1.Что представляет из себя процесс передачи информации?

Передача информации - физический процесс, посредством которого осуществляется перемещениеинформации в пространстве. Записали информацию на диск и перенесли в другую комнату. Данный процесс характеризуется наличием следующих компонентов:

Источник информации. Приёмник информации. Носитель информации. Среда передачи.

Схема передачи информации:

Источник информации – информационный канал – приемник информации.

Информация представляется и передается в форме последовательности сигналов, символов. От источника к приёмнику сообщение передается через некоторую материальную среду. Если в процессе передачи используются технические средства связи, то их называют каналами передачи информации (информационными каналами). К ним относятся телефон, радио, ТВ. Органы чувств человека исполняют роль биологических информационных каналов.

Процесс передачи информации по техническим каналам связи проходит по следующей схеме (по Шеннону):

Термином «шум» называют разного рода помехи, искажающие передаваемый сигнал и приводящие к потере информации. Такие помехи, прежде всего, возникают по техническим причинам: плохое качество линий связи, незащищенность друг от друга различных потоков информации, передаваемой по одним и тем же каналам. Для защиты от шума применяются разные способы, например, применение разного рода фильтров, отделяющих полезный сигнал от шума.

Клодом Шенноном была разработана специальная теория кодирования, дающая методы борьбы с шумом. Одна из важных идей этой теории состоит в том, что передаваемый по линии связи код должен быть избыточным. За счет этого потеря какой-то части информации при передаче может быть компенсирована. Однако нельзя делать избыточность слишком большой. Это приведёт к задержкам и подорожанию связи.

2. Общая схема передачи информации

3.Перечислите известные вам каналы связи

Канал связи (англ. channel, data line ) - система технических средств и среда распространения сигналов для передачи сообщений (не только данных) от источника к получателю (и наоборот). Канал связи, понимаемый в узком смысле (тракт связи ), представляет только физическую среду распространения сигналов, например, физическую линию связи.

По типу среды распространения каналы связи делятся на:

проводные ; акустические ; оптические ; инфракрасные ; радиоканалы .

4. Что такое телекоммуникации и компьютерные телекоммуникации?

Телекоммуникации (греч. tele - вдаль, далеко и лат. communicatio - общение) - это передача и прием любой информации (звука, изображения, данных, текста) на расстояние по различным электромагнитным системам (кабельным и оптоволоконным каналам, радиоканалам и другим проводным и беспроводным каналам связи).

Телекоммуникационная сеть - это система технических средств, посредством которой осуществляются телекоммуникации.

К телекоммуникационным сетям относятся:

1. Компьютерные сети (для передачи данных)

2. Телефонные сети (передача голосовой информации)

3. Радиосети (передача голосовой информации - широковещательные услуги)

4. Телевизионные сети (передача голоса и изображения - широковещательные услуги)

Компьютерные телекоммуникации - телекоммуникации, оконечными устройствами которых являются компьютеры.

Передача информации с компьютера на компьютер называется синхронной связью, а через промежуточную ЭВМ, позволяющую накапливать сообщения и передавать их на персональные компьютеры по мере запроса пользователем, - асинхронной.

Компьютерные телекоммуникации начинают внедряться в образование. В высшей школе их используют для координации научных исследований, оперативного обмена информацией между участниками проектов, обучения на расстоянии, проведения консультаций. В системе школьного образования - для повышения эффективности самостоятельной деятельности учащихся, связанной с разнообразными видами творческих работ, включая и учебную деятельность, на основе широкого использования исследовательских методов, свободного доступа к базам данных, обмена информацией с партнерами как внутри страны, так и за рубежом.

5. Что такое пропускная способность канала передачи информации?

Пропускная способность - метрическая характеристика , показывающая соотношение предельного количества проходящих единиц (информации , предметов, объёма ) в единицу времени через канал, систему, узел.

В информатике определение пропускной способности обычно применяется к каналу связи и определяется максимальным количеством переданной/полученной информации за единицу времени.

Пропускная способность - один из важнейших с точки зрения пользователей факторов. Она оценивается количеством данных, которые сеть в пределе может передать за единицу времени от одного подсоединенного к ней устройства к другому.

Скорость передачи информации зависит в значительной степени от скорости её создания (производительности источника), способов кодирования и декодирования. Наибольшая возможная в данном канале скорость передачи информации называется его пропускной способностью. Пропускная способность канала, по определению, есть

скорость передачи информации при использовании «наилучших» (оптимальных) для данного канала источника, кодера и декодера, поэтому она характеризует только канал.

5. В каких единицах измеряется пропускная способность каналов передачи информации?

Может измеряться в различных, иногда сугубо специализированных, единицах - штуки, бит/сек , тонны ,кубические метры и т. д.

6. Классификация компьютерных каналов связи(по способу кодирования, по способу коммуникации, по способу передачи сигнала)

широковещательные сети; сети с передачей от узла к узлу.

7. Характеристика кабельных каналов передачи информации (коаксиальный кабель, витая пара, телефонный кабель, оптоволоконный кабель)

проводные – телефонные, телеграфные (воздушные) линии связи; кабельные – медные витые пары, коаксиальные, оптоволоконные;

а также на основе электромагнитных излучений:

радиоканалы наземной и спутниковой связи; на основе инфракрасных лучей.

кабели на основе скрученных (витых) пар медных проводов; коаксиальные кабели (центральная жила и оплётка из меди); волоконно-оптические кабели.

Кабели на основе витых пар

Кабели на основе витых пар служат для передачи цифровых данных, широкое применение получили в компьютерных сетях. Возможно, также использовать их и для передачи аналоговых сигналов. Скручивание проводов снижает влияние внешних помех на полезные сигналы и уменьшает излучаемые электромагнитные колебания во внешнее пространство. Экранирование удорожает кабель, усложняет монтаж и требует качественного заземления. На рис. представлена типовая конструкция UTP на основе двух витых пар.

Рис. Конструкция кабеля с незащищенной витой парой.

