В период с конца ХІХ по начало ХХ столетия происходил быстрый подъем в научно-техническом развитии и ознаменовалось это прогрессом коммуникационных технологий таких, как: радио, телеграф, телефон. Наука в сфере электроники изучала и разрабатывала необходимую элементную базу для передатчиков радиосигнала.

Первичным названием для всех электронных изделий, используемых в производстве радиоприемников, было выбрано такое, как «радиодетали». Потом это определение распространилось на элементы, которые не имели прямого отношения к радио.

Пятидесятые годы двадцатого века ознаменовались новым всплеском научно-технического прогресса, который был связан с появлением телевидения и первых компьютеров (ЭВМ). Эволюция в электронике привела к развитию и совершенствованию техники для радаров и телевидения. Вследствие этого, вместо ранее используемых ламповых технологий, стали применяться твердотельные электронные детали.

Новый шаг прогресса в электронике был вызван развитием электронно-счетных машин и возникновением первого многофункционального компьютера. Подобные агрегаты были огромными и включали в себя большое число элементов и поэтому характеризовались повышенной потребляемой мощностью и низкой надежностью. Исправить эти недочеты удалось только с появлением микросхем, микропроцессоров и прогресса в микротехнологиях. Сегодня, многие компании занимаются скупкой и переработкой радиодеталей, добытых с различной радиоаппаратуры.

Классификация радиокомпонентов

Электронные компоненты можно классифицировать по способу функционирования в цепи, как пассивные и активные. Каждый из них имеет свою уникальную вольт-амперную характеристику.

Активные радиоэлементы группируются в два класса, такие как: вакуумные и полупроводниковые. Детали вакуумного класса представляют собой безвоздушные емкости, имеющие внутри себя электроды (катод и анод). Они изготавливаются из керамики, металла или стекла. На электроды нанесено специальное покрытие, которое содействует выпуску отрицательно заряженных частиц в безвоздушное рабочее пространство. Функциональный электрод, который накапливает отрицательно заряженные частицы, называется анодом. Электронный поток между катодом и анодом является рабочей материей.

Самые распространенные вакуумные электронные радиокомпоненты:

  1. Диод – примитивная лампа, которая включает в себя анод и катод.
  2. Триод – вакуумная лампа применяется как усилитель, преобразователь и генератор электрических сигналов. Он включает в себя одну управляющую сетку, электронный подогреваемый катод и анод.
  3. Тетрод – это усиливающая низкие частоты экранирующая лампа.
  4. Пентод – элемент с экранирующими свойствами, который усиливает низкие частоты. Он включает в себя следующие части: анод, нагреваемый катод, две обычные управляющие сети и одну экранирующую. Главными отрицательными особенностями этих компонентов являются большие габариты и высокий показатель потребляемой мощности.

Сегодня спрос на старые радиодетали растет с каждым днем. Основными элементами, которые скупает наша организация «Электрорадиолом приокский» являются:

  1. Полупроводниковый диод. Элемент, который имеет различные величины сопротивления, относительно вектору направления электричества. Функционирование его основано на феномене электронно-дырочного перехода (p- и n- переход) и связи между полупроводниками с различными видами смешанной проводимости.
  2. Фототиристоры. Компонент, который конвертирует свет, попавший на фотоэлемент в электрический ток. Это происходит за счет процедур выполняемых в электронно-дырочном переходе.
  3. Резистор. Основной радиоэлектронный элемент является неотъемлемой частью каждой микросхемы. Он предназначен для обеспечения в цепи активного сопротивления. Относится к пассивным радиокомпонентам.
  4. Транзистор. Основной элемент в радиотехники. Применяется для генерации, усиления, трансформирования и коммутации электрических сигналов.
  5. Конденсатор. Является пассивным, базовым радиоэлектронным устройством, предназначенным для аккумулирования заряда и электрической энергии.
  6. Трансформатор. Компонент, который выполняет функцию преобразования переменного тока с помощью электромагнитной индукции в одну или несколько ленточных либо проволочных обмоток, опутанных общим магнитным потоком. Существует две основы, на которых базируется работа трансформатора – это: изменяющий свои параметры в определенный промежуток времени электрический ток, формирует изменяющее свои характеристики в определенный промежуток времени электромагнитное поле, преобразующий магнитный поток, проходящий сквозь обмотку, формирует в ней электродвижущую силу.
  7. Реле. Устройство, которое предназначено для соединения и разъединения электрической цепи при установленных изменениях входных электрических или не электрических операций или воздействий.

В наше время существуют множество организаций, которые имеют неподдельный интерес к устаревшим и вышедшим из обращения радиокомпонентам, микросхемам и занимаются их скупкой. Так как переработка и утилизация подобных радиоэлементов позволяет извлекать дорогостоящие цветные металлы. Специализированная фирма «Электрорадиолом приокский» скупает советские радиодетали официально по достойной стоимости.

Зная общий вид радиодеталей, можно конечно в некоторой мере разобраться в устройстве радиоэлектронного устройства, но все равно радиолюбителю придется нарисовать на бумаге контуры деталей и соединение между ними.

Еще в прошлом веке с целью сохранения конструктивных и схемных решений радиоустройств пионеры радиотехники делали их рисунки. Если посмотреть на эти рисунки, то можно увидеть, что они выполнены на очень высоком художественном уровне.

Это делали обычно сами изобретатели, если имели способности или приглашенные художники. Рисунки конструкций и соединение деталей делались с натуры.

Чтобы не затрачивать больших средств на рисование радиотехнических устройств и облегчить труд конструкторов начали делать рисунки с упрощениями. Это позволило значительно быстрее повторить конструкцию в другом городе или стране и сохранить схемные решения для потомков. Первые начерченные схемы появились в начале XIX столетия.

На рисование примерного вида детали могло быть потрачено немало времени, а иногда и средств, в те времена еще не было возможности использовать компьютеры и программы для рисования схем .

Детали рисовали подробно. Так, например, катушку индуктивности в 1905 году изображали в изометрии, то есть в трехмерном пространстве, со всеми подробностями, каркасом, намоткой, количеством витков (рис. 1). В конце концов изображения деталей и их соединений стали делать условно, символично, но сохраняя при этом их особенности.

Рис. 1. Эволюция условного графического изображения катушки индуктивности на электрических схемах

В 1915 г. рисунок схем упростился, перестали изображать каркас, вместо этого стали применять линии разной толщины для подчеркивания цилиндрической формы катушки.

Через 40 лет катушка уже изображалась линиями одной толщины, но еще с сохранением первоначальных особенностей ее вида. Только в начале 70-х годов нашего столетия катушку начали изображать плоской, то есть двумерной, а радиоэлектронные схемы стали приобретать свой нынешний вид. Вычерчивание сложных радиоэлектронных схем очень трудоемкая работа. Для ее выполнения необходим опытный чертежник-конструктор.

С целью упрощения процесса вычерчивания схем американский изобретатель Сесиль Эффингер в конце 60-х годов XX века сконструировал печатную машинку.

