Множество называется топологическим пространством , когда задано определённое семейство его открытых подмножеств , удовлетворяющее аксиомам. Возможно много способов задания структуры топологического пространства на одном множестве: от дискретной до нехаусдорфовой «антидискретной (=тривиальной) топологии », склеивающей все точки вместе.

Базовые понятия теории множеств (множество , функция , ординальные числа и кардинальные числа , аксиома выбора , лемма Цорна и т.д.) не являются предметом общей топологии, но активно ею используются. Общая топология включает в себя следующие разделы: свойства топологических пространств и их отображений, операции над топологическими пространствами и их отображаениями, классификация топологических пространств.

Общая топология включает в себя теорию размерности .

История

Общая топология зародилась в конце XIX в. и оформилась в самостоятельную математическую науку в начале XX в . Основополагающие работы принадлежат Ф. Хаусдорфу , А. Пуанкаре , П. С. Александрову , П. С. Урысону , Л. Брауэру . В частности, была решена одна из главных задач общей топологии - нахождение необходимых и достаточных условий метризуемости топологического пространства.

Наиболее бурное развитие общей топологии как самостоятельной ветви знания происходило в середине ХХ в., в начале же XXI в . она скорее является вспомогательной дисциплиной, "обслуживающей" своим понятийным аппаратом многие области математики: топологию, функциональный анализ, комплексный анализ, теорию графов и т.д..

См. также

Замечания

  • Понятие предела функции, вводимое в общей топологии, допускает дальнейшее обобщение в рамках теории псевдотопологических пространств.

Литература

  • П. С. Александров, В. В. Федорчук, В. И. Зайцев Основные моменты в развитии теоретико-множественной топологии
  • Александров П. С. Введение в теорию множеств и общую топологию - М .: Наука , 1977
  • Архангельский А. В., Пономарёв В. И. Основы общей топологии в задачах и упражнениях - М .: Наука , 1974
  • Бурбаки Н. Элементы математики. Общая топология. Основные структуры - М .: Наука , 1968
  • Келли Дж. Л. Общая топология - М .: Наука , 1968
  • Энгелькинг Р. Общая топология - М .: Мир, 1986
  • Виро О. Я., Иванов О. А., Харламов В. М., Нецветаев Н. Ю. Элементарная топология . Учебник в задачах (рус., англ.)

Wikimedia Foundation . 2010 .

  • ГУЛАГ
  • Топологическое пространство

Смотреть что такое "Общая топология" в других словарях:

    ОБЩАЯ ТОПОЛОГИЯ - ветвь геометрии, посвященная исследованию непрерывности и предельного перехода на том естественном уровне общности, к рый определяется природой этих понятий. Исходными понятиями О. т. являются понятия топологического пространства и непрерывного… … Математическая энциклопедия

    Общая алгебра - (также абстрактная алгебра, высшая алгебра) раздел математики, изучающий алгебраические системы (также иногда называемые алгебраическими структурами), такие как группы, кольца, поля, частично упорядоченные множества, решётки, а также… … Википедия

    Топология - Не следует путать с топографией. У этого термина существуют и другие значения, см. Топология (значения). Лента Мёбиуса поверхно … Википедия

    Топология - (от греч. tоpos место и …логия (См. ...Логия) часть геометрии, посвященная изучению феномена непрерывности (выражающегося, например, в понятии предела). Разнообразие проявлений непрерывности в математике и широкий спектр различных… … Большая советская энциклопедия

    Топология Зарисского - Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. Топология Зарисского в алгебраической геометрии специальная топология, отражающая алгебраическую при … Википедия

    ТОПОЛОГИЯ - раздел математики, занимающийся изучением свойств фигур (или пространств), которые сохраняются при непрерывных деформациях, таких, например, как растяжение, сжатие или изгибание. Непрерывная деформация это деформация фигуры, при которой не… … Энциклопедия Кольера

    Общая точка (математика) - У этого термина существуют и другие значения, см. Общая точка. Общая точка точка топологического пространства, замыкание которой совпадает со всем пространством. Топологическое пространство, имеющее общую точку, является неприводимым… … Википедия

    топология - Физическое или логическое распределение узлов сети. Физическая топология определяет физические связи (каналы) между узлами. Логическая топология описывает возможные соединения между сетевыми узлами. В локальных сетях наиболее распространены три… … Справочник технического переводчика

    ТОПОЛОГИЯ - в широком смысле область математики, изучающая топологич. свойства разл. матем. и физ. объектов. Интуитивно, к топологич. относятся качественные, устойчивые свойства, не меняющиеся при деформациях. Матем. формализация идеи о топологич. свойствах… … Физическая энциклопедия

    Общая теория систем - (теория систем) научная и методологическая концепция исследования объектов, представляющих собой системы. Она тесно связана с системным подходом и является конкретизацией его принципов и методов. Первый вариант общей теории систем был… … Википедия

Книги

  • Общая топология. Основные структуры , Н. Бурбаки. В этом новом издании сделано довольно большое число изменений в деталях; кроме того, переделан весь план гл. I и II с целью расположить материал в лучшем соответствиис общими представлениями…
§ 1.9. База и предбаза топологии.

Для задания на множестве X некоторой топологии Ω нет необходимости указывать непосредственно все подмножества семейства Ω. Существует другой очень удобный способ построения топологии с помощью понятия базы.

Совокупность β открытых множеств пространства (X,Ω) называется базой топологии Ω или базой пространства (X,Ω), если всякое непустое открытое множество топологического пространства (X,Ω) можно представить в виде объединения некоторой совокупности множеств, принадлежащих β. В частности, X равно объединению всех множеств базы.

Теорема 1.9.

Совокупность β открытых множеств топологии Ω является базой этой топологии тогда и только тогда, когда для всякого открытого множества U Ω и для всякой точки х U существует множество V β такое, что х V U.