В зависимости от наличия защиты – электрически заземлённой медной оплетки или алюминиевой фольги вокруг скрученных пар, определяют разновидности кабелей на основе витых пар:

незащищенная витая пара UTP (Unshielded twisted pair) – отсутствует защитный экран вокруг отдельной пары;

фольгированная витая пара FTP (Foiled twisted pair) – имеется один общий внешний экран в виде фольги;

защищенная витая пара STP (Shielded twisted pair) – имеется защитный экран для каждой пары и общий внешний экран в виде сетки;

фольгированная экранированная витая пара S/FTP (Screened Foiled twisted pair) – имеется защитный экран для каждой пары в фольгированной оплетке и внешний экран из медной оплетки;

незащищенная экранированная витая пара SF/UTP (Screened Foiled Unshielded twisted pair) – двойной внешний экран из медной оплетки и фольги, каждая витая пара без защиты.

1.5.2.2. Коаксиальный кабель

Назначение коаксиального кабеля – передача сигнала в различных областях техники: системы связи; вещательные сети; компьютерные сети; антенно-фидерные системы аппаратуры связи и др. Этот тип кабеля имеет несимметричную конструкцию и состоит из внутренней медной жилы и оплетки, отделенной от жилы слоем изоляции.

Типовая конструкция коаксиального кабеля представлена на рис.1.22.

Рис. 1.22. Типовая конструкция коаксиального кабеля

Благодаря металлической экранирующей оплетке он имеет высокую помехозащищенность. Основным преимуществом коаксиала над витой парой является широкая полоса частот пропускания, что обеспечивает потенциально более высокие по сравнению с кабелями на основе витых пар скорости передачи данных, которые составляют до 500 Мбит/с. Кроме этого коаксиал обеспечивает значительно большие допустимые расстояния передачи сигналов (до километра), к нему труднее механически подключиться для несанкционированного прослушивания сети, а также он заметно меньше загрязняет окружающую среду электромагнитными излучениями. Однако монтаж и ремонт коаксиального кабеля сложнее, чем витой пары, а стоимость выше.

Здесь используются обычные светодиодные трансиверы, что снижает стоимость и увеличивает срок службы по сравнению с одномодовым кабелем. На рис 1.24. приведена характеристика затухания сигналов в оптоволокне. По сравнению с другими типами кабелей используемых для линий связи этот тип кабеля имеет существенно более низкие величины затухания сигнала, которые обычно находятся в пределах от 0,2 до 5 дб на 1000 м длины. Многомодовое оптоволокно характеризуется окнами прозрачности затухания в диапазонах длин волн 380-850, 850-1310 (нм), а одномодовое соответственно 850-1310, 1310-1550 (нм).

Рис 1.24. Окна прозрачности оптоволокна.

Преимущества оптоволоконного типа связи:

Широкая полоса пропускания.

Обусловлена чрезвычайно высокой частотой несущего колебания. При применении технологии спектрального уплотнения каналов связи методом волнового

мультиплексирования в 2009 г сигналы 155 каналов связи со скоростью передачи по 100 Гбит/с в каждом удалось передать на расстояние 7000 километров. Таким образом, общая скорость передачи данных по оптоволокну составила 15,5 Тбит/с. (Тера = 1000 Гига);

Малое затухание светового сигнала в волокне.

Позволяет строить волоконно-оптические линии связи большой длины без промежуточного усиления сигналов;

Низкий уровень шумов в волоконно-оптическом кабеле.

Позволяет увеличить полосу пропускания, путем передачи различной модуляции сигналов с малой избыточностью кода;

Высокая помехозащищенность и защищенность от несанкционированного доступа.

Обеспечивается абсолютной защищенностью оптоволокна от электрических помех, наводок и полным отсутствием излучения во внешнюю среду. Это объясняется природой светового колебания, которое не взаимодействует с электромагнитными полями других диапазонов частот, как и само оптоволокно, которое является диэлектриком. Используя ряд свойств распространения света в оптоволокне, системы мониторинга целостности оптической линии связи могут мгновенно отключить "взламываемый" канал связи и подать сигнал тревоги. Такие системы особенно необходимы при создании линий связи в правительственных, банковских и некоторых других специальных службах, предъявляющих повышенные требования к защите данных;

Отсутствие необходимоости гальванической развязки узлов сети.

Оптоволоконные сети принципиально не могут иметь электрических "земельных" петель, которые возникают, когда два сетевых устройства имеют заземления в разных точках здания;

 Высокая взрыво и пожаробезопасность, стойкость к агрессивным средам.

Из-за отсутствия возможности искрообразования оптоволокно повышает безопасность сети на химических, нефтеперерабатывающих предприятиях, при обслуживании технологических процессов повышенного риска;

 Малый вес, объем, экономичность волоконно-оптического кабеля.

Основу волокна составляет кварц (двуокись кремния), который является широко распространенным недорогим материалом. В настоящее время стоимость волокна по отношению к медной паре соотносится как 2:5. Стоимость самого оптоволоконного кабеля постоянно снижается, однако применение специальных оптических приемников и передатчиков (оптоволоконных модемов), преобразующих световые сигналы в электрические и обратно, существенно увеличивает стоимость сети в целом;

 Длительный срок эксплуатации.

Срок службы оптоволокна составляет не менее 25 лет. Оптоволоконный кабель имеет и некоторые недостатки. Основным из них является высокая сложность монтажа. При соединении концов кабеля необходимо обеспечить высокую точность поперечного среза стекловолокна, последующую полировку среза и центровку стекловолокна при установке в разъём. Установка разъемов производится с помощью сварки стыка или методом склеивания с помощью специального геля, имеющего такой же коэффициент преломления света, что и стекловолокно. В любом случае для этого необходима высокая квалификация персонала и специальные инструменты. Кроме этого оптоволоконный кабель менее прочен и менее гибок, чем электрический, чувствителен к механическим воздействиям. Он чувствителен также и к ионизирующим излучениям, из-за которых снижается прозрачность стекловолокна, то есть увеличивается затухание сигнала в кабеле. Резкие перепады температур могут привести к растрескиванию стекловолокна. Для уменьшения влияния этих факторов используются различные конструктивные решения, что сказывается на стоимости кабеля.

