты

VIA

Для сокета 370 существует вполне успешное обрамление от неинтеловского производителя - VIA Apollo Pro. Этот набор микросхем по основным возможностям не уступает i440BX, также имеет поддержку до гигабайта памяти в 8 банках и обслуживает до 5 Bus Master устройств. Единственное традиционно слабое место чипсетов от VIA, унаследованное и в Apollo Pro Plus, это скорость работы с SDRAM. Но у чипсета от VIA есть и преимущество перед интеловскими продуктами. Заключается оно в возможности тактовать шину памяти не от системной шины, а от AGP, что позволяет использовать старые, неработающие на 100 МГц модули памяти при частоте системнойшины 100 МГц.

ALI

Сразу за появлением чипсета VIA Apollo Pro, аналогичный чипсет представила и компания ALI, являющаяся подразделением Acer Group. Его название - ALI Aladdin Pro II. Сама компания ALI позиционирует свой Aladdin Pro II как дешевую альтернативу i440BX, то есть как чипсет со 100–мегагерцовой шиной для настольных систем. ALI Aladdin Pro II сможет достойно конкурировать с i440BX. В чипсете от ALI поддерживаются все то, что есть и в 440BX, включая многопроцессорность и ECC. Кроме того, чипсет Aladdin Pro II позволяет адресовать большее количество оперативной памяти. Однако, ALI оставила контроллер IDE еще от первых пентиумных наборов микросхем, и поэтому IDE–жесткие диски будут работать медленно.
Сравнительно с другим неинтеловским набором микросхем, VIA Apollo Pro, Aladdin Pro II наверняка обеспечит более высокую производительность. Но в чипсете от VIA поддерживается большее число новых технологических решений. Так, VIA Apollo Pro может работать с перспективной быстрой памятью типа DDR SDRAM–II, а также, он уже сейчас поддерживает UltraATA–66, еще не утвержденный окончательно протокол работы с IDE–устройствами. Кстати, в отличие от Aladdin Pro II, Apollo Pro соответствует спецификации PC98.

Вместо послесловия…

Итак, вопрос–то был, что выбрать, чтобы не было мучительно больно или жалко…

Однозначного ответа тут нет. Без сомнения, если необходима надежная, производительная, возможно многопроцессорная система, то это будет процессор - iP II или III в нужном количестве, а в качестве материнской платы мы рекомендовали бы продукцию SuperMicro (подробнее обо всех прелестях этого производителя можно узнать, например, на нашем сайте http://www.microlab.ru или позвонив нам в офис). И это, пожалуй, единственное решение в котором мы абсолютно уверены. Что выбрать Вам, будет ли ваша конфигурация разгоняться, если да, то насколько - это придется решать самостоятельно, мы постарались несколько систематизировать информацию. Думайте сами, решайте сами…

Иметь или…

Сравнительные характеристики чипсетов VIA. SiS и Ali

Чипсет

MVP4

Apollo Pro

Apollo Pro+

530

620

М1541

Произво-дитель

VIA

VIA

VIA

SiS

SiS

Ali

Целевой процессор

Socket 7

PII

PII

Socket 7

PII

Socket7

Другие поддерж. процессоры

NA

Celeron

Celeron

NA

Celeron

NA

Частота системной шины

100 MГц

100 MГц

100 МГц

66 МГц

100 МГц

100 МГц

Количество слотов памяти

3

4

4

3

3

4

Максималь-
ный объем памяти

768 МБайт

1 ГБайт

1 ГБайт

768 МБайт

768 МБайт

1 Гбайт

Тип памяти

EDO/ SDRAM

SDRAM

SDRAM

SDRAM

sdram

EDO/ SDRAM

Поддержка ЕСС

Есть

Есть

Есть

Ecть

Ecть

Есть

Количество
bus master PCI-устройств

4

5

5

4

4

5

Шина РСI (разрядность)/ частота, МГц)