В машинке вместо обычных букв были вставлены обозначения резисторов, конденсаторов, диодов и т. д. Работа по изготовлению радиосхем на такой машинке стала доступной для выполнения даже простой машинистке. С появлением персональных компьютеров процесс изготовления радиосхем значительно упростился.

Теперь, зная графический редактор, можно на экране компьютера нарисовать радиоэлектронную схему, а затем ее распечатать на принтере. В связи с расширением международных контактов условные обозначения радиосхем усовершенствовались и сейчас они не очень отличаются друг от друга в разных странах. Это делает радиосхемы понятными для радиоспециалистов во всем мире.

Условными графическими обозначениями и правилами исполнения электрических схем занимается третий технический комитет Международной электротехнической комиссии (МЭК).

В радиоэлектронике используются три типа схем: блок-схемы, принципиальные и монтажные. Кроме этого, для проверки радиоэлектронной аппаратуры составляют карты напряжений и сопротивлений.

Блок-схемы не раскрывают особенностей ни деталей, ни количестба диапазонов, ни количества транзисторов, ни того, по какой схеме собраны те или другие узлы, она дает только общее представление о составе аппаратуры и взаимосвязи ее отдельных узлов и блоков. На принципиальной схеме изображают условные обозначения элементов прибора или блоков и их электрические соединения.

Принципиальная схема не дает представления ни о внешнем виде, ни о расположении деталей на плате, ни о том, как расположить соединительные провода. Это можно узнать только из монтажной схемы.

Следует отметить, что на монтажной схеме детали изображаются так, чтобы своим видом напоминать реальные свои очертания. Для проверки режимов работы радиоэлектронной аппаратуры используют специальные карты напряжений и сопротивлений. На этих картах величины напряжений и сопротивлений указываются относительно шасси или заземленного провода.

В нашей стране при вычерчивании радиоэлектронных схем руководствуются государственным стандартом, сокращенно ГОСТ, который указывает, как следует условно изображать те или иные радиодетали.

Для более легкого запоминания условных обозначений отдельных элементов радиоэлектронной аппаратуры их изображения содержат характерные особенности деталей. На схемах рядом с условным графическим изображением ставится буквенно-цифровое обозначение.

Обозначение состоит из одной или двух букв латинского алфавита и цифр, указывающих порядковый номер этой детали на схеме. Порядковые номера графических изображений радиодеталей ставятся исходя из последовательности расположения однотипных символов, например, в направлении слева направо или сверху вниз.

Латинские буквы указывают тип детали, С — конденсатор, R — резистор, VD — диод, L — катушка-индуктивности, ѴТ — транзистор и т.д. Возле буквенно-цифрового обозначения детали указывается значение ее основного параметра (емкость конденсатора, сопротивление резистора, индуктивность и т.п.) и некоторые дополнительные сведения. Наиболее употребительные условные графические изображения радиодеталей на принципиальных схемах приведены в табл. 1, а их буквенные обозначения (коды) даны в табл. 2.

В конце позиционного обозначения может быть поставлена буква, указывающая на его функциональное назначение, табл. 3. Например, R1F — резистор защитный, SB1R — кнопка сброса.

Для повышения информационной насыщенности печатного издания в научной и технической литературе по радиоэлектронике, а также на различных схемах, относящихся к этой области знаний, применяются условные буквенные сокращения устройств и протекающих в них физических процессов. В табл. 4 приведены наиболее употребительные сокращения и их расшифровка.

Таблица 1. Условные графические обозначения радиодеталей на принципиальных схемах.

Таблица 2. Буквенные обозначения (коды) радиодеталей на принципиальных схемах.

Устройства и элементы Буквенный код
Устройства: усилители, приборы телеуправления, лазеры, мазеры; общее обозначение А
Преобразователи неэлектрических величин в электрические (кроме генераторов и источников питания) или наоборот, аналоговые или многоразрядные преобразователи, датчики для указания или измерения; общее обозначение В
Громкоговоритель ВА
Магнитострикционный элемент ВВ
Детектор ионизирующих излучений BD
Сельсин-датчик ВС
Сельсин-приемник BE
Телефон (капсюль) BF
Тепловой датчик ВК
Фотоэлемент BL
Микрофон ВМ
Датчик давления ВР
Пьезоэлемент ВО
Датчик частоты вращения, тахогенератор BR
Звукосниматель BS
Датчик скорости ВѴ
Конденсаторы С
Микросхемы интегральные, микросборки: общее обозначение D
Микросхема интегральная аналоговая DA
Микросхема интегральная цифровая, логический элемент DD
Устройство хранения информации (памяти) DS
Устройство задержки DT
Элементы разные: общее обозначение Е
Лампа осветительная EL
Нагревательный элемент ЕК
Разрядники, предохранители, устройства защиты: общее обозначение F
Предохранитель плавкий FU
Генераторы, источники питания, кварцевые генераторы: общее обозначение G
Батарея гальванических элементов, аккумуляторов GB
Устройства индикационные и сигнальные; общее обозначение Н
Прибор звуковой сигнализации НА
Индикатор символьный HG
Прибор световой сигнализации HL
Реле, контакторы, пускатели; общее обозначение К
Устройства и элементы буквенный код
Реле электротепловоѳ кк
Реле времени КТ
Контактор, магнитный пускатель км
Катушки индуктивности, дроссели; общее обозначение L
Двигатели, общее обозначение М
Приборы измерительные; общее обозначение Р
Амперметр (миллиамперметр, микроамперметр) РА
Счетчик импульсов PC
Частотомер PF
Омметр PR
Регистрирующий прибор PS
Измеритель времени действия, часы РТ
Вольтметр PV
Ваттметр PW
Резисторы постоянные и переменные; общее обозначение R
Терморезистор RK
Шунт измерительный RS
Варистор RU
Выключатели, разъединители, короткозамыкатели в силовых цепях (в цепях питания оборудования); общее обозначение Q
Устройства коммутационные в цепях управления, сигнализации и измерительных; общее обозначение S
Выключатель или переключатель SA
Выключатель кнопочный SB
Выключатель автоматический SF
Трансформаторы, автотрансформаторы; общее обозначение T
Электромагнитный стабилизатор TS
Преобразователи электрических величин в электрические, устройства связи; общее обозначение и
Модулятор ив
Демодулятор UR
Дискриминатор Ul
Преобразователь частотный, инвертор, генератор частоты, выпрямитель UZ
Приборы полупроводниковые и электровакуумные; общее обозначение V
Диод, стабилитрон VD
Транзистор VT
Тиристор VS
Прибор электровакуумный VL
Устройства и элементы Буквенный код
Линии и элементы СВЧ; общее обозначение W
Ответвитель WE
Коро ткоэа мы ка тель WK
Вентиль WS
Трансформатор, фазовращатель, неоднородность WT
Аттенюатор WU
Антенна WA
Соединения контактные; общее обозначение X
Штырь (вилка) ХР
Гнездо (розетка) XS
Соединение разборное XT
Соединитель высокочастотный XW
Устройства механические с электромагнитным приводом; общее обозначение Y
Электромагнит YA
Тормоз с электромагнитным приводом YB
Муфта с электромагнитным приводом YC
Устройства оконечные, фильтры; общее обозначение Z
Ограничитель ZL
Фильтр кварцевый ZQ

Таблица 3. Буквенные коды функционального назначения радиоэлектронного устройства или элемента.