Учитывая уникальные свойства оптоволокна электросвязь на её основе находит всё более широкое применение во всех областях техники. Это компьютерные сети, городские, региональные, федеральные, а также межконтинентальные подводные первичные сети связи и многое др. С помощью оптоволоконных каналов связи осуществляются: кабельное телевидение, удалённое видеонаблюдение, видеоконференции и видеотрансляции, телеметрические и другие информационные системы.

8. Характеристика беспроводных каналов передачи информации(спутниковые,

радиоканалы, Wi-Fi, Bluetooth)

Беспроводные технологии - подкласс информационных технологий , служат для передачи информации на расстояние между двумя и более точками, не требуя связи их проводами. Для передачи информации может использоваться инфракрасное излучение , радиоволны , оптическое или лазерное излучение.

В настоящее время существует множество беспроводных технологий, наиболее часто известных пользователям по их маркетинговым названиям, таким как Wi-Fi , WiMAX , Bluetooth . Каждая технология обладает определёнными характеристиками, которые определяют её область применения.

Существуют различные подходы к классификации беспроводных технологий.

По дальности действия:

o Беспроводные персональные сети (WPAN - Wireless Personal Area Networks). Примеры технологий -Bluetooth .

o Беспроводные локальные сети (WLAN - Wireless Local Area Networks).

Примеры технологий - Wi-Fi .

o Беспроводные сети масштаба города (WMAN - Wireless Metropolitan Area Networks). Примеры технологий -WiMAX .

o Беспроводные глобальные сети (WWAN - Wireless Wide Area Network).

Примеры технологий - CSD , GPRS , EDGE , EV-DO , HSPA .

По топологии:

o «Точка-точка».

o «Точка-многоточка».

По области применения:

o Корпоративные (ведомственные) беспроводные сети - создаваемые компаниями для собственных нужд.

o Операторские беспроводные сети - создаваемые операторами связи для возмездного оказания услуг.

Кратким, но ёмким способом классификации может служить одновременное отображение двух наиболее существенных характеристик беспроводных технологий на двух осях: максимальная скорость передачи информации и максимальное расстояние.

Задачи Задача 1 . За 10 с по каналу связи передано 500 байт информации. Чему равна

пропускная способность канала? (500/10=50 байт/с=400бит/с)

Задача 2 . Какой объем информации можно передать по каналу с пропускной способностью 10 кбит/с за 1 минуту? (10 кбит/с*60 с = 600 кбит)

Задача 3. Средняя скорость передачи данных с помощью модема равна 36864 бит/с. Сколько секунд понадобится модему, чтобы передать 4 страницы текста в кодировке КОИ-8, если считать, что на каждой странице в среднем 2304 символа.

Решение: Количество символов в тексте: 2304*4 = 9216 символов.

В кодировке КОИ-8 каждый символ кодируется одним байтом, тогда информационный объем текста 9216*8 = 73 728 бит.

Время = объем / скорость. 73728: 36864 = 2 с

  • 11. Каковы основные параметры квазигармонического колебания?
  • 12. Почему при спектральном анализе используется представление сигнала виде совокупности гармонических колебаний? Как для этого воспользоваться разложением сигнала в ряд Фурье?
  • 14. Из чего состоит амплитудный спектр монохроматического гармонического колебания?
  • 15. Поясните сущность понятий модуляции и демодуляции (детектирования) радиосигналов.
  • 17. В чём заключаются преимущества однополосной амплитудной модуляции?
  • 18. Почему частотную и фазовую модуляцию называют разновидностями угловой модуляции?
  • 19. В чем заключаются особенности и какие существуют разновидности импульсной модуляции?
  • 20. Как называется процесс дискретного изменения параметров радиосигналов?
  • 27. В чём особенности распространения радиоволн диапазонов овч, увч, свч:
  • 28. Почему большинством радиоэлектронных средств га функционирует в диапазонах овч, увч и свч:
  • 30. На какие разновидности делятся антенны по конструктивному признаку. Каковы различия линейных и апертурных антенн:
  • 31. В чем состоит сущность принципа взаимности:
  • 32. Каковы основные характеристики и параметры антенн. Что показывает диаграмма направленности антенн:
  • 33. Как взаимосвязаны между собой коэффициент усиления антенны и параметры ширины диаграммы направленности в горизонтальной и вертикальной плоскости?
  • 34. В чем заключаются особенности конструкций и размещения бортовых антенн?
  • 35. От чего и каким образом зависит дальность действия радиолиний связи?
  • 36. Почему энергетика радиолиний при радиолокации по точечному объекту обратно пропорциональна четвёртой степени расстояния?
  • 37. Каким образом влияет атмосфера и земная поверхность на дальность распространения радиоволн различных диапазонов?
  • 38. Что такое обнаружение сигналов? Какие процедуры оно включает?
  • 39. Каковы особенности корреляционного приёма сигналов? (из лекций)
  • 40. Каковы особенности согласованной фильтрации сигналов? (из лекций)
  • 41. По каким признакам и на какие разновидности классифицируют радиопередающие устройства (радиопередатчики)?
  • 42. Из каких функциональных элементов состоит типовая схема связного радиопередающего устройства? почему радиопередатчики строятся по многокаскадной схеме?
  • 43. Для чего в составе приемопередающей аппаратуры присутствуют специальные антенно-согласующие устройства? Каковы их основные функции?
  • 44. Для чего предназначены радиоприемные устройства? Какими основными параметрами они характеризуются?
  • 45. Какова структура, достоинства и недостатки радиоприемников прямого усиления?
  • 46. Какова структура, достоинства и недостатки радиоприемников супергетеродинного типа?
  • 47. Что составляет сущность понятий информации и сообщения? Что понимают под кодированием сообщений?
  • 49. От чего зависит пропускная способность канала связи?
  • 50. В чём сущность частотного уплотнения/разделения канала в многоканальных системах передачи информации.
  • 51. В чём сущность временного уплотнения/разделения каналов в многоканальных системах передачи инф-ии?
  • 52. Каковы принципы организации воздушной радиосвязи и наземной электросвязи.
  • 54. Какие эксплуатационные требования предъявляются к бортовым радиостанциям?
  • 57. Каково назначение антенно-согласующих устройств? Чем вызвана необходимость их применения?
  • 58. Чем вызвана необходимость формирования дискретной сетки частот с высокой стабильностью в приемопередающих радиоэлектронных средствах, применяемых в га?
  • 61. Для чего предназначены системы телефонной, телеграфной связи и системы передачи данных?
  • 62. Каковы назначение, решаемые задачи сетей электросвязи aftn, sita?
  • 63. Каковы назначения, принципы построения и функционирование спутниковых систем?
  • 64. Каковы особенности и принципы функционирования спутниковой системы поиска и спасения «коспас-сарсат»?
  • 49. От чего зависит пропускная способность канала связи?

