Тема 1 Общие принципы построения сетей. Требования, предъявляемые к современным сетям

Самая простая сеть (network) состоит как минимум из двух компьютеров, соединенных друг с другом кабелем. Это позволяет им использовать данные совместно. Все сети (независимо от сложности) основываются именно на этом простом принципе.

Рис. 1.1. Автономная среда

Сетью называется группа соединенных компьютеров и других устройств. А концепция соединенных и совместно использующих ресурсы компьютеров носит название сетевого взаимодействия

Рис. 1.2. Простая сеть

Компьютеры, входящие в сеть, могут совместно использовать:

  • данные;
  • принтеры;
  • факсимильные аппараты;
  • модемы;
  • другие устройства.

Данный список постоянно пополняется, так как возникают новые способы совместного использования ресурсов.

Первоначально компьютерные сети были небольшими и объединяли до десяти компьютеров и один принтер. Технология ограничивала размеры сети, в том числе количество компьютеров в сети и ее физическую длину. Например, в начале 1980-х годов наиболее популярный тип сетей состоял не более чем из 30 компьютеров, а длина ее кабеля не превышала 185 м (600 футов). Такие сети легко располагались в пределах одного этажа здания или небольшой организации. Для маленьких фирм подобная конфигурация подходит и сегодня. Эти сети называются локальными вычислительными сетями [ЛВС (LAN)].

Самые первые типы локальных сетей не могли соответствовать потребностям крупных предприятий, офисы которых обычно расположены в различных местах. Но как только преимущества компьютерных сетей стали неоспоримы и сетевые программные продукты начали заполнять рынок, перед корпорациями — для сохранения конкурентоспособности — встала задача расширения сетей. Так на основе локальных сетей возникли более крупные системы.

Сегодня, когда географические рамки сетей раздвигаются, чтобы соединить пользователей из разных городов и государств, ЛВС превращаются в глобальную вычислительную сеть [ГВС (WAN)], а количество компьютеров в сети уже может варьироваться от десятка до нескольких тысяч.

В настоящее время большинство организаций хранит и совместно использует в сетевой среде огромные объемы жизненно важных данных. Вот почему сети сейчас так же необходимы, как еще совсем недавно были необходимы пишущие машинки и картотеки.

Основное назначение компьютерных сетей — совместное использование ресурсов и осуществление интерактивной связи как внутри одной фирмы, так и за ее пределами. Ресурсы (resources) — это данные, приложения и периферийные устройства, такие, как внешний дисковод, принтер, мышь, модем или джойстик. Понятие интерактивной связи компьютеров подразумевает обмен сообщениями в реальном режиме времени.

До появления компьютерных сетей каждый пользователь должен был иметь свой принтер, плоттер и другие периферийные устройства. Чтобы совместно использовать принтер, существовал единственный способ — пересесть за компьютер, подключенный к этому принтеру.

Теперь сети позволяют целому ряду пользователей одновременно «владеть» данными и периферийными устройствами. Если нескольким пользователям надо распечатать документ, все они могут обратиться к сетевому принтеру.

Рис. 1.4. Совместное использование принтера в сетевой среде

До появления компьютерных сетей люди обменивались информацией примерно так:

  • передавали информацию устно (устная речь);
  • писали записки или письма (письменная речь);
  • записывали информацию на дискету, несли дискету к другому компьютеру и копировали в него данные.

Компьютерные сети упрощают этот процесс, предоставляя пользователям доступ почти к любым типам данных.

Сети создают отличные условия для унификации приложений (например, текстового процессора). Это значит, что на всех компьютерах в сети выполняются приложения одного типа и одной версии. Использование единого приложения поможет упростить поддержку всей сети. Действительно, проще изучить одно приложение, чем пытаться освоить сразу четыре или пять. Удобнее также иметь дело с одной версией приложения и настраивать компьютеры одинаковым образом.

Другая привлекательная сторона сетей — наличие программ электронной почты и планирования рабочего дня. Благодаря им, управляющие крупных предприятий быстро и эффективно взаимодействуют с многочисленным штатом своих сотрудников или партнеров по бизнесу, а планирование и корректировка деятельности всей компании осуществляется с гораздо меньшими усилиями, чем прежде.

Использование компьютерных сетей сулит множество преимуществ, в частности:

  • снижение затрат благодаря совместному использованию данных и периферийных устройств;
  • стандартизацию приложений;
  • своевременное получение данных;
  • более эффективное взаимодействие и планирование рабочего времени.

В настоящее время компьютерные сети выходят за пределы ЛВС и вырастают в глобальные компьютерные сети (ГВС), охватывая целые страны и континенты.

Все сети имеют некоторые общие компоненты, функции и характеристики. В их числе:

  • серверы (server) — компьютеры, предоставляющие свои ресурсы сетевым пользователям;
  • клиенты (client) — компьютеры, осуществляющие доступ к сетевым ресурсам, предоставляемым сервером;
  • среда (media) — способ соединения компьютеров;
  • совместно используемые данные — файлы, предоставляемые серверами по сети;
  • совместно используемые периферийные устройства, например принтеры, библиотеки CD-ROM и т.д., — ресурсы, предоставляемые серверами;
  • ресурсы — файлы, принтеры и другие элементы, используемые в сети

Рис. 1.6. Типичные элементы сети

Несмотря на определенные сходства, сети разделяются на два типа:

  • одноранговые (peer-to-peer);
  • на основе сервера (server based).

Рис. 1.7. Простейшие примеры обоих типов сетей

Различия между одноранговыми сетями и сетями на основе сервера имеют принципиальное значение, поскольку определяют разные возможности этих сетей. Выбор типа сети зависит от многих факторов:

  • размера предприятия;
  • необходимого уровня безопасности;
  • вида бизнеса;
  • уровня доступности административной поддержки;
  • объема сетевого трафика;
  • потребностей сетевых пользователей;
  • финансовых затрат

В одноранговой сети все компьютеры равноправны: нет иерархии среди компьютеров и нет выделенного (dedicated) сервера. Как правило, каждый компьютер функционирует и как клиент, и как сервер; иначе говоря, нет отдельного компьютера, ответственного за администрирование всей сети. Все пользователи самостоятельно решают, какие данные на своем компьютере сделать общедоступными по сети.

Одноранговые сети называют также рабочими группами. Рабочая группа — это небольшой коллектив, поэтому в одноранговых сетях чаще всего не более 10 компьютеров.

Одноранговые сети относительно просты. Поскольку каждый компьютер является одновременно и клиентом, и сервером, нет необходимости в мощном центральном сервере или в других компонентах, обязательных для более сложных сетей. Одноранговые сети обычно дешевле сетей на основе сервера, но требуют более мощных (и более дорогих) компьютеров.

В одноранговой сети требования к производительности и к уровню защиты для сетевого программного обеспечения, как правило, ниже, чем в сетях с выделенным сервером. Выделенные серверы функционируют исключительно в качестве серверов, но не клиентов или рабочих станций (workstation). О них мы еще поговорим подробнее на этом занятии, но чуть позже.

В такие операционные системы, как Microsoft Windows NT Workstation, Microsoft Windows for Workgroups и Microsoft Windows 95, встроена поддержка одноранговых сетей. Поэтому, чтобы установить одноранговую сеть, дополнительного программного обеспечения не требуется.

Одноранговая сеть характеризуется рядом стандартных решений:

  • компьютеры расположены на рабочих столах пользователей;
  • пользователи сами выступают в роли администраторов и обеспечивают защиту информации;
  • для объединения компьютеров в сеть применяется простая кабельная система.

Одноранговая сеть вполне подходит там, где:

  • количество пользователей не превышает 10 человек;
  • пользователи расположены компактно;
  • вопросы защиты данных не критичны;
  • в обозримом будущем не ожидается значительного расширения фирмы и, следовательно, сети.

Если эти условия выполняются, то, скорее всего, выбор одноранговой сети будет правильным (чем сети на основе сервера).

Несмотря на то, что одноранговые сети вполне удовлетворяют потребностям небольших фирм, иногда возникают ситуации, когда их использование может оказаться неуместным. Змечания относительно одноранговых сетей, которые должны быть учтены при выборе сети.

Администрирование

Сетевое администрирование (administration) решает ряд задач, в том числе:

  • управление работой пользователей и защитой данных;
  • обеспечение доступа к ресурсам;
  • поддержка приложений и данных;
  • установка и модернизация прикладного программного обеспечения.

В типичной одноранговой сети системный администратор, контролирующий всю сеть, не выделяется. Каждый пользователь сам администрирует свой компьютер.

Разделяемые ресурсы

Требования к серверу

В одноранговой сети каждый компьютер должен:

  • большую часть своих вычислительных ресурсов предоставлять локальному пользователю (сидящему за этим компьютером);
  • для поддержки доступа к ресурсам удаленного пользователя (обращающегося к серверу по сети) подключать дополнительные вычислительные ресурсы.

Сеть на основе сервера требует более мощных серверов, поскольку они должны обрабатывать запросы всех клиентов сети.

Защита

Защита подразумевает установку пароля на разделяемый ресурс, например на каталог. Централизованно управлять защитой в одноранговой сети очень сложно, так как каждый пользователь устанавливает ее самостоятельно, да и «общие» ресурсы могут находиться на всех компьютерах, а не только на центральном сервере. Такая ситуация представляет серьезную угрозу для всей сети, кроме того, некоторые пользователи могут вообще не установить защиту. Если вопросы конфиденциальности являются принципиальными, рекомендуется выбрать сеть на основе сервера.