32/ 33

32/ 33

32/33

32/33

32/33

32/ 33

Поддержка IDE-контроллера

ATA 33

ATA ЗЗ

АТА 33

АТA 33

АТА ЗЗ

АТА 33

ВведениеНаши читатели нередко задают нам один и тот же вопрос: сколько вычислительных ядер должен иметь современный процессор? К сожалению, однозначно ответить на него мы не можем, целесообразность применения многоядерных процессоров в том или ином случае сильно варьируется и зависит в первую очередь от того рода задач, с которым собирается иметь дело пользователь. Как показывают тесты, четырёхъядерные процессоры оказываются весьма эффективны при рендеринге или кодировании видео, но большинство игр, офисные приложения или даже графические редакторы не могут полностью загрузить работой четыре вычислительных ядра одновременно. Более того, существует немалая доля приложений, создатели которых и вовсе не считают нужным распараллеливать вычислительную нагрузку. Например, некоторые звуковые кодеки, ряд игр, интернет-браузеры и даже Adobe Flash Player используют лишь одно процессорное ядро. Именно поэтому правильный выбор процессора во многих случаях оказывается не столь уж и простой задачей, особенно если принять во внимание тот факт, что в среднем ценовом сегменте производители процессоров одновременно предлагают модели с различным количеством ядер: двумя, тремя и четырьмя.

Тем не менее, именно двухъядерные процессоры следует сегодня считать наиболее универсальным вариантом. Работа для двух вычислительных ядер найдётся практически в любом компьютере: если даже активное приложение использует лишь однопоточные алгоритмы, второе ядро, свободное от нагрузки, окажется как нельзя кстати для нужд операционной системы, которая благодаря ему сможет обеспечить более быструю реакцию на действия пользователя. В пользу двухъядерных процессоров говорит и статистика: почти половина современных компьютеров оснащена ими. И хотя доля таких ПК в последнее время демонстрирует тенденцию к сокращению под давлением понижения цен на процессоры с большим числом ядер, число компьютеров с двухъядерными процессорами почти вдвое больше, чем с процессорами с четырьмя ядрами.

Иными словами, именно двухъядерные процессоры продолжают оставаться на пике внимания современных пользователей. Говоря же в этом ключе о конкретных предложениях производителей, следует заметить, что более выгодно смотрится линейка двухъядерных продуктов компании Intel. Микропроцессорный гигант предлагает гораздо более широкий спектр решений, включающий целых три класса двухъядерных процессоров разных ценовых диапазонов: Celeron, Pentium и Core 2 Duo. Компания AMD пока может ответить на это лишь двухъядерными Sempron и Athlon X2, которые с точки зрения своих потребительских качеств никак не могут быть противопоставлены линейке Core 2 Duo.

Таким образом, вопрос о выборе оптимального двухъядерного процессора на альтернативной основе оказывается уместен только в том случае, если речь идёт о предложениях дешевле трёх тысяч рублей . Именно такие недорогие двухъядерные процессоры семейств Athlon X2 и Pentium в сегодняшних условиях оказываются востребованы весьма значительной группой пользователей, приобретающих или собирающих системные блоки общей стоимостью в пределах 15 тыс. рублей. Этой категории покупателей мы и адресуем нашу сегодняшнюю статью, в которой речь пойдёт о противостоянии процессорных семейств AMD Athlon X2 и Intel Pentium Dual-Core.

AMD Athlon X2

В рядах двухъядерных процессоров, предлагаемых компаний AMD, не так давно произошли значительные изменения. Так, этот производитель сместил акценты на Athlon X2 серии 7000 – процессоры, в основе которых лежит ядро Kuma. В результате, в дополнение к Athlon X2 7750, на рынке теперь доступна и более быстрая модель, процессор Athlon X2 7850, частота которого достигает 2,8 ГГц. Вместе с этим, основная масса процессоров Athlon X2 с ядрами Windsor и Brisbane отправлена на свалку истории. Причины этих изменений весьма прозаичны: производить ядра специально для дешёвых двухъядерных моделей становится накладно, поэтому большее распространение находят процессоры, в основе которых используются бракованные четырехъядерные полупроводниковые заготовки.

Таким образом, в ассортименте AMD число двухъядерных процессоров с микроархитектурой K10 (Stars), обладающих, среди прочего, и кэш-памятью третьего уровня объёмом 2 Мбайта, неуклонно увеличивается. При этом следует иметь в виду, что Athlon X2 серии 7000 представляют собой производную от процессоров Phenom X4 ещё первого поколения, с ядром Agena, для выпуска которых используется старый 65-нм технологический процесс. Это означает, что Athlon X2 серии 7000 работают только в Socket AM2/AM2+ материнских платах и поддерживают лишь DDR2 память. Впрочем, так как предназначены они для использования в недорогих компьютерах, такие ограничения вполне разумны.