    Под системой связи понимают совокупность устройств и сред, обеспечивающих передачу сообщений от отправителя к получателю. В общем случае обобщённую систему связи представляют блок-схемой.

    Пропускная способность – предельно возможная скорость передачи информации. Пропускная способность равна скорости телеграфирования, измеряемой числом телеграфных звонков, передаваемых в единицу времени. Предельная пропускная способность зависит от ширины полосы пропускания канала, а в общем случае от отношения Pc / Pп (мощность сигнала к мощности помех) и определяется по формуле . Это формула Шеннона, которая справедлива для любой системы связи при наличии флуктуационной помехи.

    50. В чём сущность частотного уплотнения/разделения канала в многоканальных системах передачи информации.

    Уплотнение- объединение абонентских сигналов единый сигнал.

    Разделение- выделение из единого группового сигнала, отдельных абонентских сигналов.

    Сущность частотного уплотнения- все абоненты работают на одной полосе частот, но каждый в своей полосе.

    При частотном уплотнении имеют место межканальные помехи, обусловленные не идеальностью фильтрующих систем и бесконечностью спектра сигнала.

    Основное достоинство систем многоканальной связи с частотным уплотнением - экономное использование спектра частот; существенные недостатки - накопление помех, возникающих на промежуточных усилительных пунктах, и, как следствие, сравнительно невысокая помехоустойчивость.

    51. В чём сущность временного уплотнения/разделения каналов в многоканальных системах передачи инф-ии?

    При временном уплотнении все абоненты работают в одной полосе частот, на работают циклично- каждый в свое время, а время цикла определяется Т. Котельникова (При временном уплотнении, являющемся логическим развитием импульсных систем связи, линия связи или групповой тракт связи посредством электронных коммутаторов предоставляется поочередно для передачи сигналов каждого канала.)

    При передачи речи Т=125 мкс

    Системы связи с частотным и временным уплотнениями применяют на магистральных кабельных линиях, радиорелейных линиях и т. д.

    52. Каковы принципы организации воздушной радиосвязи и наземной электросвязи.

    Под организацией связи понимают схему соединения абонентов каналами и распределения выделяемых для связи ресурсов, обеспечивающих высокую эффективность обмена информацией между звеньями.

    Осн. элемент авиационной воздушной р/связи – радиосеть. Радиосеть- совокупность РС, устанавливаемых в точках расположения взаимодействующих корреспондентов (в диспетчерском пункте и на борту ВС) и объединенная общими радиоканалами, те работающих на единых радиочастотах. Как правило радиосети организовываются по радиальному признаку. Радиосеть позволяет вести обмен информации между диспетчером и экипажем каждого ВС, а также циркулярную передачу данных всем ВС одновременно. Радиосети создаются в зависимости от числа секторов УВД.

    Важнейшим элементом, обеспечивающим непрерывность, является регламентированный порядок смены радиосетей. В сетях воздушной связи обычно назначается одна частота для передачи и приема, и связь осуществляется в симплексном режиме, когда передача и прием чередуются между собой.

    Элементами сетей наземной связи явл.: абонентские аппараты, канала и узлы связи. Узлы связи УС служат для распделения информации по линиям и каналам связи, ведущим в разные географические пункты. Принцип построения проводной телеграфной связи радиально-узловой, т.е предусматриваются главные узлы ГУС, объединяющие группы региональных узлов, и каналы связи, соединяющие узлы с главными узлами и друг с другом. Такой принцип обеспечивает достижение высокой оперативности и надежности связи, т.к можно использовать обходные пути. При создании сетей наземной связи широко используются каналы общегосударственных сетей связи. Наземная электросвязь в ГА служит для связи между аэродромами, административными и оперативными органами управления. Также организовывается сеть наземной телефонной связи.

    С течением технического прогресса расширились и возможности интернета. Однако для того, чтобы пользователь мог ими воспользоваться в полной мере, необходимо стабильное и высокоскоростное соединение. В первую очередь оно зависит от пропускной способности каналов связи. Поэтому необходимо выяснить, как измерить скорость передачи данных и какие факторы на нее влияют.

    Что такое пропускная способность каналов связи?

    Для того чтобы ознакомиться и понять новый термин, нужно знать, что представляет собой канал связи. Если говорить простым языком, каналы связи - это устройства и средства, благодаря которым осуществляется передача на расстоянии. К примеру, связь между компьютерами осуществляется благодаря оптоволоконным и кабельным сетям. Кроме того, распространен способ связи по радиоканалу (компьютер, подключенный к модему или же сети Wi-Fi).

    Пропускной же способностью называют максимальную скорость передачи информации за одну определенную единицу времени.

    Обычно для обозначения пропускной способности используют следующие единицы:

    Измерение пропускной способности

    Измерение пропускной способности - достаточно важная операция. Она осуществляется для того, чтобы узнать точную скорость интернет-соединения. Измерение можно осуществить с помощью следующих действий:

    • Наиболее простое - загрузка объемного файла и отправление его на другой конец. Недостатком является то, что невозможно определить точность измерения.
    • Кроме того, можно воспользоваться ресурсом speedtest.net. Сервис позволяет измерить ширину интернет-канала, «ведущего» к серверу. Однако для целостного измерения этот способ также не подходит, сервис дает данные обо всей линии до сервера, а не о конкретном канале связи. Кроме того, подвергаемый измерению объект не имеет выхода в глобальную сеть Интернет.
    • Оптимальным решением для измерения станет клиент-серверная утилита Iperf. Она позволяет измерить время, количество переданных данных. После завершения операции программа предоставляет пользователю отчет.