Подготовка пользователя

Поскольку в одноранговой сети каждый компьютер функционирует и как клиент, и как сервер, пользователи должны обладать достаточным уровнем знаний, чтобы работать и как пользователи, и как администраторы своего компьютера.

Если к сети подключено более 10 пользователей, то одноранговая сеть, где компьютеры выступают в роли и клиентов, и серверов, может оказаться недостаточно производительной. Поэтому большинство сетей использует выделенные серверы. Выделенным называется такой сервер, который функционирует только как сервер (исключая функции клиента или рабочей станции). Они специально оптимизированы для быстрой обработки запросов от сетевых клиентов и для управления защитой файлов и каталогов. Сети на основе сервера стали промышленным стандартом, и именно они будут приводиться обычно в качестве примера.

Рис. 1.9. Сеть на основе сервера

С увеличением размеров сети и объема сетевого трафика необходимо увеличивать количество серверов. Распределение задач среди нескольких серверов гарантирует, что каждая задача будет выполняться самым эффективным способом из всех возможных.

Круг задач, которые должны выполнять серверы, многообразен и сложен. Чтобы приспособиться к возрастающим потребностям пользователей, серверы в больших сетях стали специализированными (specialized). Например, в сети Windows NT существуют различные типы серверов.

  • Файл-серверы и принт-серверы.

Файл-серверы и принт-серверы управляют доступом пользователей соответственно к файлам и принтерам. Например, чтобы работать с текстовым процессором, Вы прежде всего должны запустить его на своем компьютере. Документ текстового процессора, хранящийся на файл-сервере, загружается в память Вашего компьютера, и, таким образом, Вы можете работать с этим документом на своем компьютере. Другими словами, файл-сервер предназначен для хранения файлов и данных.

  • Серверы приложений.

На серверах приложений выполняются прикладные части клиент-серверных приложений, а также находятся данные, доступные клиентам. Например, чтобы упростить извлечение данных, серверы хранят большие объемы информации в структурированном виде. Эти серверы отличаются от файл-серверов и принт-серверов. В последних файл или данные целиком копируются на запрашивающий компьютер. А в сервере приложений на запрашивающий компьютер пересылаются только результаты запроса.

Приложение-клиент на удаленном компьютере получает доступ к данным, хранимым на сервере приложений. Однако вместо всей базы данных на Ваш компьютер с сервера загружаются только результаты запроса. Например, Вы можете получить список работников, родившихся в ноябре.

  • Почтовые серверы.

Почтовые серверы управляют передачей электронных сообщений между пользователями сети.

  • Факс-серверы.

Факс-серверы управляют потоком входящих и исходящих факсимильных сообщений через один или несколько факс-модемов. Коммуникационные серверы.

  • Коммуникационные серверы

Коммуникационные серверы управляют потоком данных и почтовых сообщений между этой сетью и другими сетями, удаленными пользователями через модем и телефонную линию.

Служба каталогов предназначена для поиска, хранения и защиты информации в сети. Windows NT Server объединяет компьютеры в логические группы — домены (domain), -система защиты которых наделяет пользователей различными правами доступа к любому сетевому ресурсу.

В расширенной сети использование серверов разных типов приобретает особую актуальность. Необходимо поэтому учитывать все возможные нюансы, которые могут проявиться при разрастании сети, с тем, чтобы изменение роли определенного сервера в дальнейшем не отразилось на работе всей сети.

Рис. 10.1 Специализированные среды

Сетевой сервер и операционная система работают как единое целое. Без операционной системы даже самый мощный сервер представляет собой лишь груду железа. А операционная система позволяет реализовать потенциал аппаратных ресурсов сервера. Некоторые системы, например Microsoft Windows NT Server, были созданы специально для того, чтобы использовать преимущества наиболее передовых серверных технологий.

Так, Windows NT Server реализует следующие возможности сервера.

Свойства

Симметричная многопроцессорная обработка (SMP )

Системные и прикладные задачи распределяются между всеми доступными процессорами

Поддержка множества платформ

Быстрые процессоры, такие, как Intel ® 386/486 и Pentium ® , MIPS ® R 4000^, RISC и Digital Alpha AXP

Длина имени файла/каталога

255 символов

Размер файла

16 эб (эксабайтов)

Размер раздела жесткого диска

Примечание. Эксабайт — это довольно большое число. Оно немногим более одного миллиарда гигабайтов. Представьте: если у каждого человека на Земле, включая мужчин, женщин и детей (всего около 5 миллиардов), взять по 2000 страниц текста с объемом одной страницы в 2 Кб, то все эти страницы можно сложить в один Windows NT-файл. Даже после этого файл будет заполнен лишь на 1/16 (менее 6 процентов).

Разделение ресурсов

Сервер спроектирован так, чтобы предоставлять доступ к множеству файлов и принтеров, обеспечивая при этом высокую производительность и защиту.

Администрирование и управление доступом к данным осуществляется централизованно. Ресурсы, как правило, расположены также централизованно, что облегчает их поиск и поддержку. Например, в системе Windows NT Server разделение каталогов осуществляется через File Manager.

Защита

Основным аргументом при выборе сети на основе сервера является, как правило, защита данных. В таких сетях, например, как Windows NT Server, проблемами безопасности может заниматься один администратор: он формирует политику безопасности (security policy) и применяет ее в отношении каждого пользователя сети.

Резервное копирование данных

Поскольку жизненно важная информация расположена централизованно, т.е. сосредоточена на одном или нескольких серверах, нетрудно обеспечить ее регулярное резервное копирование (backup).

Избыточность

Благодаря избыточным системам данные на любом сервере могут дублироваться в реальном времени, поэтому в случае повреждения основной области хранения данных информация не будет потеряна — легко воспользоваться резервной копией.

Количество пользователей

Сети на основе сервера способны поддерживать тысячи пользователей. Сетями такого размера, будь они одноранговыми, было бы невозможно управлять.

Аппаратное обеспечение

Так как компьютер пользователя не выполняет функций сервера, требования к его характеристикам зависят от потребностей самого пользователя. Типичный компьютер-клиент имеет, по крайней мере, 486-й процессор и от 8 до 16 Мб оперативной памяти.

Существуют и комбинированные типы сетей, совмещающие лучшие качества одноранговых сетей и сетей на основе сервера.

Многие администраторы считают, что такая сеть наиболее полно удовлетворяет их запросы, так как в ней могут функционировать оба типа операционных систем.

Операционные системы для сетей на основе сервера, например Microsoft Windows NT Server или Novell ® NetWare ® , в этом случае отвечают за совместное использование основных приложений и данных.

На компьютерах-клиентах могут выполняться операционные системы Microsoft Windows NT Workstation или Windows 95, которые будут управлять доступом к ресурсам выделенного сервера и в то же время предоставлять в совместное использование свои жесткие диски, а по мере необходимости разрешать доступ и к своим данным.

Рис. 1.13. Комбинированные сети имеют выделенные серверы и компьютеры

Комбинированные сети — наиболее распространенный тип сетей, но для их правильной реализации и надежной защиты необходимы определенные знания и навыки планирования.

Одноранговые сети и сети на основе сервера объединяет общая цель — разделение ресурсов. А вот различия между одноранговыми серверами и выделенными серверами определяют:

  • требования к аппаратному обеспечению;
  • способ поддержки пользователей.

Таблица 1 - Компоненты сети

Компонент

Одноранговая сеть

Сеть на основе сервера

Местонахождение разделяемых ресурсов ОЗУ

Компьютеры пользователей. Зависит от потребностей пользователя. Для Microsoft Windows NT Workstation требуется минимум 12 Мб, однако желательно 16 Мб. Для Windows 95 желательно не менее 8 Мб

Выделенные серверы. Как можно больше. Минимум 12 Мб. Серверы, обслуживающие тысячи клиентов, как правило, должны иметь не менее 64 Мб

Центральный процессор

Зависит от потребностей пользователя. Желательно не ниже 386-го. Для Windows NT Workstation необходим 80386/25 и выше или поддерживаемый RISC- процессор. Для Windows 95 — 386DX и выше

Зависит от нагрузки на сервер. Желательно не ниже 486-го. Высокопроизводительные серверы поддерживают многопроцессорные системы

Объем дискового пространства

Зависит от потребностей пользователя

Зависит от потребностей организации. Чем больше, тем лучше, но следует предусмотреть возможность дальнейшего увеличения. Для небольших организаций рекомендуется не менее 1 Гб. В суперсерверах счет идет не на гигабайты, а на количество поддерживаемых жестких дисков

Системы построения

Совместное использование ресурсов может осуществляться разными способами, зависящими от имеющихся в наличии компьютерных средств.

Первый способ взаимодействия предполагает полностью централизованную обработку информации и ее хранение, обеспечивая работу пользователей с терминалов. Часто эту модель взаимодействия называют «терминал-хост» (terminal-host).

Пользователь взаимодействует с ресурсами центрального компьютера, используя для решения своих задач его процессор, оперативную и дисковую память, а также периферийные устройства. При этом очень часто пользователь работает не один, а совместно с другими пользователями, то есть ресурсы центрального компьютера используются в режиме разделения. Центральный компьютер должен работать под управлением операционной системы, поддерживающей такое взаимодействие, которое называется централизованным (centralized computing).