Основные характеристики процессоров Athlon X2 с микроархитектурой K10 (Stars) можно почерпнуть, например, из приведённого ниже скриншота диагностической утилиты CPU-Z.


Никаких неожиданностей здесь нет: старшая модель Athlon X2 7850 оказалась лишь на 100 МГц быстрее рассмотренной нами ранее предшественницы и работает на частоте 2,8 ГГц. Всё остальное так и осталось по-старому. Поэтому, от Athlon X2 серии 7000 ждать чудес явно не следует: производительность этой линейки отличается от быстродействия Athlon X2 с микроархитектурой K8 незначительно, разгоняются такие процессоры достаточно плохо, их тепловыделение сравнительно высоко. Но, тем не менее, выбирать не приходится, и тем, кто решится связаться с двухъядерными процессорами AMD сегодня, придётся мириться со всеми этими недостатками, по крайней мере, до тех пор, пока компания не предложит двухъядерные процессоры, использующие более новые 45-нм ядра.

Intel Pentium

В отличие от AMD, компания Intel давно внедрила 45-нм технологический процесс при производстве практически всех своих моделей, за исключением разве только совсем бюджетных процессоров Celeron. Что же касается интересующих нас в первую очередь Pentium, то все представители этой линейки с процессорными номерами E5000 основываются на 45-нм ядре Wolfdale-2M, получающемся при отключении части кэш-памяти в полноценных ядрах Wolfdale, которые используются в процессорах серии Core 2 Duo.

В итоге двухъядерные процессоры, противостоящие (по крайней мере, с точки зрения цены) семейству Athlon X2, обладают кэш-памятью второго уровня объёмом 2 Мбайта, что в три раза меньше кэш-памяти «полноценных» Wolfdale. Но это далеко не единственная характеристика, претерпевшая ухудшение при получении из Core 2 Duo в 3-4 раза более дешёвого процессора. Pentium серии E5000 используют медленную 800-мегагерцовую FSB и имеют более низкие, чем Core 2 Duo, тактовые частоты.

В результате, основные характеристики процессора Pentium E5400, венчающего модельный ряд E5000, отображаются на скриншоте диагностической утилиты CPU-Z следующим образом:


Говоря о семействе процессоров Pentium, хочется подчеркнуть ещё две их особенности, о которых частенько забывают покупатели. Во-первых, в отличие от всех других LGA775-процессоров с 45-нм ядрами поколения Core, Pentium Dual-Core не имеют поддержки набора команд SSE4.1. Напомним, что этот набор инструкций включает в себя 47 команд и используется некоторыми современными видеокодеками. Впрочем, особо расстраиваться по этому поводу явно не следует - как минимум из-за того, что семейство Athlon X2 также SSE4.1 не поддерживает.

Вторым же, более серьёзным недостатком процессоров Pentium является отсутствие поддержки технологии виртуализации. И если раньше этот факт мало волновал большинство пользователей, то теперь ситуация вполне может поменяться на противоположную. Дело в том, что технология виртуализации используется режимом эмуляции Windows XP в грядущей операционной системе Windows 7, предназначенном для обеспечения работы приложений, по каким-либо причинам с Windows 7 несовместимых. Отсутствие же у процессора соответствующего свойства ставит крест на возможности запуска в будущей операционной системе виртуальной машины со стареющей, но, тем не менее, широко распространённой ОС. Впрочем, вряд ли несовместимых приложений будет много - как показывает практика, в основном это либо старые игры, либо какое-то узкоспециализированное и малораспространённое ПО.

Основные характеристики протестированных процессоров

Ставя перед собой цель сравнения актуальных двухъядерных процессоров стоимостью порядка 2-3 тысяч рублей, мы сосредоточили внимание на Athlon X2 7850 и 7750, а также семействе Pentium E5000. К сожалению, пока мы не смогли получить в нашу лабораторию новый процессор Pentium E6300, так что тесты этой модели временно откладываются. Зато в число соперников мы добавили старый процессор AMD, Athlon X2 6000, который, несмотря на свою принадлежность к микроархитектуре K8 и отсутствие в официальном прайс-листе AMD, всё ещё способен тряхнуть стариной и продемонстрировать уровень производительности, вполне укладывающийся в рамки, определяемые интересующей нас ценовой категорией. Итак, представляем вашему вниманию полный перечень протестированных моделей.