Буквенный код
Вспомога тельный А
Считающий С
Дифференцирующий D
Защитный F
Испытательный G
Сигнальный Н
Интегрирующий 1
Гпавный М
Измерительный N
Пропорциональный Р
Состояние (старт, стоп, ограничение) Q
Возврат, сброс R
Функциональное назначение устройства, элемента буквенный код
Запоминающий, записывающий S
Синхронизирующий, задерживающий т
Скорость (ускорение, торможение) V
Суммирующий W
Умножение X
Аналоговый Y
Цифровой Z

Таблица 4. Наиболее употребительные условные буквенные сокращения по радиоэлектронике, используемые на различных схемах, в технической и научной литературе.

Буквенное сокращение Расшифровка сокращение
AM амплитудная модуляция
АПЧ автоматическая подстройка частоты
АПЧГ автоматическая подстройка частоты гетеродина
АПЧФ автоматическая подстройка частоты и фазы
АРУ автоматическая регулировка усиления
АРЯ автоматическая регулировка яркости
АС акустическая система
АФУ антенно-фидерное устройство
АЦП аналого-цифровой преобразователь
АЧХ амплитудно-частотная характеристика
БГИМС большая гибридная интегральная микросхема
БДУ беспроводное дистанционное управление
БИС большая интегральная схема
БОС блок обработки сигналов
БП блок питания
БР блок развертки
БРК блок радиоканала
БС блок сведения
БТК блокинг-трансформатор кадровый
Буквенное сокращение Расшифровка сокращения
БТС блокинг-трансформатор строчный
БУ блок управления
БЦ блок цветности
БЦИ блок цветности интегральный (с применением микросхем)
ВД видеодетектор
ВИМ время-импульсная модуляция
ВУ видеоусилитель; входное (выходное) устройство
ВЧ высокая частота
Г гетеродин
ГВ головка воспроизводящая
ГВЧ генератор высокой частоты
ГВЧ гипервысокая частота
ГЗ генератор запуска; головка записывающая
ГИР гетеродинный индикатор резонанса
ГИС гибридная интегральная схема
ГКР генератор кадровой развертки
ГКЧ генератор качающейся частоты
ГМВ генератор метровых волн
ГПД генератор плавного диапазона
ГО генератор огибающей
ГС генератор сигналов
Сокращение Расшифровка сокращения
ГСР генератор строчной развертки
гсс генератор стандартных сигналов
гг генератор тактовой частоты
ГУ головка универсальная
ГУН генератор, управляемый напряжением
Д детектор
дв длинные волны
дд дробный детектор
дн делитель напряжения
дм делитель мощности
дмв дециметровые волны
ДУ дистанционное управление
ДШПФ динамический шумопонижающий фильтр
ЕАСС единая автоматизированная сеть связи
ЕСКД единая система конструкторской документации
зг генератор звуковой частоты; задающий генератор
зс замедляющая система; звуковой сигнал; звукосниматель
ЗЧ звуковая частота
И интегратор
икм импульсно-кодовая модуляция
ИКУ измеритель квазипикового уровня
имс интегральная микросхема
ини измеритель линейных искажений
инч инфранизкая частота
ион источник образцового напряжения
ип источник питания
ичх измеритель частотных характеристик
к коммутатор
КБВ коэффициент бегущей волны
КВ короткие волны
квч крайне высокая частота
кзв канал записи-воспроизведения
КИМ кодо-импульсная модуляции
Буквенное сокращение Расшифровка сокращения
кк катушки кадровые отклоняющей системы
км кодирующая матрица
кнч крайне низкая частота
кпд коэффициент полезного действия
КС катушки строчные отклоняющей системы
ксв коэффициент стоячей волны
ксвн коэффициент стоячей волны напряжения
КТ контрольная точка
КФ катушка фокусирующая
ЛБВ лампа бегущей волны
лз линия задержки
лов лампа обратной волны
лпд лавинно-пролетный диод
лппт лампово-полупроводниковый телевизор
м модулятор
MA магнитная антенна
MB метровые волны
мдп структура металл-диэлектрик-полупроводник
МОП структура металл-окисел-полупроводник
мс микросхема
МУ микрофонный усилитель
ни нелинейные искажения
нч низкая частота
ОБ общая база (включение транзистора по схеме с общей базой)
овч очень высокая частота
ои общий исток (включение транзистора *по схеме с общим истоком)
ок общий коллектор (включение транзистора по схеме с обшим коллектором)
онч очень низкая частота
оос отрицательная обратная связь
ОС отклоняющая система
ОУ операционный усилитель
ОЭ обший эмиттер (включение транзистора по схеме с общим эмиттером)
Сокращение Расшифровка сокращения
ПАВ поверхностные акустические волны
пдс приставка двухречевого сопровождения
ПДУ пульт дистанционного управления
пкн преобразователь код-напряжение
пнк преобразователь напряжение-код
пнч преобразователь напряжение частота
пос положительная обратная связь
ППУ помехоподавляющее устройство
пч промежуточная частота; преобразователь частоты
птк переключатель телевизионных каналов
птс полный телевизионный сигнал
ПТУ промышленная телевизионная установка
ПУ предварительный усили^егіь
ПУВ предварительный усилитель воспроизведения
ПУЗ предварительный усилитель записи
ПФ полосовой фильтр; пьезофильтр
пх передаточная характеристика
пцтс полный цветовой телевизионный сигнал
РЛС регулятор линейности строк; радиолокационная станция
РП регистр памяти
РПЧГ ручная подстройка частоты гетеродина
РРС регулятор размера строк
PC регистр сдвиговый; регулятор сведения
РФ режекторный или заграждающий фильтр
РЭА радиоэлектронная аппаратура
СБДУ система беспроводного дистанционного управления
СБИС сверхбольшая интегральная схема
СВ средние волны
свп сенсорный выбор программ
СВЧ сверхвысокая частота
сг сигнал-генератор
сдв сверхдлинные волны
Сокращение Расшифровка сокращения
СДУ светодинамическая установка; система дистанционного управления
СК селектор каналов
СКВ селектор каналов всеволновый
ск-д селектор каналов дециметровых волн
СК-М селектор каналов метровых волн
СМ смеситель
енч сверхнизкая частота
СП сигнал сетчатого поля
сс синхросигнал
сси строчный синхронизирующий импульс
СУ селектор-усилитель
сч средняя частота
ТВ тропосферные радиоволны; телевидение
твс трансформатор выходной строчный
твз трансформатор выходной канала звука
твк трансформатор выходной кадровый
ТИТ телевизионная испытательная таблица
ТКЕ температурный коэффициент емкости
тки температурный коэффициент индуктивности
ткмп температурный коэффициент начальной магнитной проницаемости
ткнс температурный коэффициент напряжения стабилизации
ткс температурный коэффициент сопротивления
тс трансформатор сетевой
тц телевизионный центр
тцп таблица цветных полос
ТУ технические условия
У усилитель
УВ усилитель воспроизведения
УВС усилитель видеосигнала
УВХ устройство выборки-хранения
УВЧ усилитель сигналов высокой частоты
Буквенное сокращение Расшифровка сокращения
УВЧ ультравысокая частота
УЗ усилитель записи
УЗЧ усилитель сигналов звуковой частоты
УКВ ультракороткие волны
УЛПТ унифицированный ламповополупроводниковый телевизор
УЛЛЦТ унифицированный лампово полупроводниковый цветной телевизор
УЛТ унифицированный ламповый телевизор
УМЗЧ усилитель мощности сигналов звуковой частоты
УНТ унифицированный телевизор
УНЧ усилитель сигналов низкой частоты
УНУ управляемый напряжением усилитель.
УПТ усилитель постоянного тока; унифицированный полупроводниковый телевизор
УПЧ усилитель сигналов промежуточной частоты
УПЧЗ усилитель сигналов промежуточной частоты звук?
УПЧИ усилитель сигналов промежуточной частоты изображения
УРЧ усилитель сигналов радиочастоты
УС устройство сопряжения; устройство сравнения
УСВЧ усилитель сигналов сверхвысокой частоты
УСС усилитель строчных синхроимпульсов
УСУ универсальное сенсорное устройство
УУ устройство (узел) управления
УЭ ускоряющий (управляющий) электрод
УЭИТ универсальная электронная испытательная таблица
ФАПЧ фазовая автоматическая подстройка частоты
Буквенное сокращение Расшифровка сокращения
ФВЧ фильтр верхних частот
ФД фазовый детектор; фотодиод
ФИМ фазо-импульсная модуляция
ФМ фазовая модуляция
ФНЧ фильтр низких частот
ФПЧ фильтр промежуточной частоты
ФПЧЗ фильтр промежуточной частоты звука
ФПЧИ фильтр промежуточной частоты изображения
ФСИ фильтр сосредоточенной избирательности
ФСС фильтр сосредоточенной селекции
ФТ фототранзистор
ФЧХ фазо-частотная характеристика
ЦАП цифро-аналоговый преобразователь
ЦВМ цифровая вычислительная машина
ЦМУ цветомузыкальная установка
ЦТ центральное телевидение
ЧД частотный детектор
ЧИМ частотно-импульсная модуляция
чм частотная модуляция
шим широтно-импульсная модуляция
шс шумовой сигнал
эв электрон-вольт (е. В)
ЭВМ. электронная вычислительная машина
эдс электродвижущая сила
эк электронный коммутатор
ЭЛТ электронно-лучевая трубка
ЭМИ электронный музыкальный инструмент
эмос электромеханическая обратная связь
ЭМФ электромеханический фильтр
ЭПУ электропроигрывающее устройство
ЭЦВМ электронная цифровая вычислительная машина