Доказательство. Пусть β - база топологии Ω. U - произвольное открытое множество из семейства Ω, х - произвольная точка множества U. Тогда, по определению базы, множество , где - некоторое семейство множеств, принадлежащих совокупности β. Так как х U, то найдется индекс α 0 J такой, что х V α0 β, и V α0 U. Обратно, если U - произвольное открытое множество из семейства Ω, то для любой точки х U найдется множество V x β такое, что х V x U. Непосредственно проверяется, что объединение всех таких V x совпадает с U: . Таким образом, любое открытое множество из семейства Ω является объединением некоторой совокупности множеств, принадлежащих β. Значит, β является, по определению, базой топологии Ω.

Теорема доказана.

Система подмножеств S α из X называется покрытием X, если объединение совпадает с X. Покрытие S называется открытым , если каждое S α открыто в пространстве (X,Ω).

В частности, база пространства (X,Ω) является открытым покрытием X. Однако не всякое покрытие X может служить базой некоторой топологии на X.

Возникает вопрос: если - некоторое покрытие X, то при каких условиях можно построить топологию на X так, чтобы данное семейство было базой этой топологии? Отвечает на этот вопрос следующая теорема.

Теорема 1.10.

Пусть . Покрытие β = является базой некоторой топологии на X тогда и только тогда, когда для каждого V α из β, каждого V β из β и для каждой точки x V α V β существует V γ β такое, что x V γ (V α V β).

Доказательство. Пусть β = - база пространства (X,Ω). Так как β Ω, то в силу аксиомы в) топологического пространства пересечение любых двух множеств из совокупности β является открытым множеством, т.е. V α V β Ω. Отсюда, по теореме 1.9 для любой точки х V α V β найдется V γ β такое, что x V γ (V α V β).

Обратно, пусть покрытие β удовлетворяет условию теоремы. Зададим семейство Ω, состоящее из пустого множества и всевозможных объединений множеств из β. Покажем, что построенное семейство Ω удовлетворяет аксиомам а) - в) топологического пространства. Аксиома а)очевидна: пустое множество входит в Ω по условию, а множество принадлежит Ω как объединение всех множеств из β. Проверим аксиому б). Пусть - семейство множеств, где U α Ω для любого индекса α из J. Каждое множество U α является объединением некоторой совокупности множеств из β: где V α,γ β для каждого индекса α J и каждого индекса γ G. Тогда , т.е. множество является объединением некоторой совокупности множеств из β и, следовательно, принадлежит семейству Ω. Для проверки аксиомы в) достаточно показать, что пересечение любых двух множеств U, из Ω. принадлежит Ω. Представим множества U, в следующем виде: где V γ β для каждого γ G, δ β для каждого δ D. Рассмотрим пересечение . Сначала убедимся в том, что каждое множество вида V γ δ принадлежит Ω. Действительно, для любой точки х V γ δ по условию теоремы найдется множество W x β такое, что х W x V γ δ . Следовательно, множество V γ δ = . Полученное равенство показывает, что множество V γ δ Ω как объединение некоторого семейства множеств из совокупности β. Поэтому множество U есть объединение некоторого семейства множеств, принадлежащих Ω, и значит, в силу аксиомы б), U Ω. Таким образом, семейство Ω удовлетворяет аксиомам а) - в) топологического пространства, т.е. является топологией на X, а покрытие β служит для Ω, по определению, базой.

Теорема доказана.

Заметим, что в доказательстве теоремы 1.10 указан способ построения топологии на X, если задано покрытие β, удовлетворяющее условию теоремы.

Можно ли сконструировать топологию на X, если задано произвольное покрытие ? Ответ на этот вопрос дает следующая теорема.

Теорема 1.11.

Пусть - произвольное покрытие множества X. Тогда семейство всевозможных конечных пересечений элементов из S образует базу некоторой топологии на X.

Доказательство. Проверим, что покрытие где К - произвольное конечное подмножество из I, удовлетворяет критерию базы. Заметив, что пересечение любых двух элементов семейства β снова является элементом семейства β, применим теорему 1.10: для любых множеств U α , V β , принадлежащих β, положим V γ = V α V β . Тогда V γ β как пересечение конечного числа множеств из S. Следовательно, для любой точки х V α V β имеем: х V γ = (V α V β). Таким образом, в силу теоремы 1.10, β является базой некоторой топологии на X.

Теорема доказана.

Семейство γ открытых подмножеств пространства (X,Ω) называется предбазой топологии Ω, если семейство β, состоящее из всевозможных конечных пересечений множеств из γ, образует базу топологии Ω.

Теорема 1.11 утверждает, что каждое покрытие множества X является предбазой некоторой топологии на X.

Очевидно, всякая база пространства является и его предбазой. Как правило, у топологии есть много баз и предбаз. Предпочтение может быть отдано той или иной из них в зависимости от решаемой задачи.

Топология, самая юная и самая мощная ветвь геометрии, наглядно демонстрирует плодотворное влияние противоречий между интуицией и логикой

Р. Курант

Топология является одним из самых молодых разделов современной геометрии. Чем занимается топология? Так, например, аналитическая геометрия исследует простейшие геометрические объекты (точки, прямые, плоскости и пр.) средствами элементарной алгебры на основе метода координат. Чтобы получить некоторое представление о топологии, рассмотрим ряд простых и занимательных задач, связанных с ее объектами.