Дальнейшее развитие компьютерной индустрии шло различными путями, увеличивались вычислительные мощности компьютеров, предназначенных для работы по взаимодействию «терминал-хост», появились и начали бурно развиваться персональные компьютеры. Персональные компьютеры полностью управляются пользователем, все ресурсы компьютера используются в монопольном режиме для решения задач пользователя. Несмотря на рост вычислительной мощности процессоров, не весь спектр задач может быть решен одним компьютером. Появилась необходимость создания нового взаимодействия, новой структуры, направленной на распределенную обработку информации (distributed computing). В этой модели взаимодействия каждый из компьютеров может решать свои задачи, появляется специализация компьютера.

Компьютеры объединяются в вычислительную сеть. Задачи распределяются по компьютерам сети, что позволяет расширить функциональные возможности каждого из них путем разделения доступа к другим компьютерам.

В настоящее время актуальной и быстроразвивающейся является задача объединения распределенных компьютерных ресурсов для выполнения (решения) общей задачи. Такая модель взаимодействия называется совместными, или объединенными, вычислениями (collaborative computing). При этом задача распределяется по компьютерам, компьютеры обмениваются между собой общими данными, суммарная вычислительная мощность и доступные ресурсы (оперативная и дисковая память) увеличиваются, повышается отказоустойчивость всей системы в целом с точки зрения решения задачи. Как правило, распределенное выполнение задачи контролируется специальной системой управления, которая при отказе одного из компьютеров переложит выполнение его части работы на оставшиеся компьютеры.

Сравнительно новой моделью сетевых взаимодействий является организация взаимодействий пользователей сети с сетевыми сервисами. С точки зрения пользователя, его взаимоотношения со множеством компьютеров подпадают под определение «клиент-сеть» (client-network). Для пользователя сети в общем-то не существенно, где конкретно в сети располагаются выделенные ему ресурсы, он должен только уметь обратиться к ним, используя принятую в сети систему обращений. При таком подходе существенно упрощается работа всех пользователей сети, а сами сетевые ресурсы и сервисы должны быть доступны пользователю в любой момент времени. Повышение уровня готовности сетевых сервисов требует соответствующих технических решений, например повышения отказоустойчивости или дублирования сервисов.

В компьютерной сети присутствует много различных компонентов. Самыми видимыми пользователям сети являются две. Это сервер сети и клиент. Сервер (server - в дословном переводе с английского означает «тот, кто обслуживает») сети предназначен для обслуживания поступающих от клиента (client) сети запросов. Другими словами, клиент всегда запрашивает обслуживание, а сервер всегда обслуживает клиента. В некоторых случаях клиент может выступать и в роли сервера, обеспечивая обработку запросов от других клиентов и запрашивая обслуживание у других серверов. По способу взаимодействия серверов и клиентов определяют два вида сетей: «клиент/сервер» (client-server) и «равный с равным» (peer-to-peer). Поскольку клиентом сети является пользователь, работающий на компьютере, то сам компьютер пользователя, подключенный к сети, определяется термином «рабочая станция» (workstation). Этот термин употребляется наравне с термином «компьютер».

Топологии

Шина: Топология типа шимна, представляет собой общий кабель (называемый шина или магистраль), к которому подсоединены все рабочие станции. На концах кабеля находятся терминаторы, для предотвращения отражения сигнала.

Достоинства: Небольшое время установки сети;

Дешевизна (требуется меньше кабеля и сетевых устройств);

Выход из строя рабочей станции не отражается на работе сети.

Недостатки: Любые неполадки в сети, как обрыв кабеля, выход из строя терминатора полностью уничтожают работу всей сети;

Сложная локализация неисправностей

Кольцо: Кольцом - базовая топология компьютерной сети, в которой рабочие станции подключены последовательно друг к другу, образуя замкнутую сеть.

Достоинства: Простота установки;

Практически полное отсутствие дополнительного оборудования;

Возможность устойчивой работы без существенного падения скорости передачи данных при интенсивной загрузке сети, поскольку использование маркера исключает возможность возникновения коллизий.

Недостатки: Выход из строя одной рабочей станции, и другие неполадки (обрыв кабеля), отражаются на работоспособности всей сети;

Сложность конфигурирования и настройки;

Звездам: базовая топология компьютерной сети, в которой все компьютеры сети присоединены к центральному узлу (обычно сетевой концентратор), образуя физический сегмент сети. Подобный сегмент сети может функционировать как отдельно, так и в составе сложной сетевой топологии (как правило "дерево").

Достоинства: выход из строя одной рабочей станции не отражается на работе всей сети в целом;

Хорошая масштабируемость сети;

Лёгкий поиск неисправностей и обрывов в сети;

Высокая производительность сети (при условии правильного проектирования);

Недостатки: Выход из строя центрального концентратора обернётся неработоспособностью сети (или сегмента сети) в целом;

Конечное число рабочих станций в сети (или сегменте сети) ограничено количеством портов в центральном концентраторе.

Ячеистая топология - базовая полносвязная топология компьютерной сети, в которой каждая рабочая станция сети соединяется со всеми другими рабочими станциями этой же сети. Характеризуется высокой отказоустойчивостью, сложностью настройки и преизбыточным расходом кабеля. Каждый компьютер имеет множество возможных путей соединения с другими компьютерами. Обрыв кабеля не приведёт к пот ере соединения между двумя компьютерами.

Средства связи:

Коаксиамльный камбель (от лат. co - совместно и axis - ось, то есть «соосный»), также известный как коаксиал (от англ. coaxial), - электрический кабель, состоящий из расположенных соосно центрального проводника и экрана и служащий для передачи высокочастотных сигналов.

Витамя памра (англ. twisted pair) - вид кабеля связи, представляет собой одну или несколько пар изолированных проводников, скрученных между собой (с небольшим числом витков на единицу длины), покрытых пластиковой оболочкой.

Волоконная оптика - раздел прикладной науки и машиностроения, описывающий такие волокна. Кабели на базе оптических волокон используются в волоконно-оптической связи, позволяющей передавать информацию на бомльшие расстояния с более высокой скоростью передачи данных, чем в электронных средствах связи.

Беспроводные компьютерные сети - это технология, позволяющая создавать вычислительные сети, полностью соответствующие стандартам для обычных проводных сетей (например, Ethernet), без использования кабельной проводки. В качестве носителя информации в таких сетях выступают радиоволны СВЧ-диапазона.

Программное обеспечение:

Сетевая операционная система - операционная система со встроенными возможностями для работы в компьютерных сетях.

Примеры: Novell NetWare; Microsoft Windows (95, NT и более поздние); Различные UNIX системы, такие как Solaris, FreeBSD; Различные GNU/Linux системы

Сетевой драйвер: Сюда входят драйверы для различных сетвых устройств (сетевых карт, коммутаторов, концентраторов).

Программы для работы с сетью. В эту категорию входит различное прикладное программное обеспечение для выполнения разных задач при работе с сетью.

Сетевое оборудование - устройства, необходимые для работы компьютерной сети, например: маршрутизатор, коммутатор, концентратор, патч-панель и др. Обычно выделяют активное и пассивное сетевое оборудование.

Маршрутизамтор или роутер, рутер (от англ. router, - сетевое устройство, на основании информации о топологии сети и определённых правил принимающее решения о пересылке пакетов сетевого уровня (уровень 3 модели OSI) между различными сегментами сети.

Сетевой коммутатор или свитч (жарг. от англ. switch - переключатель) - устройство, предназначенное для соединения нескольких узлов компьютерной сети в пределах одного сегмента. В отличие от концентратора, который распространяет трафик от одного подключенного устройства ко всем остальным, коммутатор передаёт данные только непосредственно получателю.

Сетевой концентратор или Хаб (жарг. от англ. hub - центр деятельности) - сетевое устройство, предназначенное для объединения нескольких устройств Ethernet в общий сегмент сети. Устройства подключаются при помощи витой пары, коаксиального кабеля или оптоволокна.

Протоколы:

HTTP (Hyper Text Transfer Protocol) - это протокол передачи гипертекста. Протокол HTTP используется при пересылке Web-страниц с одного компьютера на другой.

FTP (File Transfer Protocol)- это протокол передачи файлов со специального файлового сервера на компьютер пользователя. FTP дает возможность абоненту обмениваться двоичными и текстовыми файлами с любым компьютером сети.

POP (Post Office Protocol) - это стандартный протокол почтового соединения. Серверы POP обрабатывают входящую почту, а протокол POP предназначен для обработки запросов на получение почты от клиентских почтовых программ.

SMTP (Simple Mail Transfer Protocol) - протокол, который задает набор правил для передачи почты. Сервер SMTP возвращает либо подтверждение о приеме, либо сообщение об ошибке, либо запрашивает дополнительную информацию.

UUCP (Unix to Unix Copy Protocol) - это ныне устаревший, но все еще применяемый протокол передачи данных, в том числе для электронной почты. Этот протокол предполагает использование пакетного способа передачи информации, при котором сначала устанавливается соединение клиент- сервер и передается пакет данных.

TELNET - это протокол удаленного доступа. TELNET дает возможность абоненту работать на любой ЭВМ сети Интернет, как на своей собственной, то есть запускать программы, менять режим.

Основой для создания сети передачи данных является первичная сеть, которая представляет собой совокупность сетевых узлов, сетевых станций и линий передачи, образующую сеть типовых каналов передачи и типовых групповых трактов.

Каналом передачи называется совокупность технических средств и среды распространения, обеспечивающая передачу сигналов электросвязи или в определенной полосе частот, или с определенной

скоростью между двумя станциями или узлами. Канал с нормированными параметрами называется типовым.