Литература: В.М. Пестриков. Энциклопедия радиолюбителя.

Основным показателем совершенства электронной аппаратуры является плотность упаковки, т.е. количество элементов схемы в 1 см3 действующего устройства.

Технология изготовления интегральных схем обеспечивает плотность упаковки в несколько тысяч элементов в 1 см3 .

Резисторы

Резисторы являются наиболее распространенными элементами и имеют следующее условное графическое обозначение (УГО):

Резисторы изготавливаются из проводящего материала: графита, тонкой металлической пленки, провода с невысокой проводимостью.

Резистор характеризуется величиной сопротивления: R = U / I , а также мощностью, которую резистор рассеивает в пространство, допуском, температурным коэффициентом, уровнем шума. Промышленность выпускает резисторы с сопротивление от 0,01 Ом до 1012 Ом и мощностью от 1/8 до 250 Вт с допуском от 0,005% до 20%. Резисторы используются в качестве нагрузочных и токоограничительных сопротивлений, делителей напряжения, добавочных сопротивлений, шунтов.

Конденсаторы

Конденсатор - устройство с двумя выводами и обладающее свойством:

    где
  • С - емкость в фарадах;
  • U - напряжение в вольтах;
  • Q - заряд в кулонах.

УГО конденсатора следующее:

Промышленность выпускает керамические, электролитические и слюдяные конденсаторы с емкостью от 0,5 пФ до 1000 мкФ и максимальным напряжением от 3В до 10 кВ.

Конденсаторы используются в колебательных контурах, фильтрах, для разделения цепей постоянного и переменного тока, в качестве блокировочных элементов. В цепях переменного тока конденсатор ведет себя как резистор, сопротивление которого уменьшается с ростом частоты.

Катушки индуктивности

Катушка индуктивности - устройство, обладающее свойством:

U = L · dI / dt,

    где
  • L - индуктивность в генри (или мГн, или мкГн);
  • U - напряжение в вольтах;
  • dI/dt - скорость изменение тока.

УГО катушки индуктивности следующее:

Катушка индуктивности - свернутый в спираль изолированный проводник, обладающий значительной индуктивностью при относительно малой емкости и малом активном сопротивлении. Материалом сердечника служит обычно железо или феррит в виде бруска, тора.

В цепях переменного тока катушка ведет себя как резистор, сопротивление которого растет с увеличением частоты.

Трансформатор - это устройство, состоящие из двух индуктивно связанных катушек индуктивности, называемой первичной и вторичной обмоткой.

УГО трансформатора с магнитопроводом:

Коэффициент трансформации:

где w1 и w2 - число витков

Трансформаторы служат для преобразования переменных напряжений и токов, а также для изолирования от сети.

Полупроводниковые приборы

Действие полупроводниковых приборов основано на использовании свойств полупроводников.

Количество известных в настоящее время полупроводниковых материалов довольно велико. Для изготовления полупроводниковых приборов применяются простые полупроводниковые вещества - германий, кремний, селен - и сложные полупроводниковые материалы - арсенид галлия, фосфит галлия и другие. Значения удельного электрического сопротивления в чистых полупроводниковых материалах лежат от 0,65 Ом·м (германий) до 108 Ом·м (селен).

Полупроводники или полупроводниковые соединения бывают собственными (чистыми) и с примесью (легированными) В чистых полупроводниках концентрация носителей заряда - свободных электронов и дырок составляет лишь 1016 - 1018 на 1 см3 вещества.

Для снижения удельного сопротивления полупроводника и придания ему определенного типа электропроводности - электронной при преобладании свободных электронов или дырочной при преобладании дырок - в чистые полупроводники вносят определенные примеси. Такой процесс называется легированием. В качестве легирующих примесей используют элементы 3 и 5 групп периодической системы элементов Д. И. Менделеева. Легирующие элементы 3 группы создают дырочную электропроводность полупроводниковых материалов и называются акцепторным примесями, элементы 5 группы - электронную электропроводность называют донорными примесями.