У каждого из нас есть интуитивное представление о том, что такое "поверхность". Поверхность листа бумаги, поверхность стен аудитории, поверхность земного шара известны всем. Возьмите бумажную ленту АВСD, разделенную по ширине пополам пунктирной линией и приложите ее концы АВ и СD друг к другу, склейте их так, чтобы точка А совпала с точкой D, а точка B с точкой С. Перед склейкой перекрутите ленту один раз. Получилось знаменитое в математике бумажное кольцо. Его особое название - "Лист Мёбиуса". У ленты, из которой сделан лист Мёбиуса, две стороны. А у него самого, есть только одна сторона! В качестве опыта, демонстрируемого особенности листа Мебиуса, обычно предлагают «опыт с пауком и мухой». Если на внутреннюю сторону обычного кольца посадить паука, а на наружную - муху и разрешить им ползать как угодно, запретив лишь перелезать через края кольца, то паук никогда не сможет добраться до мухи. А если их обоих посадить на лист Мёбиуса, то бедная муха будет съедена, если, конечно, паук ползает быстрее!

Таинственный и знаменитый лист Мебиуса (иногда говорят: "лента Мёбиуса") придумал в 1858 г. немецкий геометр Август Фердинанд Мёбиус (1790-1868), ученик "короля математиков" Гаусса. Мёбиус был первоначально астрономом, как Гаусс и многие другие из тех, кому математика была обязана своим развитием. В те времена занятия математикой не встречали поддержки, а астрономия давала достаточно денег, чтобы не думать о них, и оставляла время для собственных размышлений. И Мёбиус стал одним из крупнейших геометров XIX в. В возрасте 68 лет ему удалось сделать открытие поразительной красоты. Это открытие односторонних поверхностей, одна из которых - лист Мёбиуса.

Представленный лист Мебиуса и является объектом изучения новой ветви геометрии – топологии. Топологию часто называют «резиновой геометрией», потому что в ней любую фигуру можно сгибать, скручивать, растягивать, сжимать, но только не разрезать и склеивать. При этом считается, что свойства фигуры остаются неизменными.

При растяжении резинка порвется не сразу, она будет свободно растягиваться, сжиматься, так как эластична. И при таком растяжении или сжатии будут сохраняться все ее особенные свойства – цвет, структура и прочее, при этом изменится только длина и ширина. Поэтому в топологии при рассмотрении объекта не учитывается ни длина, ни величина его углов. Топологические объекты различаются только по «топологической структуре», их свойства могут быть установлены без измерения и сравнения длин и величин углов.

К другим топологическим объектам относятся фигуры, которые можно нарисовать одним росчерком пера. Эти фигуры связаны с топологическим понятием графа. Граф состоит из двух множеств - множества вершин и множества ребер, причем для каждого ребра указана пара вершин, которые это ребро соединяет.

Одной из знаменитых задач, связанных с понятием графов, является задача о Кенигсбергских мостах, называемой еще задачей Эйлера.

В Кенигсберге есть остров, называемый Кнейпгоф. Река, омывающая его, делится на два рукава, через которые перекинуто семь мостов: а, b, с, d, e, f, g. Можно ли обойти все эти мосты, не побывав ни на одном из них более раза?

Этой задаче Эйлер посвятил целое математическое исследование, которое было в 1736 году представлено в Петербургскую Академию. Для наглядности заменим рисунок расположения речных рукавов упрощенной схемой (рис.20). В предложенной задаче размер острова и длина мостов никакого значения не имеют (такова характерная особенность всех топологических задач). Задача сводится теперь к тому, чтобы начертить фигуру одним росчерком, не отрывая пера от бумаги и не проводя ни одной линии дважды.

Сначала попытайтесь нарисовать одним росчерком, не отрывая пера от бумаги, не делая никаких лишних штрихов и не проводя дважды ни одной линии, каждую из следующих семи фигур, изображенных на рис. 21. Попытки вычерчивания непрерывной линией фигур 1-7 приводят к неодинаковым результатам. Некоторые фигуры удается вычерчивать, с какой бы точки ни начинать вести первую линию. Другие вычерчиваются одним росчерком в тех лишь случаях, когда начинают с определенных точек. Наконец, третьи вовсе не поддаются вычерчиванию одной непрерывной линией. Существуют ли признаки, позволяющие установить заранее, поддается ли данная фигура вырисовыванию одним росчерком, и если поддается, то с какой точки следует начинать черчение?

Теория графов дает на эти вопросы исчерпывающие ответы, и мы сейчас познакомимся с некоторыми положениями этой теории. Условимся называть «четными» те точки фигуры, в которых сходится четное число линий, в отличие от точек «нечетных», в которых встречается нечетное число линий. Можно доказать, что какова бы ни была фигура, нечетных точек в ней либо нет совсем, либо их имеется две, четыре, шесть-вообще четное число. В теории графов доказывается, что если нечетных точек в фигуре нет, то она всегда поддается вырисовыванию одним росчерком, безразлично, с какого места ни начинать черчение. Таковы фигуры 1 и 5 . Если в фигуре имеется только одна пара нечетных точек, то такую фигуру можно нарисовать одним росчерком, начав черчение в одной из нечетных точек (безразлично в какой). Вычерчивание должно оканчиваться во второй нечетной точке. Таковы фигуры 2, 3, 6; в фигуре 6, например, вычерчивание надо начинать либо из точки А, либо из точки В.

Если фигура имеет более одной пары нечетных точек, то она вовсе не может быть нарисована одним росчерком. Таковы фигуры 4 и 7, содержащие по две пары нечетных точек. И теперь уже можно заключить, что и задача Эйлера решений не имеет: по всем семи мостам пройти, как это требуется, невозможно.

Также к «топологической задаче» относится и задача четырёх красок, заключающаяся в доказательстве (или опровержении) следующего предложения: четырёх различных красок достаточно для того, чтобы раскрасить любую карту так, чтобы никакие две области, имеющие общий участок границы, не были окрашены в один и тот же цвет. Доказывается при этом, что пяти красок всегда достаточно для раскраски такого рода "карты". Если же соответствующую задачу формулировать для пространства, то здесь никакое число "красок" не окажется достаточным.