    Благодаря вышеперечисленным способам, можно без особых проблем измерить реальную скорость интернет-соединения. Если показания не удовлетворяют текущие потребности, то, возможно, нужно задуматься о смене провайдера.

    Расчет пропускной способности

    Для того чтобы найти и рассчитать пропускную способность линии связи, необходимо воспользоваться теоремой Шеннона-Хартли. Она гласит: найти пропускную способность канала (линии) связи можно, рассчитав взаимную связь между потенциальной пропускной способностью, а также полосой пропускания линии связи. Формула для расчета пропускной способности выглядит следующим образом:

    I=Glog 2 (1+A s /A n).

    В данной формуле каждый элемент имеет свое значение:

    • I - обозначает параметр максимальной пропускной способности.
    • G - параметр ширины полосы, предназначенной для пропускания сигнала.
    • A s / A n - соотношение шума и сигнала.

    Теорема Шеннона-Хартли позволяет сказать, что для уменьшения внешних шумов или же увеличения силы сигнала лучше всего использовать широкий кабель для передачи данных.

    Способы передачи сигнала

    На сегодняшний день существует три основных способа передачи сигнала между компьютерами:

    • Передача по радиосетям.
    • Передача данных по кабелю.
    • Передача данных через оптоволоконные соединения.

    Каждый из этих способов имеет индивидуальные характеристики каналов связи, речь о которых пойдет ниже.

    К преимуществам передачи информации через радиоканалы можно отнести: универсальность использования, простоту монтажа и настройки такого оборудования. Как правило, для получения и способом используется радиопередатчик. Он может представлять собой модем для компьютера или же Wi-Fi адаптер.

    Недостатками такого способа передачи можно назвать нестабильную и сравнительно низкую скорость, большую зависимость от наличия радиовышек, а также дороговизну использования (мобильный интернет практически в два раза дороже «стационарного»).

    Плюсами передачи данных по кабелю являются: надежность, простота эксплуатации и обслуживания. Информация передается посредством электрического тока. Условно говоря, ток под определенным напряжением перемещается из пункта А в пункт Б. А позже преобразуется в информацию. Провода отлично выдерживают перепады температур, сгибания и механическое воздействие. К минусам можно отнести нестабильную скорость, а также ухудшение соединения из-за дождя или грозы.

    Пожалуй, самой совершенной на данный момент технологией по передаче данных является использование оптоволоконного кабеля. В конструкции каналов связи сети каналов связи применяются миллионы мельчайших стеклянных трубок. А сигнал, передаваемый по ним, представляет собой световой импульс. Так как скорость света в несколько раз выше скорости тока, данная технология позволила в несколько сотен раз ускорить интернет-соединение.

    К недостаткам же можно отнести хрупкость оптоволоконных кабелей. Во-первых, они не выдерживают механические повреждения: разбившиеся трубки не могут пропускать через себя световой сигнал, также резкие перепады температур приводят к их растрескиванию. Ну а повышенный радиационный фон делает трубки мутными - из-за этого сигнал может ухудшаться. Кроме того, оптоволоконный кабель тяжело восстановить в случае разрыва, поэтому приходится полностью его менять.

    Вышесказанное наводит на мысль о том, что с течением времени каналы связи и сети каналов связи совершенствуются, что приводит к увеличению скорости передачи данных.

    Средняя пропускная способность линий связи

    Из вышесказанного можно сделать вывод о том, что каналы связи различны по своим свойствам, которые влияют на скорость передачи информации. Как говорилось ранее, каналы связи могут быть проводными, беспроводными и основанными на использовании оптоволоконных кабелей. Последний тип создания сетей передачи данных наиболее эффективен. И его средняя пропускная способность канала связи - 100 мбит/c.

    Что такое бит? Как измеряется скорость в битах?

    Битовая скорость - показатель измерения скорости соединения. Рассчитывается в битах, мельчайших единицах хранения информации, на 1 секунду. Она была присуща каналам связи в эпоху «раннего развития» интернета: на тот момент в глобальной паутине в основном передавались текстовые файлы.

    Сейчас базовой единицей измерения признается 1 байт. Он, в свою очередь, равен 8 битам. Начинающие пользователи очень часто совершают грубую ошибку: путают килобиты и килобайты. Отсюда возникает и недоумение, когда канал с пропускной способностью 512 кбит/с не оправдывает ожиданий и выдает скорость всего лишь 64 КБ/с. Чтобы не путать, нужно запомнить, что если для обозначения скорости используются биты, то запись будет сделана без сокращений: бит/с, кбит/с, kbit/s или kbps.

    Факторы, влияющие на скорость интернета

    Как известно, от пропускной способности канала связи зависит и конечная скорость интернета. Также на скорость передачи информации влияют:

    • Способы соединения.

    Радиоволны, кабели и оптоволоконные кабели. О свойствах, преимуществах и недостатках этих способов соединения говорилось выше.

    • Загруженность серверов.

    Чем больше загружен сервер, тем медленнее он принимает или передает файлы и сигналы.

    • Внешние помехи.

    Наиболее сильно помехи оказывают влияние на соединение, созданное с помощью радиоволн. Это вызвано сотовыми телефонами, радиоприемниками и прочими приемниками и передатчиками радиосигнала.

    • Состояние сетевого оборудования.

    Безусловно, способы соединения, состояние серверов и наличие помех играют важную роль в обеспечении скоростного интернета. Однако даже если вышеперечисленные показатели в норме, а интернет имеет низкую скорость, то дело скрывается в сетевом оборудовании компьютера. Современные сетевые карты способны поддерживать интернет-соединение со скоростью до 100 Мбит в секунду. Раньше карты могли максимально обеспечивать пропускную способность в 30 и 50 Мбит в секунду соответственно.

    Как увеличить скорость интернета?

    Как было сказано ранее, пропускная способность канала связи зависит от многих факторов: способа соединения, работоспособности сервера, наличия шумов и помех, а также состояния сетевого оборудования. Для увеличения скорости соединения в бытовых условиях можно заменить сетевое оборудование на более совершенное, а также перейти на другой способ соединения (с радиоволн на кабель или оптоволокно).