Собственные полупроводники - это полупроводники, в которых нет примесей (доноров и акцепторов). При Т = 0 в собственном полупроводнике свободные носители заряда отсутствуют, а концентрация носителей заряда равна Nn = Np = 0 и он не проводит ток. При Т > 0 часть электронов забрасывается из валентной зоны в зону проводимости. Эти электроны и дырки могут свободно перемещаются по энергетическим зонам. На практике применяются легированные полупроводники. Удельное электрическое сопротивление легированного полупроводника существенно зависит от концентрации примесей. При концентрации примесей 1020 - 1021 на см3 вещества оно может быть снижено до 5 · 10-6 Ом·м для германия и 5 · 10-5 Ом·м для кремния.

При приложении электрического поля к легированному полупроводнику в нем протекает электрический ток.

Полупроводниковые резисторы

Полупроводниковым резистором называют полупроводниковый прибор с двумя выводами, в котором используется зависимость электронного сопротивления полупроводника от напряжения, температуры, освещенности и других управляющих параметров.

В полупроводниковых резисторах применяется полупроводник, равномерно легированный примесями. В зависимости от типа примесей и конструкции удается получить различные зависимости от управляющих параметров.

Линейный резистор - полупроводниковый резистор, в котором применяется слаболегированный материал типа кремния или арсенида галлия.

Удельное электрическое сопротивление такого полупроводника мало зависит от напряженности электрического поля и плотности электрического тока. Поэтому сопротивление линейного полупроводникового резистора остается практически постоянным в широком диапазоне напряжений и токов. Полупроводниковые линейные резисторы широко применяют в интегральных микросхемах.

Вольт-амперная характеристика линейного резистора

Нелинейные резистивные элементы

УГО нелинейного резистивного элемента показано на рисунке:

Ток I, протекающий через нелинейный элемент, напряжение U на нем. Зависимость U(I) или I(U) называется вольт-амперной характеристикой.

Варисторы

Резистивные элементы, сопротивления которых зависит от напряженности электрического поля, называются варисторами. Варисторы изготавливают из прессованных зерен карбида кремния. Электропроводимость материала, в основном, обусловлена пробоем оксидных пленок, покрывающих зерна. Она определяется напряженностью приложенного электрического поля, т.е. зависит от величины приложенного напряжения.

Условное графическое изображения варистора и его вольт-амперная характеристика показаны на рисунке:

Варисторы характеризуются номинальным напряжением Uном , номинальным значением тока Iном , а также коэффициентом нелинейности β. Этот коэффициент равен отношению статического сопротивления к дифференциальному в точке характеристики с номинальными значениями напряжения и тока:

,

где U и I - напряжение и ток варистора. Коэффициент нелинейности для различных типов варисторов в пределах 2 - 6

Термисторы

Большую группу нелинейных резистивных элементов представляют управляемые нелинейные элементы. К ним относятся терморезисторы (термисторы) - нелинейные резистивные элементы, вольт-амперные характеристики которых существенно зависят от температуры. В некоторых типах терморезисторов температура меняется за счет специального подогревателя. Терморезисторы выполняют или из металла (медь, платина), сопротивления которого существенно изменяется при изменении температуры, или из полупроводников. В полупроводниках терморезисторах зависимость сопротивления от температуры описывается аналитической функцией

.

Здесь R(T0 ) - значение статического сопротивления при температуре T0 = 293 К, где Т - абсолютная температура, а В - коэффициент. Условное графическое обозначение термистора, его температурная характеристика, вольт-амперная характеристика показана на рисунке:

Различают два типа терморезисторов: термистор, сопротивление которого с ростом температуры падает, и позистор, у которого с сопротивление с повышением температуры возрастает. Буквенное обозначение термистора с отрицательным температурным коэффициентом - ТР, а с положительным коэффициентом - ТРП. Температурный коэффициент ТКС = , где R1 - сопротивление при номинальной температуре, ΔR- изменение сопротивления при изменении температуры на величину Δt.

Конструктивно термисторы выполняют в виде бусин, шайб, дисков.

Фоторезисторы

Фоторезистор - это полупроводниковый резистор, сопротивление которого зависит от светового потока, падающего на полупроводниковый материал или от проникающего электромагнитного излучения. Наибольшее распространение получили фоторезисторы с положительным фотоэффектом (например, СФ2-8,СФ3-8). УГО такого элемента показано на рисунке:

В фоторезисторах сопротивление изменяется в результате облучения пластины из полупроводникового материала световым потоком в видимом, ультрафиолетовом или инфракрасном диапазоне. В качестве материала используется сульфиды таллия, теллура, кадмия, свинца, висмута.

Вольт-амперные характеристики фоторезисторов представляют собой линейные функции, угол наклона которых зависит от величины светового потока. В координатах I - U (ток по вертикали) угол, составляемый прямой с горизонтальной осью (ось напряжения), тем больше, чем больше световой поток. Темновое сопротивление резисторных оптронов составляет 107 - 109 Ом. В освещенном состоянии оно снижается до нескольких сотен Ом. Быстродействие их невелико и ограничивается значениями в несколько килогерц.

Магниторезисторы

Магниторезисторы - полупроводниковые материалы, электрическое сопротивление которых зависит от величины напряженности магнитного поля, действующего на материал. В качестве материала используется висмут, германий и др. Сопротивление магниторезистора описывается зависимостью

,

где R(0) - сопротивление при Н = 0; α - коэффициент, Н - напряженность магнитного поля, в которое помещен магниторезистор.

Полупроводниковые диоды

Полупроводниковые диоды являются одним из наиболее распространенных подклассов полупроводниковых приборов. Их отличает разнообразие основополагающих физических принципов, разнообразие используемых полупроводниковых материалов, многообразие конструктивных и технологических реализаций. Полупроводниковые диоды по функциональному назначению могут быть разделены на:

  1. Выпрямительные (включая столбы, мосты, матрицы), импульсные, стабилитроны, варикапы, управляемые вентили (тиристоры, симметричные тиристоры - симисторы, динисторы);
  2. СВЧ-диоды: детекторные, смесительные, параметрические, pin-диоды, лавинопролетные, туннельные, диоды Ганна;
  3. Оптоэлектронные: фотодиоды, светодиоды, ИК-излучатели, лазерные диоды на основе гетероструктур;
  4. Магнитодиоды.

Слаболегированные полупроводники используются для изготовления маломощных диодов, а сильнолегированные - для изготовления мощных и импульсивных диодов.

Основное значение для работы полупроводниковых диодов имеет электронно-дырочный переход, который для краткости называется р-n переходом.

Электронно-дырочный р-n переход

Электронно-дырочным, или р-n переходом, называют контакт двух полупроводников одного вида с различными типами проводимости (электронным и дырочным). Классическим примером р-n перехода являются: n-Si - p-Si , n-Ge - p-Ge .