Групповой тракт - это совокупность технических средств, обеспечивающая передачу сигналов электросвязи или в полосе частот, или со скоростью передачи нормированной группы каналов. Если параметры группового тракта нормированы, то тракт называется типовым. Групповые тракты строятся на основе линий передачи.

Линия передачи первичной сети - это совокупность физических цепей, линейных трактов однотипных и разнотипных систем передачи, имеющих общие среду распространения, линейные сооружения и устройства их обслуживания. Линии передачи различаются в зависимости от первичной сети, к которым они принадлежат, и от среды распространения. В настоящее время наибольшее распространение получили радиорелейные, тропосферные, проводные и спутниковые линии передачи.

Сетевым узлом (СУ) первичной сети называется комплекс технических средств, обеспечивающий:

организацию и транзит типовых групповых трактов и типовых каналов передачи первичной сети;

переключение указанных трактов и каналов, принадлежащих различным линиям передачи;

предоставление необходимого числа каналов и групповых трактов для образования вторичных сетей.

Сетевые станции первичной сети обеспечивают организацию типовых каналов и трактов, предоставление их для образования вторичных сетей и соединения каналов и групповых трактов различных вторичных сетей между собой.

Фрагмент первичной сети с различными линиями передачи изображен на рис. 1.6.

Первичные сети подразделяются на местные, внутренние, зоновые и магистральные.

Часть первичной сети, ограниченная территорией города или сельского района, называется местной первичной сетью.

Внутризоновая первичная сеть - это часть первичной сети, ограниченная территорией, совпадающей с зоной нумерации, и обеспечивающая соединение между собой типовых групповых трактов и типовых каналов передачи разных местных первичных сетей этой зоны. Зона нумерации, как правило, совпадает с административными границами области.

Совокупность внутризоновой первичной и местных первичных сетей на территории, совпадающей с зоной нумерации, образует зоновую первичную сеть.

Часть первичной сети, соединяющая между собой типовые групповые тракты, а также типовые каналы передачи внутризоновых первичных сетей на всей территории страны, образует магистральную первичную сеть.

Сетевым узлам и линиям передачи присваиваются наименования в соответствии с тем, какой первичной сети они принадлежат.

Важным понятием, относящимся к первичным сетям, является система передачи, под которой понимается совокупность линейного тракта, типовых групповых трактов и каналов передачи первичной сети. Система передачи включает станции системы передачи и среду распространения.

АГО - аппаратура группообразования; АУ - аппаратура уплотнения; УДК - устройство долговременной коммутации; СУ - сетевой узел; ТКП - типовой канал передачи

В системах передачи с частотным разделением каналов (ЧРК) для передачи сигналов по каждому из каналов выделяется определенная полоса частот. Системы передачи, в которых для передачи сигналов по каждому из каналов в линейном тракте отводятся определенные интервалы времени, называются системами с временным разделением каналов (ВРК).

На современном этапе в магистральных первичных сетях большее распространение имеют системы с частотным разделением каналов. Системы с временным делением внедряются преимущественно в местных первичных сетях.

Основными характеристиками первичных сетей независимо от используемых систем передачи являются:

структура, определяющая взаимное расположение сетевых узлов станций и линий передачи без учета их положения на местности;

топология - структура с учетом реального положения на местности;

мощность, определяемая числом типовых каналов или суммарной шириной спектра частот всех каналов связи в линии передачи;

живучесть, которая определяет устойчивость линий передачи и узлов первичной сети к повреждениям.

Устойчивость от повреждений определяется технической надежностью оборудования, устойчивостью от стихийных бедствий и рядом других факторов.

Вторичные сети. Технические комплексы сетей передачи данных

Первичные сети служат основой для создания различного рода вторичных сетей. Вторичные сети, создаваемые для различных ведомств, называются ведомственными. В этом случае на первичной сети выделяются группы каналов, по которым передаются все виды информации в интересах системы управления, относящейся к,какому-либо ведомству. Например, на общегосударственной первичной сети может быть организована вторичная сеть, обеспечивающая управление некоторой отраслью народного хозяйства. Каналы такой вторичной сети используются для передачи всех видов информации .

По виду передаваемой информации различают, например, вторичные сети телеграфной связи, передачи данных, автоматической междугородной телефонной связи .

Ведомственные вторичные сети в ряде случаев также разделяются по виду передаваемой информации.

На рис. 1.7 показан возможный вариант образования ведомственных вторичных сетей.

На базе каналов общегосударственной сети Министерства связи СССР и каналов, образованных подвижными и стационарными средствами ведомства, создается первичная сеть для системы управления этого ведомства. Данная первичная сеть служит основой для создания вторичных сетей по видам передаваемой информации. Таким образом, сеть передачи данных является вторичной сетью первичной сети соответствующего ведомства.

Иногда совокупность вторичных сетей по видам передаваемой информации называют информационной сетью системы управления ведомства.

Сеть передачи данных включает ряд технических комплексов, к одному из которых относится совокупность средств, образующих каналы связи первичной сети, выделенные для создания сети ПД. Выделенные каналы первичной сети обеспечивают лишь потенциальную возможность передачи информации, однако для ее реализации в соответствии с потребностями АСУ необходимо введение ряда дополнительных комплексов. К ним относятся:

1. Комплекс средств, обеспечивающих образование каналов ПД на основе каналов первичной сети. Данный комплекс реализуется в виде совокупности отдельных образцов аппаратуры передачи данных (АПД), каждый из которых обеспечивает образование одного канала ПД и работает по фиксированному алгоритму. Такая реализация называется аппаратурной.

В ряде случаев используется программно-аппаратурная реализация, при которой часть функции АПД выполняется программными методами в специализированных или универсальных ЭВМ.

2. Комплекс технических средств, обеспечивающий целенаправленную передачу сообщений между абонентами сети при выполнении требований АСУ к вероятностно-временным характеристикам задержки. Этот комплекс реализуется как совокупность коммутационных станций и узлов коммутации каналов и сообщений вместе с их программным обеспечением.

3. Комплекс средств контроля состояния технических средств и управления сетью ПД, представляющий собой совокупность организационных и технических служб, а также технических и программных средств, обеспечивающих функционирование сети ПД в изменяющихся условиях.

4. Комплекс средств сопряжения ПД, представляющий собой совокупность устройств и алгоритмов, обеспечивающих электрическое, логическое, кодовое и алгоритмическое согласования различных элементов сети ПД, а также элементов сети с техническими средствами источников и потребителей информации.

Элементы перечисленных комплексов рассредоточены в сети и условно могут быть объединены в проблемно-ориентированные модули (рис. 1.8), каждый из которых выполняет строго определенные задачи по передаче данных и взаимодействию с другими модулями, вычислительной системой, банком данных и терминалами. Независимо от выполняемых функций модули называются функциональными единицами сети (ФЕС).

Модуль связи вычислительной системы (или банка данных) с сетью (СВС) осуществляет взаимодействие между разнородными ЭВМ и сетью ПД. Модуль связи терминала с сетью (СТС) обеспечивает взаимодействие между различными группами терминалов и другими элементами сети. Модуль коммуникационных функций сети (КФС), представляющий собой совокупность узлов

коммутации, обеспечивает доставку информации от отправителя к получателю по каналам первичной сети.

Технические и программные средства ФЕС вместе с их взаимосвязями образуют архитектуру модуля, определяющим для которой является реализованный в сети способ коммутации. В настоящее время ряд модификаций способов коммутации каналов и коммутации сообщений (рис. 1.9) рассматривается в качестве самостоятельных.

Любая из версий коммутации каналов предусматривает два этапа. На первом этапе образуется цепочка из последовательно соединенных каналов связи между абонентами. На втором этапе осуществляется передача информации.

В зависимости от типа каналов, используемых при построении цепочки, можно выделить коммутацию: непрерывных каналов, образованных системами с частотным уплотнением; цифровых каналов, образованных системами с временным уплотнением, и каналов ПД.

При коммутации сообщений реального соединения абонентов не происходит, а информация в виде формализованных сообщений

передается по маршрутам, состоящим из последовательных трактов ПД. Если на некотором этапе тракт занят или находится в состоянии отказа, то сообщение ожидает момента, когда он освободится или будет восстановлен.

Коммутация сообщений реализуется либо в чистом виде, либо как коммутация пакетов. Различают два режима коммутации пакетов: датаграммный и виртуальных соединений.

В сетях с коммутацией датаграмм сообщение, поступая от источника на первый же узел коммутации, разбивается на блоки, к каждому из которых добавляется необходимая служебная информация для передачи по сети. Получаемые таким образом блоки называются пакетами, кодограммами или датаграммами, имеют статус самостоятельных сообщений в сети и передаются по ней независимо друг от друга, возможно, по различным маршрутам.

В узле коммутации (УК), к которому подключен получатель, пакеты одного сообщения накапливаются в общем случае произвольно, что делает необходимым их упорядоченную сшивку перед выдачей абоненту-получателю. При этом возможны так называемые компоновочные блокировки памяти узла, при которых его запоминающие устройства оказываются занятыми несобранными сообщениями и соответственно не могут освободиться, а недостающие пакеты не могут из-за этого быть приняты.

В сетях с виртуальными соединениями перед передачей сообщения между абонентами устанавливается фиксированный маршрут. С этой целью абонентом-отправителем в сопряженный узел коммутации дается заявка на организацию соединения. Сопряженный узел определяет маршрут передачи и выдает команды во все промежуточные центры. Команды содержат номер соединения и номер исходящего тракта для этого соединения. Одновременно по одному и тому же каналу сети организуется несколько соединений с выделением для передачи в каждом направлении определенных временных позиций - виртуального канала, который закрепляется либо жестко, либо по методу статистического уплотнения.