Впервые эта проблема была сформулирована в 1825 году лондонским студентом Гутри, который обнаружил, что для различия графств на карте Англии достаточно четырех красок, и выдвинул гипотезу о том, что четырех красок достаточно для раскраски любой карты. Спустя сорок лет английский математик Хивуд доказал, что любую карту на плоскости можно раскрасить в пять цветов. В дальнейшем проблема четырех красок приобретала все больший и больший интерес. В 1968 году Оре и Стемпл доказали, что любую карту, имеющую не более 40 стран, можно раскрасить в четыре цвета.

В настоящее время проблема четырех красок решена с помощью компьютерной визуализации. Учеными с помощью компьютера было просмотрено около 2000 типов карт и был получен вывод, что не существует среди них карты, для раскраски которой недостаточно четырех красок. Однако, поскольку нельзя признать, что все типы карт были рассмотрены, то полученное решение окончательным не считается и в настоящее время проблема четырех красок остается открытой.

В топологии существуют и свои объекты, и свои свойства, отличающиеся от свойств фигур в евклидовой геометрии.

Топологическим свойством геометрических фигур называется свойство, которым вместе с данной фигурой обладает также любая фигура, в которую она переходит при топологическом преобразовании. Проще говоря, если из одной фигуры можно получить другую, без разрывов и склеиваний, то эти две фигуры являются топологически одинаковыми и обладают одинаковыми топологическими свойствами.

Окружность с помощью деформации можно преобразовать в овал, в треугольник, в квадрат, вообще в произвольный многоугольник без самопересечении, в произвольную замкнутую кривую без самопересечений, что позволяет нам судить о топологической эквивалентности (или, как еще говорят, гомеоморфности) всех вышеперечисленных фигур (рис.22).

По определению все топологические свойства у гомеоморфных фигур совпадают, поэтому для топологии, изучающей лишь топологические свойства, все гомеоморфные между собой фигуры представляют как бы различные экземпляры одного и того же топологического образа, как, например, все конгруэнтные между собой треугольники в школьном курсе геометрии.

В связи с этим и вводится понятие топологического типа. Для того, чтобы две фигуры принадлежали одному и тому же топологическому типу, необходимо и достаточно, чтобы они были гомеоморфными.

Так, рассмотренные выше фигуры принадлежат одному топологическому типу; отрезок, дуга, незамкнутая ломаная - другому; «восьмерка» не принадлежит ни одному из этих типов. Сфера, куб, выпуклый многогранник образуют свой топологический тип и т. д.

Возьмем лист бумаги. Согните его, как угодно, сделайте из него самолетик, кораблик, сомнем его в комок. Если в результате этих преобразований он нигде не порвался, то во всех этих состояниях все его виды – кораблик, самолетик, комок, эквивалентны друг другу. Более того, если допустить, что лист бумаги обладает особыми свойствами, позволяющими его растягивать как угодно и сжимать до любой степени, то он будет эквивалентен даже кругу. Если же все- таки случайно он порвался и образовалось отверстие, то это будет другая поверхность, называемая кольцом. Говорят, что она ограничена двумя окружностями

К особым топологическим свойствам относятся: связность, компактность, линейная связность.

Понятие связности обобщает интуитивное представление о целостности, неразделенности геометрической фигуры, а понятие несвязного пространства – отрицание целостности, разделенность.

Пространство X называется несвязным , если его можно представить как объединение двух непустых непересекающихся множеств. В противном случае пространство называется связным . Простейшими примерами связного множества служит отрезок числовой оси R, несвязного – гипербола, если вспомнить, что собой представляет график гиперболы – две обособленные бесконечные ветви.

Топологическое пространство называется отделимым , если у любых его различных точек существуют непересекающиеся окрестности. Например, отделимыми являются числовое пространство, евклидово пространство, все метрические, аффинное и проективное пространства, потому что для каждых двух точек можно выбрать такие окрестности, чтобы они не имели общих точек.

Компактные объекты – это объекты, которые одновременно и ограничены (например, вокруг них можно описать окружность или сферу), и замкнуты (то есть граничные точки принадлежат объекту).

Какие же топологические объекты можно перечислить? Простейшая замкнутая поверхность, это, конечно, сфера. Второй интересный топологический объект – это тор, или как еще иначе его называют, бублик, баранка – по форме он действительно напоминает всеми любимое мучное изделие.

Следующий объект – это уже известный лист Мебиуса.

Лист Мёбиуса служил вдохновением для скульптур и для графического искусства. Эшер был одним из художников, кто особенно любил его и посвятил несколько своих литографий этому математическому объекту. Одна из известных - лист Мёбиуса II, показывает муравьёв, ползающих по поверхности ленты Мёбиуса. М уравьи Эшера демонстрируют свойства листа Мёбиуса: муравьи ползут по одной стороне листа, но кажется, будто они движутся по противоположным его сторонам. Лист, дважды перекрученный на пол-оборота, имеет две стороны. Число перекручиваний определяет число сторон и приводит к неожиданным эффектам при разрезании листа Мёбиуса вдоль оси.

Лист Мёбиуса был эмблемой известной серии научно-популярных книг «Библиотечка „Квант“». Он также постоянно встречается в научной фантастике, например в рассказе Артура Кларка «Стена Темноты». В рассказе «Лист Мёбиуса» автора А. Дж. Дейча, бостонское метро строит новую линию, маршрут которой становится настолько запутанным, что превращается в ленту Мёбиуса, после чего на этой линии начинают исчезать поезда. По мотивам рассказа был снят фантастический фильм «Мёбиус» режиссёра Густаво Москера. Также идея ленты Мёбиуса используется в рассказе М. Клифтона «На ленте Мёбиуса».