В пограничном слое происходит рекомбинация (воссоединение) электронов и дырок. Свободные электроны из зоны полупроводника n-типа занимают свободные уровни в валентной зоне полупроводника p-типа. В результате вблизи границы двух полупроводников образуется слой, лишенный подвижных носителей заряда и поэтому обладающий высоким электрическим сопротивлением, так называемой запирающий слой. Толщина запирающего слоя обычно не превышает нескольких микрометров.

Расширению запирающего слоя препятствуют неподвижные ионы донорных и акцепторных примесей, которые образуют на границе полупроводников двойной электрический слой. Этот слой определяет контактную разность потенциалов (потенциальный барьер) на границе полупроводников. Возникшая разность потенциалов создает в запирающем слое электрическое поле, препятствующее как переходу электронов из полупроводника n-типа в полупроводник р-типа, так и переходу дырок в полупроводник n-типа. В то же время электроны могут свободно двигаться из полупроводника p-типа в полупроводник n-типа, точно так же как дырки из полупроводника n-типа в полупроводник р-типа. Таким образом, контактная разность потенциалов препятствует движению основных носителей заряда и не препятствует движению неосновных носителей заряда. Однако при движении через p-n-переход неосновных носителей (так называемый дрейфовый ток Iдр ) происходит снижение контактной разности потенциалов φк , что позволяет некоторой части основных носителей, обладающих достаточной энергией, преодолеть потенциальный барьер, обусловленный контактной разностью потенциалов φк . Появляется диффузный ток Iдиф , который направлен навстречу дрейфовому току Iдр , т.е. возникает динамическое равновесие при котором Iдр = Iдиф .

Если к p-n-переходу приложить внешнее напряжение, которое создает в запирающем слое электрическое поле напряженностью Евн , совпадающее по направлению с полем неподвижных ионов напряженностью Езап , это приведет лишь к расширению запирающего слоя, так как отведет от контактной зоны и положительные, и отрицательные носители заряда (дырки и электроны).

При этом сопротивление р-n-перехода велико, ток через него мал - он обусловлен движением неосновных носителей заряда. В этом случае ток называется обратным (дрейфовым), а р-n-переход закрытым.

При противоположной полярности источника напряжения внешнее электрическое поле направлено навстречу полю двойного электрического слоя, толщина запирающего слоя уменьшается и при напряжении 0,3 - 0,5 В запирающий слой исчезает. Сопротивление р-n-перехода резко снижается и возникает сравнительно большой ток. Ток при этом называют прямым (диффузионным), а переход открытым.

Сопротивление открытого р-n-перехода определяется только сопротивлением полупроводника.

Классификация диодов

Полупроводниковым диодом называют нелинейный электронный прибор с двумя электродами. В зависимости от внутренней структуры, типа, количества и уровня легирования внутренних элементов диода и вольт-амперной характеристики свойства полупроводниковых диодов бывают различными.

Условные графические обозначения некоторых типов диодов согласно отечественным стандартам и их графические изображения показаны в таблице:

Выпрямительные диоды

Предназначены для преобразования переменного тока в однополярный пульсирующий или постоянный ток. К таким диодам не предъявляют высоких требований к быстродействию, стабильности параметров, емкости p-n-переходов. Из-за большой площади p-n- перехода барьерная емкость диода может достигать десятков пикофарад.

На рисунке а показан p-n-переход, образующий диод, на рисунке б показано включение диода в прямом направлении, при котором через диод протекает ток Iпр . На рисунке в показано включение диода в обратном направлении при которм через диод протекает ток Iобр .

На рисунке а показано включение диода VD в цепь, питаемую синусоидальным источником ЭДС e, временная характеристика которого показана на рисунке б. На рисунке в показан график тока, протекающего через диод.

Основными параметрами выпрямительного диода являются:

  • Uобр.max - максимально допустимое напряжение, приложенное в обратном направлении, которое не нарушает работоспособности диода;
  • Iвп.ср - среднее за период значение выпрямленного тока;
  • Iпр.и - амплитудное значение импульсного тока при заданной длительности скважности импульса;
  • Iобр.ср - среднее за период значение обратного тока;
  • Uпр.ср - среднее за период значение прямого напряжения на диоде;
  • Pср - средняя за период мощность, рассеиваемая диодом;
  • rдиф - дифференциальное сопротивление диода.

Качественно вольт-амперные характеристики универсального кремниевого и германиевого диода представлены на рисунке а, а зависимости вольт-амперных характеристик универсального кремниевого диода для трех значений температуры показаны на рисунке б.

Для безопасной работы германиевого диода его температура не должна превышать 85°С. Кремниевые диоды могут работать при температуре до 150°С.

Импульсные диоды

Предназначены для работ в цепях с импульсными сигналами. Основным для них является режим переходных процессов. Для уменьшения длительности переходных процессов в самом приборе импульсные диоды имеют малые значение емкостей p-n-перехода, которые составляют значение от долей до единицы пикофарад.

Это достигается путем уменьшения площади p-n- перехода, что в свою очередь обуславливает малые значения допустимой мощности, рассеиваемой диодом. Основными характеристиками импульсных диодов являются:

  • Uпр.max - максимальное значение импульсного прямого напряжения;
  • Iпр.max - максимальное значение импульсного тока;
  • Cд - емкость диода;
  • tуст - время установления прямого напряжения диода;
  • tвост - время восстановления обратного сопротивления диода. Это интервал времени от момента прохождения тока через нуль до момента, когда обратный ток достигает заданной малой величины.

Стабилитроны

Для стабилизации напряжения в электрических схемах используются полупроводники диоды с особыми вольт-амперным характеристиками - стабилитроны. Вольт-амперная характеристика стабилитрона показана на рисунке. Обратная ветвь вольт-амперной характеристики свидетельствует о работе в режиме электрического пробоя и содержит участок между точками а и b, близкого к линейному и ориентированному вдоль оси токов. В указанном режиме при значительном изменении тока стабилитрона напряжение изменяется не значительно.

Этот участок для стабилитрона является рабочим. При изменении тока в пределах от Icт.min до Iст.max напряжение на диоде мало отличается от величины Uст .

Значение Iст.max ограничено максимально допустимой рассеиваемой мощностью стабилитрона. Минимальное значение тока стабилизации по модулю быть больше величины Icт.min , при котором стабилитрон сохраняет свои стабилизирующие свойства.

Промышленность выпускает широкий спектр стабилитронов с напряжением стабилизации от 1В до 180В.

Стабилитрон характеризуется следующими параметрами:

  • Uст - напряжение стабилизации;
  • Iст.max - максимальный ток стабилизации;
  • Icт.min - минимальный ток стабилизации;
  • rд - дифференциальное сопротивление на участке "ab";
  • ТКН - температурный коэффициент напряжения стабилизации.

Стабилитроны предназначены для стабилизации напряжений на нагрузке при изменяющемся напряжении во внешней цепи. Стабилитрон является быстродействующим прибором и хорошо работает в импульсных схемах.