Надо заметить, что, хотя официальные цены ниже у AMD, на практике на момент подготовки статьи в нашем прайс-листе Pentium DC E5200 был на семьдесят рублей дешевле, нежели Athlon X2 7750.

Мы не стали добавлять в наше сравнение двухъядерные Intel Celeron, так как и с точки зрения потребительских характеристик, и с точки зрения цены они находятся на более низкой ступени процессорной иерархии.

Описание тестовой платформы

Для тестирования перечисленных в приведённой таблице продуктов были собраны две аналогичные платформы, предназначенные для Socket AM2 и LGA775 процессоров соответственно. В этих платформах использовались следующие компоненты:

Материнские платы:

ASUS P5Q Pro (LGA775, Intel P45 Express, DDR2 SDRAM);
Gigabyte MA790GP-DS4H (Socket AM2+, AMD 790GX + SB750, DDR2 SDRAM).


Оперативная память: GEIL GX24GB8500C5UDC (2 x 2Гбайт, DDR2-800 SDRAM, 5-5-5-15).
Графическая карта: ATI Radeon HD 4890.
Жёсткий диск: Western Digital WD1500AHFD.
Операционная система: Microsoft Windows Vista x64 SP1.
Драйверы:

Intel Chipset Software Installation Utility 9.1.0.1007;
ATI Catalyst 9.4 Display Driver.

Несмотря на то, что процессоры AMD Athlon X2 7850 и 7750 могут работать с DDR2-1067 памятью, их тестирование, также как и всех остальных участников, мы выполняли c DDR2-800 SDRAM. Такое решение обусловлено не столько желанием поместить все рассматриваемые процессоры в аналогичные условия, сколько экономической целесообразностью. Скорость памяти мало влияет на итоговое быстродействие системы, поэтому при сборке недорогих компьютеров разумнее использовать более дешёвую, а не более высокочастотную память.

Производительность

Общая производительность















Результаты, показываемые процессорами при измерении комплексной производительности в типичных наборах приложений, не преподносят никаких сюрпризов. В целом, процессоры располагаются на диаграммах сообразно их стоимости. Отметить разве только стоит превосходство Athlon X2 в тестовом сценарии «Productivity», что говорит о востребованности большого объёма кэш-памяти в типичных офисных приложениях, а также преимущество моделей с микроархитектурой Core при построении и обработке трёхмерных изображений.

Кстати, отдельного упоминания заслуживает ощутимое превосходство новых Athlon X2 с ядром Kuma над процессором старого поколения Athlon X2 6000. Этот факт может служить яркой иллюстрацией превосходства микроархитектуры K10 (Stars) над предшествующей ей микроархитектурой K8. Впрочем, величина этого превосходства явно недостаточна для того, чтобы предлагаемые AMD двухъядерные процессоры смогли бы конкурировать с семейством Core 2 Duo - они проигрывают по быстродействию даже старшим представителям модельного ряда Pentium.

Игровая производительность












Производительность в современных играх в первую очередь определяется мощностью графического ускорителя. А процессоры со стоимостью 2-3 тысячи рублей, как можно видеть по полученным результатам, вполне справляются с той нагрузкой, которая может возлагаться на них в игровых приложениях, и обеспечивают приемлемую скорость. Это значит, что для недорогих игровых систем процессоры Athlon X2 и Pentium подходят хорошо, а свободные деньги лучше направить на покупку более серьёзной видеокарты.

Впрочем, семейство Pentium в целом демонстрирует всё же чуть более высокие показатели, чем Athlon X2 серии 7000, которые, хотя это и выглядит странным, проигрывают выпущенному почти два с половиной года назад Athlon X2 6000.

Производительность при кодировании видео






В очередной раз мы убеждаемся в том, что кодек DivX лучше оптимизирован для процессоров с микроархитектурой Core. Зато при использовании набирающего популярность кодека x264 победа оказывается на стороне процессоров Athlon X2, являющихся носителями микроархитектуры K10 (Stars).

Прочие приложения



Скорость выполнения финального рендеринга в 3ds max оказывается значительно выше, если сердцем системы является процессор семейства Pentium. Очевидно, что микроархитектура Core, предполагающая обработку четырёх, а не трёх команд за такт, более приспособлена для тяжёлой вычислительной работы.