С лентой Мёбиуса сравнивается течение романа современного русского писателя Алексея А. Шепелёва «Echo» (СПб.: Амфора, 2003). Из аннотации к книге: «„Echo“ - литературная аналогия кольца Мёбиуса: две сюжетные линии - „мальчиков“ и „девочек“ - переплетаются, перетекают друг в друга, но не пересекаются».

Еще один объект топологии - бутылка Клейна.

Феликс Клейн - это математик, который первым исследовал эту поверхность, а вот почему "бутылка"? Ведь на бутылку это мало похоже. Вероятно, после какой-то деформации сходство с бутылкой становится ближе?

Если муха захочет переползти с наружной поверхности обычной бутылки на внутреннюю или наоборот, ей непременно придется пересечь край, образуемый горлышком. В отличие от обычной бутылки бутылка Клейна не имеет края, а ее поверхность нельзя разделить на внутреннюю и наружную. Та поверхность, которая кажется наружной, непрерывно переходит в ту, которая кажется внутренней, как переходят друг в друга две, на первый взгляд различные, "стороны" листа Мебиуса. К сожалению, в трехмерном пространстве бутылку Клейна фактически реализовать сложно и невозможно, но в топологии изучаются не то, что возможно или нет, а просто какие возможны комбинации.

Представим себе, что мы оттянули нижний конец трубки, загнули его вверх и, пропустив сквозь поверхность трубки, совместили с верхним концом. У реальной модели, изготовленной, например, из стекла, в том месте, где конец трубки проходит сквозь ее поверхность, придется оставить отверстие. Его не следует принимать во внимание: оно считается как бы затянутым продолжением поверхности бутылки. Иначе говоря, отверстия нет, есть только самопересечение поверхности бутылки. Такое самопересечение неизбежно до тех пор, пока мы имеем дело с трехмерной моделью. Если же мы представим себе, что вся поверхность погружена в четырехмерное пространство, то самопересечение можно будет полностью исключить.

Известный специалист по алгебраической геометрии Д. Пидо написал книгу под названием "Прекрасное искусство математики". Это великолепная книга, однако профессор Пидо, следуя установившейся традиции, допускает там неверное утверждение. Он пишет, что изготовить бутылку Клейна под силу лишь искусному стеклодуву, сделать же бутылку Клейна "из бумаги совсем невозможно". Действительно, в то время, когда профессор Пидо писал свою книгу, никто даже не пытался склеить бумажную модель бутылки Клейна. Но так продолжалось лишь до тех пор, пока за дело не взялся Стифен Барр, писатель-фантаст, а на досуге - большой любитель занимательной математики.

Барр довольно быстро придумал множество способов складывания из бумаги моделей бутылки Клейна и даже написал книгу о топологических развлечениях. В книге Барра приводится множество новых способов, позволяющих складывать из обыкновенного листа бумаги изящные топологические модели.

Бутылка Клейна является замкнутой односторонней поверхностью, если налить в такую бутылку воду, то вылить ее обратно уже будет совершенно невозможно.

Итак, топология – это особый раздел геометрии, в котором нет места понятиям расстояние, форма, угол. Линия не бывает здесь прямой или кривой - это просто линия. Поверхность не может быть вогнутой или выпуклой, или плоской - это бессмысленные для топологии слова. Но, например, отрезок и замкнутую линию - это топологически разные объекты. Объекты топологии бывают односторонние и двусторонние. Например, куб - двусторонняя поверхность, лист Мебиуса –односторонняя.

Но этот, казалось бы, странный раздел математики тесно связан с реальным миром. Например, электрическая цепь – понятие топологическое, поскольку существенно не расположение ее элементов в пространстве, а связи между ними. Топология графов (раздел топологии, занимающийся изучением сетей) имеет первостепенное значение при проектировании сложных электрических цепей. С топологией мы сталкиваемся в ткацком деле и вязании. Заузленная петля остается заузленной («не развязывается») при любых деформациях. Топологически она отличается от незаузленной петли. Текстильщики упражняются в топологии, пытаясь создать ткани с особыми топологическими свойствами, которые, например, можно связать целиком из одной нити или которые не «ползут» при обрыве одной нити: чтобы ткань
при обрыве волокна не «поползла», разработана сложная
система узлов и переплетений.

Существуют и технические применения ленты Мёбиуса. Полоса ленточного конвейера выполняется в виде ленты Мёбиуса, что позволяет ему работать дольше, потому что вся поверхность ленты изнашивается равномерно. Также в системах записи на непрерывную плёнку применяются ленты Мёбиуса (чтобы удвоить время записи). Во многих матричных принтерах красящая лента также имеет вид листа Мёбиуса для увеличения её ресурса.

Линии на карте-схеме Московского метрополитена сильно искажены по сравнению с реальными путями. Тем не менее, каждой точке путей
соответствует точка на схеме, и любые две точки, соединенные
на карте, соединены в действительности: схема и лондонская «подземка» топологически эквивалентны.

Но настоящая топология – пока еще не нашла широкого применения на практике (ни один из ее разделов не связан с производственной деятельностью так тесно, как, например, арифметика с банковским делом) и по-прежнему остается «площадкой для игр» теоретиков, теоремы топологии, хотя они и доказаны вполне строго, не находят столь прямых приложений, как, например, теоремы геометрии.

Топология компьютерных сетей

На скорость передачи данных в сети, на надежность обслуживания запросов клиентов, на устойчивость сети к отказам оборудования, на стоимость создания и эксплуатации сети значительное влияние оказывает ее топология.

Под топологией компьютерной сети понимается способ соединения ее отдельных компонентов (компьютеров, серверов, принтеров и т.д.). Различают следующие основные топологии:

· топология типа звезда;

· топология типа кольцо;

· топология типа общая шина;

· древовидная топология;

· полносвязная сеть.