Между соседними УК непрерывно передаются кадры, содержащие пакеты сообщений, сопровождаемые номером соединения. Размеры пакетов могут быть различными. Если в какой-либо момент времени нет очередного пакета для передачи по некоторому виртуальному каналу, то его временная позиция может заниматься пакетом другого сообщения, где пакеты в избытке. В каждом узле коммутации производится разборка пакетов информации для их перераспределения по исходящим виртуальным каналам в соответствии с номерами этих каналов.

При использовании виртуальных соединений пакеты, принадлежащие одному сообщению, поступают последовательно, что снимает проблему их упорядоченной сшивки и опасность компоновочной блокировки.

Ряд исследований, проведенных в последние годы с целью сравнения способов коммутации, а также опыт эксплуатации

сетей ПД позволяют сформулировать следующие наиболее общие рекомендации:

1. С точки зрения эффективности использования каналов коммутация сообщений предпочтительнее, чем коммутация пакетов, которая в свою очередь предпочтительнее коммутации каналов. Преимущество коммутации сообщений по сравнению с коммутацией каналов проявляется значительнее в случае интенсивных потоков сообщений небольшого объема. Исходя из этого коммутация сообщений и коммутация пакетов используются в сетях при высоких интенсивностях! потоков сравнительно коротких сообщений. Коммутация каналов применяется при незначительных интенсивностях потоков сообщений большого объема.

2. При выборе между коммутацией пакетов и коммутацией сообщений следует исходить из того, что в сетях с коммутацией пакетов могут быть достигнуты значения задержки сообщений, в несколько раз меньшие, чем в сетях с коммутацией сообщений.

3. Коммутация пакетов или коммутация сообщений должна использоваться в сетях передачи данных при необходимости обеспечения многоадресных передач, приоритетного обслуживания сообщений, а также при высоких требованиях к надежности и верности доставки. Последнее объясняется наличием в таких сетях контроля и защиты от ошибок на всех этапах передвижения сообщений по сети. При этом следует учитывать, что приоритетное обслуживание и многоадресные передачи реализуемы только в датаграммном режиме сетей с пакетной (коммутацией.

Вопрос об использовании сетей ПД с коммутацией каналов в настоящее время достаточно не изучен, однако можно предположить, что такой режим окажется эффективным для передачи очень больших объемов информации при высоких требованиях к верности. В сетях с коммутацией первичных каналов обеспечить высокую верность достаточно сложно ввиду низкого качества составных каналов.

Если абоненты предъявляют различные требования к процессу передачи информации и потоки передаваемых ими сообщений имеют различные интенсивности и объемы, то может оказаться целесообразным совместное использование различных способов коммутации. При этом обычно предусматривается единый узел коммутации с предоставлением абонентам возможности самостоятельного выбора способа коммутации.

Любая сетевая технология должна обеспечить надежную и быструю передачу дискретных данных по линиям связи. И хотя между технологиями имеются большие различия, они базируются на общих принципах передачи дискретных данных, которые рассматриваются в этой главе. Эти принципы находят свое воплощение в методах представления двоичных единиц и нулей с помощью импульсных или синусоидальных сигналов в линиях связи различной физической природы, методах обнаружения и коррекции ошибок, методах компрессии и методах коммутации.

        Эталонная модель OSI

Перемещение информации между компьютерами различных схем является чрезвычайно сложной задачей. В начале 1980 гг. Международная Организация по Стандартизации (ISO) признала необходимость в создания модели сети, которая могла бы помочь поставщикам создавать реализации взаимодействующих сетей. Эту потребность удовлетворяет эталонная модель «Взаимодействие Открытых Систем» (OSI), выпущенная в 1984 г.

Эталонная модель OSI быстро стала основной архитектурной моделью для передачи межкомпьютерных сообщений. Несмотря на то, что были разработаны другие архитектурные модели (в основном патентованные), большинство поставщиков сетей, когда им необходимо предоставить обучающую информацию пользователям поставляемых ими изделий, ссылаются на них как на изделия для сети, соответствующей эталонной модели OSI. И действительно, эта модель является самым лучшим средством, имеющемся в распоряжении тех, кто надеется изучить технологию сетей.

Иерархическая связь

Эталонная модель OSI делит проблему перемещения информации между компьютерами через среду сети на семь менее крупных, и следовательно, более легко разрешимых проблем. Каждая из этих семи проблем выбрана потому, что она относительно автономна, и следовательно, ее легче решить без чрезмерной опоры на внешнюю информацию.

Каждая из семи областей проблемы решалась с помощью одного из уровней модели. Большинство устройств сети реализует все семь уровней. Однако в режиме потока информации некоторые реализации сети пропускают один или более уровней. Два самых низших уровня OSI реализуются аппаратным и программным обеспечением; остальные пять высших уровней, как правило, реализуются программным обеспечением.

Справочная модель OSI описывает, каким образом информация проделывает путь через среду сети (например, провода) от одной прикладной программы (например, программы обработки крупноформатных таблиц) до другой прикладной программы, находящейся в другом компьютере. Т.к. информация, которая должна быть отослана, проходит вниз через уровни системы, по мере этого продвижения она становится все меньше похожей на человеческий язык и все больше похожей на ту информацию, которую понимают компьютеры, а именно «единицы» и «нули».

В качестве примера связи типа OSI предположим, что Система А на рисунок 1.1 имеет информацию для отправки в Систему В. Прикладная программа Системы А сообщается с Уровнем 7 Системы А (верхний уровень), который сообщается с Уровнем 6 Системы А, который в свою очередь сообщается с Уровнем 5 Системы А, и т.д. до Уровня 1 Системы А. Задача Уровня 1 – отдавать (а также забирать) информацию в физическую среду сети. После того, как информация проходит через физическую среду сети и поглощается Системой В, она поднимается через слои Системы В в обратном порядке (сначала Уровень 1 , затем Уровень 2 и т.д.), пока она наконец не достигнет прикладную программу Системы В.

Рисунок 1.1

Хотя каждый из уровней Системы А может сообщаться со смежными уровнями этой системы, их главной задачей является сообщение с соответствующими уровнями Системы В. Т.е. главной задачей Уровня 1 Системы А является связь с Уровнем 1 Системы В; Уровень 2 Системы А сообщается с Уровнем 2 Системы В и т.д. Это необходимо потому, что каждый уровень Системы имеет свои определенные задачи, которые он должен выполнять. Чтобы выполнить эти задачи, он должен сообщаться с соответствующим уровнем в другой системе.

Уровневая модель OSI исключает прямую связь между соответствующими уровнями других систем. Следовательно, каждый уровень Системы А должен полагаться на услуги, предоставляемые ему смежными уровнями Системы А, чтобы помочь осуществить связь с соответствующим ему уровнем Системы В. Взаимоотношения между смежными уровнями отдельной системы показаны на Рисунок 1.2.

Рисунок 1.2

Предположим, что Уровень 4 Системы А должен связаться с Уровнем 4 Системы В. Чтобы выполнить эту задачу, Уровень 4 Системы А должен воспользоваться услугами Уровня 3 Системы А. Уровень 4 называется «пользователем услуг», а Уровень 3 – «источником услуг». Услуги Уровня 3 обеспечиваются Уровню 4 в «точке доступа к услугам» (SAP), которая представляет собой просто местоположение, в котором Уровень 4 может запросить услуги Уровня 3. Как видно из рисунка, Уровень 3 может предоставлять свои услуги множеству объектов Уровня 4.

Форматы информации

Каким образом Уровень 4 Системы В узнает о том, что необходимо Уровню 4 Системы А? Специфичные запросы Уровня А запоминаются как управляющая информация, которая передается между соответствующими уровнями в блоке, называемом заголовком; заголовок предшествуют фактической прикладной информации. Например, предположим, что Система А хочет отправить в Систему В следующий текст (называемый «данные» или «информация»): The small grey cat ran up the wall to try to catch the red bird.

Этот текст передается из прикладной программы Системы А в верхний уровень этой системы. Прикладной уровень Системы А должен передать определенную информацию в прикладной уровень Системы В, поэтому он помещает управляющую информацию (в форме кодированного заголовка) перед фактическим текстом, который должен быть передан. Этот информационный блок передается в Уровень 6 Системы А, который может предварить его своей собственной управляющей информацией. Размеры сообщения увеличиваются по мере того, как оно проходит вниз через уровни до тех пор, пока не достигнет сети, где оригинальный текст и вся связанная с ним управляющая информация перемещаются к Системе В, где они поглощаются Уровнем 1 Системы В. Уровень 1 Системы В отделяет заголовок уровня 1 и прочитывает его, после чего он знает, как обрабатывать данный информационный блок. Слегка уменьшенный в размерах информационный блок передается в Уровень 2, который отделяет заголовок Уровня 2, анализирует его, чтобы узнать о действиях, которые он должен выполнить, и т.д. Когда информационный блок наконец доходит до прикладной программы Системы В, он должен содержать только оригинальный текст.

Концепция заголовка и собственно данных относительна и зависит от перспективы того уровня, который в данный момент анализирует информационный блок. Например, в Уровне 3 информационный блок состоит из заголовка Уровня 3 и следующими за ним данными. Однако данные Уровня 3 могут содержать заголовки Уровней 4, 5, 6 и 7. Кроме того, заголовок Уровня 3 является просто данными для Уровня 2. Эта концепция иллюстрируется на Рисунок 1.3. И наконец, не все уровни нуждаются в присоединении заголовков. Некоторые уровни просто выполняют трансформацию фактических данных, которые они получают, чтобы сделать их более или менее читаемыми для смежных с ними уровней.