    В заключение

    В качестве подведения итогов стоит сказать о том, что пропускная способность канала связи и скорость интернета - это не одно и то же. Для расчета первой величины необходимо воспользоваться законом Шеннона-Хартли. Согласно ему, шумы можно уменьшить, а также увеличить силу сигнала посредством замены канала передачи на более широкий.

    Увеличение скорости интернет-соединения тоже возможно. Но оно осуществляется путем смены провайдера, замены способа подключения, усовершенствования сетевого оборудования, а также ограждения устройств для передачи и приема информации от источников, вызывающих помехи.

    Пропускная способность систем передачи информации

    Одной из основных характеристик любой системы передачи информации, кроме перечисленных выше, является ее пропускная способность.

    Пропускная способность – максимально возможное количество полезной информации, передаваемое в единицу времени:

    c = max{Imax} / TC ,

    c = [бит/с].

    Иногда скорость передачи информации определяют как максимальное количество полезной информации в одно элементарном сигнале:

    s = max{Imax} / n,

    s = [бит/элемент].

    Рассмотренные характеристики зависят только от канала связи и его характеристик и не зависят от источника.

    Пропускная способность дискретного канала связи без помех. В канале связи без помех информацию можно передавать неизбыточным сигналом. При этом число n = m, а энтропия элементарного сигнала HCmax = logK.

    max{IC} = nHCmax= mHCmax .

    Длительность элементарного сигнала , где – длительность элементарного сигнала.

    где FC – спектр сигнала.

    Пропускная способность канала связи без помех

    Введем понятие скорости генерации элементарного сигнала источником информации:

    Тогда, используя новое понятие, можно преобразовать формулу для скорости передачи информации:

    Полученная формула определяет максимально возможную скорость передачи информации в дискретном канале связи без помех. Это следует из предположения о том, что энтропия сигнала максимальна.

    Если HC < HCmax, то c = BHC и не является максимально возможной для данного канала связи.

    Пропускная способность дискретного канала связи с помехами. В дискретном канале связи с помехами наблюдается ситуация, изображенная на рис. 6.

    Учитывая свойство аддитивности, а также формулы Шеннона для определения количества информации, рассмотренные выше, можно записать

    IC = TC FC log(AK PC),

    IПОМ = TП FП log(APП).

    Для получателя источник полезной информации и источник помехи равноценны, поэтому нельзя на приемной стороне выделить составляющую помехи в сигнале с результирующей информацией

    IРЕЗ = TC FC log(AK (PП + PC)), если TC = TП, FC = FП.

    Приемник может быть узкополосным, а помеха находиться в других интервалах частот. В этом случае она не будет влиять на сигнал.

    Будем определять результирующий сигнал для наиболее “неприятного” случая, когда параметры сигнала и помехи близки друг к другу или совпадают. Полезная информация определяется выражением

    Эта формула получена Шенноном. Она определяет скорость передачи информации по каналу связи в случае, если сигнал имеет мощность PC, а помеха – мощность PП. Все сообщения при такой скорости передадутся с абсолютной достоверностью. Формула не содержит ответа на вопрос о способе достижения такой скорости, но дает максимально возможное значение с в канале связи с помехами, то есть такое значение скорости передачи, при которой полученная информация будет абсолютно достоверной. На практике экономичнее допустить определенную долю ошибочности сообщения, хотя скорость передачи при этом увеличится.

    Рассмотрим случай PC >> PП. Если ввести понятие отношения сигнал/шум

    PC >> PП означает, что . Тогда

    Полученная формула отражает предельную скорость мощного сигнала в канале связи. Если PC << PП, то с стремится к нулю. То есть сигнал принимается на фоне помех. В таком канале в единицу времени сигнал получить не удается. В реальных ситуациях полностью помеху отфильтровать нельзя. Поэтому приемник получает полезную информацию с некоторым набором ошибочных символов. Канал связи для такой ситуации можно представить в виде, изображенном на рис. 7, приняв источник информации за множество передаваемых символов {X}, а приемник – за множество получаемых символов {Y}.

    Рис.7 Граф переходных вероятностей K- ичного канала связи

    Между существует определенное однозначное соответствие. Если помех нет, то вероятность однозначного соответствия равна единице, в противном случае она меньше единицы.

    Если qi – вероятность принятия yi за xi, a pij = p{yi / xi} – вероятность ошибки, то

    .

    Граф переходных вероятностей отражает конечный результат влияния помехи на сигнал. Как правило, он получается экспериментально.

    Полезная информация может быть оценена как IПОЛ = nH(X · Y), где n – количество элементарных символов в сигнале; H(X · Y) – взаимная энтропия источника X и источника Y.

    В данном случае источником X является источник полезной информации, а источником Y является приемник. Соотношение, определяющее полезную информацию, можно получить исходя из смысла взаимной энтропии: заштрихованный участок диаграммы определяет сообщения, переданные источником Xи полученные приемником Y; незаштрихованные участки отображают сигналы источника X, не дошедшие до приемника и полученные приемником посторонние сигналы, не передаваемые источником.

    B – скорость генерации элементарных символов на выходе источника.

    Для получения max нужно по возможности увеличить H(Y) и уменьшить H(Y/X). Графически эта ситуация может быть представлена совмещением кругов на диаграмме (Рис. 2г).

    Если же круги вообще не пересекаются, X и Y существуют независимо друг от друга. В дальнейшем будет показано, как можно использовать общее выражение для максимальной скорости передачи при анализе конкретных каналов связи.

    Характеризуя дискретный канал, используют два понятия скорости: техническая и информационная.

    Под технической скоростью передачи RT, называемой также скоростью манипуляции, подразумевают число символов (элементарных сигналов), передаваемых по каналу в единицу времени. Она зависит от свойств линии связи и быстродействия аппаратуры канала.

    С учетом различий в длительности символов техническая скорость определяется как

    где - среднее время длительности символа.

    Единицей измерения служит »бод» - это скорость, при которой за одну секунду передается один символ.