Рассмотрим данные топологии сетей.

Топология типа звезда . При использовании топологии типа звезда информация между клиентами сети передается через единый центральный узел (Рис. 11). В качестве центрального узла может выступать сервер или специальное устройство – концентратор (Hub).

Рис. 11. Топология типа звезда

В топологии звезда могут использоваться активные и пассивные концентраторы. Активные концентраторы принимают и усиливают передаваемые сигналы. Пассивные концентраторы пропускают через себя сигналы, не усиливая их. Пассивные концентраторы не требуют подключения к источнику питания.

Преимущества топологии звезда состоят в следующем:

1. Высокое быстродействие сети, так как общая производительность сети зависит только от производительности центрального узла.

2. Отсутствие столкновения передаваемых данных, так как данные между рабочей станцией и сервером передаются по отдельному каналу, не затрагивая другие компьютеры.

Однако помимо достоинств у данной топологии есть и недостатки:

1. Низкая надежность, так как надежность всей сети определяется надежностью центрального узла. Если центральный узел (сервер или концентратор) выйдет из строя, то работа всей сети прекратится.

2. Высокие затраты на подключение компьютеров, так как к каждому новому абоненту необходимо ввести отдельную линию.

3. Отсутствие возможности выбора различных маршрутов для установления связи между абонентами.

Данная топология в настоящее время является самой распространенной.

Топология типа кольцо . При топологии кольцо все компьютеры подключаются к кабелю, замкнутому в кольцо. Сигналы передаются по кольцу в одном направлении и проходят через каждый компьютер (рис. 12).

Рис. 12. Топология типа кольцо

Передача информации в данной сети происходит следующим образом. Маркер (специальный сигнал) последовательно, от одного компьютера к другому, передается до тех пор, пока его не получит тот, который хочет передать данные. Получив маркер, компьютер создает так называемый пакет, который используется для передачи данных. В пакет помещается адрес получателя и данные, а затем он отправляется по кольцу. Пакет проходит через каждый компьютер, пока не окажется у того, чей адрес совпадает с адресом получателя. После этого принимающий компьютер посылает источнику информации подтверждение факта получения пакета. Получив подтверждение, передающий компьютер создает новый маркер и возвращает его в сеть.

Преимущества топологии типа кольцо состоят в следующем:

1. Пересылка сообщений является очень эффективной, т.к. можно отправлять несколько сообщений друг за другом по кольцу. Т.е. компьютер, отправив первое сообщение, может отправлять за ним следующее сообщение, не дожидаясь, когда первое достигнет адресата.

2. Протяженность сети может быть значительной. Т.е. компьютеры могут подключаться к друг к другу на значительных расстояниях, без использования специальных усилителей сигнала.

3. Отсутствие коллизий (см. тему №3, раздел 2) и столкновения данных, так как передачу в каждый момент времени ведет только один компьютер.

К недостаткам данной топологии относятся:

1. Низкая надежность сети, так как отказ любого компьютера влечет за собой отказ всей системы.

2. Для подключения нового клиента необходимо прервать работу в сети.

3. При большом количестве клиентов скорость работы в сети замедляется, так как вся информация проходит через каждый компьютер, а их возможности ограничены.

4. Общая производительность сети определяется производи­тельностью самого медленного компьютера .

Данная топология выигрывает в том случае, если в организации создается система распределенных центров обработки информации, расположенных на значительном расстоянии друг от друга.

Топология типа общая шина . При шинной топологии все клиенты подключены к общему каналу передачи данных (рис. 13). При этом они могут непосредственно вступать в контакт с любым компьютером, имеющимся в сети.

Рис.13. Топология типа общая шина

Передача информациипроисходит следующим образом. Данные в виде электрических сигналов передаются всем компьютерам сети. Однако информацию принимает только тот, адрес которого соответствует адресу получателя. Причем в каждый момент времени только один компьютер может вести передачу.

Преимущества топологии общая шина:

1. Вся информация находится в сети и доступна каждому компьютеру. Т.е. с любого персонального компьютера можно получить доступ к информации, которая храниться на любом другом компьютере.

2. Рабочие станции можно подключать независимо друг от друга. Т.е. при подключении нового абонента нет необходимости останавливать передачу информации в сети.

3. Построение сетей на основе топологии общая шина обходится дешевле, так как отсутствуют затраты на прокладку дополнительных линий при подключении нового клиента.

4. Сеть обладает высокой надежностью, т.к. работоспособность сети не зависит от работоспособности отдельных компьютеров.

Последнее преимущество определяется тем, что шина является пассивной топологией. Т.е. компьютеры только принимают передаваемые данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе остальных.

К недостаткам топологии типа общая шина относятся:

1. Низкая скорость передачи данных, так как вся информация циркулирует по одному каналу (шине).

2. Быстродействие сети зависит от числа подключенных компьютеров. Чем больше компьютеров подключено к сети, тем больше загружена шина и тем медленнее идет передача информации от одного компьютера к другому.

3. Для сетей, построенных на основе данной топологии, характерна низкая безопасность, так как информация на каждом компьютере может быть доступна с любого другого компьютера.

Древовидная топология . В сетях с древовидной топологией компьютеры непосредственно связаны с центральными узлами сети – серверами (Рис. 14).



Рис.14. Древовидная топология

Древовидная топология представляет собой комбинацию топологии типа звезда и топологии типа общая шина. Поэтому ей в основном присущи те же преимущества и недостатки, которые были указаны для данных топологий.

Полносвязная вычислительная сеть . В полносвязной сети каждый компьютер соединен со всеми другими компьютерами отдельными линиями (рис. 15).

Рис.15. Полносвязная вычислительная сеть

Преимущества полносвязной сети:

1. Высокая надежность, так как при отказе любого канала связи будет найден обходной путь для передачи информации.