Диоды Шотки

Диоды Шотки характеризуются низким падением напряжения на открытом диоде. Величина этого напряжения составляет величину порядка 0,3В, что значительно меньше, чем у обычных диодов. Кроме того, время восстановления обратного сопротивления ts составляет величину порядка 100пс, что значительно меньше, чем у обычных диодов. Кроме цифровых схем диоды Шотки применяются в схемах вторичных источников электропитания с целью снижения статических и динамических потерь в самих диодах: в выходных каскадах импульсивных источников питания, DC/DC конвекторах, в системах электропитания компьютеров, серверах, система связи и передачи данных.

Варикапы

Нелинейные конденсаторы, основанные на использование свойств электронно-дырочного p-n-перехода, относятся к варикапам. Варикап используется при приложении p-n-переходу обратного напряжения. Ширина p-n-перехода, а значит и его емкость, зависит от величины приложенного к p-n-переходу напряжения. Емкость такого конденсатора определяется при помощи выражения

В этом выражении - емкость при нулевом запирающем напряжении, S и l - площадь и толщина p-n-перехода, ε0 - диэлектрическая постоянная, ε0 = 8,85 · 10-12 Ф/М , εr - относительная диэлектрическая постоянная; φк - контактный потенциал (для германия 0,3..0,4 B и 0,7..0,8 B для кремния); |u| - модуль обратного напряжения, приложенного к p-n-переходу; n = 2 для резких переходов; n = 3 для главных переходов.

График зависимости С(u) показан на рисунке

Максимальное значение емкости варикап имеет при нулевом напряжении. При увеличении обратного смещения емкость варикапа уменьшается. Основным параметрами варикапа являются:

  • С - емкость при обратном напряжение 2 - 5 В;
  • КC = Cmax /Cmin - коэффициент перекрытия по емкости.

Обычно C = 10 - 500 пФ , КC = 5 - 20. Варикапы применяются в системах дистанционного управления, для автоматической подстройки частоты, в параметрических усилителях с малым уровнем собственных шумов.

Светодиоды

Светодиодом, или излучающим диодом, называется полупроводниковый диод, излучающий кванты света при протекании через него прямого тока.

По характеристике излучения светодиоды разделяются на две группы:

  • светодиоды излучением в видимой части спектра;
  • светодиоды с излучением в инфракрасной части спектра.

Схематическое изображение структуры светодиода и его УГО представлено на рисунке:

Областями применения светодиодов ИК-излучения являются оптоэлектронные устройства коммутации, оптические линии связи, система дистанционного управления. Наиболее распространенный в настоящее время инфракрасный источник - это светодиод на основе GaAs(λ = 0,9 мкм). Возможность создания экономичных и долговременных светодиодов, согласованных по спектру с естественным освещением и чувствительностью человеческого глаза, открывает новые перспективы для их нетрадиционного использования. Среди них использование светодиодов в транспортных многосекционных светофорах, индивидуальных микромощных лампочках освещения (при мощности 3 Вт световой поток составляет 85 лм), в осветительных приборах автомобилей.

Фотодиоды

В фотодиодах на основе p-n-переходов используется эффект разделения на границе электронно-дырочного перехода созданных оптическим излучением неосновных неравновесных носителей. Схематически фотодиод изображен на рисунке:

При попадании кванта света с энергией hγ в полосе собственного поглощения в полупроводнике возникает пара неравновесных носителей - электрон и дырка. При регистрации электрического сигнала необходимо зарегистрировать изменение концентраций носителя. Как правило, используется принцип регистрации неосновных носителей заряда.

При разомкнутой внешней цепи (SA разомкнут, R = ∞) для случая, когда внешнее напряжение отсутствует, ток через внешнюю цепь не протекает. В этом случае напряжение на выводах фотодиода будет максимальным. Эту величину VG называют напряжением холостого хода Vxx . Напряжение Vxx (фото ЭДС) можно также определить непосредственно, подключая к выводам фотодиода вольтметр, но внутреннее сопротивление вольтметра должно быть много больше сопротивления p-n-перехода. В режиме короткого замыкания (SA замкнут) напряжение на выводах фотодиода VG = 0. Ток короткого замыкания Iкз во внешней цепи равен фототоку Iф

Iкз = Iф

На рисунке показано семейство ВАХ фотодиода как при отрицательной, так и при положительной полярности фотодиода.

При положительных напряжениях VG ток фотодиода быстро возрастает (пропускное направление) с увеличением напряжения. При освещении же общий прямой ток через диод уменьшается, так как фототок направлен противоположно току от внешнего источника.

ВАХ p-n-перехода, располагаясь во 2 квадранте (VG > 0, I < 0), показывает, что фотодиод можно использовать как источник тока. На этом базируется принцип работы солнечных батарей на основе p-n-переходов (режим фотогенератора). Световая характеристика представляет собой зависимость величины фототока Iф от светового потока Ф, падающего на фотодиод. Сюда же относится и зависимость Vxx от величины светового потока. Количество электронно-дырочных пар, образующихся в фотодиоде при освещении, пропорционально количеству фотонов, падающих на фотодиод. Поэтому фототок будет пропорционален величине светового потока:

Iф = кФ,

где К - коэффициент пропорциональности, зависящий от параметров фотодиода.

При обратном смещении фотодиода ток во внешней цепи пропорционально световому потоку и не зависит от напряжения VG (режим фото-преобразователя). Фотодиоды являются быстродействующими приборами и работают на частотах 107 - 1010 Гц. Фотодиоды широко применяются в оптопарах "cветодиод-фотодиод"

Оптрон (оптопара)

Оптрон - полупроводниковый прибор, содержащий источник излучения и приемник излучения, объединенные в одном корпусе и связанные между собой оптически, электрически или одновременно обеими связями. Очень широко распространены оптроны, у которых в качестве приемника излучения используются фоторезистор, фотодиод, фототранзистор и фототиристор.

В резисторных оптронах выходное сопротивление при изменении режима входной цепи может изменяться в 107 ..108 раз. Кроме того, вольт-амперная характеристика фоторезистора отличается высокой линейностью и симметричностью, что и обусловливает широкую применимость резиновых оптопар в аналогичных устройствах. Недостатком резисторных оптронов является низкое быстродействие - 0,01..1 c.

В цепях передачи цифровых информационных сигналов применяются главным образом диодные и транзисторные оптроны, а для оптической коммутации высоковольтных сильноточных цепей - тиристорные оптроны. Быстродействие тиристорных и транзисторных оптронов характеризуется временем переключения, которое часто лежит в диапазоне 5..50 мкс. Для некоторых оптронов это время меньше. Рассмотрим несколько подробнее оптопару светодиод-фотодиод.

Условное графическое обозначение оптопары показано на рисунке а:

Излучающий диод (слева) должен быть включен в прямом направлении, а фотодиод - в прямом (режим фотогенератора) или в обратном направлении (режим фотопреобразователя).