Рисунок 1.3

Уровни OSI

Приступим к обсуждению каждого отдельного уровня OSI и его функций. Каждый уровень имеет заранее заданный набор функций, которые он должен выполнить для того, чтобы связь могла состояться.

Прикладной уровень

Прикладной уровень – это самый близкий к пользователю уровень OSI. Он отличается от других уровней тем, что не обеспечивает услуг ни одному из других уровней OSI; однако он обеспечивает ими прикладные процессы, лежащие за пределами масштаба модели OSI. Примерами таких прикладных процессов могут служить программы обработки крупномасштабных таблиц, программы обработки слов и т.д.

Прикладной уровень идентифицирует и устанавливает наличие предполагаемых партнеров для связи, синхронизирует совместно работающие прикладные программы, а также устанавливает соглашение по процедурам устранения ошибок и управления целостностью информации. Прикладной уровень также определяет, имеется ли в наличии достаточно ресурсов для предполагаемой связи.

Представительный уровень

Представительный уровень отвечает за то, чтобы информация, посылаемая из прикладного уровня одной системы, была читаемой для прикладного уровня другой системы. При необходимости представительный уровень осуществляет трансляцию между множеством форматов представления информации путем использования общего формата представления информации.

Представительный уровень занят не только форматом и представлением фактических данных пользователя, но также структурами данных, которые используют программы. Поэтому кроме трансформации формата фактических данных (если она необходима), представительный уровень согласует синтаксис передачи данных для прикладного уровня.

Сеансовый уровень

Как указывает его название, сеансовый уровень устанавливает, управляет и завершает сеансы взаимодействия между прикладными задачами. Сеансы состоят из диалога между двумя или более объектами представления (как вы помните, сеансовый уровень обеспечивает своими услугами представительный уровень). Сеансовый уровень синхронизирует диалог между объектами представительного уровня и управляет обменом информации между ними. В дополнение к основной регуляции диалогов (сеансов) сеансовый уровень предоставляет средства для отправки информации, класса услуг и уведомления в исключительных ситуациях о проблемах сеансового, представительного и прикладного уровней.

Транспортный уровень

Граница между сеансовым и транспортным уровнями может быть представлена как граница между протоколами прикладного уровня и протоколами низших уровней. В то время как прикладной, представительный и сеансовый уровни заняты прикладными вопросами, четыре низших уровня решают проблемы транспортировки данных.

Транспортный уровень пытается обеспечить услуги по транспортировке данных, которые избавляют высшие слои от необходимости вникать в ее детали. В частности, заботой транспортного уровня является решение таких вопросов, как выполнение надежной транспортировки данных через объединенную сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия виртуальных каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения системы данными из другой системы).

Сетевой уровень

Сетевой уровень – это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным «подсетям», которые могут находиться в разных географических пунктах. В данном случае «подсеть» – это по сути независимый сетевой кабель (иногда называемый сегментом).

Т.к. две конечные системы, желающие организовать связь, может разделять значительное географическое расстояние и множество подсетей, сетевой уровень является доменом маршрутизации. Протоколы маршрутизации выбирают оптимальные маршруты через последовательность соединенных между собой подсетей. Традиционные протоколы сетевого уровня передают информацию вдоль этих маршрутов.

Канальный уровень

Канальный уровень (формально называемый информационно–канальным уровнем) обеспечивает надежный транзит данных через физический канал. Выполняя эту задачу, канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации.

Физический уровень

Физический уровень определяет электротехнические, механические, процедурные и функциональные характеристики активации, поддержания и дезактивации физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как уровни напряжений, синхронизацию изменения напряжений, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.

        Важнейшие термины и концепции

Наука об объединении сетей, как и другие науки, имеет свою собственную терминологию и научную базу. К сожалению, ввиду того, что наука об объединении сетей очень молода, пока что не достигнуто единое соглашение о значении концепций и терминов объединенных сетей. По мере дальнейшего совершенствования индустрии объединенных сетей определение и использование терминов будут более четкими.

Адресация

Существенным компонентом любой системы сети является определение местонахождения компьютерных систем. Существуют различные схемы адресации, используемые для этой цели, которые зависят от используемого семейства протоколов. Другими словами, адресация AppleTalk отличается от адресации TCP/IP, которая в свою очередь отличается от адресации OSI, и т.д.

Двумя важными типами адресов являются адреса канального уровня и адреса сетевого уровня. Адреса канального уровня (называемые также физическими или аппаратными адресами), как правило, уникальны для каждого сетевого соединения. У большинства локальных сетей (LAN) адреса канального уровня размещены в схеме интерфейса; они назначаются той организацией, которая определяет стандарт протокола, представленный этим интерфейсом. Т.к. большинство компьютерных систем имеют одно физическое сетевое соединение, они имеют только один адрес канального уровня. Роутеры и другие системы, соединенные с множеством физических сетей, могут иметь множество адресов канального уровня. В соответствии с названием, адреса канального уровня существуют на Уровне 2 эталонной модели ISO.

Адреса сетевого уровня (называемые также виртуальными или логическими адресами) существуют на Уровне 3 эталонной модели OSI. В отличие от адресов канального уровня, которые обычно существуют в пределах плоского адресного пространства, адреса сетевого уровня обычно иерархические. Другими словами, они похожи на почтовые адреса, которые описывают местонахождение человека, указывая страну, штат, почтовый индекс, город, улицу, адрес на этой улице и наконец, имя. Хорошим примером одноуровневой адресации является номерная система социальной безопасности США, в соответствии с которой каждый человек имеет один уникальный номер, присвоенный ему службой безопасности.

Иерархические адреса делают сортировку адресов и повторный вызов более легкими путем исключения крупных блоков логически схожих адресов в процессе последовательности операций сравнения. Например, можно исключить все другие страны, если в адресе указана страна «Ирландия». Легкость сортировки и повторного вызова являются причиной того, что роутеры используют адреса сетевого уровня в качестве базиса маршрутизации.

Адреса сетевого уровня различаются в зависимости от используемого семейства протоколов, однако они, как правило, используют соответствующие логические разделы для нахождения компьютерных систем в объединенной сети. Некоторые из этих логических разделов базируются на физических характеристиках сети (таких, как сегмент сети, в котором находится какая–нибудь система); другие логические разделы базируются на группировках, не имеющих физического базиса (например, «зона» AppleTalk).

Блоки данных, пакеты и сообщения

После того, как по адресам установили местоположение компьютерных систем, может быть произведен обмен информацией между двумя или более системами. В литературе по объединенным сетям наблюдается непоследовательность в наименовании логически сгруппированных блоков информации, которая перемещается между компьютерными системами. «блок данных», «пакет», «блок данных протокола», «PDU», «сегмент», «сообщение» – используются все эти и другие термины, в зависимости от прихоти тех, кто пишет спецификации протоколов.

В настоящей работе термин «блок данных» (frame ) обозначает блок информации, источником и пунктом назначения которого являются объекты канального уровня. Термин «пакет» (packet ) обозначает блок информации, у которого источник и пункт назначения – обекты сетевого уровня. И наконец, термин «сообщение» (message ) обозначает информационный блок, у которого объекты источника и места назначения находятся выше сетевого уровня. Термин «сообщение» используется также для обозначения отдельных информационных блоков низших уровней, которые имеют специальное, хорошо сформулированное назначение.

Модель взаимодействия сетевых процессов является моделью взаимосвязи открытых систем .

В широком смысле Открытой системой может быть названа любая система (компьютер, вычислительная сеть, ОС, программный пакет, другие программные и аппаратные продукты), которая построена в соответствии с открытыми спецификациями.

Под термином спецификация (в вычислительной технике) понимают формализованное описание аппаратных или программных компонентов, способов их функционирования, взаимодействия с другими компонентами, условий эксплуатации, ограничений и особых характеристик.

Не всякая спецификация является стандартом.

Под открытыми спецификациями понимаются опубликованные, общедоступные спецификации, соответствующие стандартам и принятые в результате достижения согласия после всестороннего обсуждения всеми заинтересованными организациями.

        Стандартизация компьютерных сетей

Без услуг нескольких основных организаций по стандартизации, в области объединенных сетей было бы значительно больше хаоса, чем его имеется в настоящее время. Организации по стандартизации обеспечивают форум для дискуссий, помогают превратить результаты дискуссий в официальные спецификации, а также распространяют эти спецификации после завершения процесса стандартизации.

Большинство организаций по стандартизации выполняют специфичные процессы, чтобы превратить идеи в официальные стандарты. И хотя у различных организаций эти процессы немного отличаются, они схожи в том, что проходят через несколько раундов организации идей, обсуждения этих идей, разработки проектов стандартов, голосования по всем или некоторым аспектам этих стандартов и наконец, официального выпуска завершенных стандартов.

Наиболее известными организациями по стандартизации являются следующие организации:

Международная Организация по Стандартизации (ISO)

международная организация по стандартизации, которая является автором широкого диапазона стандартов, включая стандарты по сетям. Этой организации принадлежит эталонная модель OSI и и набор протоколов OSI.

Американский Национальный Институт Стандартизации (ANSI)

координирующий орган добровольных групп по стандартизации в пределах США. ANSI является членом ISO. Наиболее широко известным стандартом ANSI по коммуникациям является FDDI.