2. Высокое быстродействие, так как информация между компьютерами передается по отдельным линиям.

Недостатки данной топологии:

1. Данная топология требует большого числа соединительных линий, т.е. стоимость создания подобной сети очень высокая.

2. Трудность построения сети при большом количестве компьютеров, так как от каждого компьютера к остальным необходимо прокладывать отдельные линии.

Топология полносвязной сети обычно применяется для малых сетей с небольшим количеством компьютеров, которые работают с полной загрузкой каналов связи.

Для крупных вычислительных сетей (глобальных или региональных) обычно применяется комбинация различных топологией для разных участков.

Модели ЛВС

Существует две модели локальных вычислительных сетей:

· одноранговая сеть;

· сеть типа клиент-сервер.

В одноранговой сети все компьютеры равноправны между собой. При этом вся информация в системе распределена между отдельными компьютерами. Любой пользователь может разрешить или запретить доступ к своим данным. В таких сетях на всех компьютерах устанавливаются однотипные операционные системы (ОС), которые предоставляет всем компьютерам в сети потенциально равные возможности.

Достоинстваданной модели:

1. Простота реализации. Для реализации данной сети достаточно наличия в компьютерах сетевых адаптеров и кабеля, которых их соединит.

2. Низкая стоимость создания сети. Так как отсутствуют затраты, связанные с покупкой дорогостоящего сервера, дорогой сетевой операционной системы и т.д.

Недостатки модели:

1. Низкое быстродействие при сетевых запросах. Рабочая станция всегда обрабатывает сетевые запросы медленнее, чем специализированный компьютер – сервер. Помимо этого на рабочей станции всегда выполняются различные задачи (набор текста, создание рисунков, математические расчеты и др.), которые замедляют ответы на сетевые запросы.

2. Отсутствие единой информационной базы, так как вся информация распределена по отдельным компьютерам. При этом приходиться обращаться к нескольким компьютерам для получения необходимой информации.

3. Отсутствие единой системы безопасности информации. Каждый персональный компьютер защищает свою информацию посредством операционной системы. Однако операционные системы персональных компьютеров, как правило, обладают меньшей защищенностью, чем сетевые операционные системы для серверов. Поэтому "взломать" такую сеть значительно проще.

4. Зависимость наличия в системе информации от состояния компьютера. Если какой-то компьютер будет выключен, то информация, хранимая на нем, будет недоступна другим пользователям.

В сети типа клиент-сервер имеется один или несколько главных компьютеров - серверов. В таких системах всей основной информацией управляют серверы.

Сеть типа клиент-сервер является функционально не симметричной: в ней используются два типа компьютеров - одни ориентированны на выполнение серверных функций и работают под управлением специализированных серверных ОС, а другие - выполняют клиентские функции и работают под управлением обычных ОС. Функциональная несимметричность вызывает и несимметричность аппаратуры - для выделенных серверов используются более мощные компьютеры с большими объемами оперативной и внешней памяти.

Достоинствами данной модели являются:

1. Высокое быстродействие сети, так как сервер быстро обрабатывает сетевые запросы и не загружен другими задачами.

2. Наличие единой информационной базы и системы безопасности. Взломать сервер можно, но это значительно сложнее, чем рабочую станцию.

3. Простота управления все сетью. Так как управление сетью заключается в основном в управлении только сервера.

Недостаткимодели:

1. Высокая стоимость реализации, так как требуется покупать дорогостоящий сервер и сетевую операционную систему для сервера.

2. Зависимость быстродействия сети от сервера. Если сервер будет не достаточно мощным, то работа в сети может сильно замедляться.

3. Для правильной работы сети требуется наличие дополнительного обслуживающего персонала, т.е. в организации должна быть введена должность администратор сети.

Локальная сеть - важный элемент любого современного предприятия, без которого невозможно добиться максимальной производительности труда. Однако чтобы использовать возможности сетей на полную мощность, необходимо их правильно настроить, учитывая также и то, что расположение подсоединенных компьютеров будет влиять на производительность ЛВС.

Понятие топологии

Топология локальных компьютерных сетей - это месторасположение рабочих станций и узлов относительно друг друга и варианты их соединения. Фактически это архитектура ЛВС. Размещение компьютеров определяет технические характеристики сети, и выбор любого вида топологии повлияет на:

  • Разновидности и характеристики сетевого оборудования.
  • Надежность и возможность масштабирования ЛВС.
  • Способ управления локальной сетью.

Таких вариантов расположения рабочих узлов и способов их соединения много, и количество их увеличивается прямо пропорционально повышению числа подсоединенных компьютеров. Основные топологии локальных сетей - это "звезда", "шина" и "кольцо".

Факторы, которые следует учесть при выборе топологии

До того как окончательно определиться с выбором топологии, необходимо учесть несколько особенностей, влияющих на работоспособность сети. Опираясь на них, можно подобрать наиболее подходящую топологию, анализируя достоинства и недостатки каждой из них и соотнеся эти данные с имеющимися для монтажа условиями.

  • Работоспособность и исправность каждой из рабочих станций, подсоединенных к ЛВС. Некоторые виды топологии локальной сети целиком зависят от этого.
  • Исправность оборудования (маршрутизаторов, адаптеров и т. д.). Поломка сетевого оборудования может как полностью нарушить работу ЛВС, так и остановить обмен информацией с одним компьютером.
  • Надежность используемого кабеля. Повреждение его нарушает передачу и прием данных по всей ЛВС или же по одному ее сегменту.
  • Ограничение длины кабеля. Этот фактор также важен при выборе топологии. Если кабеля в наличии немного, можно выбрать такой способ расположения, при котором его потребуется меньше.