Такой же вывод можно сделать и при измерении скорости компьютерного моделирования процесса свёртывания белков, выполняемого клиентом популярной системы распределённых вычислений Folding@Home.



Не лучше для двухъядерных процессоров AMD обстоит дело и со скоростью работы в Adobe Photoshop. Athlon X2 поколения K10 (Stars) хоть и увеличили своё быстродействие по сравнению с предшественниками, для успешной конкуренции с процессорами Intel с микроархитектурой Core этого всё ещё недостаточно. Впрочем, откровением для наших читателей это не является: Photoshop, 3ds max и Folding@Home давно зарекомендовали себя как задачи, неблагоприятные для любых процессоров, предлагаемых компаний AMD.



Ещё одним таким приложением является Excel, счёт в котором выполняется процессорами Intel почти в два раза быстрее. Кстати, Excel относится и к тем приложениям, в которых новые Athlon X2 7850 и 7750 проигрывают в производительности и своим предшественникам с микроархитектурой K8.



Не порадуют приверженцев продукции компании AMD и результаты в WinRAR. При переходе к новой архитектуре архивация стала выполняться процессорами этого производителя медленнее. В результате, если ранее в тестах WinRAR процессоры Athlon X2 смотрелись значительно лучше конкурирующих предложений Intel, то теперь речь идёт лишь о мизерном преимуществе.

Энергопотребление

Процессоры Phenom, выпускавшиеся по 65-нм технологическому процессу, не могли похвастать хорошими показателями экономичности. По этому параметру они существенно проигрывали даже четырёхъядерным процессорам Intel, оснащённым 65-нм ядрами. Теперь же AMD предлагает нам сопоставить то же самое ядро старых Phenom, правда, усечённое до двухъядерного варианта, с современными 45-нм процессорами Intel, в основе которых лежит изначально двухъядерный полупроводниковый кристалл. Совершенно очевидно, что ничего хорошего из этого не получится, и исход сравнения энергопотребления Athlon X2 и Pentium предрешён. Тем не менее, мы решили всё-таки взглянуть на цифры, чтобы оценить «масштабы бедствия».

Приводимые ниже цифры представляют собой полное энергопотребления тестовых платформ в сборе (без монитора) «от розетки». Во время измерений нагрузка на процессоры создавалась 64-битной версией утилиты LinX 0.5.8. Кроме того, для правильной оценки энергопотребления в простое мы активировали все энергосберегающие технологии: C1E, Cool"n"Quiet и Enhanced Intel SpeedStep.



В состоянии покоя активируются все процессорные технологии энергосбережения, поэтому энергопотребление систем различается не так сильно. Тем не менее, превосходство процессоров, ядра которых производятся по более современному технологическому процессу, очевидно даже в этом случае.



Под нагрузкой же картина усугубляется. Соперничать по характеристике «производительность на ватт» с Pentium бесполезно, недаром эти процессоры так часто используются в качестве основы HTPC. Системы на базе Athlon X2 с 65-нм ядром проигрывают им более чем ощутимо, разница достигает десятков ватт, поэтому, если энергопотребление и тепловыделение системы для вас не безразличны, на двухъядерных процессорах AMD можно смело поставить крест.

Разгон

Фиаско, которое терпят процессоры Athlon X2 при сопоставлении их энергопотребления с энергопотреблением конкурирующих предложений, сопровождается и плачевными результатами разгона. Виной тому, естественно, всё то же старое 65-нм ядро Kuma, которое уже неоднократно подтверждало свою враждебность разгону.

В данном случае мы проверили разгонные возможности серии Athlon X2 7000, попытавшись достичь максимальной тактовой частоты в системе со старшим в модельном ряду процессором Athlon X2 7850. Разгон проводился на той же тестовой платформе, что и тесты производительности. В качестве системы охлаждения был использован воздушный кулер Scythe Mugen.

Впрочем, даже использование сравнительно мощного кулера и повышение напряжения питания процессора со штатных 1,3 до 1,475 В не позволило добиться стабильной работы на частоте выше, чем скромные 3,25 ГГц.


Поэтому тот факт, что процессоры Athlon X2 7850 и 7750 относятся к серии Black Edition и потому имеют незаблокированный множитель – утешение слабое. В реальности эти процессоры оказываются способны лишь на небольшое увеличение частоты при разгоне, не превышающее 20-25 %.