    Информационная скорость или скорость передачи информации определяется средним количеством информации, которое передается по каналу за единицу времени. Она зависит как от характеристик конкретного канала (таких как объем алфавита используемых символов, технической скорости их передачи, статистического свойства помех в линии), так и от вероятностей поступающих на вход символов и их статистической взаимосвязи.

    При известной скорости манипуляции скорость передачи информации по каналу задается соотношением:

    ,

    где – среднее количество информации, переносимое одним символом.



    Для практики важно выяснить, до какого предела и каким путем можно повысить скорость передачи информации по конкретному каналу. Предельные возможности канала по передаче информации характеризуются его пропускной способностью.

    Пропускная способность канала с заданными переходными вероятностями равна максимуму передаваемой информации по всем входным распределениям символов источника X:

    С математической точки зрения поиск пропускной способности дискретного канала без памяти сводится к поиску распределения вероятностей входных символов источника Х, обеспечивающего максимум переданной информации . При этом, на вероятности входных символов накладывается ограничение: , .

    В общем случае, определение максимума при заданных ограничениях возможно с помощью мультипликативного метода Лагранжа. Однако такое решение требует чрезмерно больших затрат.

    В частном случае для дискретных симметричных каналов без памяти пропускная способность (максимум , достигается при равномерном распределении входных символов источника X.

    Тогда для ДСК без памяти, считая заданной вероятность ошибки ε и для равновероятных входных символов = = = =1/2, можно получить пропускную способность такого канала по известному выражению для :

    где = – энтропия двоичного симметричного канала при заданной вероятности ошибки ε.

    Интерес представляют граничные случаи:

    1. Передача информации по бесшумному каналу (без помех):

    , [бит/символ].

    При фиксированных основных технических характеристиках канала (например, полосе частот, средней и пиковой мощности передатчика), которые определяют значение технической скорости, пропускная способность канала без помех будет равна [бит/сек].

    Приветствую дорогой читатель! Сегодня мы с вами осветим такую тему, как скорость интернета и как её проверить. Дело в том, что неопытные пользователи часто задают такие вопросы, многие начинают спрашивать, мол надо подключиться к новому провайдеру, какую скорость мне выбрать в тарифе или какой провайдер лучше чтобы скорость хорошая была.

    Сегодня мы разберем:

    Что же есть скорость интернета?

    Не обязательно быть техником, чтобы понять что это такое. Попробуем просто привести аналогии. Дело в том, что в повседневной жизни мы часто сталкиваемся со скоростью. К примеру мы двигаемся, измеряя скорость ходьбы или движения автомобиля. Скорость вращения стиральной машины мы ставим в зависимости от режима стирки. Пытаемся определить как быстро растает снег (просто за окном весна, хочется чтоб снег быстро растаял)))). И так далее и все измеряется относительно времени.

    В электронике, технике компьютерной, интернете — измеряется информационный объем, переданный в единицу времени. За время берутся секунды. За объем — Килобиты (kb) или Килобайты (Kb), и еще Мегабайты (Mb). Биты это минимальная единица информации и компьютер работает с группами бит, называемыми Байтами. 1 Байт = 8 Бит. И тут все просто, чем больше Бит может проходить (скачиваться) за секунду, тем лучше. Другими словами, вы можете быстро скачивать музыку или фильмы, да что угодно.

    Сейчас много провайдеров существует, и каждый из них гарантирует высокую скорость. Если хотите узнать скорость интернета у вашего провайдера, вы можете смело позвонить на горячую линию и вам сообщат все что вас интересует. Но будет ли эта скорость реальной? Не факт. Об альтернативных способах проверить скорость своего интернета расскажу позже.

    Хочу отметить, что самая максимальная скорость, доступная и существующая для всех пользователей — 100 Мб/с. Это тот максимум который может дать вам сетевая карта. компьютера. По сути, скорость интернета во всем мире одна — 100 Мб/с. Или приведем пример, допустим обычный музыкальный файл, весит примерно 4-5 Мб. При это 1 Мб перведем в байты и получим что скорость скачивания 1 Мб будет равна 125 кбит/с а значит 4 Мб скачаются за 40 секунд. Это максимум возможного.

    Пропускная способность

    Бытовые пользователи часто путаю такие понятия, как скорость интернета и пропускная способность . Последнее понятие — это как раз то, что вам может предоставить провайдер. Многие, и я в том числе, задавались вопросом, почему же у провайдеров разные скорости стоят по разному. Из выше изложенного мы же поняли что скорость интернета то одна.

    Понятия очень похожи, но значения разные у них, хоть и измеряются одинаково. Скорость интернета — скорость передачи информации (объем информации) в единицу времени, то есть как быстро информация поступает от источника к получателю.

    Пропускная способность — измеряется точно так же, как и скорость интернета в Кбайт/с или Мбайт/с, максимально возможная скорость передачи данных от источника к получателя по конкретному каналу связи . То есть эта скорость показывает конкретно какой объем информации можно передать по конкретному каналу связи в единицу времени.

    В сетях передачи данных по конкретному каналу может передаваться много информации от одного источника нескольким получателям, и в зависимости от многих факторов, для каждого получателя скорость будет разная, а вот скорость самого канала — как правило постоянная.

    Вот и получается, что сумма всех скоростей передачи данных по конкретному каналу, не может превышать скорость пропускного канала! Вот и получается, что провайдер не может гарантировать на пред заданную скорость передачи данных от любого источника. Клиенту они могут предоставить только максимальную пропускную способность. Вот почему вы подключили, к примеру, 25 Мб/с, а замеренная скорость у вас примерно 15 Мб/с.

    Пропускная способность и провайдер.

    В договорах пишут почему то именно скорость интернета, но по сути они предоставляют именно пропускную способность. Так же то что у вас сегодня будет 15 Мб/с, ничего не значит. Завтра или через час она будет 20 Мб/с. а может и 5 Мб/с. Она меняется постоянно и зависит от многих факторов, в том числе и количестве самих получателей (как говорится сколько в данный момент сидит народу на данном канале связи).