О топологии «звезда»

Этот вид расположения рабочих станций имеет выделенный центр - сервер, к которому подсоединены все остальные компьютеры. Именно через сервер происходят процессы обмена данными. Поэтому оборудование его должно быть более сложным.

Достоинства:

  • Топология локальных сетей "звезда" выгодно отличается от других полным отсутствием конфликтов в ЛВС - это достигается за счет централизованного управления.
  • Поломка одного из узлов или повреждение кабеля не окажет никакого влияния на сеть в целом.
  • Наличие только двух абонентов, основного и периферийного, позволяет упростить сетевое оборудование.
  • Скопление точек подключения в небольшом радиусе упрощает процесс контроля сети, а также позволяет повысить ее безопасность путем ограничения доступа посторонних.

Недостатки:

  • Такая локальная сеть в случае отказа центрального сервера полностью становится неработоспособной.
  • Стоимость "звезды" выше, чем остальных топологий, поскольку кабеля требуется гораздо больше.

Топология «шина»: просто и дешево

В этом способе соединения все рабочие станции подключены к единственной линии - коаксиальному кабелю, а данные от одного абонента отсылаются остальным в режиме полудуплексного обмена. Топологии локальных сетей подобного вида предполагают наличие на каждом конце шины специального терминатора, без которого сигнал искажается.

Достоинства:

  • Все компьютеры равноправны.
  • Возможность легкого масштабирования сети даже во время ее работы.
  • Выход из строя одного узла не оказывает влияния на остальные.
  • Расход кабеля существенно уменьшен.

Недостатки:

  • Недостаточная надежность сети из-за проблем с разъемами кабеля.
  • Маленькая производительность, обусловленная разделением канала между всеми абонентами.
  • Сложность управления и обнаружения неисправностей за счет параллельно включенных адаптеров.
  • Длина линии связи ограничена, потому эти виды топологии локальной сети применяют только для небольшого количества компьютеров.

Характеристики топологии «кольцо»

Такой вид связи предполагает соединение рабочего узла с двумя другими, от одного из них принимаются данные, а второму передаются. Главной же особенностью этой топологии является то, что каждый терминал выступает в роли ретранслятора, исключая возможность затухания сигнала в ЛВС.

Достоинства:

  • Быстрое создание и настройка этой топологии локальных сетей.
  • Легкое масштабирование, требующее, однако, прекращения работы сети на время установки нового узла.
  • Большое количество возможных абонентов.
  • Устойчивость к перегрузкам и отсутствие сетевых конфликтов.
  • Возможность увеличения сети до огромных размеров за счет ретрансляции сигнала между компьютерами.

Недостатки:

  • Ненадежность сети в целом.
  • Отсутствие устойчивости к повреждениям кабеля, поэтому обычно предусматривается наличие параллельной резервной линии.
  • Большой расход кабеля.

Типы локальных сетей

Выбор топологии локальных сетей также следует производить, основываясь на имеющемся типе ЛВС. Сеть может быть представлена двумя моделями: одноранговой и иерархической. Они не очень отличаются функционально, что позволяет при необходимости переходить от одной из них к другой. Однако несколько различий между ними все же есть.

Что касается одноранговой модели, ее применение рекомендуется в ситуациях, когда возможность организации большой сети отсутствует, но создание какой-либо системы связи все же необходимо. Рекомендуется создавать ее только для небольшого числа компьютеров. Связь с централизованным управлением обычно применяется на различных предприятиях для контроля рабочих станций.

Одноранговая сеть

Этот тип ЛВС подразумевает равноправие каждой рабочей станции, распределяя данные между ними. Доступ к информации, хранящейся на узле, может быть разрешен либо запрещен его пользователем. Как правило, в таких случаях топология локальных компьютерных сетей «шина» будет наиболее подходящей.

Одноранговая сеть подразумевает доступность ресурсов рабочей станции остальным пользователям. Это означает возможность редактирования документа одного компьютера при работе за другим, удаленной распечатки и запуска приложений.

Достоинства однорангового типа ЛВС:

  • Легкость реализации, монтажа и обслуживания.
  • Небольшие финансовые затраты. Такая модель исключает надобность в покупке дорогого сервера.

Недостатки:

  • Быстродействие сети уменьшается пропорционально увеличению количества подсоединенных рабочих узлов.
  • Отсутствует единая система безопасности.
  • Доступность информации: при выключении компьютера данные, находящиеся в нем, станут недоступными для остальных.
  • Нет единой информационной базы.

Иерархическая модель

Наиболее часто используемые топологии локальных сетей основаны именно на этом типе ЛВС. Его еще называют «клиент-сервер». Суть данной модели состоит в том, что при наличии некоторого количества абонентов имеется один главный элемент - сервер. Этот управляющий компьютер хранит все данные и занимается их обработкой.

Достоинства:

  • Отличное быстродействие сети.
  • Единая надежная система безопасности.
  • Одна, общая для всех, информационная база.
  • Облегченное управление всей сетью и ее элементами.

Недостатки:

  • Необходимость наличия специальной кадровой единицы - администратора, который занимается мониторингом и обслуживанием сервера.
  • Большие финансовые затраты на покупку главного компьютера.

Наиболее часто используемая конфигурация (топология) локальной компьютерной сети в иерархической модели - это «звезда».

Выбор топологии (компоновка сетевого оборудования и рабочих станций) является исключительно важным моментом при организации локальной сети. Выбранный вид связи должен обеспечивать максимально эффективную и безопасную работу ЛВС. Немаловажно также уделить внимание финансовым затратам и возможности дальнейшего расширения сети. Найти рациональное решение - непростая задача, которая выполняется благодаря тщательному анализу и ответственному подходу. Именно в таком случае правильно подобранные топологии локальных сетей обеспечат максимальную работоспособность всей ЛВС в целом.