Ассоциация Электронной Промышленности (EIA)

группа, выпускающая стандарты по передаче электрических сигналов. Самым известным стандартом EIA является RS–232.

Институт Инженеров по Электротехнике и Электронике (IEEE)

профессиональная организация, разрабатывающая стандарты для сетей. Стандарты LAN, разработанные IEEE (включая IЕЕЕ 802.3 и IEEE 802.5), являются наиболее известными стандартами IEEE по связи; они являются ведущими стандартами LAN во всем мире.

Международный Консультативный Комитет по Телеграфии и Телефонии (CCITT)

международная организация, разрабатывающая стандарты по связи. Наиболее известным стандартом CCITT является X.25.

Совет по Регуляции Работы Internet (IAB)

группа исследователей по объединенным сетям, которая регулярно встречается для обсуждения проблем, относящихся к Internet. Этот совет определяет основную политику в области Internet, принимая решения и определяя суть задач, которые необходимо выполнить, чтобы решить различные проблемы. Некоторые из документов «Request for Comments» (RFC) (Запрос для Комментария») разработаны IAB в качестве стандартов Internet, в том числеТransmission Control Protocol/ Internet Protocol (TCP/IP) иSimple Network Management Protocol (SNMP) .

ЛОКАЛЬНЫЕ ВЫЧИСЛИТЕЛЬНЫЕ СЕТИ (ЛКС)

ГЛОБАЛЬНЫЕ КОМПЬЮТЕРНЫЕ СЕТИ

ВВЕДЕНИЕ

На сегодняшний день в мире существует более 130 миллионов компьютеров и более 80 % из них объединены в различные информационно-вычислительные сети от малых локальных сетей в офисах до глобальных сетей типа Internet, FidoNet, FREEnet и т.д. Всемирная тенденция к объединению компьютеров в сети обусловлена рядом важных причин, таких как ускорение передачи информационных сообщений, возможность быстрого обмена информацией между пользователями, получение и передача сообщений (факсов, E–Mail писем, электронных конференций и т.д.) не отходя от рабочего места, возможность мгновенного получения любой информации из любой точки земного шара, а так же обмен информацией между компьютерами разных фирм производителей работающих под разным программным обеспечением.

Такие огромные потенциальные возможности, которые несет в себе вычислительная сеть и тот новый потенциальный подъем, который при этом испытывает информационный комплекс, а так же значительное ускорение производственного процесса не дают нам право игнорировать и не применять их на практике.

Зачастую возникает необходимость в разработке принципиального решения вопроса по организации ИВС (информационно–вычислительной сети) на базе уже существующего компьютерного парка и программного комплекса, отвечающей современным научно–техническим требованиям с учетом возрастающих потребностей и возможностью дальнейшего постепенного развития сети в связи с появлением новых технических и программных решений.

ПРИНЦИП ПОСТРОЕНИЯ КОМПЬЮТЕРНЫХ СЕТЕЙ

Компьютерная сеть – это совокупность компьютеров и различных устройств, обеспечивающих информационный обмен между компьютерами в сети без использования каких-либо промежуточных носителей информации.

Все многообразие компьютерных сетей можно классифицировать по группе признаков:

1) Территориальная распространенность;

2) Ведомственная принадлежность;

3) Скорость передачи информации;

4) Тип среды передачи;

По территориальной распространенности сети могут быть локальными, глобальными, и региональными. Локальные – это сети, перекрывающие территорию не более 10 м 2 , региональные – расположенные на территории города или области, глобальные на территории государства или группы государств, например, всемирная сеть Internet.

По принадлежности различают ведомственные и государственные сети. Ведомственные принадлежат одной организации и располагаются на ее территории. Государственные сети – сети, используемые в государственных структурах.

По скорости передачи информации компьютерные сети делятся на низко-, средне- и высокоскоростные.

По типу среды передачи разделяются на сети коаксиальные, на витой паре, оптоволоконные, с передачей информации по радиоканалам, в инфракрасном диапазоне.

Компьютеры могут соединяться кабелями, образуя различную топологию сети (звездная, шинная, кольцевая и др.).

Следует различать компьютерные сети и сети терминалов (терминальные сети). Компьютерные сети связывают компьютеры, каждый из которых может работать и автономно. Терминальные сети обычно связывают мощные компьютеры (майнфреймы), а в отдельных случаях и ПК с устройствами (терминалами), которые могут быть достаточно сложны, но вне сети их работа или невозможна, или вообще теряет смысл. Например, сеть банкоматов или касс по продажи авиабилетов. Строятся они на совершенно иных, чем компьютерные сети, принципах и даже на другой вычислительной технике.

В классификации сетей существует два основных термина: LAN и WAN.

LAN (Local Area Network) – локальные сети, имеющие замкнутую инфраструктуру до выхода на поставщиков услуг. Термин «LAN» может описывать и маленькую офисную сеть, и сеть уровня большого завода, занимающего несколько сотен гектаров. Зарубежные источники дают даже близкую оценку – около шести миль (10 км) в радиусе; использование высокоскоростных каналов.

WAN (Wide Area Network) – глобальная сеть, покрывающая большие географические регионы, включающие в себя как локальные сети, так и прочие телекоммуникационные сети и устройства. Пример WAN – сети с коммутацией пакетов (Frame Relay), через которую могут «разговаривать» между собой различные компьютерные сети.

Термин «корпоративная сеть» также используется в литературе для обозначения объединения нескольких сетей, каждая из которых может быть построена на различных технических, программных и информационных принципах.

Рассмотренные выше виды сетей являются сетями закрытого типа, доступ к ним разрешен только ограниченному кругу пользователей, для которых работа в такой сети непосредственно связана с их профессиональной деятельностью. Глобальные сети ориентированы на обслуживание любых пользователей.

На рисунке 1, рассмотрим способы коммутации компьютеров и виды сетей.

Рисунок 1 - Способы коммутации компьютеров и виды сетей.

ЛОКАЛЬНЫЕ КОМПЬЮТЕРНЫЕ СЕТИ (ЛКС)

Классификация ЛКС

Локальные вычислительные сети подразделяются на два кардинально различающихся класса: одноранговые (одноуровневые или Peer to Peer) сети и иерархические (многоуровневые).

Одноранговые сети.

Одноранговая сеть представляет собой сеть равноправных компьютеров, каждый из которых имеет уникальное имя (имя компьютера) и обычно пароль для входа в него во время загрузки ОС. Имя и пароль входа назначаются владельцем ПК средствами ОС. Одноранговые сети могут быть организованы с помощью таких операционных систем, как LANtastic, Windows’3.11, Novell NetWare Lite. Указанные программы работают как с DOS, так и с Windows. Одноранговые сети могут быть организованы также на базе всех современных 32-разрядных операционных систем – Windows’95 OSR2, Windows NT Workstation версии, OS/2) и некоторых других.

Иерархические сети.

В иерархических локальных сетях имеется один или несколько специальных компьютеров – серверов, на которых хранится информация, совместно используемая различными пользователями.

Сервер в иерархических сетях – это постоянное хранилище разделяемых ресурсов. Сам сервер может быть клиентом только сервера более высокого уровня иерархии. Поэтому иерархические сети иногда называются сетями с выделенным сервером. Серверы обычно представляют собой высокопроизводительные компьютеры, возможно, с несколькими параллельно работающими процессорами, с винчестерами большой емкости, с высокоскоростной сетевой картой (100 Мбит/с и более). Компьютеры, с которых осуществляется доступ к информации на сервере, называются станциями или клиентами.

ЛКС классифицируются по назначению:

· Сети терминального обслуживания. В них включается ЭВМ и периферийное оборудование, используемое в монопольном режиме компьютером, к которому оно подключается, или быть общесетевым ресурсом.

· Сети, на базе которых построены системы управления производством и учрежденческой деятельности. Они объединяются группой стандартов МАР/ТОР. В МАР описываются стандарты, используемые в промышленности. ТОР описывают стандарты для сетей, применяемых в офисных сетях.

· Сети, которые объединяют системы автоматизации, проектирования. Рабочие станции таких сетей обычно базируются на достаточно мощных персональных ЭВМ, например фирмы Sun Microsystems.

· Сети, на базе которых построены распределенные вычислительные системы.

По классификационному признаку локальные компьютерные сети делятся на кольцевые, шинные, звездообразные, древовидные;

по признаку скорости – на низкоскоростные (до 10 Мбит/с), среднескоростные (до 100 Мбит/с), высокоскоростные (свыше 100 Мбит/с);

по типу метода доступа – на случайные, пропорциональные, гибридные;

по типу физической среды передачи – на витую пару, коаксиальный или оптоволоконный кабель, инфракрасный канал, радиоканал.

Структура ЛКС

Способ соединения компьютеров называется структурой или топологией сети. Сети Ethernet могут иметь топологию «шина» и «звезда». В первом случае все компьютеры подключены к одному общему кабелю (шине), во втором - имеется специальное центральное устройство (хаб), от которого идут «лучи» к каждому компьютеру, т.е. каждый компьютер подключен к своему кабелю.

Структура типа «шина», рисунок 2(а), проще и экономичнее, так как для нее не требуется дополнительное устройство и расходуется меньше кабеля. Но она очень чувствительна к неисправностям кабельной системы. Если кабель поврежден хотя бы в одном месте, то возникают проблемы для всей сети. Место неисправности трудно обнаружить.

В этом смысле «звезда», рисунок 2(б), более устойчива. Поврежденный кабель – проблема для одного конкретного компьютера, на работе сети в целом это не сказывается. Не требуется усилий по локализации неисправности.