Простейшие элементы электронных устройств, это:

1) Конденсатор – устройство, способное накапливать энергию в электрическом поле.

Ток протекающий через конденсатор, пропорционален изменению напряжения в единицу времени.

2) Дроссель или катушка индуктивности – дроссель обладает так же способностью накапливать энергию, но не в электрическом, а в магнитном поле. Ведёт себя подобно конденсатору, за исключением того, что рассматривать нужно не напряжение, а ток.

Если подключить параллельно дроссель и конденсатор то получится колебательный контур.

3) Диод (p-n переход ) – двухэлектродный электронный прибор, обладает различной проводимостью в зависимости от направления электрического тока

P имеет электронную проводимость (лидирована донорной примесью)

N имеет дырочную проводимость (лидирована акценнторной примесью)

Различают несколько разновидностей диодов:

    стабилитрон

  • фото и светодиоды

4) Резистор - пассивный элемент электрической цепи, в идеале характеризуемый только сопротивлением электрическому току, то есть для идеального резистора в любой момент времени должен выполняться закон Ома.

Закон Ома гласит, что сила тока равна отношению напряжения к сопротивлению (I=U/R)

а) Напряжение – это разность потенциалов.

б) Сопротивление – величина обратно пропорциональная проводимости.

Напряжение измеряется в Вольтах, сопротивление – в Омах.

  1. Пассивные схемы. Резистивный делитель.

Делитель напряжения - устройство для деления постоянного или переменного напряжения.

Строится на основе активных, реактивных или нелинейных сопротивлений.

1) Делитель . В делителе сопротивления включаются последовательно.

Выходным напряжением является напряжение на отдельном участке цепи делителя.

2) Плечо . Участки, расположенные между напряжением питания и точкой снятия выходного напряжения называют плечами делителя.

а) Плечо нижнее . Плечо между выходом и нулевым потенциалом питания обычно называют нижним.

б) Плечо верхнее . Другое при этом называют верхним. В любом делителе два плеча.

3) Резисторный делитель . Делитель напряжения, построенный исключительно на активных сопротивлениях, называется резистивным делителем напряжения. Коэффициент деления таких делителей не зависит от частоты приложенного напряжения.

Простейший резистивный делитель напряжения представляет собой два последовательно включённых резистора R1 и R2, подключённых к источнику напряжения U.

  1. Пассивные фильтры. Фнч.

1) Пассивный фильтр - электронный фильтр, состоящий только из пассивных компонент, таких как, к примеру, конденсаторы и резисторы.

Пассивные фильтры не требуют никакого источника энергии для своего функционирования.

В отличие от активных фильтров в пассивных фильтрах не происходит усиления сигнала по мощности. Практически всегда пассивные фильтры являются линейными.

2) Использование . Пассивные фильтры используются повсеместно в радио- и электронной аппаратуре, например в акустических системах, источниках бесперебойного питания и т. д.

3) Фильтр нижних частот (ФНЧ) - электронный или любой другой фильтр, эффективно пропускающий частотный спектр сигнала ниже некоторой частоты (частоты среза), и уменьшающий (или подавляющий) частоты сигнала выше этой частоты.

Степень подавления каждой частоты зависит от вида фильтра.

3) Отличие от ФВЧ . В отличие от него, фильтр высоких частот пропускает частоты сигнала выше частоты среза, подавляя низкие частоты.

4) Термины «высокие частоты» и «низкие частоты» в применении к фильтрам относительны и зависят от выбранной структуры и параметров фильтра.

5) Идеальный фильтр нижних частот полностью подавляет все частоты входного сигнала выше частоты среза и пропускает без изменений все частоты ниже частоты среза. Переходной зоны между частотами полосы подавления и полосы пропускания не существует. Идеальный фильтр нижних частот может быть реализован лишь теоретически

Одно из основных направлений деятельности нашей компании - скупка радиодеталей. Они имеют огромное значение для перерабатывающей отрасли, так как возвращают в оборот большое количество драгоценных металлов. Аффинаж золота, серебра, платины, палладия из радиодеталей осуществлялся в нашей стране не только на заводах, но и на кухнях, несмотря на то, что сбыт полученных кустарным способом драгметаллов официально запрещен. Несмотря на название, радиодетали доставали практически из всех электронных устройств, а не только из радиоприемников…

Дело в том, что «радиодетали» - слово разговорное, официально они называются «электронные компоненты». Свое просторечное название они получили в начале XX века, когда появилось первое сложное электронное устройство - радио. Сначала все компоненты, которые впоследствии нашли широкое применение в электротехнике, выпускались только для производства радиоприемников. С развитием прогресса те же и новые компоненты стали использовать для телевизоров, магнитол, холодильников, калькуляторов, компьютеров, а так же для медицинских, промышленных и военных приборов, работающих от электричества. Со времен СССР количество драгоценных металлов в компонентах стало уменьшаться, однако приборов стало больше, поэтому говорить о том, что скупка и переработка драгметаллов из радиодеталей уже не актуальна - не приходится.

Радиодетали в подробностях

Электронные компоненты классифицируются по нескольким категориям:

  • по назначению - устройства отображения, акустические, термоэлектрические, антенные, соединительные, измерительные
  • по способу монтажа на плату - объемная пайка, поверхностная пайка и крепление на цоколь
  • по действию в сети - активные и пассивные

Далеко не во всех используются драгоценные металлы, да и состав цветных металлов тоже меняется, например, в 2000-х было решено отказаться от свинца, который тоже шел в переработку. Отказ от свинца привел к тому, что при производстве некоторых компонентов стали больше использовать золото - иммерсионное золотое покрытие обеспечивает ровную поверхность печатной платы. Сами печатные платы содержат серебряные перемычки и позолоченные площадки, так же золото используется для припоя, поэтому даже без прикрепленных электронных компонентов такая плата имеет ценность для переработки.

К радиодеталям относятся: микросхемы, конденсаторы постоянной и переменной емкости, постоянные и переменные резисторы, транзисторы, трансформаторы, конденсаторы, катушки индуктивности, диоды, реле и многие другие, которые могут быть как закреплены на платах, так и находится отдельно.

Стремление к минитюаризации привело к тому, что теперь некоторые радиодетали объединяют в единую электронную схему, а маленькие SMD-компоненты экономят и место, и время монтажа, и облегчают вес платы. Содержание драгоценных металлов в SMD-компонентах совсем невелико, поэтому наибольший интерес представляют полноформатные конденсаторы, содержащие платину, серебро, тантал и палладий, резисторы с палладием, содержащие золото микросхемы, разъемы и транзисторы.

Далеко не все радиодетали содержат драгоценные металлы, информация об особо ценных электронных компонентах есть в специальных справочниках, а так же вы можете посмотреть ее на нашем сайте - у нас есть разделы для каждой детали с указанием наименования и цены.

Наша компания может купить радиодетали как на плате, так и отдельно, однако, любительский демонтаж компонентов может привести к потере некоторой части драгоценных металлов. Мы работаем со всеми городами России, а так же со странами бывшего СССР.