    В свою очередь сам Провайдер может гарантировать пропускную способность именно принадлежащих ему каналов связи. Это может быть канал как от клиента к прямому выходу в глобальную связь Интернет, так и от клиента до центрального узла провайдера, где находятся информационные ресурсы, так и от одной точки подключения клиента к другой. Так же провайдер отвечает за магистральный канал к другому Провайдеру. Поэтому, то что находится дальше, провайдер не отвечает. И уж если там дальше пропускная способность ниже, она уже никак выше не станет.

    Популярные ошибки при анализе скорости интернета.

    Почему же у нас всегда получается ситуация, когда скорость именно ниже чем мы хотим (на что подключались). Очень много факторов. Самая распространенная это сам человек, который пытается определить скорость. Просто не правильно понимает то, что видит.

    У меня многие друзья, коллеги пытаются выпытать что и как и почему и дать им всем советы, чтобы за меньшие день получить максимум возможностей. Да все дело в том, где вы находитесь, что вы хотите делать и так далее. Лично для себя я вот подключил оптоволоконный интернет от Ростелекома на 25 Мб/с. Меня устроила цена, меня устроило качество обслуживания, и сама скорость. Мне хватает смотреть онлайн фильмы, играть онлайн, скачивать данные. Если что-то большое скачать надо, ставлю на ночь и иду спать. Вам это может не подойти, все индивидуально. Но это мое мнение, отношение и вопросы о том какая скорость интернета у меня, не возникают. Просто потому, что ее тяжело точно определить, все примерно, все относительно.

    Но что-то я ушел в стороны. И так, я выделил две самые распространенные ошибки:

    1. При скачивании данных оказывается неправильные данные именно самого загрузчика и не внимательность пользователя. Сам загрузчик показывает примерную скорость скачивания и не является точной. Скорость всегда скачет и зависит от множества факторов. Плюс бывали случаи, когда загрузчик показывает скорость 782 Кбит/с, а пользователь сразу говорит, мол вот она в 10 раз меньше заявленной: 8192 кбайт/с. Нужно внимательнее посмотреть на значение скоростей. В первом случае Килобайты, во втором килобиты. Что получается: 782*8=6256 кбайт/с. Вот на какой скорости качался файл. При том, что данные примерны и близки к заявленной скорости, это нормально.
    2. Многие смотрят на значок внизу справа в виде двух мониторов и видят там надпись «скорость подключения 100 Мб» (на версия Windows 7 и выше нет такого, хотя и там мне говорили пишется, но где, не нашел), а у них подключено например 512 кбит/с, и начинают думать, что это же значение больше, значит Провайдер нас обманывает и начинают ему звонить. Дело опять в невнимательности. Там внизу, показывается скорость подключения между модемом и компьютером и не имеет никакой связи со скоростью интернета.

    От чего зависит скорость передачи данных?

    От многих вещей, но самых распространенных я выделил три. Для начала, если вы попробовали допустим скачать данные в г. Мариинске с сервера в Новосибирске, потом поделили объем данных на время скачивания и получили скорость, то Вы не получите достоверной информации. Ваша полученная скорость интернета будет меньше и ваш Провайдер ни в чем не виноват.

    Вот почему:

    1. Перегруженность какого-то канала связи между Новосибирском и Мариинском, а их много, цепочка длинная. Могут даже быть иностранные провайдеры. Проще говоря, Ваш сигнал не идет прямо из Мариинска в Новосибирск по прямой, там много ответвлений и много других провайдеров, у которых свои каналы связи с разной пропускной способностью. И Ваша скорость не может быть больше самого медленного канала связи. Вот и получается, что если где-то есть канал с самой низкой пропускной способностью, то ваша скорость будет именно той самой низкой.
    2. Большая загруженность самого сервера или ограничение по отдаче информации самим владельцем сервера.
    3. Низкая производительность Вашего сетевого оборудования, или сильная загруженность Вашего компьютера во время измерений.
    4. Вообще, сами загружаемые данные не идут одним потоком в одну сторону, там разделено на пакеты. Ваш компьютер отправляет запросы, пакеты приходят, битые или не принятые пакеты повторно отправляются, В общем двухсторонняя связь идет постоянно, на это тратится время еще плюсом.
    5. Еще можно отметить сами вычислительные мощности серверов, ведь чем больше заявленная скорость, тем больше нужны вычислительных ресурсов. Это сложные процессы, требующие серьезного железа.

    Как правильно определить скорость.

    Почему-то многие думают, что Провайдеры их все время хотят обмануть. Выше я уже написал, почему я выбрал Ростелеком и сижу спокойно и не волнуюсь. Все крупные провайдеры наоборот заинтересованны в том, чтобы предоставлять вам именно ту скорость, точнее пропускную способность, за которую вы платите. И дело не в том, что любой может проверить скорость и пожаловаться.

    Но как же измерить скорость?

    Сегодня очень много способов это сделать. Достаточно просто в поисковике вбить запрос «измерить скорость интернета» и выберите к примеру speedtest.net.

    Сначала выбираем регион, тот провайдер, который у вас.

    Нажимаем проверить, через несколько секунд, может минут, вы узнаете свою скорость интернета. НО, это просто покажет вам скорость обмена информации между вами и сайтом и никак не покажет пропускную способность вашего провайдера. О чем я и рассказывал выше.

    А вот чтобы проверить пропускную способность, делаем следующее:

    1. Скачиваем и устанавливаем любую программу, которая умеет считывать и показывать объем полученным и отправленных данных. Например TMeter, DUMeter и т.д.
    2. А теперь пытаемся любыми способами загрузить свой канал, качая как можно больше информации одновременно и файлы должны бить большими, и в свою очередь файлы нужно скачивать с разных сайтов. К стати программа Torrent вам очень может помочь. Там ставим как можно больше закачек и анализируем полученные данные.
    3. Теперь вы можете определить вашу скорость интернета, точнее пропускную способность до провайдера. Ведь больше чем вам позволил провайдер, к вам не пролезет))).

    И в заключение хочу сказать, Вам спасибо, за то что читаете мои статьи, оставляете комментарии, поправляйте, если что не так, я всегда за адекватную критику. Читайте следующие советы. Делитесь информацией в соц сетях, Всем пока!

    Что такое скорость интернета? обновлено: Сентябрь 11, 2017 автором: Субботин Павел