В сети, имеющей структуру типа «кольцо», рисунок 2(в), информация передается между станциями по кольцу с переприемом в каждом сетевом контроллере. Переприем производится через буферные накопители, выполненные на базе оперативных запоминающих устройств, поэтому при выходе их строя одного сетевого контроллера может нарушиться работа всего кольца.

Достоинство кольцевой структуры – простота реализации устройств, а недостаток – низкая надежность.

Все рассмотренные структуры – иерархические. Однако, благодаря использованию мостов, специальных устройств, объединяющих локальные сети с разной структурой, из вышеперечисленных типов структур могут быть построены сети со сложной иерархической структурой.

а) б) в)

Рисунок 2 – структура построения (а) шина, (б) кольцо, (в) звезда
Физическая среда передачи в локальных сетях

Весьма важный момент – учет факторов, влияющих на выбор физической среды передачи (кабельной системы). Среди них можно перечислить следующие:

1) Требуемая пропускная способность, скорость передачи в сети;

2) Размер сети;

3) Требуемый набор служб (передача данных, речи, мультимедиа и т.д.), который необходимо организовать.

4) Требования к уровню шумов и помехозащищенности;

5) Общая стоимость проекта, включающая покупку оборудования, монтаж и последующую эксплуатацию.

Основная среда передачи данных ЛКС – неэкранированная витая пара, коаксиальный кабель, многомодовое оптоволокно. При примерно одинаковой стоимости одномодового и многомодового оптоволокна, оконечное оборудование для одномодового значительно дороже, хотя и обеспечивает большие расстояния. Поэтому в ЛКС используют, в основном, многомодовую оптику.

Основные технологии ЛКС: Ethernet, ATM. Технологии FDDI (2 кольца), применявшаяся ранее для опорных сетей и имеющая хорошие характеристики по расстоянию, скорости и отказоустойчивости, сейчас мало используется, в основном, из-за высокой стоимости, как, впрочем, и кольцевая технология Token Ring, хотя обе они до сих пор поддерживаются на высоком уровне всеми ведущими вендорами, а в отдельных случаях (например, применение FDDI для опорной сети масштаба города, где необходима высокая отказоустойчивость и гарантированная доставка пакетов) использование этих технологий все еще может быть оправданным.

Типы ЛКС

Ethernet – изначально коллизионная технология, основанная на общей шине, к которой компьютеры подключаются и «борются» между собой за право передачи пакета. Основной протокол – CSMA/CD (множественный доступ с чувствительностью несущей и обнаружению коллизий). Дело в том, что если две станции одновременно начнут передачу, то возникает ситуация коллизии, и сеть некоторое время «ждет», пока «улягутся» переходные процессы и опять наступит «тишина». Существует еще один метод доступа – CSMA/CA (Collision Avoidance) – то же, но с исключением коллизий. Этот метод применяется в беспроводной технологии Radio Ethernet или Apple Local Talk – перед отправкой любого пакета в сети пробегает анонс о том, что сейчас будет происходить передача, и станции уже не пытаются ее инициировать.

Ethernet бывает полудуплексный (Half Duplex), по всем средам передачи: источник и приемник «говорит по очереди» (классическая коллизионная технология) и полнодуплексный (Full Duplex), когда две пары приемника и передатчика на устройствах говорят одновременно. Этот механизм работает только на витой паре (одна пара на передачу, одна пара на прием) и на оптоволокне (одна пара на передачу, одна пара на прием).

Ethernet различается по скоростям и методам кодирования для различной физической среды, а также по типу пакетов (Ethernet II, 802.3, RAW, 802.2 (LLC), SNAP).

Ethernet различается по скоростям: 10 Мбит/с, 100 Мбит/с, 1000 Мбит/с (Гигабит). Поскольку недавно ратифицирован стандарт Gigabit Ethernet для витой пары категории 5, можно сказать, что для любой сети Ethernet могут быть использованы витая пара, одномодовое (SMF) или многомодовое (MMF) оптоволокно. В зависимости от этого существуют различные спецификации:

· 10 Мбит/с Ethernet: 10BaseT, 10BaseFL, (10Base2 и 10Base5 существуют для коаксиального кабеля и уже не применяются);

· 100 Мбит/с Ethernet: 100BaseTX, 100BaseFX, 100BaseT4, 100BaseT2;

· Gigabit Ethernet: 1000BaseLX, 1000BaseSX (по оптике) и 1000BaseTX (для витой пары)

Существуют два варианта реализации Ethernet на коаксиальном кабеле, называемые «тонкий» и «толстый» Ethernet (Ethernet на тонком кабеле 0,2 дюйма и Ethernet на толстом кабеле 0,4 дюйма).

Тонкий Ethernet использует кабель типа RG-58A/V (диаметром 0,2 дюйма). Для маленькой сети используется кабель с сопротивлением 50 Ом. Коаксиальный кабель прокладывается от компьютера к компьютеру. У каждого компьютера оставляют небольшой запас кабеля на случай возможности его перемещения. Длина сегмента 185 м, количество компьютеров, подключенных к шине – до 30.

После присоединения всех отрезков кабеля с BNC-коннекторами (Bayonel-Neill-Concelnan) к Т-коннекторам (название обусловлено формой разъема, похожей на букву «Т») получится единый кабельный сегмент. На его обоих концах устанавливаются терминаторы («заглушки»). Терминатор конструктивно представляет собой BNC-коннектор (он также надевается на Т-коннектор) с впаянным сопротивлением. Значение этого сопротивления должно соответствовать значению волнового сопротивления кабеля, т.е. для Ethernet нужны терминаторы с сопротивлением 50 Ом.

Толстый Ethernet – сеть на толстом коаксиальном кабеле, имеющем диаметр 0,4 дюйма и волновое сопротивление 50 Ом. Максимальная длина кабельного сегмента – 500 м.

Прокладка самого кабеля почти одинакова для всех типов коаксиального кабеля.

Для подключения компьютера к толстому кабелю используется дополнительное устройство, называемое трансивером. Трансивер подсоединен непосредственно к сетевому кабелю. От него к компьютеру идет специальный трансиверный кабель, максимальная длина которого 50 м. На обоих его концах находятся 15-контактные DIX-разъемы (Digital, Intel и Xerox). С помощью одного разъема осуществляется подключение к трансиверу, с помощью другого – к сетевой плате компьютера.

Трансиверы освобождают от необходимости подводить кабель к каждому компьютеру. Расстояние от компьютера до сетевого кабеля определяется длиной трансиверного кабеля.

Создание сети при помощи трансивера очень удобно. Он может в любом месте в буквальном смысле «пропускать» кабель. Эта простая процедура занимает мало времени, а получаемое соединение оказывается очень надежным.

Кабель не режется на куски, его можно прокладывать, не заботясь о точном месторасположении компьютеров, а затем устанавливать трансиверы в нужных местах. Крепятся трансиверы, как правило, на стенах, что предусмотрено их конструкцией.

При необходимости охватить локальной сетью площадь большую, чем это позволяют рассматриваемые кабельные системы, применяется дополнительные устройства – репитеры (повторители). Репитер имеет 2-портовое исполнение, т.е. он может объединить 2 сегмента по 185 м. Сегмент подключается к репитеру через Т-коннектор. К одному концу Т-коннектора подключается сегмент, а на другом ставится терминатор.

В сети может быть не больше четырех репитеров. Это позволяет получить сеть максимальной протяженностью 925 м.

Существуют 4-портовые репитеры. К одному такому репитеру можно подключить сразу 4 сегмента.

Длина сегмента для Ethernet на толстом кабеле составляет 500 м, к одному сегменту можно подключить до 100 станций. При наличии трансиверных кабелей до 50 м длиной, толстый Ethernet может одним сегментом охватить значительно большую площадь, чем тонкий. Эти репитеры имеют DIX-разъемы и могут подключаться трансиверами, как к концу сегмента, так и в любом другом месте.

Очень удобны совмещенные репитеры, т.е. подходящие и для тонкого и для толстого кабеля. Каждый порт имеет пару разъемов: DIX и BNC, но он не могут быть задействованы одновременно. Если необходимо объединять сегменты на разном кабеле, то тонкий сегмент подключается к BNC-разъему одного порта репитера, а толстый – к DIX-разъему другого порта.

Репитеры очень полезны, но злоупотреблять ими не стоит, так как они приводят к замедлению работы в сети.

Ethernet на витой паре.

Витая пара – это два изолированных провода, скрученных между собой. Для Ethernet используется 8-жильный кабель, состоящий из четырех витых пар. Для защиты от воздействия окружающей среды кабель имеет внешнее изолирующее покрытие.

Основной узел на витой паре – hub (в переводе называется накопителем, концентратором или просто хаб). Каждый компьютер должен быть подключен к нему с помощью своего сегмента кабеля. Длина каждого сегмента не должна превышать 100 м. На концах кабельных сегментов устанавливаются разъемы RJ-45. Одним разъемом кабель подключается к хабу, другим – к сетевой плате. Разъемы RJ-45 очень компактны, имеют пластмассовый корпус и восемь миниатюрных площадок.

Хаб – центральное устройство в сети на витой паре, от него зависит ее работоспособность. Располагать его надо в легкодоступном месте, чтобы можно было легко подключать кабель и следить за индикацией портов.

Хабы выпускаются на разное количество портов – 8, 12, 16 или 24. Соответственно к нему можно подключить такое же количество компьютеров.