Другое дело Intel Pentium. Лежащее в основе этих моделей 45-нм ядро Wolfdale является одним из лучших вариантов в плане разгона на сегодняшний день. В результате, повышение напряжения питания с 1,25 до 1,45 В дало нам возможность без особых осложнений разогнать процессор Pentium E5400 до частоты 4,0 ГГц с использованием для отвода тепла того же Scythe Mugen.


Следует подчеркнуть, что невысокая частота FSB, используемая процессорами Pentium в номинальном режиме, играет на руку оверклокерам. Так как двухъядерные процессоры Intel лишены свободного множителя, орудовать при разгоне приходится исключительно частотой шины. Но даже в нашем случае, когда частота процессора в разгоне была увеличена почти на 50 %, частота FSB достигла лишь 297 МГц, что, вне всяких сомнений, под силу любым материнским платам, включая и недорогие продукты, основанные на «урезанных» наборах логики, например, Intel P43.

Таким образом, разгонять Pentium лишь немногим сложнее, чем процессоры Athlon X2, относящиеся к серии Black Edition. А вот результат их разгона оказывается куда весомее: на фоне семейства Pentium мы бы вообще не стали причислять Athlon X2 к процессорам, способным вызвать интерес у энтузиастов.

Выводы

Если тестирование производительности и способно оставить какие-то вопросы о том, какой из двухъядерных процессоров стоимостью в районе 2-3 тысяч рублей следует считать оптимальным выбором, то измерение энергопотребление и тесты на разгон отметают всякие сомнения. С сожалением мы вынуждены констатировать, что компания AMD сегодня предлагает неконкурентоспособные двухъядерные модели, уступающие процессорам Pentium практически по всем потребительским качествам.

Но даже если сосредоточиться только на быстродействии и закрыть глаза на всё остальное, выводы от этого вряд ли поменяются. Во многих приложениях Athlon X2 серии 7000 заметно уступают конкурентам, число же задач, где они демонстрируют лучшую, чем Pentium E5000, производительность, невелико. Именно поэтому предлагаемые сегодня компанией AMD двухъядерные процессоры способны заинтересовать хоть кого-то только лишь в одном случае – когда речь идёт об обновлении старой Socket AM2 системы. Собирать же новый компьютер, выбирая за основу Athlon X2, пусть даже с микроархитектурой K10 (Stars), совершенно иррационально.

Иными словами, ответ на вопрос, поставленный нами в начале этой статьи, совершенно однозначен: сегодня Intel предлагает лучшие двухъядерные процессоры, даже если они относятся к серии Pentium, во многом дискредитировавшей себя в эпоху господства микроархитектуры NetBurst. Ведь современные процессоры Pentium не имеют ничего общего со старыми Pentium 4 и Pentium D, они обладают той же микроархитектурой, что и Core 2 Duo, отличаясь от них лишь размером L2-кэша, частотой шины и тактовой частотой. В результате, современная серия Pentium Dual-Core выглядит весьма соблазнительно, предлагая отличное сочетание цены, производительности и энергопотребления. И плюс к тому, процессоры Pentium – это прекрасный плацдарм для оверклокерских экспериментов.

Но всё-таки на этом мы бы не стали ставить финальную точку в рассмотрении двухъядерных процессоров. Дело в том, что уже через две недели нас ожидает встреча с принципиально новыми двухъядерными моделями AMD, которые будут использовать в своей основе современные ядра, выпускаемые по 45-нм технологическому процессу. И эти процессоры, известные сегодня под кодовыми именами Callisto и Regor, очевидно, будут противопоставлены более дорогим двухъядерным процессорам Intel, чем Pentium. Хочется надеяться, что их соперничество с интеловскими конкурентами окажется более успешным. По крайней мере, определённые предпосылки к этому есть: перспективные процессоры не просто получат новые ядра, производимые с использованием более современного техпроцесса, но и смогут похвастать более высокими частотами, большим объёмом кэш-памяти и поддержкой DDR3 SDRAM.

Другие материалы по данной теме


Новый степпинг Intel Core i7: знакомимся с i7-975 XE
Intel Core 2 Duo под ударом: обзор процессора AMD Phenom II X3 720 Black Edition
Знакомимся с Socket AM3: обзор процессора AMD Phenom II X4 810